2.2 函数的单调性与最值 2021年高中总复习优化设计一轮用书理数01

合集下载

2021届山东高考数学一轮讲义:第2章 第2讲 函数的单调性与最值 Word版含解析

2021届山东高考数学一轮讲义:第2章 第2讲 函数的单调性与最值 Word版含解析

第2讲函数的单调性与最值[考纲解读] 1.掌握求函数单调性与单调区间的求解方法,并能利用函数的单调性求最值.(重点)2.理解函数的单调性、最大值、最小值及其几何意义.(重点)3.能够运用函数图象理解和研究函数的性质.(难点)[考向预测]从近三年高考情况来看,本讲是高考中的一个热点.预测2021年高考将主要考查函数单调性的应用、比较大小、函数最值的求解、根据函数的单调性求参数的取值范围等问题.对应学生用书P0131.函数的单调性(1)增函数、减函数增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的□01任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是□02增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是□03减函数图象描述自左向右看图象是□04上升的自左向右看图象是□05下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)□06单调性.区间D叫做函数y=f(x)的□07单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意的x∈I,都有□01f(x)≤M;②存在x0∈I,使得□02f(x0)=M①对于任意x∈I,都有□03f(x)≥M;②存在x0∈I,使得□04f(x0)=M 结论M为函数y=f(x)的最大值M为函数y=f(x)的最小值1.概念辨析(1)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).()(2)设任意x1,x2∈[a,b]且x1≠x2,那么f(x)在[a,b]上是增函数⇔f(x1)-f(x2)x1-x2>0⇔(x1-x2)[f(x1)-f(x2)]>0.()(3)若函数y=f(x),x∈D的最大值为M,最小值为m(M>m),则此函数的值域为[m,M].()(4)闭区间上的单调函数,其最值一定在区间端点取到.()答案(1)×(2)√(3)×(4)√2.小题热身(1)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案[-1,1],[5,7]解析由图可知函数的单调递增区间为[-1,1]和[5,7].(2)函数y=4x-x2+3,x∈[0,3]的单调递增区间是________,最小值是________,最大值是________.答案[0,2]37解析 因为y =4x -x 2+3=-(x -2)2+7,所以函数y =4x -x 2+3,x ∈[0,3]的单调递增区间是[0,2]. 当x =2时,y max =7;当x =0时,y m i n =3.(3)函数f (x )=(2a -1)x -3是R 上的减函数,则a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-∞,12解析 因为函数f (x )=(2a -1)x -3是R 上的减函数,所以2a -1<0,解得a <12. (4)函数f (x )=3x +1(x ∈[2,5])的最大值与最小值之和等于________. 答案32解析 因为函数f (x )=3x +1在[2,5]上单调递减,所以f (x )max =f (2)=1,f (x )m i n =f (5)=12,f (x )max +f (x )m i n =32.对应学生用书P014题型1.函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A.(-∞,-2) B .(-∞,1) C.(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8在定义域内的单调递增区间.∵函数t =x 2-2x -8在(-∞,-2)上单调递减,在(4,+∞)上单调递增,∴函数f (x )的单调递增区间为(4,+∞). 2.函数f (x )=|x -2|x 的单调递减区间是( ) A.[1,2] B .[-1,0] C.[0,2] D .[2,+∞)答案 A解析 f (x )=|x -2|x =⎩⎨⎧(x -2)x ,x ≥2,(2-x )x ,x <2.作出此函数的图象如下.观察图象可知,f (x )=|x -2|x 的单调递减区间是[1,2].条件探究 将本例中“f (x )=|x -2|x ”改为“f (x )=x 2-2|x |”,则f (x )的单调递减区间是________,单调递增区间是________. 答案 (-∞,-1]和(0,1] (-1,0]和(1,+∞)解析 f (x )=x 2-2|x |=⎩⎨⎧x 2-2x ,x ≥0,x 2+2x ,x <0.作出此函数的图象如图,观察图象可知,此函数的单调递减区间是(-∞,-1]和(0,1];单调递增区间是(-1,0]和(1,+∞). 3.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 解法一:设-1<x 1<x 2<1, f (x )=a ·x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1). 由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增.解法二:f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a (x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.1.确定函数单调性(区间)的三种常用方法(1)定义法:一般步骤:①任取x 1,x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性).如举例说明3可用此法. (2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性确定它的单调性.如举例说明2.(3)导数法:利用导数取值的正负确定函数的单调性.如举例说明3可用此法. 2.熟记函数单调性的三个常用结论(1)若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.如举例说明1.1.若函数f(x)=ax+1在R上递减,则函数g(x)=a(x2-4x+3)的增区间是()A.(2,+∞) B.(-∞,2)C.(4,+∞) D.(-∞,4)答案 B解析因为函数f(x)=ax+1在R上递减,所以a<0,所以g(x)=a(x2-4x+3)=a[(x-2)2-1]的增区间是(-∞,2).2.函数f(x)=6x-x2的单调递减区间是________.答案[3,6]解析由6x-x2≥0得0≤x≤6,故函数f(x)的定义域为[0,6],再利用二次函数的性质可得函数f(x)的单调递减区间是[3,6].3.用定义法证明:f(x)=log2(x-2)在(2,+∞)上单调递增.证明∀x1,x2∈(2,+∞)且x1<x2,f(x1)-f(x2)=log2(x1-2)-log2(x2-2)=log2x1-2 x2-2.又由2<x1<x2,得0<x1-2x2-2<1.所以log2x1-2x2-2<0,即f(x1)-f(x2)<0.所以f(x1)<f(x2).所以函数f(x)在区间(2,+∞)上单调递增. 题型二求函数的最值(值域)1.函数f(x)=-x+1x在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是()A.32B.-83C.-2 D.2答案 A解析 因为函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上是减函数,所以f (x )max =f (-2)=2-12=32.2.函数y =x -x -1的最小值为________. 答案 34解析 令t =x -1,则t ≥0且x =t 2+1, 所以y =t 2+1-t =⎝ ⎛⎭⎪⎫t -122+34,t ≥0,所以当t =12时,y m i n =34. 条件探究将本例中“y =x -x -1”改为“y =x +1-x2”,则函数y =x +1-x2的最小值为________. 答案 -1解析 由1-x 2≥0可得-1≤x ≤1. 可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4,θ∈[0,π],所以-1≤y ≤2,故所求函数的最小值是-1.3.对a ,b ∈R ,记max{a ,b }=⎩⎨⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x∈R )的最小值是________. 答案 32解析 由|x +1|≥|x -2|, 得(x +1)2≥(x -2)2.所以x ≥12.所以f (x )=⎩⎪⎨⎪⎧|x +1|,x ≥12,|x -2|,x <12.其图象如图所示.由图象易知,当x =12时,函数有最小值, 所以f (x )m i n =f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12+1=32.4.函数f (x )=2a x -2020a x +1的值域为________.答案 (-2020,2)解析 解法一:f (x )=2a x -2020a x +1=2(a x +1)-2022a x +1=2-2022a x +1,因为a x >0,所以a x +1>1,所以0<2022a x +1<2022, 所以-2020<2-2022a x +1<2, 故函数f (x )的值域为(-2020,2). 解法二:令y =f (x )=2a x -2020a x +1,得y ·a x +y =2a x -2020, 所以(y -2)a x =-y -2020, a x =-y +2020y -2, 由a x >0得y +2020y -2<0, 故-2020<y <2,所以函数f (x )=2a x -2020a x +1的值域为(-2020,2).求函数的最值(值域)的常用方法(1)单调性法:若所给函数为单调函数,可根据函数的单调性求最值.如举例说明1.(2)换元法:求形如y =ax +b +(cx +d )(ac ≠0)的函数的值域或最值,常用代数换元法、三角换元法结合题目条件将原函数转化为熟悉的函数,再利用函数的相关性质求解.如举例说明2.(3)数形结合法:若函数解析式的几何意义较明显(如距离、斜率等)或函数图象易作出,可用数形结合法求函数的值域或最值.如举例说明3.(4)有界性法:利用代数式的有界性(如x 2≥0,x ≥0,2x >0,-1≤sin x ≤1等)确定函数的值域.如举例说明4可用此法. (5)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解.如举例说明4可用此法.另外,基本不等式法、导数法求函数值域或最值也是常用方法,在后面章节中有重点讲述.1.(2019·厦门质检)函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 答案 3解析 由于y =⎝ ⎛⎭⎪⎫13x 在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 2.函数y =3x +1x -2的值域为________.答案 {y |y ∈R 且y ≠3} 解析 y =3x +1x -2=3(x -2)+7x -2=3+7x -2, 因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}. 3.函数y =|x +1|+|x -2|的值域为________.答案 [3,+∞)解析函数y =⎩⎨⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). 题型 三 函数单调性的应用角度1 比较函数值的大小1.(2019·郑州模拟)已知定义在R 上的函数f (x )满足f (-x )=f (x ),且函数f (x )在(-∞,0)上是减函数,若a =f (-1),b =f ⎝ ⎛⎭⎪⎫log 214,c =f (20.3),则a ,b ,c 的大小关系为( ) A.c <b <a B .a <c <b C .b <c <a D .a <b <c 答案 B解析 ∵函数f (x )满足f (-x )=f (x ), ∴c =f (20.3)=f (-20.3).∵1<20.3<2,∴-1>-20.3>-2, 即-1>-20.3>log 214.∵函数f (x )在(-∞,0)上是减函数, ∴f (-1)<f (-20.3)<f ⎝ ⎛⎭⎪⎫log 214,即a <c <b .角度2 解不等式2.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则不等式f (1-x 2)>f (2x )的x 的取值范围是( )A.(0,2-1) B .(-1,2+1) C.(0,2+1) D .(-1,2-1)答案 D解析 作出函数f (x )的图象如图所示.则不等式f (1-x 2)>f (2x )等价于⎩⎨⎧1-x 2>0,2x ≤0或⎩⎨⎧1-x 2>0,2x >0,1-x 2>2x ,解得-1<x <2-1.角度3 求参数的值或取值范围3.已知函数f (x )=⎩⎨⎧(a -3)x +5,x ≤1,2a -log a x ,x >1,对于任意x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围是( ) A.(1,3] B .(1,3) C .(1,2] D .(1,2)答案 C解析 根据题意,由f (x 1)-f (x 2)x 1-x 2<0,易知函数f (x )为R 上的单调递减函数,则⎩⎨⎧a -3<0,a >1,(a -3)+5≥2a ,解得1<a ≤2.故选C.函数单调性应用问题的常见类型及解题策略 (1)比较大小.如举例说明1.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.如举例说明2. (3)利用单调性求参数①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意:若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.如举例说明3.1.(2019·广州模拟)已知函数f(x)在(-∞,+∞)上单调递减,且当x∈[-2,1]时,f(x)=x2-2x-4,则关于x的不等式f(x)<-1的解集为()A.(-∞,-1) B.(-∞,3)C.(-1,3) D.(-1,+∞)答案 D解析因为f(-1)=-1,所以f(x)<-1,等价于f(x)<f(-1).又函数f(x)在(-∞,+∞)上单调递减.所以x>-1,所以关于x的不等式f(x)<-1的解集为(-1,+∞).2.(2020·贵阳市高三摸底)函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是()A.a=-3 B.a<3 C.a≤-3 D.a≥-3 答案 C解析y=x-5x-a-2=x-a-2+a-3x-a-2=1+a-3x-(a+2),所以当a-3<0时,y=x-5x-a-2的单调递增区间是(-∞,a+2),(a+2,+∞);当a-3≥0时不符合题意.又y=x-5x-a-2在(-1,+∞)上单调递增,所以(-1,+∞)⊆(a+2,+∞),所以a+2≤-1,即a≤-3,综上知,a的取值范围是(-∞,-3].3.已知f (x )=2x -2-x ,a =⎝ ⎛⎭⎪⎫79-14,b =⎝ ⎛⎭⎪⎫9715,c =log 279,则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B .f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b ) D .f (b )<f (c )<f (a )答案 B解析 a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715>1,c =log 279<0,所以c <b <a .因为f (x )=2x-2-x=2x-⎝ ⎛⎭⎪⎫12x在R 上单调递增,所以f (c )<f (b )<f (a ).对应学生用书P223组 基础关1.(2020·河北大名一中月考)下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A.f (x )=x 12 B .f (x )=x 3 C.f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3x答案 D解析 f (x )=x 12,f (y )=y 12,f (x +y )=(x +y )12,不满足f (x +y )=f (x )f (y ),故A 错误;f (x )=x 3,f (y )=y 3,f (x +y )=(x +y )3,不满足f (x +y )=f (x )f (y ),故B 错误;f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是单调递减函数,故C 错误;f (x )=3x ,f (y )=3y ,f (x +y )=3x +y ,满足f (x +y )=f (x )f (y ),且f (x )在R 上是单调递增函数,故D 正确.故选D.2.函数y =⎝ ⎛⎭⎪⎫132x 2-3x +1的单调递增区间为( )A.(1,+∞)B.⎝ ⎛⎦⎥⎤-∞,34C.⎝ ⎛⎭⎪⎫12,+∞D.⎣⎢⎡⎭⎪⎫34,+∞ 答案 B解析 令μ=2x 2-3x +1=2⎝ ⎛⎭⎪⎫x -342-18,因为μ=2⎝ ⎛⎭⎪⎫x -342-18在⎝ ⎛⎦⎥⎤-∞,34上单调递减,函数y =⎝ ⎛⎭⎪⎫13μ在R 上单调递减.所以y =⎝ ⎛⎭⎪⎫132x 2-3x +1在⎝ ⎛⎦⎥⎤-∞,34上单调递增.3.已知f (x )在R 上是减函数,a ,b ∈R 且a +b ≤0,则下列结论正确的是( ) A.f (a )+f (b )≤-[f (a )+f (b )] B.f (a )+f (b )≤f (-a )+f (-b ) C.f (a )+f (b )≥-[f (a )+f (b )] D.f (a )+f (b )≥f (-a )+f (-b ) 答案 D解析 a +b ≤0可转化为a ≤-b 或b ≤-a ,由于函数f (x )在R 上是减函数,所以f (a )≥f (-b ),f (b )≥f (-a ),两式相加得f (a )+f (b )≥f (-a )+f (-b ). 4.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c >a >b B .c >b >a C.a >c >b D .b >a >c答案 D解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,且2<52<3,所以b >a >c .5.(2020·河南鹤壁高中月考)若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是 ( ) A.增函数 B .减函数 C.先增后减 D .先减后增 答案 B解析∵y=ax与y=-bx在(0,+∞)上都是减函数,∴a<0,b<0,∴y=ax2+bx的对称轴方程x=-b2a<0,∴y=ax2+bx在(0,+∞)上为减函数.6.(2019·兰州模拟)函数f(x)=2|x-a|+3在区间[1,+∞)上不单调,则a的取值范围是()A.[1,+∞) B.(1,+∞)C.(-∞,1) D.(-∞,1]答案 B解析函数f(x)=2|x-a|+3的增区间为[a,+∞),减区间为(-∞,a],若函数f(x)=2|x-a|+3在区间[1,+∞)上不单调,则a>1.7.(2019·广东茂名二联)设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=1f(x)在R上为减函数B.y=|f(x)|在R上为增函数C.y=2-f(x)在R上为减函数D.y=-[f(x)]3在R上为增函数答案 C解析A错误,比如f(x)=x在R上为增函数,但y=1f(x)=1x在R上不具有单调性;B错误,比如f(x)=x在R上为增函数,但y=|f(x)|=|x|在(0,+∞)上为增函数,在(-∞,0)上为减函数;D错误,比如f(x)=x在R上为增函数,但y=-[f(x)]3=-x3在R上为减函数;C正确,由复合函数同增异减,得y =2-f(x)在R上为减函数.故选C.8.已知函数f(x)=1a-1x(a>0,x>0),若f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a=________.答案2 5解析由反比例函数的性质知函数f(x)=1a-1x(a>0,x>0)在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,即⎩⎪⎨⎪⎧1a -2=12,1a -12=2,解得a =25.9.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 答案 (3,+∞)解析 ∵函数f (x )=ln x +x 的定义域为(0,+∞),且为单调递增函数,∴f (a 2-a )>f (a +3)同解于⎩⎨⎧a 2-a >0,a +3>0,a 2-a >a +3,解得a >3.所以正数a 的取值范围是(3,+∞).10.已知函数f (x )=4-mxm -1(m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 答案 (-∞,0)∪(1,4]解析 由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤⎝ ⎛⎭⎪⎫4x m i n =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4.当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0.故实数m 的取值范围是(-∞,0)∪(1,4].组 能力关1.(2019·安徽合肥模拟)若2x +5y ≤2-y +5-x ,则有( ) A.x +y ≥0 B .x +y ≤0 C .x -y ≤0 D .x -y ≥0答案 B解析 原不等式可化为2x -5-x ≤2-y -5y ,记函数f (x )=2x -5-x ,则原不等式可化为f (x )≤f (-y ).又函数f (x )在R 上单调递增,所以x ≤-y ,即x +y ≤0. 2.已知函数f (x )=⎩⎨⎧log a x ,x >3,mx +8,x ≤3.若f (2)=4,且函数f (x )存在最小值,则实数a 的取值范围为( ) A.(1,3]B .(1,2]C.⎝ ⎛⎦⎥⎤0,33D .[3,+∞)答案 A解析 因为f (2)=2m +8=4,所以m =-2,所以当x ≤3时,f (x )=-2x +8.此时f (x )≥f (3)=2.因为函数f (x )存在最小值,所以当x >3时,f (x )单调递增,且log a 3≥2,所以⎩⎨⎧ a >1,log a 3≥log a a 2,即⎩⎨⎧a >1,a 2≤3,解得a ∈(1,3]. 3.(2019·郑州模拟)设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________. 答案 [0,1)解析∵函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),∴当x >1时,即x -1>0,g (x )=x 2; 当x =1时,x -1=0,g (x )=0; 当x <1时,x -1<0,g (x )=-x 2;∴g (x )=⎩⎨⎧x 2,x >1,0,x =1,-x 2,x <1,画出函数g (x )的图象,如图所示.根据图象得出,函数g (x )的单调递减区间是[0,1).4.(2020·河北模拟调研)已知函数f (x )=log a (-x +1)(a >0,且a ≠1)在[-2,0]上的值域是[-1,0],则实数a =________;若函数g (x )=a x +m -3的图象不经过第一象限,则实数m 的取值范围为________. 答案 13 [-1,+∞)解析 函数f (x )=log a (-x +1)(a >0,且a ≠1)在[-2,0]上的值域是[-1,0].当a >1时,f (x )=log a (-x +1)在[-2,0]上单调递减,∴⎩⎨⎧f (-2)=log a 3=0,f (0)=log a 1=-1,无解;当0<a <1时,f (x )=log a (-x +1)在[-2,0]上单调递增,∴⎩⎨⎧f (-2)=log a 3=-1,f (0)=log a 1=0,解得a =13. ∵g (x )=⎝ ⎛⎭⎪⎫13x +m -3的图象不经过第一象限,∴g (0)=⎝ ⎛⎭⎪⎫13m-3≤0,解得m ≥-1,即实数m 的取值范围是[-1,+∞).5.已知f (x )=xx -a(x ≠a ).(1)若a =-2,证明:f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解 (1)证明:当a =-2时,f (x )=x x +2. 设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.6.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函数;(2)若f (3)=-1,求f (x )在[2,9]上的最小值. 解 (1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (2)因为f (x )在(0,+∞)上是单调递减函数, 所以f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.。

高考数学一轮复习2.2函数的单调性与最值文

高考数学一轮复习2.2函数的单调性与最值文

第二节函数的单调性与最值一、基础知识批注——理解深一点1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论汇总——规律多一点在公共定义域内:(1)函数f (x )单调递增,g (x )单调递增,则f (x )+g (x )是增函数; (2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f x的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.三、基础小题强化——功底牢一点一判一判对的打“√”,错的打“×”(1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)具有相同单调性的函数的和、差、积、商函数还具有相同的单调性.( ) (3)若定义在R 上的函数f (x )有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)所有的单调函数都有最值.( )答案:(1)× (2)× (3)× (4)× (5)× (6)×(二)选一选1.若函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12B .m <12C .m >-12D .m <-12解析:选B 若函数y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.2.下列函数中,图象是轴对称图形且在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =-x 2+1C .y =2xD .y =log 2|x |解析:选B 因为函数的图象是轴对称图形,所以排除A 、C ,又y =-x 2+1在 (0,+∞)上单调递减,y =log 2|x |在(0,+∞)上单调递增,所以排除D.故选B.3.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].(三)填一填4.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.解析:由图可知函数的增区间为[-1,1]和[5,7]. 答案:[-1,1]和[5,7] 5.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为________. 解析:易知f (x )在[-2,0]上是减函数,∴f (x )max -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 确定函数的单调性区间[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-x -12+2,x ≥0,-x +12+2,x <0.画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=ax ′x -1-ax x -1′x -12=a x -1-ax x -12=-ax -12.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x-x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性. 解:设x 1,x 2是任意两个正数,且x 1<x 2, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax(a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数. 考点二 求函数的值域最值[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________,b =________.(3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法 函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上是增函数, ∴f (x )min =f ⎝ ⎛⎭⎪⎫12=12,f (x )max =f (2)=2.即⎩⎪⎨⎪⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52 (3)4[解题技法] 求函数最值的5种常用方法[口诀归纳]单调性,左边看,上坡递增下坡减; 函数值,若有界,上界下界值域外.[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x的值域为________.解析:当x >0时,f (x )=x +4x≥4,当且仅当x =2时取等号;当x <0时,-x +⎝ ⎛⎭⎪⎫-4x ≥4,即f (x )=x +4x≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,所以t ∈⎣⎢⎡⎦⎥⎤-12,1,y =f (t )=4t 2-12t -1,因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎢⎡⎦⎥⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3, 又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-⎝⎛⎭⎪⎫x 2-a x 2+a2=(x 1-x 2)⎝⎛⎭⎪⎫1+a x 1x 2<0. ∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2. ∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫14,12B.⎣⎢⎡⎦⎥⎤14,12C.⎝ ⎛⎦⎥⎤0,12 D.⎣⎢⎡⎭⎪⎫12,1 解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧ 0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎢⎡⎦⎥⎤14,12.[课时跟踪检测]A 级——保大分专练1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a . 因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13.所以0≤2x -1<13,解得12≤x <23. 4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2-ax -5,x ≤1,a x,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧ -a 2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________. 解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________. 解析:由f (x )=1x 的图象知,f (x )=1x在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞), ∴f (x )=1x在[2,a ]上也是减函数, ∴f (x )max =f (2)=12,f (x )min =f (a )=1a, ∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, ∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎢⎡⎦⎥⎤12,2上是增函数, ∴f ⎝ ⎛⎭⎪⎫12=1a-2=12,f (2)=1a -12=2, 解得a =25. 12.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2. 因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)内单调递增.(2)任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a. 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0,所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1.所以0<a ≤1.所以a 的取值范围为(0,1].B 级——创高分自选1.若f (x )=-x 2+4mx 与g (x )=2m x +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1] 解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2m x的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数, 所以⎩⎪⎨⎪⎧ a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3.答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )> -1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数;(2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4.解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2),所以函数f (x )在R 上是单调增函数.(2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3),又函数f (x )在R 上是增函数,故x 2+x +1>3,解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。

2025年新人教版高考数学一轮复习讲义 第二章 §2.2 函数的单调性与最值

2025年新人教版高考数学一轮复习讲义  第二章 §2.2 函数的单调性与最值

2025年新人教版高考数学一轮复习讲义第二章§2.2 函数的单调性与最值1.借助函数图象,会用数学符号语言表达函数的单调性、最值,理解实际意义.2.掌握函数单调性的简单应用.第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为D,区间I⊆D,如果∀x1,x2∈I当x1<x2时,都有 ,那么就称函数f(x)在区间I上单调递增,特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数当x1<x2时,都有 ,那么就称函数f(x)在区间I上单调递减,特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数f(x1)<f(x2)f(x1)>f(x2)增函数减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义单调递增单调递减如果函数y=f(x)在区间I上 或 ,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提一般地,设函数y =f (x )的定义域为D ,如果存在实数M 满足条件(1)∀x ∈D ,都有 ;(2)∃x 0∈D ,使得_________(1)∀x ∈D ,都有 ;(2)∃x 0∈D ,使得_________结论M 是函数y =f (x )的最大值M 是函数y =f (x )的最小值f (x )≤M f (x 0)=M f (x )≥M f (x 0)=M常用结论1.∀x1,x2∈I且x1≠x2,有 >0(<0)或(x1-x2)[f(x1)-f(x2)]>0(<0)⇔f(x)在区间I上单调递增(减).2.在公共定义域内,增函数+增函数=增函数,减函数+减函数=减函数.3.函数y=f(x)(f(x)>0或f(x)<0)在公共定义域内与y=-f(x),y= 的单调性相反.4.复合函数的单调性:同增异减.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若函数f (x )满足f (-3)<f (2),则f (x )在[-3,2]上单调递增.( )(2)若函数f (x )在(-2,3)上单调递增,则函数f (x )的单调递增区间为(-2,3).( )(3)若函数f (x )在区间[a ,b ]上连续,则f (x )在区间[a ,b ]上一定有最值.( )(4)函数y = 的单调递减区间是(-∞,0)∪(0,+∞).( )×××√2.下列函数中,在其定义域上是减函数的是√A.y=-2x+1B.y=x2+1C.y=D.y=2xy=-2x+1在R上是减函数,故A正确;y=x2+1在(-∞,0)上单调递减,在(0,+∞)上单调递增,故B错误;y= 在[0,+∞)上是增函数,故C错误;y=2x在R上是增函数,故D错误.√4.函数f(x)是定义在[0,+∞)上的减函数,则满足f(2x-1)> 的x的取值范围是________.∵f(x)的定义域是[0,+∞),又∵f(x)是定义在[0,+∞)上的减函数,返回第二部分探究核心题型题型一 确定函数的单调性命题点1 函数单调性的判断例1 (多选)下列函数在(0,+∞)上单调递增的是√√√由y=|x2-2x|的图象(图略)知,B不正确;∵y′=2-2sin x≥0,∴y=2x+2cos x是R上的增函数,故C正确;函数y=lg(x+1)是定义域(-1,+∞)上的增函数,故D正确.命题点2 利用定义证明函数的单调性方法一 定义法设-1<x1<x2<1,由于-1<x1<x2<1,所以x2-x1>0,x1-1<0,x2-1<0,故当a>0时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)在(-1,1)上单调递减;当a<0时,f(x1)-f(x2)<0,即f(x1)<f(x2),函数f(x)在(-1,1)上单调递增.方法二 导数法故当a>0时,f′(x)<0,函数f(x)在(-1,1)上单调递减;当a<0时,f′(x)>0,函数f(x)在(-1,1)上单调递增.思维升华确定函数单调性的四种方法(1)定义法.(2)导数法.(3)图象法.(4)性质法.跟踪训练1 (1)函数g(x)=x·|x-1|+1的单调递减区间为√g(x)=x·|x-1|+1画出函数图象,如图所示,(2)(2024·唐山模拟)函数f (x )=的单调递增区间为____________.212log (232)x x --令t=2x2-3x-2>0,log t由f(t)= 在(0,+∞)上单调递减,12根据复合函数的单调性:同增异减,函数t=2x2-3x-2的单调递减区间,即为f(x)的单调递增区间,题型二 函数单调性的应用命题点1 比较函数值的大小√所以f(x)在(-∞,0]上单调递减,又f(x)为偶函数,所以f(x)在(0,+∞)上单调递增,则f(2)<f(3)<f(4),又f(-2)=f(2),所以f(-2)<f(3)<f(4).命题点2 求函数的最值√微拓展求函数的值域(最值)的常用方法(1)配方法:主要用于和一元二次函数有关的函数求值域问题.(2)单调性法:利用函数的单调性,再根据所给定义域来确定函数的值域.(3)数形结合法.(4)换元法:引进一个(几个)新的量来代替原来的量,实行这种“变量代换”.(5)分离常数法:分子、分母同次的分式形式采用配凑分子的方法,把函数分离成一个常数和一个分式和的形式.典例 (多选)下列函数中,值域正确的是√A.当x∈[0,3)时,函数y=x2-2x+3的值域为[2,6)√√由x∈[0,3),再结合函数的图象(如图①所示),可得函数的值域为[2,6).故函数的值域为(-∞,2)∪(2,+∞).对于D,函数的定义域为[1,+∞),命题点3 解函数不等式例5 函数y =f (x)是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a的取值范围是________.所以实数a 的取值范围是[-1,1).[-1,1)命题点4 求参数的取值范围√思维升华(1)比较函数值的大小时,先转化到同一个单调区间内,然后利用函数的单调性解决.(2)求解函数不等式时,由条件脱去“f”,转化为自变量间的大小关系,应注意函数的定义域.(3)利用单调性求参数的取值(范围).根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.A.(-2,1)B.(0,1)C.(-∞,-2)∪(1,+∞)D.(1,+∞)√则不等式f(x+2)<f(x2+2x)等价于x+2<x2+2x,即x2+x-2>0,解得x>1或x<-2,则原不等式的解集为(-∞,-2)∪(1,+∞).∵f (x )在(a ,+∞)上单调递增,[1,2)知识过关一、单项选择题1.(2023·菏泽检测)下列函数中,在区间(0,1)上单调递增的是√y=-x2+1在区间(0,1)上单调递减,故A不符合题意;y=3-x在区间(0,1)上单调递减,故D不符合题意.2.函数f(x)=-|x-2|的单调递减区间为√A.(-∞,2]B.[2,+∞)C.[0,2]D.[0,+∞)∴函数y=|x-2|的单调递减区间是(-∞,2],单调递增区间为[2,+∞),∴f(x)=-|x-2|的单调递减区间是[2,+∞).3.(2024·邵阳统考)已知f(x)是偶函数,f(x)在[1,3]上单调递增,则f(1),f(-2),f(-3)的大小关系为A.f(1)>f(-2)>f(-3)B.f(-2)>f(-3)>f(1)√C.f(-3)>f(1)>f(-2)D.f(-3)>f(-2)>f(1)因为f(x)是偶函数,所以f(-2)=f(2),f(-3)=f(3).因为f(x)在[1,3]上单调递增,所以f(3)>f(2)>f(1),所以f(-3)>f(-2)>f(1).√∴f(x)max=f(2)=4.5.(2023·杭州模拟)已知函数f(x)=x+ln x-1,则不等式f(x)<0的解集为A.(e,+∞)B.(1,+∞)√C.(0,1)D.(0,+∞)函数f(x)=x+ln x-1的定义域为(0,+∞).因为y=x-1在(0,+∞)上单调递增,y=ln x在(0,+∞)上单调递增,所以f(x)=x+ln x-1在(0,+∞)上单调递增,又f(1)=1+ln 1-1=0,所以不等式f(x)<0的解集为(0,1).6.已知函数y=f(x)的定义域为R,对任意x1,x2且x1≠x2,都有>-1,则下列说法正确的是A.y=f(x)+x是增函数B.y=f(x)+x是减函数C.y=f(x)是增函数D.y=f(x)是减函数不妨令x1<x2,∴x1-x2<0,√令g(x)=f(x)+x,∴g(x1)<g(x2),又x1<x2,∴g(x)=f(x)+x是增函数.。

2021年高考数学一轮复习 2.2函数的单调性与最值课时作业 理 湘教版

2021年高考数学一轮复习 2.2函数的单调性与最值课时作业 理 湘教版

2021年高考数学一轮复习 2.2函数的单调性与最值课时作业理湘教版一、选择题1.下列函数中,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.y=-C.y=D.y=x+【解析】函数y=ln(x+2)在(-2,+∞)上是增函数;函数y=-在[-1,+∞)上是减函数;函数y=在(0,+∞)上是减函数;函数y=x+在(0,1)上是减函数,在(1,+∞)上是增函数.综上可得在(0,+∞)上是增函数的是y=ln(x+2),故选A.【答案】A2.函数y=2x-1的定义域是(-∞,1)∪[2,5),则其值域是 ( )A.(-∞,0)∪B.(-∞,2] C.∪[2,+∞) D.(0,+∞)【解析】:∵x∈(-∞,1)∪[2,5),则x-1∈(-∞,0)∪[1,4).∴2x-1∈(-∞,0)∪.故选A.【答案】:A3. 已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM的值为( )A.14B.12C.22D.32【解析】由⎩⎨⎧1-x ≥0,x +3≥0,得函数的定义域是{x |-3≤x ≤1},y 2=4+21-x ·x +3=4+2-(x +1)2+4, 当x =-1时,y 取得最大值M =22; 当x =-3或1时,y 取得最小值m =2,∴m M =22. 【答案】C4.用min{a ,b ,c}表示a ,b ,c 三个数中的最小值.设f (x)=min{2x ,x +2, 10-x}(x ≥0),则f (x)的最大值为( )A.4B.5C.6D.7【解析】由f (x )=min{2x ,x +2,10-x }(x ≥0)画出图象,最大值在A 处取到,联立⎩⎨⎧y =x +2,y =10-x得y =6.【答案】C5. (xx·天津河西模拟)已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|,则称f(x)为F函数.给出下列函数:①f(x)=x2;②f(x)=sin x+cos x;③f(x)=;④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是F函数的序号为()A.②④B.①③C.③④D.①②【解析】:据F函数的定义可知,由于|f(x)|≤m|x|≤m,即只需函数||存在最大值,函数即为F函数.易知①②不符合条件;对于③,=,为F函数;对于④,据题意令x1=x,x2=0,由于函数为奇函数,故有f(0)=0,则有|f(x)-f(0)|≤2|x-0||f(x)|≤2|x|,故为F函数.综上可知③④符合条件.【答案】:C6.(xx·济南模拟)已知函数f(x)在R上是单调函数,且满足对任意x ∈R,都有f[f(x)-2x]=3,则f(3)的值是()A.3B.7C.9D.12【解析】由题意知,对任意x∈R,都有f[f(x)-2x]=3,不妨令f(x)-2x=c,其中c是常数,则f(c)=3,∴f (x)=2x+c.再令x =c ,则f (c)=2c +c =3.即2c +c -3=0. 易得2c 与3-c 只有1个交点,即c =1. ∴f (x)=2x +1, ∴f (3)=23+1=9. 【答案】C二、填空题7.函数y =-(x -3)|x |的递增区间是________. 【解析】: y =-(x -3)|x|=⎩⎨⎧-x 2+3x (x >0),x 2-3x (x ≤0).作出该函数的图象, 观察图象知递增区间为. 【答案】:8.(xx ·荆州高三质检)函数f (x)=|x 3-3x 2-t|,x ∈[0,4]的最大值记为g (t),当t 在实数范围内变化时,g (t)的最小值为 . 【解析】令h (x)=x 3-3x 2-t ,则h ′(x)=3x 2-6x ,令h ′(x)≥0,则x ≤0或x ≥2,在[0,2]上h (x)为减函数,在[2,4]上h (x)为增函数,故f (x)的最大值g (t)=max{|g (0)|,|g (2)|,|g (4)|},又|g (0)|=|t |,|g (2)|=|4+t |,|g (4)|=|16-t |,在同一坐标系中分别作出它们的图象,由图象可知,g (t )=⎩⎨⎧16-t ,x ≤6,t +4,x >6,∴在y =16-t (t ≤16)与y =4+t (t ≥-4)的交点处,g (t)取得最小值,由16-t =4+t ,得2t =12,t =6,∴g (t)min =10.【答案】109.已知函数在区间[2,+∞]上单调递减,则实数a 的取值范围是________.【解析】: 依题意函数在区间[2,+∞]上单调递增,且g (2)>0,∴,解得-4<a ≤4.【答案】: (-4,4]10.(xx·启东月考)已知函数f (x )=⎩⎨⎧e -x-2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③若f (x )>0在12,+∞上恒成立,则a 的取值范围是(1,+∞);④对任意的x 1<0,x 2<0且x 1≠x 2,恒有fx 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是______(写出所有正确命题的序号).【解析】 根据题意可画出草图,由图象可知,①显然正确;函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确;由图象可知在(-∞,0)上对任意的x 1<0,x 2<0,且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确.【答案】 ①③④三、解答题11.(xx ·淮南一模)已知f (x )是R 上的单调函数,且对任意的实数a ,有f(-a)+f(a)=0恒成立,若f(-3)=2.(1)试判断f(x)在R上的单调性,并说明理由;(2)解关于x的不等式+f(m)<0,其中m∈R且m>0.【解析】:(1)f(x)是R上的减函数,理由如下:因为f(x)是R上的奇函数,所以f(0)=0.又f(-3)=2,所以f(0)<f(-3).因为f(x)是R上的单调函数,所以f(x)是R上的减函数.(2)由+f(m)<0,得<-f(m)=f(-m),且f(x)是R上的减函数,得>-m,即 <0.当m>1时,;当m=1时,{x|x>0};当0<m<1时,12.(xx·常州一中)若函数f(x)为定义域D上的单调函数,且存在区间[a,b]D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间.(1)已知f(x)=是[0,+∞)上的正函数,求f(x)的等域区间;(2)试探究是否存在实数m,使得函数g(x)=x2+m是(-∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由.【解析】:(1)∵f (x )=是[0,+∞)上的正函数, 且f (x )=x 在[0,+∞)上单调递增, ∴当x ∈[a ,b ]时,解得a =0,b =1,故函数f (x )的“等域区间”为[0,1]. (2)∵函数g (x )=x 2+m 是(-∞,0)上的减函数, ∴当x ∈[a ,b ]时,两式相减得a 2-b 2=b -a ,即b =-(a +1), 代入a 2+m =b ,得a 2+a +m +1=0, 则其对称轴为a =.由a <b <0,且b =-(a +1)<0, 得-1<a <,故关于a 的方程a 2+a +m +1=0在区间-1,.内有实数解, 记h (a )=a 2+a +m +1,则⎩⎨⎧h (-1)>0,h ⎝ ⎛⎭⎪⎫-12<0, 解得m ∈(-1,).故存在m ∈(-1,),使得函数g (x )=x 2+m 是(-∞,0)上的正函数.13.(xx ·郑州高三质检)已知函数f (x)=+ln x.(1)当a=时,求f(x)在[1,e]上的最大值和最小值;(2)若函数g(x)=f(x)-x在[1,e]上为增函数,求正实数a的取值范围.【解析】(1)当a=时,f(x)=+ln x,f′(x)=,令f′(x)=0,得x=2,∴当x∈[1,2)时,f′(x)<0,故f(x)在[1,2)上单调递减;当x∈(2,e]时,f′(x)>0,故f(x)在(2,e]上单调递增,∴f(x)在区间[1,e]上有唯一的极小值点,故f(x)min =f(x)极小值=f(2)=ln 2-1.又∵f(1)=0,f(e)=<0.∴f(x)在区间[1,e]上的最大值f(x)max=f(1)=0.综上可知,函数f(x)在[1,e]上的最大值是0,最小值是ln 2-1.(2)∵g(x)=f(x)-x=+ln x-x,∴g′(x)=,设φ(x)=-ax2+4ax-4,由题意知,a>0,故只需φ(x)≥0在[1,e]上恒成立即可满足题意.∵a>0且函数φ(x)的图象的对称轴为x=2,∴只需φ(1)=3a-4≥0,即a≥即可.故正实数a的取值范围为[,+∞). T]4d33274 81FA 臺28193 6E21 渡 38016 9480 钀37570 92C2 鋂33551 830F 茏>-36315 8DDB 跛WR。

2025年高考数学一轮复习-2.2-函数的单调性与最值【课件】

2025年高考数学一轮复习-2.2-函数的单调性与最值【课件】
解析:选A.由于 在区间 上为减函数,故A正确; 在区间 上单调递减,在区间 上单调递增,故B错误; 在区间 上单调递增,故C错误;由余弦函数的图象和性质,可得 在区间 上单调递增,在区间 上单调递减,故D错误.故选A.

2.(2023·河北沧州七校联考)函数 的单调递减区间是( )
(1)当 , 都是增(减)函数时, 是增(减)函数;
(2)若 ,则 与 单调性相同;若 ,则 与 单调性相反;
(3)函数 在公共定义域内与 , 的单调性相反;
(4)复合函数 的单调性与 和 的单调性有关.简记为:“同增异减”.
【用一用】
1.(多选)若函数 , 在给定的区间上具有单调性,下列说法正确的是( )
(答案不唯一,满足 即可)
解析:对于条件①,不妨设 ,则 ,因为 , 所以 ,所以 ,所以函数 在 上单调递减;对于条件②,刚好符合对数的运算性质,故这样的函数可以是一个单调递减的对数函数.
考点二 函数的最值(师生共研)
例2.(1)函数 的值域为________.
解析:方法一(图象法):作出函数 的图象(如图所示), .由函数图象可知, 的值域为 .
【解】 函数 在 上单调递增.证明如下: ,任取 , ,且 ,则 ,又 ,且 , ,所以 ,即 ,故函数 在 上单调递增.
(2)判断函数 , 的单调性,并用单调性的定义证明你的结论.
判断函数单调性常用的四种方法
(1)定义法:取值、作差、变形(因式分解、配方、有理化、通分)、定号、下结论.
解析:令 ,所以 , 在 上单调递减,在 上单调递增.又 为增函数,所以 在 上单调递减,在 上单调递增,所以 .
利用函数的单调性求参数的思路
(1)根据函数单调性直接构建参数满足的方程式(组)(不等式(组))或先得到函数图象的升降,再结合图象求解;

2021版高考数学(人教A版理科)一轮复习攻略课件:2.2第二节 函数的单调性与最值

2021版高考数学(人教A版理科)一轮复习攻略课件:2.2第二节 函数的单调性与最值

(1)若定义在R上的函数y=f(x),有f(-1)<f(3),则函数y=f(x)在R上为增函数.
()
(2)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( )
(3)函数y= 的单调递减区间是(-∞,0)∪(0,+∞).
()
(4)闭区间上的单调函数,其最值一定在区间端点取到. ( )

<0(或(x1-x2)[f(x1)-f(x2)]<0)⇔f(x)在D上单调递减.
f(x1) f(x2 ) x1 x2
f(x1) f(x2 ) x1 x2
2.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调
时最值一定在端点处取到.
(2)开区间上的“单峰”函数一定存在最大值(或最小值).
3.函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y= 的单调性相反.
4.“对勾函数”y=x+ (a>0)的增区间为(-∞,- ]和[ ,+∞);减区间
为[- ,0)和(0, ],且对勾函数为奇函数.
1
f(x)
a
a
a
x
a
a
典例1.函数f(x)=-x+ 1 在 A【.解3 析】选A.易知B.f-(8x)x在
(x1-x2)·[f(x1)-f(x2)]<0”的是
()
A.f(x)=2x
B.f(x)=|x-1|
C.f(x)= -x
D.f(x)=ln(x+1)
1 x
【解析】选C.由(x1-x2)·[f(x1)-f(x2)]<0可知,f(x)在(0,+∞)上是减函 数,A,D选项中,f(x)为增函数;B中,f(x)=|x-1|在(0,+∞)上不单调,对于f(x)=

人教版高中总复习一轮数学精品课件 第2章 函数 2.2 函数的单调性与最大(小)值

人教版高中总复习一轮数学精品课件 第2章 函数 2.2 函数的单调性与最大(小)值
[-1,1]和[5,7]
递增区间为
.
由题图可知函数的单调递增区间为[-1,1]和[5,7].
1
5.若函数y=(2k+1)x+b在R上是减函数,则k的取值范围是 (-∞,-2)
1
因为函数y=(2k+1)x+b在R上是减函数,所以2k+1<0,即 k<- .
2
6.若函数f(x)满足“对任意的x1,x2∈R,当x1<x2时,都有f(x1)>f(x2)”,则满足
D.f(x)= √
3
对于A,函数单调递减,不合题意;对于B,根据指数函数的性质可知函数单调
递减,不合题意;对于C,函数在定义域内不具有单调性,不合题意;对于D,根
据幂函数的性质可知,函数在其定义域内为增函数,符合题意.故选D.
4.设定义在区间[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的单调
(1 )-(2 )
<0.
1 -2
2.基本初等函数的单调区间
函数
正比例函数(y=kx,k≠0)与一
次函数(y=kx+b,k≠0)
反比例函数 =

,

≠0
二次函数(y=ax2+bx+c,a≠0)
条件
k>0
k<0
单调递增区间
R

k>0

k<0
(-∞,0)和(0,+∞)
a>0
a<0

- 2
“函数的单调递增区间是M”与“函数在区间N上单调递增”,两种说法的含
义相同吗?
不相同,这是两个不同的概念,显然N⊆M.

〖2021年整理〗2021高中数学苏教版一轮2.2 函数的单调性与最值完整教学课件PPT

〖2021年整理〗2021高中数学苏教版一轮2.2 函数的单调性与最值完整教学课件PPT

2
【迁移应用】
1.(2020·淮安模拟)下列函数f(x)中,满足“∀x1,x2∈(0,+∞)且x1≠x2,
(x1-x2)·[f(x1)-f(x2)]<0”的是
()
A.f(x)=2x
B.f(x)=|x-1|
C.f(x)= 1 -x
x
D.f(x)=ln(x+1)
【解析】选C.由(x1-x2)·[f(x1)-f(x2)]<0可知,f(x)在(0,+∞)上是减函
1
A.y= x
B.y=x2-xLeabharlann C.y=ln1 -xx
D.y=ex
【解析】选A.对于选项A,y= 1 在(0,+∞)内是减函数,y=x在(0,+∞)内是增函数,
x
则y=
1 x
-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D
中,y=ex在(0,+∞)上是增函数.
2.(必修1P38例1(1)改编)函数f(x)=x2-2x的单调递增区间是________. 【解析】f(x)=x2-2x是开口向上的二次函数,对称轴为x=1,增区间为[1,+∞)(或 (1,+∞)).
x∈A,都有_f_(_x_)_≤__f_(_x_0)_
都有_f_(_x_)_≥__f_(_x_0)_
结论
f(x0)为y=f(x)的最大值,记 为ymax=f(x0)
f(x0)为y=f(x)的最小值,记为 ymin=f(x0)
【知识点辨析】(正确的打“√”,错误的打“×”)
(1)若定义在R上的函数y=f(x),有f(-1)<f(3),则函数y=f(x)在R上为增函数.

2.2 函数的单调性与最值 2021年高考数学复习优化一轮用书文数

2.2 函数的单调性与最值 2021年高考数学复习优化一轮用书文数
3.求解含“f”的不等式,应先将不等式转化为f(M)<f(N)的形式,再 根据函数的单调性去掉“f”,应注意M,N应在定义域内取值.
4.利用单调性求参数时,应根据问题的具体情况,确定函数的单调 区间,列出与参数有关的不等式,或把参数分离出来求解.
考点1
考点2
考点3
-29-
对点训练3(1)若a>0,且a≠1,p=loga(a3+1),q=loga(a2+1),则p,q的大
函数y=f(x)的单调区间.
注意:从单调函数的定义可以看出,函数是增函数还是减函数,是 对定义域内某个区间而言的.有的函数在其定义域的一个区间上是 增函数,而在另一个区间上不是增函数.例如,函数y=x2,当x∈ [0,+∞) 时是增函数,当x∈ (-∞,0]时是减函数.
-5-
知识梳理 双基自测
123
关闭
关闭
解析 答案
考点1
考点2
考点3
-18-
例2求下列函数的单调区间: (1)y=-x2+2|x|+1;
思考求函数的单调区间有哪些方法?
考点1
考点2
考点3
-19-
考点1
考点2
考点3
-20-
考点1
考点2
考点3
-21-Biblioteka 解题心得求函数的单调区间与确定单调性的方法一致,常用以下 方法:
(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函 数,求单调区间.
小关系是( C )
A.p=q B.p<q C.p>q D.当a>1时,p>q;当0<a<1时,p<q
(2)已知函数f(x)=x|x|,若存在x∈ [1,+∞),使得f(x-2k)-k<0,则k的取

2021年高考数学大一轮总复习 2.2 函数的单调性与最值高效作业 理 新人教A版

2021年高考数学大一轮总复习 2.2 函数的单调性与最值高效作业 理 新人教A版

人教A版一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的)1.(xx·广东模拟)下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1C.y=(12)x D.y=x+1x解析:B、C在(0,+∞)上为减函数,D在(0,1)上减,(1,+∞)上增.故选A.答案:A2. 函数f(x)=1-1x-1( )A.在(-1,+∞)上单调递增B.在(1,+∞)上单调递增C.在(-1,+∞)上单调递减D.在(1,+∞)上单调递减解析:画出函数f(x)=1-1x-1的图象,从图象上可观察到该函数在(-∞,1)和(1,+∞)上单调递增,故选B.答案:B3.已知函数f(x)是R上的减函数,则满足f(|x|)<f(1)的实数x的取值范围是( ) A.(-1,1) B.(0,1)C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞)解析:∵f(x)在R上为减函数且f(|x|)<f(1),∴|x|>1,解得x>1或x<-1.答案:D4.(xx·浙江模拟)设a>0,b>0,e是自然对数的底数,则( )A.若e a+2a=e b+3b,则a>bB.若e a+2a=e b+3b,则a<bC.若e a-2a=e b-3b,则a>bD.若e a-2a=e b-3b,则a<b解析:考查函数y=e x+2x为单调增函数,若e a+2a=e b+2b,则a=b;若e a+2a=e b+3b>e b+2b,∴a>b.故选A.答案:A5.(xx·辽宁)已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x -a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H(x)的最小值为A,1H2(x)的最大值为B,则A-B=( )A.16 B.-16C.a2-2a-16 D.a2+2a-16解析:函数f(x)和g(x)的图象一个是开口向上的抛物线,一个是开口向下的抛物线,两个函数图象相交,则A必是两个函数图象交点中较低的点的纵坐标,B是两个函数图象交点中较高的点的纵坐标.令x2-2(a+2)x+a2=-x2+2(a-2)x-a2+8,解得x=a+2或x=a-2,当x=a+2时,因为函数f(x)的对称轴为x=a+2,故可判断A=f(a+2)=-4a-4.B=f(a-2)=-4a+12,所以A-B=-16.答案:B6.(xx·福建模拟)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f(x1+x22)≤12[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,3]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有f(x1+x2+x3+x44)≤14[f(x1)+f(x2)+f(x3)+f(x)].4其中真命题的序号是( )A.①②B.①③C.②④D.③④解析:二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上)7.函数f(x)=log5(2x+1)的单调增区间是________.解析:函数f(x)的定义域为(-12,+∞),令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在(-12,+∞)上为增函数,所以函数y =log 5(2x +1)的单调增区间为(-12,+∞).答案:(-12,+∞)8.函数f (x )=x +2x 在区间[0,4]上的最大值M 与最小值N 的和M +N =________.解析:令t =x ,则t ∈[0,2],于是y =t 2+2t =(t +1)2-1,显然它在t ∈[0,2]上是增函数,故t =2时,M =8;t =0时N =0,∴M +N =8.答案:89.对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x+3;g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎨⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数; 当x >2时,h (x )=3-x 是减函数, ∴h (x )在x =2时,取得最大值h (2)=1.答案:110.(xx·沈阳第二次质量监测)设在给定区间内,函数f(x),g(x)都是单调函数,有如下四个命题:①若f(x)是增函数,g(x)是增函数,则f(x)-g(x)是增函数;②若f(x)是增函数,g(x)是减函数,则f(x)-g(x)是增函数;③若f(x)是减函数,g(x)是增函数,则f(x)-g(x)是减函数;④若f(x)是减函数,g(x)是减函数,则f(x)-g(x)是减函数.其中正确的命题是________.解析:由于两个单调性相同的函数的和函数的单调性不变,且函数y=-f(x)与y=f(x)在同一单调区间内的单调性相反,则可知命题②和③是正确的,故填②③.答案:②③三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤)11.已知f(x)=xx-a(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0,且f(x)在(1,+∞)内单调递减,求a的取值范围.解:(1)证明:任取x1<x2<-2,则Δx=x2-x1>0,Δy=f(x2)-f(x1)=x2x2+2-x1x1+2=2Δxx1+2x2+2.∵(x1+2)(x2+2)>0,Δx>0,∴Δy>0,∴f(x)在(-∞,-2)内单调递增.(2)f(x)=xx-a =x-a+ax-a=1+ax-a,当a>0时,f(x)在(a,+∞),(-∞,a)上是减函数,又f(x)在(1,+∞)内单调递减,∴0<a≤1,故实数a的取值范围为(0,1].12.已知函数f(x)=a-1 |x|.(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.解:(1)证明:当x∈(0,+∞)时,f(x)=a-1x,设0<x1<x2,则x1x2>0,x2-x1>0.f(x1)-f(x2)=(a-1x1)-(a-1x2)=1x2-1x1=x1-x2x1x2<0.∴f(x1)<f(x2),即f(x)在(0,+∞)上是增函数.(2)由题意a-1x<2x在(1,+∞)上恒成立,设h(x)=2x+1x,则a<h(x)在(1,+∞)上恒成立.可证h(x)在(1,+∞)上单调递增.故a≤h(1),即a≤3,∴a的取值范围为(-∞,3].13.(xx·北京西城抽样测试)已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2 3 .(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.解:(1)证明:证法一:∵函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),∴令x=y=0,得f(0)=0.再令y=-x,得f(-x)=-f(x).在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).又∵x>0时,f(x)<0,而x1-x2>0,∴f(x1-x2)<0,即f(x1)<f(x2).因此f(x)在R上是减函数.证法二:设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2)=f(x1-x2).又∵x>0时,f(x)<0,而x1-x2>0,∴f(x1-x2)<0,即f(x1)<f(x2),∴f(x)在R上为减函数.(2)∵f(x)在R上是减函数,∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.19984 4E10 丐35611 8B1B 講J34187 858B 薋32486 7EE6 绦V30531 7743 睃r29638 73C6 珆32039 7D27 紧| !30253 762D 瘭。

2021版高考数学一轮复习第二章函数及其应用2.2函数的单调性与最值练习理北师大版

2021版高考数学一轮复习第二章函数及其应用2.2函数的单调性与最值练习理北师大版

2.2 函数的单一性与最值中心考点·精确研析考点一函数的单一性( 区间 )1. 以下函数中 , 在区间 (- ∞,0) 上是减少的是()A.y=1-x 2B.y=x 2+2xC.y=-D.y=2. 函数 f(x)=ln(x2-2x-8)的单一递加区间是()A.(- ∞,-2)B.(- ∞,1)C.(1,+ ∞)D.(4,+ ∞)3. 设函数 f(x) 在 R上为增函数 , 则以下结论必定正确的选项是()A.y=在 R 上为减函数B.y=|f(x)|在 R 上为增函数C.y=-在R上为增函数D.y=-f(x)在R上为减函数4. 设函数 f(x)=g(x)=x 2f(x-1),则函数g(x)的递减区间是()A.(- ∞,0]B.[0,1)C.[1,+ ∞)D.[-1,0]【分析】 1. 选 D. 对于选项 A, 该函数是张口向下的抛物线, 在区间 (- ∞,0] 上是增添的 ; 对于选项B, 该函数是张口向上的抛物线, 在区间 (- ∞,-1] 上是减少的 , 在区间 [- 1,+ ∞) 上是增添的; 对于选项C, 在区间 (- ∞,0]上是增添的 ; 对于选项D, 由于 y==1+. 易知其在 (- ∞,1) 上为减少的.2. 选 D. 函数存心义 , 则 x2-2x-8>0,解得:x<-2或x>4,联合二次函数的单一性和复合函数同增异减的原则,可得函数的单一增区间为(4,+ ∞ ).3. 选 D. 特例法 : 设 f(x)=x,则y== 的定义域为 (- ∞ ,0) ∪ (0,+ ∞ ), 在定义域上无单一性,A 错 ; 则y=|f(x)|=|x|在 R 上无单一性 ,B 错 ; 则 y=-=-的定义域为(-∞ ,0)∪ (0,+∞ ),在定义域上无单一性,C 错 .y=-f(x)=-x在R上为减函数,因此选项D正确.4. 选 B. 由于 g(x)=作出函数图像如下图,因此其递减区间为[0,1).判断函数单一性的方法(1)定义法 : 取值→作差→变形→定号→结论.(2)图像法 : 从左往右看 , 图像渐渐上涨 , 单一递加 ; 图像渐渐降落 , 单一递减 .(3)利用函数和、差、积、商和复合函数单一性的判断法例.(4)导数法 : 利用导函数的正负判断函数单一性.此中 (2)(3)一般用于选择题和填空题.考点二函数的最值 ( 值域 )【典例】 1. 函数 y=的值域是________.2. 函数 y=x+的最小值为________.序号联想解题1由, 想到分别常数2由 x+, 想到利用函数的单一性或换元法求解3由 - , 想到反比率函数的单一性【分析】 1.( 分别常数法 ) 由于 y==-1+, 又由于 1+x2≥ 1, 因此 0<≤2,因此-1<-1+≤1, 因此函数的值域为(-1,1].答案 :(-1,1]2. 方法一 : 由于函数y=x 和 y=在定义域内均为增函数, 故函数 y=x+在其定义域[1,+∞)内为增函数 , 因此当 x=1 时 ,y 取最小值 , 即 y min=1.方法二 : 令 t=, 且 t ≥0, 则 x=t 2+1,因此原函数变为y=t 2+1+t,t≥ 0.配方得 y=+ ,又由于 t ≥0, 因此 y≥+ =1.故函数 y=x+的最小值为 1.答案 :13. 由反比率函数的性质知函数f(x)=- (a>0,x>0)在上是增添的,因此即解得a= .答案 :求函数最值的常用方法(1)单一性法 : 先确立函数的单一性 , 再利用单一性求最值 .(2)图像法 : 先作出函数的图像 , 再察看其最高点、最低点 , 求出最值 .(3)换元法 : 对照较复杂的函数可经过换元转变为熟习的函数, 再用相应的方法求最值 .(4) 分别常数法 : 对于分式的分子、分母中都含有变量的求值域, 变为只有分子或分母有变量的状况, 再利用函数的看法求最值.(5) 基本不等式法: 先对分析式变形, 使之具备“一正二定三相等”的条件后用基本不等式求出最值.1. 若函数 f(x)=则函数f(x)的值域是()A.(- ∞,2)B.(- ∞,2]C.[0,+ ∞)D.(- ∞,0) ∪ (0,2)【分析】选 A. 当 x<1 时 ,0<2 x <2,当 x≥ 1 时 ,f(x)=-log2x≤-log21=0,综上 f(x)<2,即函数的值域为(- ∞ ,2).2. 函数 y=的值域为________ .【分析】 y===3+,由于≠0, 因此 3+≠3,因此函数y=的值域为{y|y≠ 3}.答案 :{y|y≠ 3}3.(2020 ·汉中模拟 ) 设 0<x< , 则函数 y=4x(3-2x)的最大值为________.【分析】 y=4x(3-2x)=2[2x(3-2x)]≤ 2= , 当且仅当2x=3-2x, 即 x= 时 , 等号建立 . 由于∈,因此函数y=4x(3-2x)的最大值为.答案 :考点三函数单一性的应用命1.考什么 : (1) 考察比较大小问题、与抽象函数相关的不等式和已知单一性求参数解不等式等问题题 .(2)考察数学运算、数学抽象、直观想象等中心修养.精2. 怎么考 : 与基本初等函数、单一性、最值交汇考察函数的单一性、图像等知识.解3. 新趋向 : 以基本初等函数为载体, 与其余知识交汇考察为主.读1. 比较大小问题的解题思路学 (1) 利用函数的单一性判断两个值的大小.霸 (2) 找寻中间量比较两个数值的大小 , 常常利用 1,0,-1 等 .好 2. 与抽象函数相关的不等式问题的解题策略方判断函数的单一性, 并利用函数的单一性将“ f”符号脱掉,使其转变为详细的不等式, 而后求解即可.法 3. 已知函数单一性求参数值的解题策略依照函数的图像或单一性得出含有所求参数的不等式或方程, 解该不等式或方程即可.比较大小问题【典例】 (2020 ·重庆模拟 ) 已知函数 f(x)的图像对于直线x=1 对称 , 当 x >x>1 时,[f(x)-f(x)](x-x)<0212121恒建立 , 设 a=f,b=f(2),c=f(e),则a,b,c的大小关系为()A.c>a>bB.c>b>aC.a>c>bD.b>a>c【分析】选 D.由于 f(x)的图像对于x=1 对称 , 因此 f=f, 又由已知可得f(x)在(1,+∞)上单一递减 , 因此 f(2)>f>f(e),即f(2)>f>f(e).与抽象函数相关的不等式问题【典例】函数f(x) 的定义域为 (0,+ ∞), 且对全部x>0,y>0 都有 f=f(x)-f(y),当x>1时,有f(x)>0.(1)求 f(1) 的值 ;(2)判断 f(x) 的单一性并证明 ;(3) 若 f(6)=1,解不等式f(x+5)-f<2.【分析】 (1)f(1)=f=f(x)-f(x)=0.(2)f(x)在(0,+∞ )上是增函数.证明 : 设 0<x1<x2, 则由 f=f(x)-f(y),得f(x2)-f(x1)=f, 由于>1, 因此 f>0. 因此f(x 2)-f(x1)>0,即f(x)在(0,+∞ )上是增函数.(3) 由于 f(6)=f=f(36)-f(6),又f(6)=1,因此f(36)=2,原不等式化为f(x 2+5x)<f(36),又由于f(x)在 (0,+ ∞ ) 上是增函数 , 因此解得 0<x<4.已知函数单一性求参数值问题【典例】 (2020 ·蚌埠模拟 ) 若 f(x)=是定义在R 上的减函数 , 则 a 的取值范围为 ________.【分析】由题意知,解得因此 a∈.答案 :1. 若函数 f(x)=|2x+a|的单一递加区间是 [3,+∞), 则 a 的值为()A.-2B.2C.-6D.6【分析】选 C. 由图像易知函数 f(x)=|2x+a|的单一增区间是, 令-=3, 因此 a=-6.2.f(x)是定义在 (0,+∞) 上的单一增函数, 知足 f(xy)=f(x)+f(y),f(3)=1,当 f(x)+f(x-8)≤ 2 时 ,x 的取值范围是()A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)【分析】选 B.2=1+1=f(3)+f(3)=f(9),由 f(x)+f(x-8)≤ 2, 可得 f[x(x-8)] ≤ f(9),由于 f(x) 是定义在 (0,+ ∞ ) 上的增函数 ,因此有解得 8<x≤ 9.3. 函数 y=f(x)在R上是增函数,且y=f(x)的图像经过点A(-2,-3)和B(1,3),则不等式|f(2x-1)|<3的解集为 ________.【分析】由于y=f(x)的图像经过点A(-2,-3)和B(1,3),因此f(-2)=-3,f(1)=3.又|f(2x-1)|<3,因此-3<f(2x-1)<3,即f(-2)<f(2x-1)<f(1).由于函数y=f(x)在R上是增函数,因此-2<2x-1<1,即即因此 - <x<1.答案 :(2020 ·北京模拟 ) 函数 y=f(x),x∈[1,+ ∞), 数列 {a n} 知足 a n=f(n),n∈N*,①函数 f(x) 是增添的 ;②数列 {a n} 是递加数列 .写出一个知足①的函数f(x) 的分析式 ________ .写出一个知足②但不知足①的函数f(x) 的分析式 ________ .【分析】由题意可知: 在 x∈[1,+∞ ) 这个区间上是增添的函数有很多, 可写为 :f(x)=x2.第二个填空是找一个数列是递加数列, 而对应的函数不是增添的, 可写为 :f(x)=.则这个函数在上单一递减 , 在上单一递加,因此 f(x)=在[1,+∞)上不是增添的, 不知足① .而对应的数列为:a n=在n∈ N*上愈来愈大,属递加数列.答案 :( 答案不独一 )f(x)=x2f(x)=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档