新人教版21.2.1配方法(1)
人教版九年级数学上册21.2.1 配方法课件(共19张PPT)
第2课时 配方法
像上面那样,通过配成完全平方形式来解一元二次 方程的方法,叫做配方法.可以看出,配方是为了降次, 把一个一元二次方程转化成两个一元一次方程.
第2课时 配方法
2 2x2 1 3x;
解:移项,得 2x2-3x=-1,
二次项系数化为1,得 x2 3 x 1 ,
第二十一章 一元二次方程
21.2.1 配方法
第1课时 直接开平方法
第1课时 直接开平方法
问题:一桶油漆可刷的面积为1500dm2,李林用
这桶油漆恰好刷完10个同样的正方体形状的盒子的全 部外表面,你能算出盒子的棱长吗?
解:设其中一个盒子的棱长为x dm,则这个盒子 的表面积为6x2dm2,列出方程 10×6x2=1500.
直
概念
根据平方根的意义求一元 二次方程的根的方法
接
开
平
基本思路
把方程化成x2=p或(x+n)2=p
方
法
策略思想
一元二次方程降次,转化为 两个一元一次方程
21.2.1 配方法
第2课时 配方法
第2课时 配方法
探究:怎样解方程x2+6x+4=0? 我们已经会解方程(x + 3)2= 5.因为它的左边是含有x的完全平 方式,右边是非负数,所以可以直接降次解方程. 那么,能否将方 程x2+6x+4=0转化为可以直接降次的形式再次求解呢? 解方程x2+6x+4=0的过程可以用下面的框图表示:
(2)当p=0时,方程(Ⅰ)有两个相等的实数根 x1 x2 0.
(3)当p<0时,因为对任何实数 x,都有x2≥0 ,所以方程(Ⅰ)无 实数根.
根据平方根的意义,直接
九年级数学上册-解一元二次方程21.2.1配方法第1课时直接开平方法教案新版新人教版
21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.。
第二十一章21.2.1配方法
=x2+x+ 1 = 3 ,则x2+x- 1 =0,则p=1,q=- 1 ,则pq=- 1 .
44
2
2
2
栏目索引
21.2.1 配方法
栏目索引
1.(2018河北衡水安平期末)在解方程2x2+4x+1=0时,对方程进行配方,图 21-2-1-1①是a小思做的,图21-2-1-1②是小博做的,对于两人的做法,说法正 确的是 ( )
21.2.1 配方法
栏目索引
初中数学(人教版)
九年级 上册
第二十一章 二元一次方程
21.2.1 配方法
栏目索引
21.2.1 配方法
解析 (1)原方程可化为x2=27,
栏目索引
∴x=±3 3 ,
∴x1=3 3 ,x2=-3 3 . (2)原方程可化为(3x+1)2=8,∴3x+1=±2 2 ,
∴x= 1 2 2 , 3
4 3
2
=1
+
4 3
2
,即
x
4 3
2
= 25 .由此可得x+ 4 =± 5 ,解得x1=-3,x2= 1 .
9
33
3
(3)移项,得2x2-x=-2.二次项系数化为1,得x2- 12 x=-1.配方,得x2- 12 x+
1 4
2
=
-1+
21.2.1 配方法
栏目索引
一、选择题 1.(2019天津宁河期中,5,★☆☆)若一元二次方程x2=m有解,则m的取值 为 ( ) A.正数 B.非负数 C.一切实数 D.零
答案 B 当m≥0时,一元二次方程x2=m有解.故选B.
人教版九年级数学上册:21.2.1 配方法 教学设计1
人教版九年级数学上册:21.2.1 配方法教学设计1一. 教材分析人教版九年级数学上册21.2.1配方法是本册的一个重要内容。
配方法是解决一元二次方程的一种常用方法,它可以帮助学生更好地理解一元二次方程的解法,并且为后续的二次函数、不等式等内容的学习打下基础。
本节课通过配方法的学习,使学生掌握一元二次方程的解法,提高他们解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程、二元一次方程组等知识,具备了一定的数学基础。
但学生在解决实际问题时,往往对一元二次方程的解法感到困惑。
因此,在教学过程中,要注重引导学生理解配方法的原理,并通过大量的练习让学生熟练运用配方法解决实际问题。
三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和技巧。
2.过程与方法:通过自主学习、合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极向上的精神。
四. 教学重难点1.重点:配方法解一元二次方程的基本步骤和技巧。
2.难点:如何引导学生理解配方法的原理,并熟练运用配方法解决实际问题。
五. 教学方法1.引导法:教师引导学生自主学习,发现配方法的原理和步骤。
2.讲解法:教师通过讲解示例,让学生理解配方法的应用。
3.练习法:学生通过大量练习,巩固配方法解一元二次方程的能力。
4.合作交流法:学生分组讨论,分享解题心得,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示配方法解题的过程和步骤。
2.练习题:准备一定数量的练习题,让学生在课堂上进行练习。
3.小组讨论:提前分组,便于学生在课堂上进行合作交流。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元一次方程、二元一次方程组的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一元二次方程的实例,引导学生尝试运用已有的知识解决。
学生在解决过程中,发现一元二次方程的解法存在困难。
人教版数学九年级上册21.2.1配方法第一课时 初中九年级数学教案教学设计课后反思 人教版
教师姓名孙洋单位名称霍尔果斯市国门初级中学填写时间2020年8月21日学科数学年级/册九年级上册教材版本人教版课题名称21.2.1配方法(1)难点名称运用直接开平方法,把一个一元二次方程“降次”转化为两个一元一次方程。
难点分析从知识角度分析为什么难解一元二次方程不同于解一元一次方程,计算的难度变大了,需要学生有一定的数学基础和较强的计算能力。
难点教学方法1.通过复习回顾平方根的相关知识引入本节课内容,为后面探索解法作铺垫。
2.通过创设情境,激发学生探究新知的兴趣,通过四个问题,探索总结用直接开平方法解一元二次方程。
教学环节教学过程导入(一)复习回顾,引出课题问题1 试述平方根的意义和性质.平方根的意义:平方根的性质:问题2 写出下各数的平方根: 9,16,8,24,0,-25.回答:前面我们学习了一元二次方程的有关概念,今天我们开始研究一元二次方程的解法.21.2.1 配方法(一)知识讲解(难点突破)(二)创设情境,探索解法问题3 一桶某种油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1 未知数?等量关系?代数式?思考2 怎样解这个方程?思考3 所求方程的解是实际问题的解吗?解:问题4 根据平方根的意义我们可以求得方程x2=25的解,那么你能求出下列方程的解吗?(1)x2-9=0; (2)2x2=4; (3)3x2-81=0; (4)x2=a(a≥0).问题5 对照上述方程的求解过程,你知道如何解下列方程吗?(1)(x+1)2=2; (2)(x-1)2-4=0.问题6 前面我们依据平方根的意义求得一元二次方程的解,这种解一元二次方程的方法叫做直接开平方法.(1)当方程具有什么形式时,可以用直接开平方法求解?如何求解?回答:(2)用直接开平方法解一元二次方程的实质是什么?用直接开平方法解一元二次方程的实质是:问题7 你能用直接开平方法解方程x2+6x+9=2吗?分析:如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,就可以用直接开平方法求解.解:课堂练习(难点巩固)三、应用提高(一)巩固应用例1 解下列方程:(1)2x2-8=0; (2)9x2-5=3; (3)(x+6)2-9=0;(4)3(x-1)2-6=0; (5)x2-4x +4=5; (6)9x2+6x +1=4.解:解题心得:四、落实训练(一)当堂训练1.选择题(4道)2.填空题(2道)3.问答题(2道)小结(二)回顾提升思考:通过这节课的学习你有哪些收获?回顾交流,概括总结:。
21.2.1配方法(1)优质课件
, x2
;
(2)当时p=0,方程(Ⅰ)有两个相等的实数根 x1 x2
2 (3)当 p 0 时,因为对任意的x实数,都有x
; 实数根.
,所以方程(Ⅰ)
•
•
这样,我们会解形如 x 2 p 的一元二次方程.
下面,我们把方程变得复杂一些,再进行探究.
• 第二,由方程②到方程③的依据是 的意义,这一过 程我们称为“直接开平方法”.至此,我们会用直接开平方 ( x a) b 法解形如“ ”的一元二次方程了,即方程的左边 是一个含有未知数的 式,方程的右边是一个 数.
2
•
5.解方程:
•
(1)
(2 x 3)2 2
; (2)
4( x 3)2 5
2
• 运用 法,实现了“降 次”.初步知道了一个一 元二次方的实数根有三种情况,分别是
• .
五 当堂检测
3x 2 27 0 5 x 2 2 2
( x 1)2 6 0
2( x 2)2 6 0
x2 6 x 9 5
6 x2 3 2
2 2
x
二
情境导入
• 问题 一桶油漆可刷的面积为1500dm ,李林用这桶油漆恰好刷完10个 同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? • 我们可以设一个盒子的棱长为 xdm,依题意,得方程 .① • 方程①是一个一元 次方程.如何解这个方程呢?下面,我们来试着解 方程①: • 将方程①整理,可得 x 2 . • 根据平方根的意义,得 x . x2 . • 即方程①有两个实数根,我们通常写为如下形式: x1 , • 可以验证, 和 是方程①的两个根,因为棱长不能为 值,所以盒 子的棱长为 . • 从上面可以发现,我们是从“平方根的意义”出发,进行“开平方运 算”解一元二次方程的.从本节课开始我们将深入地研究如何解一元二 次方程.
21.2.1 解一元二次方程-配方法
x1 a ,x2 a
这种解一元二次方程的方法叫做直接开平方法.
2、把一元二次方程的左边配成一个完全平方式, 然后用开平方法求解,这种解一元二次方程的方 法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
思维拓展
2 1、把方程x -3x+p=0配方得到
(x+m)2=
1 2
(1)求常数p,m的值;
(2)求方程的解。
2、若: x y 4 x 6 y 13 0,
2 2
则x _____ -8
y
理论迁移
1、将代数式x2+6x+2化成(x+p)2+q的形式 为 (x+3)2-7 。 2、比较大小:
6x ≤ x2+9.(填“>”、“<”、“≥”、 3、若代数式2x2-6x+b可化为2(x-a)2-1,则 a+b的值是 5 。
课堂小结
1、一般地,对于形如x2=a(a≥0)的方程,根据平方
根的定义,可解得
例题精讲
例1 用配方法解下列方程:
(1) x2 - 8x +1 =0
(2) 2x2 +1=3x (3) 3x2-6x+4=0
教材P42
2、 3
归纳总结
解一元二次方程的基本思路:
二次方程
降次
一次方程
把原方程变为(mx+n)2=P的形式(其中m、 n、P是常数)。
当P≥0时,两边同时开平方,这样原方 程就转化为两个一元一次方程。 当P<0时,原方程的解又如何?
ห้องสมุดไป่ตู้
把一元二次方程的左边配成一个完全 平方式,然后用直接开平方法求解,这种 解一元二次方程的方法叫做配方法.
21.2.1配方法(1)-2019
课堂小结
直接开平方法:利用平方根概念直接开平方 求一元二次方程根。
如果方程能化成
x x p或 (mx ) pp (p p或 (mx n) (p 0 ) 0)
2
2 22
p p 或 mx 的形式,那么可得 x x 或 mx nn p .p .
能力提升
C 如图,在△ABC 中, ∠B=90°,点 P 从点 B 开 始,沿 AB 边向点 A 以 Q 1cm/s 的速度移动, 点Q从 点 B 开始, 沿 BC 边向点 C 以 2cm/s 的速度移动,P、 A P B Q 到达 A、C 即终止运动. 如果 AB=6cm,BC=12cm, P、Q 都从 B 点同 时出发,几秒后△PBQ 的面积等于 8cm2?
2
解:原方程可化为 3x 1 4
2
两边开平方,得 3x 1 2
方程降次,转化为 两个一元一次方程
3x 1 2 或3 x 1 2 1 x1 , x2 1 3
方法归纳
如果方程能化成
x x p或 (mx n)) pp (p p或 (mx n (p 0 ) 0)
问题引入
问题. 一桶某种油漆可刷的面积为1500dm2,李林用 这桶油漆恰好刷完10个同样的正方体现状的盒子的 全部外表面,你能算出盒子的棱长吗?
解:设正方体的棱长为x dm,则一个正方体的表面 积为6x2dm2,根据一桶油漆可刷的面积,列出方程 10×6x2=1500 由此可得 x2=25
即
x1=5,xmx 的形式,那么可得 x x 或 mx nn p .p .
利用平方根概念直接开平方求一元二次方程 根的方法叫做直接开平方法。
基础训练
解下列方程:
21.2.1 配方法(第一课时)
教学过程
完全平方公式:
a2 2ab b2 (ab)2; a2 2ab b2 (ab)2.
填一填
(1) x2 2x __1_2 __ (x __1_)2 (2) x2 8x _4__2__ (x__4_)2 (3) y2 5y (__52_)_2 _ ( y __52 _)2
得 ___x___3______2_____,
x x 方程的根为 __3___2_, ___3____2___.
1
2
如果方程能化成x2 p或(mxn)2 p的形式,
那么可得x p或mx n p.
化成两个一 元一次方程
P6练习: 解下列方程: (1) 2x2-8=0; (2) 9x2-5=3;
(3) (x+6)2 -9 =0; (4) 3(x - 1)2 -6 =0;
(5) x2 - 4x + 4=5。 (6) 9x2+ 5=1。
小结
直接开平方法:
如果方程能化成x2 p或(mxn)2 p的形
那么可得x p或mx n p.
利用平方根的定 方程“降次”, 两个一元一次方
(4)
y2
Байду номын сангаас
1 2
y
(__14_)_2
(
y__14 _)2
当二次项系数为1时,左边所填常数等于一次项系
数一半的平方.
问题1 一桶油漆可刷的面积为1500 d m2,李林用这桶
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
设正方体的棱长为xdm,
2121 一元二次方程的解法(一)配方法-2021-2022学年九年级数学上练(人教版)(解析版)
21.2.1 一元二次方程的解法(一)配方法瞄准目标,牢记要点夯实双基,稳中求进直接开方法解一元二次方程原理:题型一:直接开方法解一元二次方程原理:【例题1】下列方程不能用直接开平方法求解的是( ) A .240x -= B .2(1)90x --= C .230x x += D .22(1)(21)x x -=+【答案】C【分析】根据直接开方法求一元二次方程的解的类型客直接得出答案.【详解】能用直接开平方法求解的是:240x -=、2(1)90x --=和22(1)(21)x x -=+; 故选C .【点睛】此题考查了解一元二次方程-公式法,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0). 变式训练【变式1-1】关于x 的方程()2x a b +=能直接开平方求解的条件是( ) A .0,0a b ≥≥B .0,0a ≥≤知识点管理 归类探究 1 (1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义. 特别说明:用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).C .a b ,为任意数D .a 为任意数且0b ≥【答案】D【分析】根据一个数的平方是非负数,可得0b ≥. 【详解】∵()20x a +≥,∵0b ≥,a 为任意数,故选:D .【点睛】本题考查了用直接开方法求一元二次方程的解,基本形式有:2x a =(a≥0).形如关于x 的一元二次方程2x a ,可直接开平方求解题型二:形如关于x 的一元二次方程2x a ,可直接开平方求解【例题2】一元二次方程290x 的解是( )A .3x =B .3x =-C .123,3x x ==-D .12=3,3x x =-【答案】C【分析】先变形得到x 2=9,然后利用直接开平方法解方程. 【详解】解:x 2=9,x =±3,所以x 1=3,x 2=-3. 故选:C .【点睛】本题考查了直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 变式训练【变式2-1】方程280x -=的解为( ) A .14x =,24x =-B .122x =,222x =-2 若0a则x a =±;表示为1,2x a x a ==- 方程有两个不等实数根 若=0a 则x=O 表示为120x x == 方程有两个相等的实数根 若0a则方程无实数根特别说明:(1)先移项,再开方;(2)形如2x a =的方程不一定有解,需要分情况讨论.C .10x =,222x =D .22x =【答案】B【分析】移项得x 2=8,然后利用直接开平方法解方程即可.【详解】解:移项得28x =,两边开方的:22x =±,即1222,22x x ==-,故选:B . 【点睛】本题考查了一元二次方程的解法:直接开平方法,熟练掌握运算方法是解题的关键. 【变式2-2】方程x 2=0的解为( ) A .0x = B .120x x ==C .无解D .以上都不对【答案】B【分析】直接运用直接开平方法求解即可. 【详解】解:∵x 2=0,∵x 1=x 2=0.故选:B.【点睛】此题考查了解一元二次方程-直接开平方法,熟练掌握直接开平方的方法是解本题的关键. 【变式2-3】一元二次方程224x =-的解是( ) A .2x =- B .2x =C .无解D .12x =,22x =-【答案】C形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解题型三:形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解 【例题5】方程2(1)4x +=的解为( )A .121,1x x ==-B .121,3x x =-=C .122,2x x ==-D .121,3x x ==-【答案】D【分析】根据直接开平方法即可求解.3 形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解,两根是12,n m n mx x a a-+--==. 特别说明:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【详解】解2(1)4x +=x+1=±2∵x+1=2或x+1=-2 解得121,3x x ==- 故选D .【点睛】此题主要考查解一元二次方程,解题的关键是熟知直接开平方法的运用. 变式训练【变式5-1】2(31)9x -= 【答案】(1)x 1=43,x 2=23-;【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可; 【详解】解:(1)2(31)9x -=, 两边开方得:313x -=±, 解得:x 1=43,x 2=23-;【变式5-2】解方程:(1)22(2)180x +-= (2)229(2)4(25)x x -=+ (1)解:22(2)180x +-=, ∵22(2)18x +=, ∵2(2)9x +=, ∵23x +=或23x,解得:x 1=1,x 2=-5;(2)解:∵9(x -2)2=4 (2x +5)2.∵3(x -2)=2(2x +5)或3(x -2)=-2(2x +5), 解得x 1=-16,x 2=47-配方法解一元二次方程题型四:用配方法给方程变形【例题3】(2021·浙江杭州市·八年级期中)用配方法解方程241x x -=时,原方程应变形为( ) A .2(2)1x -= B .2(2)5x +=C .2(2)1x +=D .2(2)5x -=【答案】D【分析】移项,配方,变形后即可得出选项. 【详解】解:x 2-4x =1, x 2-4x +4=1+4, ∵(x -2)2=5,4 1.配方法的定义通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.2.用配方法解一元二次方程的一般步骤①通过去分母、去括号、移项、合并同类项等步骤,把原方程化为20(0)ax bx c a ++=≠的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数,形如;⑤一般地,如果一个一元二次方程通过配方转化成的形式,那么就有:(1)当p >0时,原方程有两个不相等的实数根;(2)当p =0时,原方程有两个相等的实数根;(3)当p <0时,因为对任意实数x ,都有,所以原方程无实数根. . 特别说明:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.2()x n p +=2()x n p +=12x n p x n p =--=-+,12x x n ==-2()0x n +≥故选:D .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 变式训练【变式4-1】(2021·浙江杭州市·八年级期中)方程26100x x --=变形时,下列变形正确的为( ) A .2(3)1x += B .2(3)1x -=C .2(3)19x +=D .2(3)19x -=【答案】D【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】解:方程移项得:x 2-6x =10,配方得:x 2-6x +9=19,即(x -3)2=19,故选:D .【变式4-2】(2021·浙江杭州市·八年级期中)一元二次方程2660x x --=经配方可变形为( ) A .2(3)10x -= B .()2642x -=C .2(6)6x -=D .2(3)15x -=【答案】D【分析】把方程左边化为完全平方式的形式即可.【详解】解:原方程可化为x 2-6x +32-32=6,即(x -3)2=15.故选:D .【变式4-3】(2021·浙江杭州市·八年级期中)若方程280x x m -+=可通过配方写成2() =6x n -的形式,则285++=x x m 可配方成( ) A .2(5)1x n -+= B .2()1x n +=C .2(5)11x n -+=D .2()11x n +=【答案】D【分析】已知方程x 2-8x +m =0可以配方成(x -n )2=6的形式,把x 2-8x +m =0配方即可得到一个关于m 的方程,求得m 的值,再利用配方法即可确定x 2+8x +m =5配方后的形式. 【详解】解:∵x 2-8x +m =0, ∵x 2-8x =-m , ∵x 2-8x +16=-m +16,∵(x -4)2=-m +16, 依题意有n =4,-m +16=6, ∵n =4,m =10,∵x 2+8x +m =5是x 2+8x +5=0, ∵x 2+8x +16=-5+16, ∵(x +4)2=11, 即(x +n )2=11. 故选:D【点睛】本题考查了解一元二次方程-配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 题型五:配方法解一元二次方程【例题5】(2019·湖北黄冈市·九年级期中)解方程:2x 2﹣4x ﹣1=0.【答案】x 1x 2 【分析】用配方法解一元二次方程即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x=1,则x 2﹣2x=12, ∵x 2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣∵x 1=22+x 2=22. 【点睛】此题考查了配方法解一元二次方程, 解题时要注意解题步骤的准确使用, 把左边配成完全平方式, 右边化为常数.变式训练【变式5-1】(2018·芜湖市繁昌区第三中学)解方程: 22310x x --=(用配方法)【答案】14x =,24x =;【分析】先两边同时除以2,再将原方程配方即可得出答案.【详解】解:231x 022x --= 2223331x 02442x ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭2317x 416⎛⎫-= ⎪⎝⎭∵1x =2x = 【变式5-2】(2018·全国九年级单元测试)x 2-4x +2=0(配方法);【答案】x 1=2x 2=2【分析】方程的常数项移到方程右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;【详解】解方程变形得: x 2-4x=-2 配方得: x 2-4x+4=2,即(x -2) 2=2,开方得:x -2=±解得:12x =22x =【变式5-3】(2019·江苏期中)解方程:x 2+6x ﹣2=0.【答案】x=﹣.【分析】利用配方法可求出一元二次方程的解. 【详解】∵x 2+6x ﹣2=0,∵x 2+6x=2,则x 2+6x+9=2+9,即(x+3)2=11, ∵x+3=±11, ∵x=﹣3±11.配方法的应用题型六:配方法用于比较大小【例题6】(2020·福建省永春第五中学九年级期中)已知7115P m =-,2815Q m m =-,(m 为任意实数),则P 、Q 的大小关系为( ) A .P >Q B .P=QC .P <QD .不能确定【答案】C【分析】由题意表示出,再根据化简后的代数式的特征即可作出判断.【详解】解:∵∵P Q <故选C.【点睛】用不等式比较代数式的大小是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握. 变式训练【变式6-1】(2020·四川遂宁市·八年级期中)已知22862M x y x =-+-,29413N x y =++,则M N-5 1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.的值 ( ) A .为正数 B .为负数C .为非正数D .不能确定【答案】B【分析】将M -N 整理成-(x -3)2-(y+2)2-2,从而说明M -N 的值为负数. 【详解】∵M -N=8x 2-y 2+6x -2-(9x 2+4y+13) =-x 2+6x -y 2-4y -15=-[(x 2-6x+9)+(y 2+4y+4)+2]=-(x -3)2-(y+2)2-2, ∵M -N 的值为负数,故选:B .【点睛】本题考查了配方法的应用、非负数的性质--偶次方.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.【变式6-2】(2019·浙江杭州市·九年级其他模拟)若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥ B .M N ≤C .M N >D .M N <【答案】C【解析】∵223824M x N x x =+=+,,∵222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∵M N >.故选C.【变式6-3】(2021·河北九年级专题练习)已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定【答案】A【详解】∵M =219a -,N =279a a -(a 为任意实数),∵N -M =21a a -+=21324a ⎛⎫-+ ⎪⎝⎭,∵N >M ,即M <N ,故选A . 题型七:配方法用于求待定字母的值【例题7】(2018·全国九年级单元测试)已知2a 4b 18-=-,2b 10c 7+=,2c 6a 27-=-.则a b c ++的值是( ) A .5-B .10C .0D .5【答案】C【分析】将已知三个式子相加后,配方即可得到a 、b 、c 的值,从而得出结论. 【详解】由a 2﹣4b =﹣18,b 2+10c =7,c 2﹣6a =﹣27得:a 2﹣4b +b 2+10c +c 2﹣6a +38=0,∵(a ﹣3)2+(b ﹣2)2+(c +5)2=0,∵a =3,b =2,c =﹣5,∵a +b +c =0. 故选C .【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值. 变式训练【变式7-1】(2020·江苏南通市·八年级期中)若x 2+y 2+4x ﹣6y+13=0,则式子x ﹣y 的值等于( ) A .﹣1 B .1C .﹣5D .5【答案】C【分析】把给出的式子进行配方,根据非负数的性质求出x ,y 的值,再代入要求的式子即可得出答案. 【详解】∵x 2+y 2+4x−6y +13=0, ∵x 2+4x +4+y 2−6y +9=0, ∵(x +2)2+(y−3)2=0,∵x =−2,y =3, ∵x−y =−2−3=−5; 故选C .【点睛】此题考查了配方法的应用,用到的知识点是非负数的性质,通过配方求出x ,y 的值是解题的关键. 【变式7-2】(2021·黑龙江大庆市·八年级期末)已知三角形三边长为a 、b 、c ,且满足247a b -=,246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【解析】∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∵a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∵a =3,b =2,c =2,∵此三角形为等腰三角形. 故选A .【变式7-3】若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,4,4n m ∴==.题型八:配方法用于求最值【例题8】(2020·湖南湘西土家族苗族自治州·八年级期末)阅读下面的解题过程,求21030y y -+的最小值.解:∵21030y y -+=()()222102551025555y y y y y -++=-++=-+,而()250y -≥,即()25y -最小值是0; ∵21030y y -+的最小值是5 依照上面解答过程,(1)求222020m m ++的最小值; (2)求242x x -+的最大值. 【答案】(1)2019;(2)5.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可; (2)利用完全平方公式把原式变形,利用非负数的性质解答即可; 【详解】(1)2222020212019m m m m ++=+++ ()212019m =++∵()210m +≥,∵()2120192019m ++≥,∵222020m m ++的最小值为2019;(2)()2242215x x x x -+=--++()215x =--+,∵()210x -≥, ∵()210x --≤, ∵()2155x --+≤, ∵242x x -+的最大值是5.变式训练【变式8-1】(2019·辽宁大连市·八年级期末)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2C .4D .5【答案】B【分析】利用配方法将24x mx -++进行配方,即可得出答案.【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭故245,4m += 解得: 2.m =± 故选B.【变式8-2】(2020·全国八年级课时练习)不论,a b 为任何实数,2261035a b a b +-++的值都是( ) A .非负数 B .正数 C .负数 D .非正数【答案】B【分析】利用完全平方公式配方,进而利用偶次方的性质得出答案. 【详解】2261035a b a b +-++22(3)(5)10a b =-+++>, ∵a 2+b 2−6a +10b +35的值恒为正数.故选:B .【点睛】此题主要考查了完全平方公式的应用以及偶次方的性质,正确配方得出是解题关键. 【变式8-3】(2020·山东威海市·八年级期中)若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∵不论a 取何值,x ≤﹣3. 故选D .【真题1】(2016·湖北荆州市·中考真题)将二次三项式x 2+4x +5化成(x +p)2+q 的形式应为____. 【答案】(x +2)2+1 【详解】试题分析:原式=2x +4x+4+1=()221x ++ 故答案为:()221x ++【真题2】(2010·河北中考真题)已知实数的最大值为______.【答案】4【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++1链接中考2(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【真题3】(2010·江苏镇江市·中考真题)已知实数的最大值为______.【答案】4 【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++12(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【拓展1】(2020·全国九年级课时练习)解方程:2232mx x -=+()1m ≠【答案】当1m 时,原方程的解是x =1m <时,原方程无实数解【分析】先移项,再合并同类项可得()215m x -=,根据1m ≠求出251x m =-,再讨论10m -<时,10m ->,分别计算出方程的解.【详解】解:移项得:2223mx x -=+, 化简得:()215m x -=,1m ≠,251x m ∴=-, 当10m -<时,2501x m =<-, ∴原方程无实数解,当10m ->时,2501x m =>-, 满分冲刺1x ∴==2x ==∴当1m 时,原方程的解是x ==当1m <时,原方程无实数解.【点睛】此题考查解一元二次方程,根据每个方程的特点选择适合的解法是解题的关键.【拓展2】(2020·渠县崇德实验学校七年级期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x 、y 的值,再求x +y 的值; (3)将两式相减,再配方即可作出判断. 【详解】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0,∵(x﹣1)2+1>0,∵x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【拓展3】(2019·全国九年级单元测试)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵(y+2)2≥0,∵(y+2)2+4≥4,∵y2+4y+8的最小值为4.仿照上面的解答过程,求x2-x+4的最小值和6-2x-x2的最大值.【答案】154;7.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.【详解】解:(1)x2-x+4=(x-12)2+154,∵(x-12)2≥0,∵(x-12)2+154≥154.则x2-x+4的最小值是154;(2)6-2x-x2=-(x+1)2+7,∵-(x+1)2≤0,∵-(x+1)2+7≤7,则6-2x-x2的最大值为7.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.配方法:先加上一次项系数一半的平方,使式中出现完全平方式,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。
人教版数学九年级上册教案21.2.1《配方法》
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
21.2.1配方法(第1课时)教案
以根据平方根的意义直接开平方求解,而无论是消元还是降次,都是转化思想的体现,把不
会的向一直的知识转化,调动已学的知识思考通过什么方式进行转化,转化思想不仅仅用在
数学上,在日常生活的解决问题上也会给同学们以启迪.
2.如果方程能化成 或 ( )的形式,那么可得x= 或
注意:
1.根据平方根的定义开平方,不要漏掉负的平方根.
2移项要变号.
作
业
1.教科书习题21.2.1 P6练习题.
2.预习配方法解一元二次方程(第二课时),做《自主学习》P19 4.5.6.7题
教师布置作业,并提出要求.
学生课下独立完成,延续课堂.
教学
重点
理解开平方法的基本思想,会用开平方法解一元二次方程.
教学
难点
通过探究解方程的思路,得出解一元二次方程的基本思路——降次.
二、【教学流程】
教学环节
教学问题设计
师生活动
二次备课
复
习
引
入
请同学们课前预习完成上述方程组,并思考下面的问题:
【问题1】解二元一次方程组和
三元一次方程组的基本思路是
什么?
【问题2】为什么要用这种思路?它体现了什么数学思想?
形状的盒子的全部外表面,你能
算出盒子的棱长吗?
【问题3】你会解方程 吗?
依据是什么?
【追问1】类似的,你能给出下列
方程的解吗?
(1)
(2)
(3)
(4)
【追问2】上述方程有什么共同点?
你能归纳一下这类方程解的情况
吗?
【探究2】对照上面解方程
的过程,你认为应该怎样解方程
21.2.1配方法(第一课时)直接开平方法(人教版初中数学)
21.2.1配方法(第一课时)配方法是基本形式———直接开平方法(一)教学目标1.知识技能(1)理解一元二次方程降次的转化思想,会用直接开平方法解简单的一元二次方程.(2)会利用直接开平方法解形如x 2=p (p ≥0)的一元二次方程,然后迁移到解(mx+n )2=p (p ≥0)型的一元二次方程.2.过程方法通过观察思考,根据实际问题,向学生渗透知识来源于生活,获得一元二次方程的解法 “直接开平方法”.3.情感态度通过探究活动,培养学生勇于探索的良好学习习惯,感受数学的严谨性以及数学结论的确定性.(二)教学重难点1.重点:运用直接开平方法解形如(mx+n )2=p (p ≥0)的方程,领会降次转化的数学思想.2.难点:通过根据平方根的意义解形如x 2=p (p ≥0)的方程,将知识迁移到根据平方根的意义解(mx+n )2=p (p ≥0)的方程.(三)教学过程设计一、复习旧知:1.平方根的意义:2.说下列各数的平方根:9、81、0、8、1.5、916、34.3.判断下列方程是否是一元二次方程:(1)a 2−b 2=3; (2)1x +x 2=3;(3)2x 2+3=x −5; (4)3(x 2+2)=3x 2−2x +5.设计意图:课前准备二、探究新知1.探究一:出示问题1:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完了10同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设计意图:以学生身边的实际问题展开讨论,突出数学与现实的联系,培养学生自学的能力.让学生独立完成列方程的过程,对于部分学生可以给予一定帮助,鼓励同学互相帮助.解题过程:(1)审题;(2)设未知数正方体的棱长为x;(3)找等量关系,列方程:10×6×x2=1500;(4)解方程:10×6×x2=1500化简得x2=25根据平方根的意义,得x=±5既x1=5,x2=−5.检验5和-5是方程的两个根,因为棱长不能说负值,所以盒子的棱长为5cm.小结:(1)将方程转化为x2=p形式;(2)直接开平方将一元二次方转化成一元一次方程;(3)分别解这两个一元一次方程得出方程的两个解.2.探索二:(1)一元二次方程(x+3)2=5、4x2=9与x2=25的形式有何联系;(2)对比x2=25的解题过程,求解(x+3)2=5、4x2=9;(3)分析上述方程在形式和解法上的异同之处。
21.2.1配方法(1)
21.2.1配方法(1)1.下列方程能用直接开平方法求解的是( )A.5x 2+2=0B.4x 2-2x+1=0C.(x-2)2=4D.3x 2+4=22.已知b <0,则关于x 的一元二次方程(x-1)2=b 的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根3.关于x 的一元二次方程2x 2-3x-a 2+1=0的一个根为2,则a 的值为( )A.1B.3C.-3D.±34.若一元二次方程ax 2-b=0(a ≠0)有解,则必须满足( )A.a ,b 同号B.b 是a 的整数倍C.b=0D.a ,b 同号或b=05.对形如(x+m)2=n 的方程,下列说法正确的是( )A.用直接开平方得x=-m ±nB.用直接开平方得x=-n ±mC.当n ≥0时,直接开平方得x=-m ±nD.当n ≥0时,直接开平方得x=-n ±m6.若代数式(2x-1)2的值是25,则x 的值为_______.7.完成下面的解题过程:(1)解方程:2x 2-8=0;解:原方程化成_______,开平方,得_______,则x 1=_______,x 2=_______.(2)解方程:3(x-1)2-6=0.解:原方程化成_______,开平方,得_______,则x 1=_______,x 2=_______.8.用直接开平方法解下列方程:(1)x 2-25=0; (2)4x 2=1;(3)3(x+1)2=31; (4)(3x+2)2=25.参考答案1.C2.C3.D4.D5.C6.3或-27.(1)42=x ,2±=x ,2,-2(2)2)1(2=-x ,21±=-x ,21-,21+8.(1)5,521-==x x ,(2)21,2121-==x x , (3)34,3221-=-=x x , (4)37,121-==x x .。
21.2.1配方法(1)
第1课时 用直接开平方法解一元二次方程
一、情景导入,初步认识
问题:一块石头从20m高的塔上落下,石头 离地面的高度h(m)和下落时间x(s)大致 2 有如下关系:h 5 x 20,问石头经过多 长时间落到地面?
探究:
2 x (1) 25 ,则x的值为_____. (2) ( x 1)2 16 ,则x的值有____个,它们分别 是______. 2 ( 2 t 1 ) 8 ,则t=______. (3)如果 (4) (5x) 2 4 6 ,则x的值是_____. 2 3 x 27 ,则此方程的根_____. (5)
四、运用新知,深化理解
1.若8x²-16=0,则x的值是( 2) 2.若方程2(x-3)²=72,那么这个一元二次方
程的两个根是( 9或-3) 3.如果实数a、b满足 3a 4 b2 12b 36 0 则ab的值为( -8 )
4.解关于x的方程
(1)(x+m)²=n(n≥0)
归
纳
总
结
(Ⅰ)
一般地,对于方程x²=p,
(1)当p>0时,根据平方根的意义,方程(Ⅰ) x1 p , x2 p ; 有两个不等的实数根:
(2)当p=0时,方程(Ⅰ)有两个相等的 实数根:x1=x2=0; (3)当p<0时,因为对于任意实数x,都 有x²≥0,所以方程(Ⅰ)无实数根。
思 考
二、思考探究,获取新知
探究 一桶油漆可刷的面积为1500dm²,李林 勇这桶油漆恰好刷完10个同样的正方体形状的盒子 的全部外表面,你能算出盒子的棱长吗?
设一个盒子的棱长为xdm,则它的外表面面 积为
6x²
,10个这种盒子的外表面面积的 ,由此你可得到的方程是___
初中配方法
y1
11 , 19
y2
29 . 35
归纳总结
1.解一元二次方程是以降次为目的,从而把一元二次方程 转化为一元一次方程求解.
2.对于形如 x2 =p 或 (ax b)2 =p(a 0) 的一元二次方程, 可用直接开平方法求解. 3.对于形如 m(ax b)2 =n(a 0, m 0) 的一元二次方程,只要
探究新知
(10) 4(2 y 5)2 9(3y 1)2
解:[2(2 y 5)]2 [3(3y 1)]2,
2(2y 5) 3(3y 1) 或 2(2y 5) 3(3y 1),
4y 10 9y 3 或 4y 10 9y 3,
即y1
7 5
,
y2
1.
探究新知
请你分别找出这两道题目的解法错在哪一步?
开平方,得 x 1 2.
由此可得
x1 1 2, x2 1 2.
巩固落实Βιβλιοθήκη 2.解方程x2 3x 9 0. 4
解:配方,得 (x 3)2 0. 2
开平方,得 x 3 = 0. 2
由此可得
x1
x2
3 2
.
巩固落实
3.解方程x2 +2 2x 2 4. 解:配方,得 (x+ 2)2 4 0,
由此可得
x1
3+ 2
3 ,x2
3 2
3.
探究新知
例1 用直接开平方法解下列方程.
(4) (x 2)2 0;
ax b2 p( p 0)
(5( ) 3x 2)2 10;
ax b2 p( p 0)
(4) (x 2)2 0 解:x+2= 0.
即x1=x2 2.
(5( ) 3x 2)2 10
21.2.1 解一元二次方程—配方法
【跟踪训练】 1.一元二次方程 x2-3=0 的根为( C ) A.x=3 B.x=3 C.x1= 3,x2=- 3 D.x1=3,x2=-3
2.用直接开平方降次法解下列方程:
(1)x2-16=0;
(2)(x-2)2=5.
解:(1)x2-16=0,即 x2=16.
∴x1=4,x2=-4.
(2)(x-2)2=5,即 x-2=± 5.
∴x1=2+ 5,x2=2- 5.
作业
• 练习册第3页基础巩固的1、2、3、方程叫一元二次方程? • 2.它的一般形式是: • 3.二次项、二次项系数、一次项、一次项
系数、常数项分别是: • 4.如何求出2x2-8=0的解呢?
21.2 解一元二次方程
第1课时 配方法
学习目标
• 1.用直接开平方法解一元二次方程
自学指导
自学课本第5---6页,并完成以下填空。
解:(1)3x2-1=5 可化成 x2=2,
则原方程的解为 x1=- 2,x2= 2. (2)4(x-1)2-9=0 可化成(x-1)2=94. 两边开平方,得 x-1=±32. 则原方程的解为 x1=-12,x2=52. (3)4x2+16x+16=9 可化成(2x+4)2=9. 两边开平方,得 2x+4=±3. 则原方程的解为 x1=-72,x2=-12.
1.直接开平方降次法 根据平方根的定义,把一个一元二次方程_降__次___,转化为 ___两__个___一元一次方程,这种方法可解形如(x-a)2=b(b≥0)的 方程,其解为___x_=__a_±__b___.
注意:用直接开平方法求一元二次方程的解的类型有:
x2=a(a≥0);ax2=b(a,b 同号,且a≠0);(x+a)2=b(b≥0);
21.2.1一元二次方程求根方法——配方法(1)
x2 + 6x = -4 ③ ②的形式呢? 怎样保证 变形的正确性 呢? 两边加 9 x2 + 6x + 9 = -4 + 9 左边写成平方形式
2 即 (x + 3) =5 由此可得…
2.推导求根公式
回顾解方程 过程: x2 + 6x + 4 = 0
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9
③ 6 2 2 两边加 9 9,即( )=3 =9 2 x2 + 6x + 9 = -4 + 9
2 (x + 3) =5
x2 + 6x = -4
一般地,当二次项系数为 1 时,二次式加上一次项 系数一半的平方,二次式就可以写成完全平方的形式.
2.推导求根公式
议一议:结合方程①的解答过程,说出解一般二次 项系数为 1 的一元二次方程的基本思路是什么?具体步 骤是什么? 配方
2 (1) 2x
1 3x
6x 3 0 4x 2ห้องสมุดไป่ตู้ 0
(2)4 x (3)3 x
2 2
4.归纳小结
(1)用配方法解一元二次方程的基本思路是什么? 2 把方程配方为(x + n) = p 的形式,运用开平方法, 降次求解. (2)配方法解一元二次方程的一般步骤有哪些? (3)在配方法解一元二次方程的过程中应该注意 哪些问题?
x (5)
x 4 8x 12
方程 3 x 2 6 x 4 0 如何求解?
移项
3 x 2 6 x 4
二次项系数化为1
2
等式两边同除二次项系数
等式两边同加一次项系数一半的平方
2022年人教版九年级数学上册第二十一章一元二次方程教案 配方法(第1课时)
21.2 解一元二次方程21.2.1 配方法一、教学目标【知识与技能】1.会利用直接开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.3.能根据具体问题的实际意义检验结果的合理性.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度与价值观】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.二、课型新授课三、课时第1课时,共2课时四、教学重难点【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.五、课前准备课件六、教学过程(一)导入新课1.什么是平方根?一个数的平方根怎么样表示?(出示课件2)一个数的平方等于a,这个数就叫做a的平方根..a(a≥0)的平方根记作:.x2=a(a≥0),则根据平方根的定义知,x=.2. 求出下列各式中x的值,并说说你的理由.(出示课件3)⑴x2=9;⑵x2=5.解:⑴x=±3 ;⑵x=.思考:如果方程转化为x2=p,该如何解呢?(二)探索新知探究直接开平方法一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?(出示课件5)教师问:设一个盒子的棱长为xdm,则它的外表面面积为6x2dm2,10个这种盒子的外表面面积的和为10×6x2,由此你可得到方程为10×6x2=1500,你能求出它的解吗?学生思考后,共同解答如下:.解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程:10×6x2=1500,由此可得x2=25.开平方得x=±5,即x 1=5,x 2=-5.因棱长不能是负值,所以正方体的棱长为5dm .教师问:解下列方程,并说明你所用的方法,与同伴交流.(出示课件6)(1) x 2=4;(2) x 2=0;(3) x 2+1=0.学生回答:⑴根据平方根的意义,得x 1=2, x 2=-2.⑵根据平方根的意义,得x 1=x 2=0.⑶根据平方根的意义,得x 2=-1,因为负数没有平方根,所以原方程无解.教师归纳:(出示课件7)一般地,对于可化为方程 x 2 = p, (I)(1)当p>0 时,根据平方根的意义,方程(I)有两个不等的实数根1x =,2x =;(2)当p=0时,方程(I)有两个相等的实数根x 1 = x 2 =0;(3)当p<0时,因为任何实数x,都有x 2≥0 ,所以方程(I)无实数根.利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法. 例1 利用直接开平方法解下列方程:(出示课件8)(1) x 2=6;(2) x 2-900=0.师生共同讨论解答如下:解:(1)直接开平方,得x =12,∴==x x(2)移项,得x 2=900.直接开平方,得x=±30,∴x 1=30, x 2=-30.出示课件9:解下列方程: (1) 2280;x -=(2)2953.x -=学生自主思考并解答.解:(1)移项,得228.=x系数化为1,得2 4.=x∴=x即122,2;==-x x(2)移项,得298.=x系数化为1,得28.9=x12,∴==-x x教师问:对照前面方法,你认为怎样解方程(x+3)2=5①?(出示课件10)学生自主讨论后回答:解:把x+3看做一个整体,两边开平方得3x +=33.x x ∴+=+=,或③于是,方程(x+3)2=5的两个根为1233x x ∴=-+=--或教师总结:由方程①得到②,实质是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.例2 解下列方程:(1)(x+1)2= 2;(出示课件11)教师分析:本题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.师生共同解答如下:解:(1)∵x+1是2的平方根,∴x+1=即x12=-1-(2)(x-1)2-4 = 0;(出示课件12)教师分析:本题先将-4移到方程的右边,再同第1小题一样地解.师生共同解答如下:解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.即x1=3,x2=-1.(3) 12(3-2x)2-3 = 0.(出示课件13)教师分析:本题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.师生共同解答如下:解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)²=0.25.∵3-2x 是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5,∴ x 1=54 x 2=74.出示课件14,学生自主思考并解答.例3 解下列方程:(出示课件15)(1)2445x x -+=; (2)29614x x ++=. 师生共同解答如下:解:(1)()225,x -=2x ∴-=22x x -=-=方程的两根为12=+x22x =-(2)()2314,x +=312,x ∴+=±312312,x x , +=+=-方程的两根为113,=x 2 1.x =-出示课件16,学生自主思考并解答.(三)课堂练习(出示课件17-21)1. 一元二次方程x 2﹣9=0的解是______________.2.下列解方程的过程中,正确的是( )A. x 2=-2,解方程,得x=B. (x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)= ±3, x 1=14,x 2=74D.(2x+3)2=25,解方程,得2x+3=±5, x 1= 1;x 2=-43. 填空:(1)方程x 2=0.25的根是______________ .(2)方程2x 2=18的根是______________.(3)方程(2x-1)2=9的根是______________ .4.下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.解:21150,3⎛⎫+-= ⎪⎝⎭y 2115,3⎛⎫+= ⎪⎝⎭y ① 113+=y ② 113=-+y ③1.y =-④5.解方程22(2)(25)x x -=+参考答案:1.x 1=3,x 2=﹣3解析:∵x 2﹣9=0,∴x 2=9,解得:x 1=3,x 2=﹣3.故答案为:x 1=3,x 2=﹣3.2.D3.⑴x 1=0.5,x 2=-0.5 ⑵x 1=3,x 2=-3 ⑶x 1=2,x 2=-14.解:不对,从②开始错,应改为113y +=123, 3.y y =-=--5.解:()()22225,x x -=+2(25),x x ∴-=±+ 225,22 5.∴-=+-=--x x x x方程的两根为17,=-x 2 1.=-x(四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.1)第2课时的相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 用直接开平方法解一元二次方程
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
一、情景导入,初步认识
问题一 如果有x²=163,你知道x的值是多少吗? 解:∵4²=16,(-4)²=16 ∴x=±4
问题二 有3x²=18,那么x值为多少?
解:∵( 6 )²=6,( 6)²=6, ∴x= 6
解:∵n>0
两边开方得,x+m= n
得x1= m n ,x2= m n
(2)2x²+4x+2=5
解:原方程可化为(x+1)²= 两边开方,得x= ∴x1=
10 1 2
10 2
5 2
x2=
10 1 2
5.已知方程(x-2)²=m²-1的一个根是x=4, 求m的值和另一个根。
2.完成创优作业中本课时练习的“课时作业”部分。
Байду номын сангаас 课
后
作
业
1.布置作业:从教材“习题21.2”中选取。
2.完成创优作业中本课时练习的“课时作业”部分。
两边开平方得x-1= 2, 即x1=1 2,x2= 1 2。
(5)x²-4x+4=5
解:原方程可化为(x-2)²=5
两边开方得,x-2= 5
∴x1= 2 5,x2= 2 5
(6)9x²+5=1
解:原方程可化为9x²=-4,x²=
4 9
由前面结论知:
当p>0时,对任意实数x,都有x²≥0,所以 这个方程无实根.
(2)9x²-5=3
解:原方程可化为9x²=8, 8 2 2 即x²= ,两边开平方得,x= 3 9 即x1= 2 2 ,x2= 2 2
3
3
(3)(x+6)²-9=0
解:原方程整理得(x+6)²=9
根据平方的意义,得x+6=±3 即x1=-3,x2=-9
(4)3(x-1)²-6=0
解:原方程整理得(x-1)²=2
解:将x=4代入(x-2)²=m²-1,得m²-1=4,
∴m=
5 ,故原方程可化为(x-2)²=4,
∴x1=0,x2=4,
即另一根为0。
五、师生互动,课堂小结
(1)你学会怎样解一元二次方程了吗?有哪些步骤? (2)通过今天的学习你了解了哪些数学思想方法?与同伴交 流一下。
课
后
作
业
1.布置作业:从教材“习题21.2”中选取。
归
纳
总
结
(Ⅰ)
一般地,对于方程x²=p,
(1)当p>0时,根据平方根的意义,方程(Ⅰ) x1 p , x2 p ; 有两个不等的实数根:
(2)当p=0时,方程(Ⅰ)有两个相等的 实数根:x1=x2=0; (3)当p<0时,因为对于任意实数x,都 有x²≥0,所以方程(Ⅰ)无实数根。
思 考
解方程:(x+3)²=5
2
解:∵解方程(Ⅰ)时,由方程x²=25
得:x=±5
∴x+3= 5 即x+3= 5 或 x+3= 5 ∴ 方程两根为x1= 3 5 ,x2= 3 5。
三、典例精析,掌握新知
例 解下列方程: (1)2x²-8=0
解:原方程整理,得2x²=8,
即x²=4,根据平方根的意义, 得x=±2, 即x1=2,x2=-2。
四、运用新知,深化理解
1.若8x²-16=0,则x的值是( 2) 2.若方程2(x-3)²=72,那么这个一元二次方
程的两个根是( 9或-3) 3.如果实数a、b满足 3a 4 b2 12b 36 0 则ab的值为( -8 )
4.解关于x的方程
(1)(x+m)²=n(n≥0)
.
二、思考探究,获取新知
探究 一桶油漆可刷的面积为1500dm²,李林 勇这桶油漆恰好刷完10个同样的正方体形状的盒子 的全部外表面,你能算出盒子的棱长吗?
思考 1
设一个盒子的棱长为xdm,则它的外表面面
积为 6x² ,10个这种盒子的外表面面积的
和为 10×6x² ,由此你可得到的方程 是 10×6x²=1500 ,你能求出它的解吗?