2019版高考物理一轮复习 第三章 牛顿运动定律 课后分级演练8 牛顿第二定律 两类动力学问题
(A版)2019版高考物理一轮复习 考点考法 第3章 牛顿运动定律课件 新人教版
③牛顿第一定律明确了力不是维持物体运动的原
④牛顿第一定律研究的是不受外力的理想 情况,与受合外力为零不是一回事.因此不 能简单地认为它是牛顿第二定律的特例.由 于物体绝对不受外力的情况是不存在的,所 以牛顿第一定律既不是直接从实验得出的, 也无法直接用实验验证,它是在伽利略的理 想实验基础上,经过科学推理得出的结 论.通常人们看到的静止或匀速直线运动状
A.沿斜面向下的直线 B.竖直向下的直线
3.牛顿第三定律
✓ (1)内容:两个物体之间的作用力和反作用力总是大 小相等、方向相反,作用在同一直线上.关系式为F= -F′。
✓ (2)对牛顿第三定律的理解
①相互性:作用力和反作用力作用在不同物体上;
②同时性:作用力和反作用力总是成对出现、同时产
生、同时按同样规律变化、同时消失;
考点7
核心方法 重点突破
考法2 作用力、反作用力与平衡力的比较
例2
(多选)甲、乙两队用一条轻绳进行拔河比赛,甲队胜, 在比赛过程中( )
A.甲队拉绳子的力大于乙队拉绳子的力 B.甲队与地面间的摩擦力大于乙队与地面间的摩擦力 C.甲、乙两队与地面间的摩擦力大小相等、方向相反 D.甲、乙两队拉绳子的力大小相等、方向相反
例2
题型2 牛顿第一定律
例2
[贵州遵义航天高级中学2018期初考](多选)伽利略根据 小球在斜面上运动的实验和理想实验,提出了惯性的概念, 从而奠定了牛顿力学的基础。早期物理学家关于惯性有下 列说法,其中正确的是( )
A.物体抵抗运动状态变化的性质是惯性 B.没有力的作用,物体只能处于静止状态
例2
【解析】
【K12教育学习资料】[学习]2019版高考物理一轮复习 第三章 牛顿运动定律 课后分级演练7 牛顿
课后分级演练(七) 牛顿第一定律牛顿第三定律【A级——基础练】1.关于运动状态与所受外力的关系,下面说法中正确的是( )A.物体受到恒定的力作用时,它的运动状态不发生改变B.物体受到不为零的合力作用时,它的运动状态要发生改变C.物体受到的合力为零时,它一定处于静止状态D.物体的运动方向与它所受的合力的方向一定相同解析:D 力是改变物体运动状态的原因,只要物体受力(合力不为零),它的运动状态就一定会改变,A错误,B正确;物体不受力或所受合力为零时,其运动状态一定不变,处于静止状态或匀速直线运动状态,C错误;物体的运动方向与它所受合力的方向可能相同,也可能相反,还可能不在一条直线上,D错误.2.(2017·益阳模拟)亚里士多德在其著作《物理学》中说:一切物体都具有某种“自然本性”,物体由其“自然本性”决定的运动称之为“自然运动”,而物体受到推、拉、提、举等作用后的非“自然运动”称之为“受迫运动”.伽利略、笛卡尔、牛顿等人批判的继承了亚里士多德的这些说法,建立了新物理学;新物理学认为一切物体都具有的“自然本性”是“惯性”.下列关于“惯性”和“运动”的说法中不符合新物理学的是( ) A.一切物体的“自然运动”都是速度不变的运动——静止或者匀速直线运动B.作用在物体上的力,是使物体做“受迫运动”即变速运动的原因C.可绕竖直轴转动的水平圆桌转得太快,放在桌面上的盘子会向桌子边缘滑去,这是由于“盘子受到的向外的力”超过了“桌面给盘子的摩擦力”导致的D.竖直向上抛出的物体,受到了重力,却没有立即反向运动,而是继续向上运动一段距离后才反向运动,是由于物体具有惯性解析:C 力不是维持物体运动的原因,力是改变物体运动状态的原因,所以当物体不受到任何外力的时候,总保持静止或者匀速运动的状态,故选项A正确;当物体受到外力作用的时候,物体的运动状态会发生改变,即力是改变物体运动状态的原因,故选项B正确;可绕竖直轴转动的水平圆桌转得太快时,放在桌面上的盘子会向桌子边缘滑去,这是由于“盘子需要的向心力”超过了“桌面给盘子的摩擦力”导致的,故选项C错误;由于物体具有向上的速度,所以具有向上的惯性,虽然受到向下的重力,但物体不会立刻向下运动,故选项D正确.3.一列以速度v匀速行驶的列车内有一水平桌面,桌面上A处有一相对桌面静止的小球.由于列车运动状态的改变,车厢中的旅客发现小球沿如图(俯视图)中的虚线从A点运动到B点,则说明列车是减速且在向南拐弯的图是( )解析:A 由于列车原来做匀速运动,小球和列车保持相对静止,现在列车要减速,由于惯性小球必向前运动,C、D错;又因列车要向南拐弯,由做曲线运动的条件知列车要受到向南的力的作用,即桌子受到向南的力的作用,所以小球相对桌面向北运动,A对,B错.4.汽车拉着拖车在平直的公路上运动,下列说法中正确的是( )A.汽车能拉着拖车前进是因为汽车对拖车的拉力大于拖对汽车的拉力B.汽车先对拖车施加拉力,然后才产生拖车对汽车的拉力C.匀速前进时,汽车对拖车的拉力等于拖车向后拉汽车的力;加速前进时,汽车对拖车的拉力大于拖车向后拉汽车的力D.拖车加速前进,是因为汽车对拖车的拉力大于地面对拖车的摩擦阻力解析:D 汽车对拖车的拉力与拖车对汽车的拉力是作用力与反作用力,作用力和反作用力总是等大反向,选项A错误;作用力和反作用力具有同时性,选项B错误;作用力和反作用力总是等大反向,不管是匀速前进还是加速前进,汽车对拖车的拉力与拖车向后拉汽车的力都是等大反向,选项C错误;对拖车受力分析,拖车受汽车对拖车的拉力,地面对拖车的摩擦阻力,故加速前进是因为汽车对拖车的拉力大于地面对拖车的摩擦阻力,选项D正确.5.(多选)在西昌卫星发射中心,“长征”系列火箭第131次发射,成功将“嫦娥”二号卫星送入奔月轨道.下面关于卫星与火箭起飞的情形,叙述正确的是( ) A.火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力B.火箭尾部喷出的气体对空气产生一个作用力,空气的反作用力使火箭获得飞行的动力C.火箭飞出大气层后,由于没有空气,火箭虽然向下喷气,但也无法获得前进的动力D.卫星进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力解析:AD 火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力,故A正确,B错误;火箭飞出大气层后,虽然没有了空气,火箭仍然向后喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了前进的动力,故C错误;卫星进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力,即地球对卫星的引力和卫星对地球的引力,故D正确.6.(多选)如图所示,用水平力F把一个物体紧压在竖直墙壁上静止,下列说法中正确的是( )A.水平力F跟墙壁对物体的压力是一对作用力与反作用力B.物体的重力跟墙壁对物体的静摩擦力是一对平衡力C.水平力F与物体对墙壁的压力是一对作用力与反作用力D.物体对墙壁的压力与墙壁对物体的压力是一对作用力与反作用力解析:BD 水平力F跟墙壁对物体的压力作用在同一物体上,大小相等,方向相反,且作用在一条直线上,是一对平衡力,选项A错误;物体在竖直方向上受竖直向下的重力以及墙壁对物体竖直向上的静摩擦力的作用,因物体处于静止状态,故这两个力是一对平衡力,选项B正确;水平力F作用在物体上,而物体对墙壁的压力作用在墙壁上,这两个力不是平衡力,也不是相互作用力,选项C错误;物体对墙壁的压力与墙壁对物体的压力是两个物体间的相互作用力,是一对作用力与反作用力,选项D正确.7.一个劈形物体M,各面均光滑,放在固定的斜面上,上表面水平,在上表面放一个光滑小球m,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( )A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线解析:B 根据牛顿第一定律知道,力是改变物体运动状态的原因.对小球进行受力分析可知小球在与斜面相碰之前,受到重力和M的支持力,而这两个力都在竖直方向上,水平方向上小球并没有受到力的作用,故水平方向上小球不会有速度,所以其轨迹为竖直向下的直线,故B正确.8.(多选)有人做过这样一个实验:如图所示,把一个鸡蛋A快速地向另一个完全一样的静止的鸡蛋B撞去(用同一部分撞击),结果每次都是静止的鸡蛋B被撞破,则下列说法正确的是( )A.A对B的作用力的大小等于B对A的作用力的大小B.A对B的作用力的大小大于B对A的作用力的大小C.A在碰撞瞬间,其内蛋黄和蛋清由于惯性会对A蛋壳产生向前的作用力D.A碰撞部位除受到B对它的作用力外,还受到A中蛋黄和蛋清对它的作用力,所以所受合力较小解析:ACD A对B的作用力和B对A的作用力为作用力与反作用力,一定大小相等,A 正确,B错误;在撞击瞬间,A内蛋黄和蛋清由于惯性会产生对A蛋壳向前的作用力,使A 蛋壳碰撞部位处受的合力比B蛋壳的小,因此B蛋壳易被撞破,故C、D正确.9.(多选)抖空竹是人们喜爱的一项体育活动.最早的空竹是两个如同车轮的竹筒,中间加一个转轴,由于外形对称,其重心在中间位置,初玩者能很好地找到支撑点而使之平衡.随着制作技术的发展,如图所示的不对称的空竹也受到人们的欢迎,现在的空竹大多是塑料制成的,也有天然竹木制成的,关于抖空竹,在空气阻力不可忽略的情况下,下列说法中正确的是( )A.空竹启动前用绳子拉住提起,要保证支持力和重力在同一条直线上B.空竹的转动是依靠绳子的拉动,绳子与转轴之间的摩擦力越小越好C.空竹抛起后由于惯性而继续向上运动,在空中受重力和惯性作用D.空竹从抛起到接住,转速会减小,表演时还要继续牵拉绳子使其加速转动解析:AD 本题考查牛顿第一定律,空竹启动前用绳子拉住提起,此时要选择恰当的位置,保证支持力和重力在同一条直线上,满足二力平衡的条件,否则空竹就要翻倒从绳子上落下,选项A正确;空竹是利用绳子与转轴之间的摩擦力使其转动的,因此绳子选用比较粗糙、摩擦力比较大的比较好,选项B错误;空竹抛起后由于惯性而继续向上运动,在空中受重力和空气阻力的作用,空竹的运动状态发生改变,速度越来越小,然后下落,选项C错误;空竹从抛起到接住,由于空气阻力的作用,转速比抛出前减小,因此表演时还要继续牵拉绳子使其加速转动,选项D正确.10.如图所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m.当A、B均处于静止状态时,弹簧的长度为L=11 cm.不计地磁场对磁铁的作用和磁铁与弹簧间相互作用的磁力,求B对地面的压力大小.(g取10 m/s2)解析:A受力如图所示,由平衡条件得:k(L-L0)-mg-F=0解得:F=-4 N故B对A的作用力大小为4 N,方向竖直向上.由牛顿第三定律得A对B的作用力F′=-F=4 N,方向竖直向下B受力如图所示,由平衡条件得:F N-mg-F′=0解得:F N=9 N由牛顿第三定律得B对地面的压力大小为9 N.答案:9 N【B级——提升练】11.如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者为赢者.若绳子质量不计,冰面可看成光滑,则下列说法正确的是( )A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利解析:C 甲对绳的拉力与绳对甲的拉力的受力物体分别是绳子和甲,是一对相互作用力,A错误;甲对绳的拉力与乙对绳的拉力都作用在绳子上,是一对平衡力,B错误;比赛的胜负取决于人的质量,由于两人所受拉力大小相等,故其质量越大,加速度越小,相同时间内的位移越小,可赢得比赛,故C正确,D错误.12.(2017·淄博一模)如图所示,小球C置于光滑的半球形凹槽B内,B放在长木板A 上,整个装置处于静止状态.现缓慢减小A的倾角θ,下列说法正确的是( )A.A受到的压力逐渐变大B.A受到的摩擦力逐渐变大C.C对B的压力逐渐变大D.C受到三个力的作用解析:A 对B、C整体进行受力分析,可得A受到的压力为N=(m B+m C)g cos θ,摩擦力大小为f=(m B+m C)g sin θ,在缓慢减小A的倾角θ的过程中,N增大,f减小,所以A 正确、B错误;对C进行研究可知C只受重力和B对C的支持力,根据二力平衡条件可知C 对B的压力不变,所以C、D均错.13.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对“底人”的压力大小为( )A.(M+m)g B.(M+m)g-maC.(M+m)g+ma D.(M-m)g解析:B 对竿上的人分析:受重力mg、摩擦力F f,有mg-F f=ma得F f=m(g-a).竿对人有摩擦力,人对竿也有反作用力——摩擦力,且大小相等,方向相反,对竿分析:受重力Mg、竿上的人对竿向下的摩擦力F f′、顶竿的人对竿的支持力F N,有Mg+F f′=F N,又因为竿对“底人”的压力和“底人”对竿的支持力是一对作用力与反作用力,由牛顿第三定律,得到F N′=Mg+F f′=(M+m)g-ma.B项正确.14.如图所示,圆环的质量为M,经过环心的竖直钢丝AB上套有一个质量为m的小球,今让小球沿钢丝AB以初速度v0竖直向上运动,要使圆环对地面无压力,则小球的加速度和小球能达到的最大高度是多少?(设小球不会到达A点)解析:由牛顿第三定律知,若圆环对地面无压力,则地面对圆环无支持力取小球为研究对象,受重力mg和钢丝对小球竖直向下的摩擦力F f,由牛顿第二定律得:mg+F f=ma由牛顿第三定律可知小球对钢丝竖直向上的摩擦力F f′=F f对圆环受力分析可知,圆环受重力Mg 和竖直向上的摩擦力F f ′作用,则:Mg =F f ′ 由以上各式解得:a =M +m mg 小球沿钢丝做匀减速运动,由运动学公式可得上升的最大高度x =v 202a =mv 20M +m g. 答案:M +m mg mv 20M +m g。
2019高考物理一轮复习学案:第三章牛顿运动定律 Word版含答案
第三章牛顿运动定律第1节牛顿第一定律__牛顿第三定律(1)牛顿第一定律是实验定律。
(×)(2)在水平面上运动的物体最终停下来,是因为水平方向没有外力维持其运动的结果。
(×)(3)运动的物体惯性大,静止的物体惯性小。
(×)(4)物体的惯性越大,运动状态越难改变。
(√)(5)作用力与反作用力可以作用在同一物体上。
(×)(6)作用力与反作用力的作用效果不能抵消。
(√)(1)伽利略利用“理想实验”得出“力是改变物体运动状态的原因”的观点,推翻了亚里士多德的“力是维持物体运动的原因”的错误观点。
(2)英国科学家牛顿在《自然哲学的数学原理》著作中提出了“牛顿第一、第二、第三定律”。
突破点(一) 牛顿第一定律的理解1.对牛顿第一定律的理解(1)提出惯性的概念:牛顿第一定律指出一切物体都具有惯性,惯性是物体的一种固有属性。
(2)揭示力的本质:力是改变物体运动状态的原因,而不是维持物体运动状态的原因。
2.惯性的两种表现形式(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
(2)物体受到外力时,惯性表现为抗拒运动状态改变的能力。
惯性大,物体的运动状态较难改变;惯性小,物体的运动状态容易改变。
3.与牛顿第二定律的对比牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律。
[题点全练]1.(2018·三明检测)科学思维和科学方法是我们认识世界的基本手段。
在研究和解决问题的过程中,不仅需要相应的知识,还需要运用科学的方法。
理想实验有时更能深刻地反映自然规律,伽利略设想了一个理想实验,如图所示。
①两个对接的斜面,静止的小球沿一个斜面滚下,小球将滚上另一个斜面;②如果没有摩擦,小球将上升到原来释放的高度;③减小第二个斜面的倾角,小球在这个斜面上仍然会达到原来的高度;④继续减小第二个斜面的倾角,最后使它成为水平面,小球会沿水平面做持续的匀速运动。
(浙江选考)版高考物理一轮复习 第三章 牛顿运动定律 第2节 牛顿第二定律 两类动力学问题达标检测(
第2节 牛顿第二定律 两类动力学问题1.(2019·4月浙江选考)如下物理量属于根本量且单位属于国际单位制中根本单位的是( )A .功/焦耳B .质量/千克C .电荷量/库仑D .力/牛顿解析:选B.质量是根本物理量,其国际单位制根本单位是千克,故B 正确;功、电荷量和力都是导出物理量,焦耳、库仑和牛顿均是导出单位.2.(多项选择)关于速度、加速度、合外力之间的关系,正确的答案是( )A .物体的速度越大,如此加速度越大,所受的合外力也越大B .物体的速度为零,如此加速度为零,所受的合外力也为零C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零解析:选CD.物体的速度大小与加速度大小与所受合外力大小无关,故C 、D 正确,A 、B 错误.3.趣味运动会上运动员手持网球拍托球沿水平面匀加速跑,设球拍和球质量分别为M 、m ,球拍平面和水平面之间夹角为θ,球拍与球保持相对静止,它们间摩擦力与空气阻力不计,如此( )A .运动员的加速度为g tan θB .球拍对球的作用力为mgC .运动员对球拍的作用力为(M +m )g cos θD .假设加速度大于g sin θ,球一定沿球拍向上运动解析:选A.网球受力如图甲所示,根据牛顿第二定律得F N sinθ=ma ,又F N cos θ=mg ,解得a =g tan θ,F N =mgcos θ,故A 正确,B 错误;以球拍和球整体为研究对象,受力如图乙所示,根据平衡,运动员对球拍的作用力为F =〔M +m 〕g cos θ,故C 错误;当a >g tan θ时,网球才向上运动,由于g sin θ<g tan θ,故球不一定沿球拍向上运动,故D 错误.4.(2020·嘉兴检测)如下列图,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F =84 N ,而从静止向前滑行,其作用时间为t 1=1.0 s ,撤除水平推力F 后经过t 2=2.0 s ,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次一样.该运动员连同装备的总质量为m =60 kg ,在整个运动过程中受到的滑动摩擦力大小恒为F f =12 N ,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小与这段时间内的位移;(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.解析:(1)运动员利用滑雪杖获得的加速度为a 1=F -F f m =84-1260m/s 2=1.2 m/s 2 第一次利用滑雪杖对雪面作用获得的速度大小v 1=a 1t 1=1.2×1.0 m/s =1.2 m/s位移x 1=12a 1t 21=0.6 m. (2)运动员停止使用滑雪杖后,加速度大小为a 2=F f m经时间t 2速度变为v ′1=v 1-a 2t 2第二次利用滑雪杖获得的速度大小v 2,如此v 22-v ′21=2a 1x 1第二次撤除水平推力后滑行的最大距离 x 2=v 222a 2解得:x 2=5.2 m.答案:(1)1.2 m/s 0.6 m (2)5.2 m[课后达标]一、选择题1.(2018·4月浙江选考)用国际单位制的根本单位表示能量的单位,以下正确的答案是( )A .kg ·m 2/s 2B .kg ·m/s 2C .N/mD .N ·m 答案:A2.如下关于单位制的说法中,不正确的答案是( )A .根本单位和导出单位一起组成了单位制B .在国际单位制中,长度、质量、时间三个物理量被选作力学的根本物理量C .在国际单位制中,力学的三个根本单位分别是m 、kg 、sD .力的单位牛顿是国际单位制中的一个根本单位答案:D3.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变.从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m答案:C4.(2020·浙江十校联考)如下列图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2,重力加速度大小为g .如此有( )A .a 1=g ,a 2=gB .a 1=0,a 2=gC .a 1=0,a 2=m +M M g D .a 1=g ,a 2=m +M Mg 答案:C5.(2020·浙江猜题卷)有种台阶式自动扶梯,无人乘行时运转很慢,有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,正好经历了这两个过程,用G 、N 、f 表示乘客受到的重力、支持力和摩擦力,如此能正确反映该乘客在这两个过程中的受力示意图的是( )解析:选D.人和扶梯匀速运动时,人受到重力和支持力的作用,且二力平衡,不受摩擦力.人随台阶式自动扶梯加速运动时,加速度沿运动方向斜向上,台阶水平,摩擦力与接触面平行,故摩擦力是水平的.D 正确.6.(多项选择)如下列图,质量为m 的小球与弹簧Ⅰ和水平细绳Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P 、Q 两点.小球静止时,Ⅰ中拉力的大小为F 1,Ⅱ中拉力的大小为F 2,当仅剪断Ⅰ、Ⅱ其中一根的瞬间,球的加速度a 应是( )A .假设剪断Ⅰ,如此a =g ,方向竖直向下B .假设剪断Ⅱ,如此a =F 2m ,方向水平向左C .假设剪断Ⅰ,如此a =F 1m,方向沿Ⅰ的延长线方向D .假设剪断Ⅱ,如此a =g ,方向竖直向上解析:选AB.没有剪断Ⅰ、Ⅱ时小球受力情况如下列图.在剪断Ⅰ的瞬间,由于小球的速度为0,绳Ⅱ上的力突变为0,如此小球只受重力作用,加速度为g ,选项A 正确、C 错误;假设剪断Ⅱ,由于弹簧的弹力不能突变,F 1与重力的合力大小仍等于F 2,所以此时加速度为a =F 2m,方向水平向左,选项B 正确、D 错误. 7.(2020·湖州质检)如图甲所示,一物体沿倾角为θ=37°的固定粗糙斜面由静止开始运动,同时受到水平向右的风力作用,水平风力的大小与风速成正比.物体在斜面上运动的加速度a 与风速v 的关系如图乙所示,如此(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)( )A .当风速为3 m/s 时,物体沿斜面向下运动B .当风速为5 m/s 时,物体与斜面间无摩擦力作用C .当风速为5 m/s 时,物体开始沿斜面向上运动D .物体与斜面间的动摩擦因数为0.025解析:选A.由题图乙得物体做加速度逐渐减小的加速运动,物体的加速度方向不变,当风的初速度为零时,加速度为a 0=4 m/s 2,沿斜面方向有a =g sin θ-μg cos θ,解得μ=0.25,D 错误;物体沿斜面方向开始加速下滑,随着速度的增大,水平风力逐渐增大,摩擦力逐渐增大,如此加速度逐渐减小,但加速度的方向不变,物体仍然加速运动,直到速度为5 m/s 时,物体的加速度减为零,此后物体将做匀速运动,A 正确,B 、C 错误.8.(2020·东阳中学期中)如下列图,在水平面上有三个质量分别为m 1、m 2、m 3的木块,木块1和2、2和3间分别用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块1、2与水平面间的动摩擦因数为μ,木块3和水平面之间无摩擦力.现用一水平恒力向右拉木块3,当三木块一起匀速运动时,1和3两木块间的距离为(木块大小不计)( )A .L +μm 2g kB .L +μ〔m 1+m 2〕g kC .2L +μ〔2m 1+m 2〕g k D .2L +2μ〔m 1+m 2〕g k 解析:选C.对木块1受力分析,受重力、支持力、拉力和摩擦力,根据共点力平衡条件,有:kx 1-μm 1g =0对木块1和木块2整体受力分析,受总重力、总支持力、右侧弹簧的拉力和总摩擦力,有:kx 2-μ(m 1+m 2)g =0木块1与木块3之间的总长度为x =2L +x 1+x 2,由以上各式解得x =2L +μ〔2m 1+m 2〕g k,故C 正确. 9.一条足够长的浅色水平传送带自左向右匀速运行.现将一个木炭包无初速度地放在传送带的最左端,木炭包将会在传送带上留下一段黑色的径迹.如下说法中正确的答案是( )A .黑色的径迹将出现在木炭包的左侧B .木炭包的质量越大,径迹的长度越短C .传送带运动的速度越大,径迹的长度越短D .木炭包与传送带间动摩擦因数越大,径迹的长度越短解析:选D.放上木炭包后木炭包在摩擦力的作用下向右加速,而传送带仍匀速,虽然两者都向右运动,但在木炭包的速度达到与传送带速度相等之前木炭包相对于传送带向左运动,故黑色径迹出现在木炭包的右侧,A 错误.由于木炭包在摩擦力作用下加速运动时加速度a =μg 与其质量无关,故径迹长度与其质量也无关,B 错误.径迹长度等于木炭包相对传送带通过的位移大小,即二者对地的位移差:Δx =vt -0+v 2t =12vt =v 22μg,可见传送带速度越小、动摩擦因数越大,相对位移越小,黑色径迹越短,C 错误,D 正确.10.(2020·湖州质检)如下列图,质量为m 1的足够长的木板静止在光滑水平面上,其上放一质量为m 2的木块.t =0时刻起,给木块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、木块的加速度和速度大小,图中可能符合运动情况的是( )解析:选A.t=0时刻起,给木块施加一水平恒力F,两者可能一起加速运动,选项A 正确,B错误;可能木块的加速度大于木板的加速度,选项C、D错误.二、非选择题11.(2020·宁波选考适应考试)小物块以一定的初速度v0沿斜面(足够长)向上运动,由实验测得物块沿斜面运动的最大位移x与斜面倾角θ的关系如下列图.取g=10 m/s2,空气阻力不计.可能用到的函数值:sin 30°=0.5,sin 37°=0.6.(1)求物块的初速度v0;(2)求物块与斜面之间的动摩擦因数μ;(3)计算说明图线中P点对应的斜面倾角为多大?在此倾角条件下,小物块能滑回斜面底端吗?说明理由(设最大静摩擦力与滑动摩擦力相等).解析:(1)当θ=90°时,物块做竖直上抛运动,末速度为0由题图得上升最大位移为x m=3.2 m由v20=2gx m,得v0=8 m/s.(2)当θ=0°时,物块相当于在水平面上做匀减速直线运动,末速度为0由题图得水平最大位移为x=6.4 m由运动学公式有:v20=2ax由牛顿第二定律得:μmg=ma,得μ=0.5.(3)设题图中P点对应的斜面倾角值为θ,物块在斜面上做匀减速运动,末速度为0由题图得物块沿斜面运动的最大位移为x′=3.2 m由运动学公式有:v20=2a′x′由牛顿第二定律有:mg sinθ+μmg cos θ=ma′得10sin θ+5cos θ=10,得θ=37°.因为mg sin θ=6m>μmg cos θ=4m,所以能滑回斜面底端.答案:(1)8 m/s (2)0.5(3)37°能滑回底端,理由见解析12.(2020·杭州质检)如下列图,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,取g=10 m/s2)求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.解析:(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大,设为v max,设滑块在斜面上运动的加速度大小为a1,如此mg sin 30°=ma1v2max=2a1hsin 30°解得:v max=4 m/s.(2)设滑块在水平面上运动的加速度大小为a2如此μmg=ma2v2max=2a2L解得:μ=0.4.(3)设滑块在斜面上运动的时间为t1,v max=a1t1,得t1=0.8 s,由于t>t1,故滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s,设t=1.0 s时速度大小为v,如此v=v max-a2(t-t1)解得:v=3.2 m/s.答案:(1)4 m/s (2)0.4 (3)3.2 m/s13.(2018·4月浙江选考)可爱的企鹅喜欢在冰面上玩游戏.如下列图,有一企鹅在倾角为37°的倾斜冰面上,先以加速度a=0.5 m/s2从冰面底部由静止开始沿直线向上“奔跑〞,t=8 s时,突然卧倒以肚皮贴着冰面向前滑行,最后退滑到出发点,完成一次游戏(企鹅在滑动过程中姿势保持不变).假设企鹅肚皮与冰面间的动摩擦因数μ=0.25,sin 37°=0.6,cos 37°=0.8.求:(1)企鹅向上“奔跑〞的位移大小;(2)企鹅在冰面滑动的加速度大小;(3)企鹅退滑到出发点时的速度大小.(计算结果可用根式表示)解析:(1)在企鹅向上奔跑过程中:x =12at 2,解得:x =16 m. (2)在企鹅卧倒以后将进展两个过程的运动,第一个过程是从卧倒到最高点,第二个过程是从最高点滑到最低点,两次过程由牛顿第二定律分别有:mg sin 37°+μmg cos 37°=ma 1,mg sin 37°-μmg cos 37°=ma 2,解得:a 1=8 m/s 2,a 2=4 m/s 2.(3)企鹅卧倒滑到最高点的过程中,做匀减速直线运动,设时间为t ′,位移为x ′;t ′=at a 1,x ′=12a 1t ′2,解得:x ′=1 m .企鹅从最高点滑到出发点的过程中,设末速度为v t ,初速度为0,如此有:v 2t -02=2a 2(x +x ′),解得:v t =234 m/s.答案:(1)16 m (2)8 m/s 2 4 m/s 2 (3)234 m/s。
高考物理一轮复习考点延伸训练:第三章《牛顿运动定律》(含解析).pdf
D.磁悬浮列车急刹车时,小球向后滚动 解析:选BC 列车加(减)速时,小球由于惯性保持原来的运动状态不变,相对于车向后(前)滚动,选项B、C正确。 13.如图7所示,物体静止在一固定在水平地面上的斜面上,下列说法正确的是( ) 7 A.物体对斜面的压力和斜面对物体的支持力是一对平衡力 B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力 C.物体所受重力和斜面对物体的作用力是一对平衡力 D.物体所受重力可以分解为沿斜面的力和对斜面的压力 解析:选BC 物体对斜面的压力和斜面对物体的支持力是一对作用力和反作用力,故A错。物体和斜面间的摩擦力 是一对作用力和反作用力,B正确。物体受重力和斜面对物体的作用力,这两个力大小相等方向相反,是一对平衡力。 故C正确。物体所受重力的分力仍作用在物体上,故D错。14.抖空竹是人们喜爱的一项体育活动。最早的空竹是两个如 同车轮的竹筒,中间加一个转轴,由于外形对称,其重心在中间位置,初玩者能很好地找到支撑点而使之平衡。随着制 作技术的发展,如图8所示的不对称的空竹也受到人们的欢迎,现在大多是塑料制成的,也有天然竹木制成的。关于抖 空竹,在空气阻力不可忽略的情况下,下列说法中正确的是( ) 8 A.空竹启动前用绳子拉住提起,要保证支持力和重力在同一条直线上 B.空竹的转动是依靠绳子的拉动,绳子与转轴之间的摩擦力越小越好 C.空竹抛起后由于惯性而继续向上运动,在空中受重力和惯性作用 D.空竹从抛起到接住,转速会减小,表演时还要继续牵拉绳子使其加速转动 解析:选AD 空竹启动前用绳子拉住提起时,要保证拉力和重力在同一条直线上,A正确;空竹依靠绳子拉动,绳 子与轴间摩擦力应越大越好,B错误;空竹抛起后上升过程中只受重力和空气阻力,C错误;因空气阻力的影响,抛起的 空竹的转速会减小,故表演时要继续牵拉绳子使其加速转动,D正确。 15.如图9所示,我国有一种传统的民族体育项目叫做“押加”,实际上相当于两个人拔河,如果甲、乙两人在“押 加”比赛中,甲获胜,则下列说法中正确的是( ) 9 A.甲对乙的拉力大于乙对甲的拉力,所以甲获胜 B.当甲把乙匀速拉过去时,甲对乙的拉力大小等于乙对甲的拉力大小 C.当甲把乙加速拉过去时,甲对乙的拉力大于乙对甲的拉力D.甲对乙的拉力大小始终等于乙对甲的拉力大小,只 是地面对甲的摩擦力大于地面对乙的摩擦力,所以甲获胜 解析:选BD 物体的运动状态是由其自身的受力情况决定的,只有当物体所受的合外力不为零时,物体的运动状态 才会改变,不论物体处于何种状态,物体间的作用力与反作用力总是大小相等,方向相反,由于它们作用在不同的物体 上,其效果可以不同。甲加速前进的原因是甲受到的地面的摩擦力大于绳子对甲的拉力;乙加速后退的原因是绳子对乙 的拉力大于乙受到的地面的摩擦力;但是,根据牛顿第三定律,甲对乙的拉力大小始终等于乙对甲的拉力大小。B、D正 确。 16.引体向上是同学们经常做的一项健身运动。该运动的规范动作是:两手正握单杠,由悬垂开始,上拉时,下颚 须超过单杠面。下放时,两臂放直,不能曲臂(如图10所示),这样上拉下放,重复动作,达到锻炼臂力和腹肌的目的。 关于做引体向上动作时人的受力,以下判断正确的是( ) 10 A.上拉过程中,人受到两个力的作用 B.上拉过程中,单杠对人的作用力大于人对单杠的作用力 C.下放过程中,单杠对人的作用力小于人对单杠的作用力 D.下放过程中,在某瞬间人可能只受到一个力的作用 解析:选AD 上拉过程中,人受到两个力的作用,一个是重力,一个是单杠给人的作用力,A对。不论是上拉过程 还是下放过程,单杠对人的作用力总等于人对单杠的作用力,与人的运动状态无关,B、C均错。在下放过程中,若在某 瞬间人向下的加速度为重力加速度g,则人只受到一个重力的作用,D对。 第2节牛顿第二定律__两类动力学问题 牛顿第二定律 [想一想] 如图3-2-1所示为一张在真空中拍摄的羽毛与苹果自由下落的频闪照片。请思考苹果与羽毛重力相差很大,为什 做验证牛顿第三定律的实验,点击实验菜单中“力的相互作用”。把两个力探头 的挂钩钩在一起,向相反方向拉动,观察显示器屏幕上出现的结果如图3-1-1所示。观察分析两个力传感器的相互作 用力随时间变化的曲线,可以得到以下实验结论( ) 3-1-1 A.作用力与反作用力同时存在 B.作用力与反作用力作用在同一物体上 C.作用力与反作用力大小相等 D.作用力与反作用力方向相反 解析:选ACD 由题图可知:两个力传感器的相互作用力属于作用力和反作用力,它们同时存在、大小相等、方向 相反、作用在两个物体上,故A、C、D正确。 考点一对牛顿第一定律的理解 [例1] 物体A的质量为10 kg,物体B的质量为20 kg,A、B分别以20 m/s和10 m/s的速度运动,则下列说法中正确 的是( ) A.A的惯性比B大 B.B的惯性比A大 C.A和B的惯性一样大 D.不能确定 [解析] 选B 质量是物体惯性大小的惟一量度,质量越大,惯性越大,惯性大小与速度大小无关,故B的惯性比 A大,选项B正确,选项A、C、D都错。 [例2] (多选)(2012·新课标全国卷)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而 奠定了牛顿力学的基础。早期物理学家关于惯性有下列说法,其中正确的是( ) A.物体抵抗运动状态变化的性质是惯性 B.没有力的作用,物体只能处于静止状态 C.行星在圆周轨道上保持匀速率运动的性质是惯性 D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动 [解析] 选AD 惯性是物体保持原来运动状态不变的性质,故A对;根据惯性定律可知,没有力的作用,物体将保 持原来的状态,即静止状态或者匀速直线运动状态,故B错;行星在圆轨道上的运动是变速运动,是在万有引力作用下 的运动,所以C错;运动物体如果不受力作用,将保持原来的运动状态,即继续以同一速度沿着同一直线运动,D对。 [例3] 关于牛顿第一定律的说法中,正确的是( ) A.由牛顿第一定律可知,物体在任何情况下始终处于静止状态或匀速直线运动状态 B.牛顿第一定律只是反映惯性大小的,因此也叫惯性定律 C.牛顿第一定律反映了物体不受外力作用时的运动规律,因此,物体在不受力时才有惯性 D.牛顿第一定律既揭示了物体保持原有运动状态的原因,又揭示了运动状态改变的原因 [解析] 选D 牛顿第一定律揭示了两方面问题:①物体在任何时候都有惯性,故选项C错。不受力时惯性表现为物 体处于静止状态或匀速直线运动状态,故选项A错。②揭示了力和运动的关系即力是改变物体运动状态的原因,所以选 项D正确。牛顿第一定律揭示了这两方面问题,不只是反映惯性大小,故选项B错。 (1)惯性的两种表现形式 物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。 物体受到外力时,惯性表现为运动状态改变的难易程度。惯性大,物体的运动状态较难改变;惯性小,物体的运动 状态容易改变。 (2)对牛顿第一定律的四点说明 明确惯性的概念: 牛顿第一定律揭示了一切物体所具有的一种固有属性——惯性,即物体保持原来的匀速直线运动状态或静止状态的 性质。 揭示力的本质:力是改变物体运动状态的原因,而不是维持物体运动状态的原因。 理想化状态:牛顿第一定律描述的是物体不受外力时的状态,而物体不受外力的情形是不存在的。在实际情况中 ,如果物体所受的合外力等于零,与物体不受外力时的表现是相同的。 与牛顿第二定律的关系:牛顿第一定律和牛顿第二定律是相互独立的。力是如何改变物体运动状态的问题由牛顿第 二定律来回答。牛顿第一定律是不受外力的理想情况下经过科学抽象、归纳推理而总结出来的,而牛顿第二定律是一条 实验定律。
高三一轮复习秘籍-第三章专题强化三 动力学两类基本问题和临界极值问题
第三章牛顿运动定律专题强化三动力学两类基本问题和临界极值问题专题解读1.本专题是动力学方法处理动力学两类基本问题、多过程问题和临界极值问题,高考在选择题和计算题中命题频率都很高.2.学好本专题可以培养同学们的分析推理能力,应用数学知识和方法解决物理问题的能力.3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识.过好双基关————回扣基础知识训练基础题目一、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况二、动力学中的临界与极值问题1.临界或极值条件的标志(1)题目中“刚好”“恰好”“正好”等关键词句,明显表明题述的过程存在着临界点.(2)题目中“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态.(3)题目中“最大”“最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点.2.常见临界问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0.(2)相对滑动的临界条件:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子断裂的临界条件是绳中张力等于它所能承受的最大张力;绳子松弛的临界条件是F T=0.(4)最终速度(收尾速度)的临界条件:物体所受合外力为零.研透命题点————细研考纲和真题分析突破命题点1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法(2)正交分解法◆类型1已知物体受力情况,分析物体运动情况【例1】(2021·河北卷)如图,一滑雪道由AB 和BC 两段滑道组成,其中AB 段倾角为θ,BC 段水平,AB 段和BC 段由一小段光滑圆弧连接,一个质量为2kg 的背包在滑道顶端A 处由静止滑下,若1s 后质量为48kg 的滑雪者从顶端以1.5m/s 的初速度、3m/s 2的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为μ=112,重力加速度取g =10m/s 2,sin θ=725,cos θ=2425,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:(1)滑道AB段的长度;(2)滑雪者拎起背包时这一瞬间的速度.答案(1)9m(2)7.44m/s解析(1)A→B过程对背包(m1):受力分析,由牛顿第二定律得m1g sinθ-μm1g cosθ=m1a1解得a1=2m/s2①由运动分析得:l=1a1t2②,v1=a1t③2对滑雪者(m2):由运动分析得l=v0(t-t0)+1a2(t-t0)2④2v2=v0+a2(t-t0),其中t0=1s⑤联立①②③④⑤得t=3s,v1=6m/s,v2=7.5m/s,l=9m(2)滑雪者拎起背包过程水平方向动量守恒,有m1v1+m2v2=(m1+m2)v解得v=7.44m/s滑雪者拎起背包时的速度为7.44m/s【变式1】(多选)如图甲所示,质量为m的小球(可视为质点)放在光滑水平面上,在竖直线MN的左侧受到水平恒力F1作用,在MN的右侧除受F1外还受到与F1在同一直线上的水平恒力F2作用,现小球从A点由静止开始运动,小球运动的v-t图像如图乙所示,下列说法中正确的是()A.小球在MN右侧运动的时间为t1-t2B.F2的大小为m v1t1+2mv1 t3-t1C.小球在MN右侧运动的加速度大小为2v1 t3-t1D.小球在0~t4时间内运动的最大位移为v1t2答案BC解析小球在MN右侧运动的时间为t3~t1,故A错误;小球在MN右侧的加速度大小a2=2v1t3-t1,在MN的左侧,由牛顿第二定律可知F1=ma1=mv1t1,在MN的右侧,由牛顿第二定律可知F2-F1=ma2得F2=2mv1t3-t1+mv1t1,故B、C正确;t2时刻后小球反向运动,所以小球在0~t4时间内运动的最大位移是v1t22,故D错误.◆类型2已知物体运动情况,分析物体受力情况【例2】如图甲所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面平行的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10m/s2.求:(1)物块到达B点时速度和加速度的大小;(2)拉力F的大小;(3)若拉力F与斜面夹角为α,如图乙所示,试写出拉力F的表达式(用题目所给物理量的字母表示).答案(1)8m/s3m/s2(2)5.2N(3)F=mg sinθ+μcosθ+ma cosα+μsinα解析(1)物块做匀加速直线运动,根据运动学公式,有L=v0t+12at2,v=v0+at,联立解得a=3m/s2,v=8m/s(2)对物块受力分析可得,平行斜面方向F cosα-mg sinθ-F f=ma,垂直斜面方向F N=mg cosθ其中F f=μF N解得F=mg(sinθ+μcosθ)+ma=5.2N(3)拉力F与斜面夹角为α时,物块受力如图所示根据牛顿第二定律有F cosα-mg sinθ-F f=ma F N+F sinα-mg cosθ=0其中F f=μF NF=mg sinθ+μcosθ+macosα+μsinα.【变式2】如图所示,粗糙的地面上放着一个质量M=1.5kg的斜面体,斜面部分光滑,底面与地面的动摩擦因数μ=0.2,倾角θ=37°,在固定在斜面的挡板上用轻质弹簧连接一质量m=0.5kg的小球,弹簧劲度系数k=200 N/m,现给斜面施加一水平向右的恒力F,使整体向右以a=1m/s2的加速度匀加速运动(已知sin37°=0.6,cos37°=0.8,g取10m/s2).求:(1)F的大小;(2)弹簧的形变量及斜面对小球的支持力大小.答案(1)6N(2)0.017m 3.7N解析(1)对整体应用牛顿第二定律:F-μ(M+m)g=(M+m)a,解得F=6N.(2)设弹簧的形变量为x,斜面对小球的支持力为F N对小球受力分析:在水平方向:kx cosθ-F N sinθ=ma在竖直方向:kx sinθ+F N cosθ=mg解得x=0.017m,F N=3.7N.多过程问题分析步骤1.将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接.2.对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图.3.根据“子过程”“衔接点”的模型特点选择合理的物理规律列方程.4.分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程.5.联立方程组,分析求解,对结果进行必要的验证或讨论.【例3】如图所示,两滑块A、B用细线跨过定滑轮相连,B距地面一定高度,A可在细线牵引下沿足够长的粗糙斜面向上滑动.已知m A=2kg,m B =4kg,斜面倾角θ=37°.某时刻由静止释放A,测得A沿斜面向上运动的v -t图像如图所示.已知g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)A与斜面间的动摩擦因数;(2)A沿斜面向上滑动的最大位移;(3)滑动过程中细线对A拉力所做的功.答案(1)0.25(2)0.75m(3)12J解析(1)在0~0.5s内,根据图像,A、B系统的加速度为a1=vt =20.5m/s2=4m/s2对A、B系统受力分析,由牛顿第二定律有m B g-m A g sinθ-μm A g cosθ=(m A+m B)a1得:μ=0.25(2)B落地后,A减速上滑.由牛顿第二定律有m A g sinθ+μm A g cosθ=m A a2将已知量代入,可得a2=8m/s2故A减速向上滑动的位移为x2=v22a2=0.25m0~0.5s内A加速向上滑动的位移x1=v22a1=0.5m所以,A上滑的最大位移为x=x1+x2=0.75m(3)A加速上滑过程中,由动能定理:W-m A gx1sinθ-μm A gx1cosθ=12m A v2-0得W=12J.【变式3】如图所示,一足够长斜面上铺有动物毛皮,毛皮表面具有一定的特殊性,物体上滑时顺着毛的生长方向,毛皮此时的阻力可以忽略;下滑时逆着毛的生长方向,会受到来自毛皮的滑动摩擦力,现有一物体自斜面底端以初速度v0=6m/s冲上斜面,斜面的倾角θ=37°,经过2.5s物体刚好回到出发点,(g=10m/s2,sin37°=0.6,cos37°=0.8).求:(1)物体上滑的最大位移;(2)若物体下滑时,物体与毛皮间的动摩擦因数μ为定值,试计算μ的数值.(结果保留两位有效数字)答案(1)3m(2)0.42解析(1)物体向上滑时不受摩擦力作用,设最大位移为x.由牛顿第二定律可得:mg sin37°=ma1代入数据得:a1=6m/s2由运动学公式有:v20=2a1x联立解得物体上滑的最大位移为:x=3m(2)物体沿斜面上滑的时间为:t1=v0a1=66s=1s物体沿斜面下滑的时间为:t2=t-t1=1.5s下滑过程中,由运动学公式有:x=12a2t22由牛顿第二定律可得:mg sin37°-μmg cos37°=ma2联立解得:μ≈0.421.基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.2.思维方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学法将物理过程转化为数学表达式,根据数学表达式解出临界条件【例4】如图所示,一弹簧一端固定在倾角为θ=37°的光滑固定斜面的底端,另一端拴住质量为m1=6kg的物体P,Q为一质量为m2=10kg的物体,弹簧的质量不计,劲度系数k=600N/m,系统处于静止状态.现给物体Q施加一个方向沿斜面向上的力F ,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2s 时间内,F 为变力,0.2s 以后F 为恒力,sin 37°=0.6,cos 37°=0.8,g 取10m/s 2.求:(1)系统处于静止状态时,弹簧的压缩量x 0;(2)物体Q 从静止开始沿斜面向上做匀加速运动的加速度大小a ;(3)力F 的最大值与最小值.答案(1)0.16m (2)103m/s 2(3)2803N 1603N 解析(1)设开始时弹簧的压缩量为x 0对整体受力分析,平行斜面方向有(m 1+m 2)g sin θ=kx 0解得x 0=0.16m(2)前0.2s 时间内F 为变力,之后为恒力,则0.2s 时刻两物体分离,此时P 、Q 之间的弹力为零且加速度大小相等,设此时弹簧的压缩量为x 1对物体P ,由牛顿第二定律得kx 1-m 1g sin θ=m 1a前0.2s 时间内两物体的位移x 0-x 1=12at 2联立解得a =103m/s 2(3)对两物体受力分析知,开始运动时拉力最小,分离时拉力最大NF min=(m1+m2)a=1603对Q应用牛顿第二定律得F max-m2g sinθ=m2aN.解得F max=m2(g sinθ+a)=2803【变式4】两物体A、B并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F作用在物体A上,使A、B由静止开始一起向右做匀加速运动,如图a所示,在A、B的速度达到6m/s时,撤去推力F.已知A、B 质量分别为m A=1kg、m B=3kg,A与地面间的动摩擦因数μ=0.3,B与地面间没有摩擦,B物体运动的v-t图像如图b所示.g取10m/s2,求:(1)推力F的大小;(2)A刚停止运动时,物体A、B之间的距离.答案(1)15N(2)6m解析(1)在水平推力F作用下,设物体A、B一起做匀加速运动的加速度为a,由B的v-t图象得:a=3m/s2对于A、B组成的整体,由牛顿第二定律得:F-μm A g=(m A+m B)a代入数据解得:F=15N.(2)撤去推力F后,A、B两物体分离.A在摩擦力作用下做匀减速直线运动,B做匀速运动,设A匀减速运动的时间为t,对于A有:μm A g=m A a A解得:a A=μg=3m/s2根据匀变速直线运动规律有:0=v0-a A t解得:t=2s撤去力F后,A的位移为x A=v0t-1a A t2=6m2B的位移为x B=v0t=12m所以,A刚停止运动时,物体A、B之间的距离为Δx=x B-x A=6m.。
人教版高考物理一轮总复习课后习题 第3单元 牛顿运动定律 作业8牛顿第二定律的应用2
作业8牛顿第二定律的应用2A组基础达标微练一连接体问题1.(多选)(浙江淳安中学高二期末)质量为m'的小车上放置质量为m的物块,水平向右的牵引力作用在小车上,二者一起在水平地面上向右运动。
下列说法正确的是( )A.如果二者一起向右做匀速直线运动,则物块与小车间不存在摩擦力作用B.如果二者一起向右做匀速直线运动,则物块与小车间存在摩擦力作用C.如果二者一起向右做匀加速直线运动,则小车受到物块施加的水平向左的摩擦力作用D.如果二者一起向右做匀加速直线运动,则小车受到物块施加的水平向右的摩擦力作用2.(多选)如图所示,质量为m'、上表面光滑的斜面体放置在水平面上,另一质量为m的物块沿斜面向下滑动时,斜面体一直静止不动。
已知斜面倾角为θ,重力加速度为g,则( )A.地面对斜面体的支持力为(m'+m)gB.地面对斜面体的摩擦力为零C.斜面倾角θ越大,地面对斜面体的支持力越小D.斜面倾角θ不同,地面对斜面体的摩擦力可能相同3.(多选)(浙江桐乡一中期末)如图所示,质量分别为m1和m2的小物块,通过轻绳相连,并接在装有光滑定滑轮的小车上。
如果按图甲所示,装置在水平力F1作用下做匀加速运动时,两个小物块恰好相对静止;如果互换两个小物块,如图乙所示,装置在水平力F2作用下做匀加速运动时,两个小物块也恰好相对静止,一切摩擦不计,则( )A.F1∶F2=m22∶m12B.F1∶F2=m12∶m22C.两种情况下小车对质量为m2的小物块的作用力大小之比为m2∶m1D.两种情况下小车对质量为m2的小物块的作用力大小之比为m1∶m2微练二临界极值问题(弹力临界)4.(多选)(浙江丽水中学月考)如图所示,5颗完全相同的象棋棋子整齐叠放在水平面上,第5颗棋子最左端与水平面上的A点重合,所有接触面间的动摩擦因数均相同,最大静摩擦力等于滑动摩擦力。
现将水平向右的恒力F作用在第3颗棋子上,恒力作用一小段时间后,五颗棋子的位置情况可能是( )5.如图甲所示,轻质弹簧下端固定在水平面上,上端连接物体B,B上叠放着物体A,系统处于静止状态。
高考物理第一轮复习教案 第三章 牛顿运动定律
考力和运动的综合题,重点考查综合运用知识的能力,如为使物体变为某一运动状态,应选择怎样的施力方案;
二是联系实际,以实际问题为背景命题,重点考查获取并处理信息,去粗取精,把实际问题转化成物理问题的
能力。
§1 牛顿第一定律 牛顿第三定律
一、牛顿第一定律 1.牛顿第一定律(惯性定律)的内容 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
看,要求准确理解牛顿第一定律;加深理解牛顿第二定律,熟练掌握其应用,尤其是物体受力分析的方法;理
解牛顿第三定律;理解和掌握运动和力的关系;理解超重和失重。本章内容的高考试题每年都有,对本章内容
单独命题大多以选择、填空形式出现,趋向于用牛顿运动定律解决生活、科技、生产实际问题。经常与电场、
磁场联系,构成难度较大的综合性试题,运动学的知识往往和牛顿运动定律连为一体,考查推理能力和综合分
45
高考物理第一轮复习教案
第三章 牛顿运动定律
张建设编写
这个定律有两层含义: (1)保持匀速直线运动状态或静止状态是物体的固有属性;物体的运动不需要用力来维持。 (2)要使物体的运动状态(即速度包括大小和方向)改变,必须施加力的作用,力是改变物体运动状态的 原因,是使物体产生加速度的原因。 2.牛顿第一定律的几点说明 (1)物体不受外力是该定律的条件。 (2)物体总保持匀速直线运动或静止状态是结果。 (3)惯性:一切物体都有保持原有运动状态的性质。 惯性是一切物体都具有的性质,是物体的固有属性,与物体的运动状态及受力情况无关。 惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。 质量是物体惯性大小的惟一量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态,而不受外力的物体是不存在的。物体不受外力 和物体所受合外力为零是有区别的。 (5)牛顿第一定律成立的参考系是惯性参考系。 (6)应注意: ①牛顿第一定律不是实验直接总结出来的,是牛顿以伽利略的理想斜面实验为基础,加之高度的抽象思维, 概括总结出来的,不可能由实际的实验来验证; ②牛顿第一定律不是牛顿第二定律的特例,而是不受外力时的理想化状态。 例 1.下列说法正确的是 A.运动得越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大 B.小球在做自由落体运动时,惯性不存在了 C.把一个物体竖直向上抛出后,能继续上升,是因为物体仍受到一个向上的冲力 D.物体的惯性仅与质量有关,质量大的惯性大,质量小的惯性小 解析:惯性是物体保持原来运动状态的性质,仅由质量决定,与它的受力状况与运动状况均无关。一切物 体都有惯性。答案:D 例 2. 火车在长直水平轨道上匀速行驶,车厢内有一个人向上跳起,发现仍落回到车上原处(空气阻力不 计),这是因为 A.人跳起后,车厢内的空气给人一个向前的力,这力使他向前运动 B.人跳起时,车厢对人一个向前的摩擦力,这力使人向前运动 C.人跳起后,车继续向前运动,所以人下落后必定向后偏一些,只是由于时间很短,距离太小,不明显而 已。 D.人跳起后,在水平方向人和车水平速度始终相同 解析:人向上跳起,竖直方向做竖直上抛运动,水平方向不受外力作用,由于惯性,所以水平方向与车速 度相同,因而人落回原处。 答案:D 例 3. 下面说法正确的是 A.静止或做匀速直线运动的物体一定不受外力的作用 B.物体的速度为零时一定处于平衡状态 C.物体的运动状态发生变化时,一定受到外力的作用 D.物体的位移方向一定与所受合力方向一致 解析:物体不受外力时一定处于静止或匀速运动状态,但处于这些状态时不一定不受外力作用,所以 A 错; 物体是否处于平衡状态是看其受力是否为零,而不是看它的速度是否为零,如竖直上抛物体到达最高点时速度
(教师用书)高考物理一轮复习 第三章 牛顿运动定律
第三章牛顿运动定律[真题回放]1.(2013·课标全国卷Ⅰ)图311是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表所示.表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的.图311 Array根据表中的数据,伽利略可以得出的结论是( )A.物体具有惯性B.斜面倾角一定时,加速度与质量无关C.物体运动的距离与时间的平方成正比D.物体运动的加速度与重力加速度成正比【解析】由图表可知,图表中的物理量未涉及物体的惯性、质量以及加速度与重力加速度的关系,所以A、B、D错误;由表中数据可以看出,在前1秒、前2秒、前3秒……内位移与时间的平方成正比,所以C正确.【答案】 C2.(2013·课标全国卷Ⅱ)一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间关系的图象是( )由牛顿第二定律得F-μF N=ma,即F=μF N+ma,F与a成线性关系,选项C正确.【答案】 C3.(2013·山东高考)(多选)伽利略开创了实验研究和逻辑推理相结合探索自然规律的科学方法,利用这种方法伽利略发现的规律有( )A.力不是维持物体运动的原因B.物体之间普遍存在相互吸引力C.忽略空气阻力,重物与轻物下落得同样快D.物体间的相互作用力总是大小相等、方向相反【解析】伽利略的斜面实验表明物体的运动不需要外力来维持,A正确;伽利略假想将轻重不同的物体绑在一起时,重的物体会因轻的物体阻碍而下落变慢,轻的物体会因重的物体拖动而下落变快,即二者一起下落快慢应介于单独下落时之间.而从绑在一起后更重的角度考虑二者一起下落时应该更快,从而由逻辑上否定了重的物体比轻的物体下落得快的结论,并用实验证明了轻重物体下落快慢相同的规律,C正确;物体间普遍存在相互吸引力,物体间相互作用力的规律是牛顿总结的,对应于万有引力定律与牛顿第三定律,故B、D皆错误.【答案】AC[考向分析]考点一对牛顿第一定律的理解1.揭示了物体的一种固有属性牛顿第一定律揭示了物体所具有的一个重要属性——惯性.2.揭示了力的本质牛顿第一定律明确了力是改变物体运动状态的原因,而不是维持物体运动的原因,物体的运动不需要力来维持.3.揭示了物体不受力作用时的运动状态牛顿第一定律描述的只是一种理想状态,而实际中不受力作用的物体是不存在的,当物体受外力但所受合力为零时,其运动效果跟不受外力作用时相同,物体将保持静止或匀速直线运动状态.【例1】(多选)科学家关于物体运动的研究对树立正确的自然观具有重要作用.下列说法符合历史事实的是( )A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力,它将以这一速度永远运动下去C.笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质【解析】亚里士多德认为物体的运动需要力来维持;伽利略通过实验推翻了亚里士多德的错误结论,笛卡儿对伽利略的实验结果进行了完善,牛顿总结了伽利略和笛卡儿的理论,得出了牛顿第一定律.【答案】BCD突破训练 1(2014·北京高考)伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展.利用如图312所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是( )图312A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小【解析】根据实验结果,得到的最直接的结论是如果斜面光滑,小球将上升到与O点等高的位置,A项正确.而小球不受力时状态不变,小球受力时状态发生变化,是在假设和逻辑推理下得出的结论,不是实验直接结论,所以B 和C 选项错误;而D 项不是本实验所说明的问题,故错误.【答案】 A考点二 对牛顿第二定律的理解 1.力与运动的关系(1)力是产生加速度的原因.(2)作用于物体上的每一个力各自产生的加速度都遵从牛顿第二定律.(3)速度的改变需经历一定的时间,不能突变;有力就一定有加速度,但有力不一定有速度. 2.牛顿第二定律的瞬时性分析 (1)一般思路(2)“两种”模型①刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间. ②弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.【例2】 [考向:力与运动关系]一质点受多个力的作用,处于静止状态.现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其他力保持不变,则质点的加速度大小a 和速度大小v 的变化情况是( )A .a 和v 都始终增大B .a 和v 都先增大后减小C .a 先增大后减小,v 始终增大D .a 和v 都先减小后增大【解析】 质点在多个力作用下处于静止状态时,其中一个力必与其余各力的合力等值反向.当该力大小逐渐减小到零的过程中,质点所受合力从零开始逐渐增大,做加速度逐渐增大的加速度运动;当该力再沿原方向逐渐恢复到原来大小的过程中,质点所受合力方向仍不变,大小逐渐减小到零,质点沿原方向做加速度逐渐减小的加速度运动,故C 正确.【答案】 C【例3】 [考向:瞬时性分析]如图313所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°的光滑斜面上,A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被 图313剪断瞬间,A 、B 两球的加速度大小分别为( )A .都等于g 2 B.g2和0C.g 2和m A m B ·g2D.m A m B ·g 2和g2【思维模板】 问1:细绳剪断前,弹簧的弹力等于多少? 提示:(m A +m B )g sin_θ.问2:细绳剪断瞬间,弹簧的形变量改变了吗? 提示:没有.问3:细绳剪断瞬间,A 受绳的弹力如何变化的? 提示:变为零.【解析】 当A 、B 球静止时,弹簧弹力F =(m A +m B )g sin θ,当绳被剪断的瞬间,弹簧弹力F 不变,对B 分析,则F -m B g sin θ=m B a B ,可解得a B =m A m B ·g 2,当绳被剪断后,球A 受的合力为重力沿斜面向下的分力,F 合=m A g sin θ=m A a A ,所以a A =g2,综上所述选项C 正确.【答案】 C 【反思总结】在求解瞬时性问题时应注意:(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析. (2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变. 考点三 对牛顿第三定律的理解应用1.作用力与反作用力的“三同、三异、三无关” (1)“三同”①大小相同;②性质相同;③变化情况相同. (2)“三异”①方向不同;②受力物体不同;③产生效果不同. (3)“三无关”①与物体的种类无关;②与物体的运动状态无关;③与是否和另外物体相互作用无关. 2.相互作用力与平衡力的比较(1)受力物体不同:作用力和反作用力作用在两个物体上,不可求合力;一对平衡力作用在同一物体上,可求合力,合力为零. (2)依赖关系不同:作用力和反作用力同时产生、同时消失;一对平衡力不一定同时产生、同时消失. (3)力的性质不同:作用力和反作用力一定是同性质的力;一对平衡力性质不一定相同.【例4】 如图314所示,甲、乙两人在冰面上“拔河”,两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是( )图314A .甲对绳的拉力与绳对甲的拉力是一对平衡力B .甲对绳的拉力与乙对绳的拉力是作用力与反作用力C .若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D .若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利【解析】 甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,故选项A 错误;甲对绳的拉力与乙对绳的拉力作用在同一物体上,不是作用力与反作用力,故选项B 错误;设绳子的张力为F ,则甲、乙两人受到绳子的拉力大小相等,均为F ,若m 甲>m 乙,则由a =F m得,a 甲<a 乙,由x =12at 2得,在相等时间内甲的位移小,因开始时甲、乙距分界线的距离相等,则乙会过分界线,所以甲能赢得“拔河”比赛的胜利,故选项C 正确;收绳速度与“拔河”比赛胜负无关,故选项D 错误.【答案】 C 突破训练 2(多选)用手托着一块砖,开始静止不动, 当手突然向上加速运动时,砖对手的压力( ) A .一定小于手对砖的支持力 B .一定等于手对砖的支持力 C .一定大于手对砖的支持力 D .一定大于砖的重力【解析】 由牛顿第三定律知砖对手的压力与手对砖的支持力是作用力和反作用力,二者等大反向,B 项对;对砖受力分析,则F N -mg =ma ,F N >mg ,D 项对.【答案】 BD思想方法5 应用牛顿定律解题涉及的两种常用方法——合成法与正交分解法1.合成法若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合外力方向就是加速度方向.特别是两个力互相垂直或相等时,应用力的合成法比较简单.2.正交分解法当物体受到两个以上的力作用而产生加速度时,通常采用正交分解法解题,为减少矢量的分解,建立坐标系时,确定x 轴的正方向常有以下两种方法:(1)分解力而不分解加速度分解力而不分解加速度,通常以加速度a 的方向为x 轴的正方向,建立直角坐标系,将物体所受的各个力分解在x 轴和y 轴上,分别求得x 轴和y 轴上的合力F x 和F y .根据力的独立作用原理,各个方向上的力分别产生各自的加速度,得F x =ma ,F y =0.(2)分解加速度而不分解力分解加速度a 为a x 和a y ,根据牛顿第二定律得F x =ma x ,F y =ma y ,再求解.这种方法一般是在以某个力的方向为x 轴正方向时,其它的力都落在或大多数力落在两个坐标轴上而不需再分解的情况下应用.【例5】如图315所示,在箱内倾角为θ的固定光滑斜面上用平行于斜面的细线固定一质量为m的木块.求:箱以加速度a匀加速上升和箱以加速度a向左匀加速运动时(线始终张紧),线对木块的拉力F1和斜面对图315木块的支持力F2各多大?【思路导引】【解析】箱匀加速上升,木块所受合力竖直向上,其受力情况如图甲所示(注意在受力图的旁边标出加速度的方向).用F表示F1、F2的合力,一定竖直向上.由牛顿第二定律得F-mg=ma①解得F=mg+ma②再由力的分解得F1=F sin θ和F2=F cos θ③解得F1=m(g+a)sin θ,F2=m(g+a)cos θ.④箱向左匀加速,木块的受力情况如图乙所示,选择沿斜面方向和垂直于斜面方向建立直角坐标系,沿x轴由牛顿第二定律得mg sin θ-F1=ma cos θ⑤解得F1=m(g sin θ-a cos θ)⑥沿y轴由牛顿第二定律得F2-mg cos θ=ma sin θ⑦解得F2=m(g cos θ+a sin θ).⑧【答案】向上加速时F1=m(g+a)sin θF2=m(g+a)·cos θ向左加速时F1=m(g sin θ-a cos θ) F2=m(g cos θ+a sin θ)突破训练 3如图316所示,将质量m=0.1 kg的圆环套在固定的水平直杆上.环的直径略大于杆的截面直径.环与杆间动摩擦因数μ=0.8.对环施加一位于竖图316直平面内斜向上,与杆夹角θ=53°的拉力F,使圆环以a=4.4 m/s2的加速度沿杆运动,求F的大小.(取sin 53°=0.8,cos 53°=0.6,g=10 m/s2)【解析】令F sin 53°-mg=0,F=1.25 N.当F<1.25 N时,环与杆的上部接触,受力如图甲.由牛顿定律得F cos θ-μFma,F N+F sin θ=mg,解得F=1 N当F>1.25 N时,环与杆的下部接触,受力如图乙.由牛顿定律得F cos θ-μF N=maF sin θ=mg+F N解得F=9 N.【答案】 1 N或9 N[牛顿第一定律的应用]1.(多选)在水平路面上有一辆匀速行驶的小车,车上固定一盛满水的碗.现突然发现碗中的水洒出,水洒出的情况如图317所示,则关于小车的运动情况,图317下列叙述正确的是( )A.小车匀速向左运动B.小车可能突然向左加速C.小车可能突然向左减速 D.小车可能突然向右减速【解析】原来水和小车相对静止以共同速度运动,水突然向右洒出有两种可能:①原来小车向左运动,突然加速,碗中水由于惯性保持原速度不变,故相对碗向右洒出.②原来小车向右运动,突然减速,碗中水由于惯性保持原速度不变,相对碗向右洒出,故B、D正确.【答案】 BD[利用牛顿第三定律分析生活现象]2.2013年12月2日,我国“嫦娥三号”月球探测器在长征号火箭的推动下顺利升空.“嫦娥三号”携带的“玉兔号”月球车首次实现了软着陆和月面巡视勘察,下面关于“嫦娥三号”和火箭起飞的情形,叙述正确的是( )A .火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力B .火箭尾部喷出的气体对空气产生一个作用力,空气的反作用力使火箭获得飞行的动力C .火箭飞出大气层,由于没有空气,火箭虽然向下喷气,但也无法获得前进的动力D .“嫦娥三号”绕月球飞行时,月球对其引力提供向心力,此时“嫦娥三号”对月球没有引力作用【解析】 火箭的动力来自火箭喷出的气体的反作用力,此时研究对象是火箭与喷出气体,与外界有无空气无关,引力也是相互的,不是单向的,因此选项A 对.【答案】 A [瞬时加速度问题]3.“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节等处,从几十米高处跳下的一种极限运动.某人做蹦极运动,所受绳子拉力F 的大小随时间t 变化的情况如图318所示.将蹦极过程近似为在竖直方向的运动,重力加速度为g .据图可知,此人在蹦极过程中最大加速度约为( )图318A .gB .2gC .3gD .4g【解析】 “蹦极”运动的最终结果是运动员悬在空中处于静止状态,此时绳的拉力等于运动员的重力,由图可知,绳子拉力最终趋于恒定时等于重力且等于35F 0,即mg =35F 0,得F 0=53mg .当绳子拉力最大时,运动员处于最低点且合力最大,故加速度也最大,此时F 最大=95F 0=3mg ,方向竖直向上,由ma =F 最大-mg 得最大加速度为2g ,故B 项正确.【答案】 B [正交分解法的应用]4.如图319所示,细线的一端系一质量为m 的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a 水平向右做匀加速直线运动的过程 图319中,小球始终静止在斜面上,小球受到细线的拉力T 和斜面的支持力F N 分别为(重力加速度为g )( )A .T =m (g sin θ+a cos θ) F N =m (g cos θ-a sin θ)B .T =m (g cos θ+a sin θ) F N =m (g sin θ-a cos θ)C .T =m (a cos θ-g sin θ) F N =m (g cos θ+a sin θ)D .T =m (a sin θ-g cos θ) F N =m (g sin θ+a cos θ)【解析】准确分析受力情况,分解加速度是比较简便的求解方法.选小球为研究对象,小球受重力mg、拉力T和支持力F N三个力作用,将加速度a沿斜面和垂直于斜面两个方向分解,如图所示.由牛顿第二定律得T-mg sin θ=ma cos θ①mg cos θ-F N=ma sin θ②由①式得T=m(g sin θ+a cos θ).由②式得F N=m(g cos θ-a sin θ).故选项A正确.【答案】 A[牛顿第二、三定律的综合应用]5.图3110为杂技“顶竿”表演的示意图,一人站在地上,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对“底人”的压力大小为( ) 图3110A.(M+m)gB.(M+m)g-maC.(M+m)g+maD.(M-m)g【解析】对竿上的人进行受力分析:其受重力mg、摩擦力F f,有mg-F f=ma,则F f=m(g-a).竿对人有摩擦力,人对竿也有反作用力——摩擦力,且大小相等,方向相反.对竿进行受力分析:其受重力Mg、竿上的人对竿向下的摩擦力F′f、顶竿的人对竿的支持力F N,有Mg+F′f=F N,又因为竿对“底人”的压力和“底人”对竿的支持力是一对作用力和反作用力,由牛顿第三定律,得到F′N =Mg+F′f=(M+m)g-ma,故选项B正确.【答案】 B课时提升练(七) 牛顿运动定律(限时:45分钟)A组对点训练——巩固基础知识题组一牛顿第一定律的理解应用1.某人乘坐列车时发现,车厢的双层玻璃窗内积水了.列车进站过程中,他发现水面的形状如图中的( )【解析】列车进站时刹车,速度减小,而水由于惯性仍要保持原来较大的速度,所以水向前涌,液面形状和选项C一致.【答案】 C2.火车在长直的水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为( )A .人跳起后,车厢内空气给他一向前的力,带着他随同火车一起向前运动B .人跳起的瞬间,车厢的底板给他一向前的力,推动他随同火车一起向前运动C .人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已D .人跳起后直到落地,在水平方向上始终具有和车相同的速度【解析】 力是改变物体运动状态的原因,人竖直跳起时,在水平方向上没有受到力的作用,因此,人将保持和火车相同的水平速度,向前做匀速直线运动,落地时仍在车上原处,故正确选项为D.【答案】 D3.如图3111所示,某同学面向行车方向坐在沿平直轨道匀速行驶的列车车厢里.这位同学发现面前的水平桌面上一个原来静止的小球突然向他滚来,则可判断( )A .列车正在刹车 图3111B .列车突然加速C .列车突然减速D .列车仍在做匀速直线运动【解析】 原来小球相对列车静止,现在这位同学发现面前的小球相对列车突然向他滚来,说明列车改变了原来的运动状态,速度增加了,因此B 正确.【答案】 B题组二 对牛顿第二定律的理解应用图31124.如图3112所示,在光滑的水平面上,质量分别为m 1和m 2的木块A 和B 之间用轻弹簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动,某时刻突然撤去拉力F ,此时A 和B 的加速度为a 1和a 2,则( )A .a 1=a 2=0B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D .a 1=a ,a 2=-m 1m 2a【解析】 两木块在光滑的水平面上一起以加速度a 向右匀加速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ;对B :取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以只有D 项正确.【答案】 D5.如图3113所示,完全相同的三个木块,A 、B 之间用轻弹簧相连,B 、C 之间用不可伸长的轻杆相连,在手的拉动下,木块间达到稳定后,一起向上做匀减速运动,加速度大小为5 m/s 2.某一时刻突然放手,则在手释放的瞬间,有关三个木块的加速度,下列说法正确的是(以向上为正方向,g 大小为10 m/s 2)( ) 图3113A .a A =0,aB =aC =-5 m/s 2B .a A =-5 m/s 2,a B =a C =-12.5 m/s 2C .a A =-5 m/s 2,a B =-15 m/s 2,a C =-10 m/s 2D .a A =-5 m/s 2,a B =a C =-5 m/s 2【解析】 在手释放的瞬间,弹簧的弹力为12mg ,不能突变,所以A 的受力不能突变,加速度不能突变,仍为a A =-5 m/s 2,但B 、C间的轻杆的弹力要突变,B 、C 整体-2mg -12mg =2ma ,a =-12.5 m/s 2,B 和C 具有相同的加速度a B =a C =-12.5 m/s 2,即B 正确.【答案】 B6.(2012·安徽高考)如图3114所示,放在固定斜面上的物块以加速度a 沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F ,则( )A .物块可能匀速下滑 图3114B .物块仍以加速度a 匀加速下滑C .物块将以大于a 的加速度匀加速下滑D .物块将以小于a 的加速度匀加速下滑【解析】 设斜面的倾角为θ,根据牛顿第二定律知,物块的加速度a =mg sin θ-μmg cos θm>0,即μ<tan θ.对物块施加竖直向下的恒力F 后,物块的加速度a ′=mg +F θ-μmg +F θm=a +F sin θ-μF cos θm,且F sin θ-μF cos θ>0,故a ′>a ,物块将以大于a 的加速度匀加速下滑.故选项C 正确,选项A 、B 、D 错误.【答案】 C题组三 牛顿第三定律的理解应用 7.下列说法正确的是( )A .力是维持物体运动的原因,同一物体所受的力越大,它的速度越大B .以卵击石,鸡蛋“粉身碎骨”,但石头却“安然无恙”,是因为鸡蛋对石头的作用力小,而石头对鸡蛋的作用力大C .吊扇工作时向下压迫空气,空气对吊扇产生竖直向上的托力,减轻了吊杆对电扇的拉力D .两个小球A 和B ,中间用弹簧连接,并用细线悬于天花板上,则弹簧对A 的力和弹簧对B 的力是一对作用力和反作用力【解析】 力不是维持物体运动状态的原因,而是改变物体运动状态的原因,根据牛顿第二定律,同一物体所受的力越大,加速度越大,但速度不一定越大,选项A 错误;以卵击石,鸡蛋对石头的作用力和石头对鸡蛋的作用力是一对作用力和反作用力,它们大小相等,选项B 错误;选项D 中弹簧对A 的力和A 对弹簧的力才是一对作用力和反作用力,选项D 错误,只有选项C 正确.【答案】 C图31158.(多选)如图3115所示,人重600 N ,木板重400 N ,人与木板间、木板与地面间的动摩擦因数均为0.2,绳与滑轮的质量及它们之间的摩擦不计,现在人用水平拉力拉绳,使他与木板一起向右匀速运动,则( )A .人拉绳的力是200 NB .人拉绳的力是100 NC .人的脚给木板的摩擦力方向水平向右D .人的脚给木板的摩擦力方向水平向左【解析】 先运用整体法,选取人和木板组成的系统为研究对象,设绳中弹力大小为F T ,则2F T =μ(G 人+G木板)=0.2×(600+400)N=200 N ,所以F T =100 N ,选项A 错误,B 正确;再运用隔离法,选取人为研究对象,水平方向上,人共受到两个力的作用:绳子水平向右的弹力和木板对人的脚的摩擦力,因为二力平衡,所以该摩擦力与弹力等大反向,即摩擦力方向水平向左,根据牛顿第三定律,人的脚给木板的摩擦力方向水平向右,选项C 正确,D 错误,【答案】 BCB 组 深化训练——提升应考能力9.如图3116所示,弹簧左端固定,右端自由伸长到O 点并系住质量为m 的物体,现将弹簧压缩到A 点,然后释放,物体可以一直 图3116运动到B 点.如果物体受到的阻力恒定,则( )A .物体从A 到O 先加速度后减速B .物体从A 到O 做加速度运动,从O 到B 做减速运动C .物体运动到O 点时,所受合力为零D .物体从A 到O 的过程中,加速度逐渐减小【解析】 物体从A 到O ,初始阶段受到的向右的弹力大于阻力,合力向右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大.当物体向右运动至AO 间某点(设为点O ′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大.此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左.至O 点时弹力减为零,此后弹力向左且逐渐增大.所以物体越过O ′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反向,故物体做加速度逐渐增大的减速运动,正确选项为A.【答案】 A10.(多选)用细绳拴一个质量为m 的小球,小球将一固定在墙上的水平轻质弹簧压缩了x (小球与弹簧不拴连),如图3117所示.将细绳剪断后( )A .小球立即获得kxm的加速度 图3117 B .小球在细绳剪断瞬间起开始做平抛运动 C .小球落地的时间等于2hgD .小球落地的速度大于2gh【解析】 细绳剪断瞬间,小球受竖直方向的重力和水平方向的弹力作用,选项A 、B 均错误;水平方向的弹力不影响竖直方向的自由落体运动,故落地时间由高度决定,选项C 正确;重力和弹力均做正功,选项D 正确.【答案】 CD11.质量为M 、长为3L 的杆水平放置,杆两端A 、B 系着长为3L 的不可伸长且光滑的柔软轻绳,绳上套着一质量为m 的小铁环.已知重力加速度为g ,不计空气影响. 图3118若杆与环保持相对静止,在空中沿AB 方向水平向右做匀加速直线运动,此时环恰好悬于A 端的正下方,如图3118所示.(1)求此状态下杆的加速度大小a ;(2)为保持这种状态需在杆上施加一个多大的外力,方向如何?【解析】 (1)此时,对小铁环进行受力分析,如图a 所示,有T ′sin θ′=ma ①T ′+T ′cos θ′-mg =0②。
2019版高考物理一轮复习第三章牛顿运动定律课后分级演练9牛顿运动定律的综合应用.docx
课后分级演练(九)牛顿运动定律的综合应用【A级一一基础练】1•如图所示,一物体以速度旳冲上粗糙的固定斜面,经过2九吋间返回斜面底端,则物体运动的速度u(以初速度方向为正)随时I'可t的变化关A 系可能正确的是()必解析:C由于斜面粗糙,上滑时,根据牛顿第二定律,有如in 〃+〃/〃弊os 0=呗, 而下滑时,根据牛顿第二定律,有〃炉in “一 "/〃弊os 8 =啊,上滑时加速度比下滑时大, 即上滑时图象的斜率大于下滑时图象的斜率,A、B错误;上滑与下滑的位移大小相同,即上滑与下滑图象与时间轴围成的面枳大小相等,C正确,D错误.2.(多选)某马戏团演员做滑杆表演.已知竖直滑杆上端固定,下端悬空,滑杆的重力为200 N.在杆的顶部装有一拉力传感器,可以显示杆顶端所受拉力的大小.已知演员在滑杆上做完动作之后,先在杆上静止了0.5 s,然后沿杆下滑,3.5 s末刚好滑到杆底端,并且速度恰好为零,整个过程中演员的『一£图彖和传感器显示的拉力随时间的变化情况如图所示,g取10 m/s2.则下述说法正确的是()A.演员的体重为600 XB.演员在第1 s内一直处于超重状态C.滑杆所受的最小拉力为620 ND.滑杆所受的最大拉力为900 N解析:AC演员在滑杆上静止时,传感器显示的拉力800 N等于演员重力和滑杆的重力之和,所以演员的体重为600 N,选项A正确,演员在第1 s内先静止后加速下滑,加速下滑处于失重状态,选项B错误.演员加速下滑时滑杆所受的拉力最小,加速下滑的加速度$1 = 3 m/s2,对演员,设受杆对英向上的摩擦力为Fn,由牛顿第二定律,mg —i = ma\,解得凡=420 N.对滑杆,由平衡条件,最小拉力)S=420 N+200 N=620 N,选项C正确•减速下滑时滑杆所受的拉力最大,减速下滑的加速度^=1.5 m/s2,对演员,设摩擦力为斤2, 由牛顿第二定律,甩一帕2,解得^-2=690 N.对滑杆,由平衡条件,最大拉力尺= 690 N+200 N=890 N,选项D 错误.3.放在水平地面上的一物块,受到方向不变的水平推力尸的作用,厂的大小与时间t的关系及物块速度y 与时间十的关系如图所示,取重力加速度g=10 m/s 2.由此两图线可以 求得物块的质量刃和物块与地面之间的动摩擦因数“分别为()C. 撤去尸的瞬间,日球的加速度为零D. 撤去厂的瞬间,方球处于失重状态解析:A 分别对小球禺方受力分析如图所示.由平衡条件得:F 、= 2mg=k\ 俺尸=3妬tan 60° =3羽/〃虚)庄=3/〃勿cos 60° =&2虑)解①③得kx :心=1 : 3, /\正确,B 错误;撤去尸的瞬间b 球仍处于平衡状态空=0, D 错;对自球由牛顿第二定律得F=3加g =呱,弘=3寸5g 方向水平向右,C 错. 5.如图所示,在光滑的水平面上有一段长为厶质量分布均匀的F iT绳子,绳子在水平向左的恒力厂作用下做匀加速直线运动.绳子上某解析:C 由F-t, y —广图象可知当F=2 N 时,物块做匀速运动,则斥=尺=2 2物44块做匀加速直线运动的加速度m/s 2 = 2 m/s 2,匀减速直线运动的加速度m/s 2=-2 m/s 2,根据牛顿笫二定律得,F —R=m&,尺一斥=加2,解得/〃 =0. 5 kg,则动摩擦因 4. (2017 -济F 联考)如图所示,两小球白"质量之比为1 : 2,用轻弹簧久〃连接并悬挂在天花板上保持静止,水平力F作用在 自上并缓慢拉乩当〃与竖直方向夹角为60°时,A. 〃伸长量刚 好相同.若彳、〃的劲度系数分别为人、也 则以下判断正确的是 ()A. m=0. 5 kg, P =0. 2C. /zz=0. 5 kg, P =0. 4B .一点到绳子右端的距离为匕 设该处的张力大小为T,则能正确描述7•与间的关系的图 象是()解析:B 平衡时,小球受到三个力:重力〃好、斜面支持力斤和弹簧拉力如图所示.突然撤离木板吋,尺突然消失而其他力不变,因此&与重力〃g 的合力F = ------- 产生的加速度自=—选项 cos 30 3 m 3B 正确.7. (多选)利用传感嚣和计算机可以研究力的大小变化情况,实验时让质量为刃的某同学从桌子上跳下,自rti 下落〃后双脚触地,他顺 势弯曲双腿,其重心又下降了力,计算机显示该同学受到地面支持力F 随时间变化的图象如图所示,根据图象提供的信息,以下判断正确的 是() A. 从0至力时间内该同学处于失重状态B. 在/至Z2时间内该同学处于超重状态C. 广2时刻该同学加速度为零D. 在(2到十3时间内该同学的加速度在逐渐减小解析:ABD 0~十】时间内该同学加速度方向向卜处于失重状态,力〜&时间内,该同 学的加速度方向向上处于超重状态,选项A 、B 正确;广2时刻受地面支持力最大,加速度最 大,选项C 错误;九〜力吋间内支持力逐渐减小,合力逐渐减小加速度也逐渐减小,选项D 正确.解析:A 根据牛顿第二定律, 对绳子的整体进行受力分析可知F=Ma,对x 段绳子可 沁丁=秒十x,故7」X 图线是经过原点的直线,故选A.6. 如图所示,质量为加的小球用水平轻弹簧系住,并用倾角为30°的光滑木板M 〃托住,小球恰好处于静止状态.当木板力〃突然向下撤离的瞬间,小球的加速度大小为() A. 0 B. 2^3 3 &0 h h h t/88.(多选)建设房屋时,保持底边厶不变,要设计好屋顶的倾角“,以o便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速无摩擦的运 动.下列说法正确的是()解析:AC 设屋檐的底角为 久底边为厶注意底边长度是不变的, 屋顶的坡面长度为丛雨滴下滑时加速度为乩对雨滴做受力分析,只 受重力〃矽和屋顶对雨滴的支持力尺,乖直于屋顶方向:驱 cos ()=R平行于屋顶方向:ma=mgsix\ B雨滴的加速度为:0,则倾角0越大,雨滴下滑时的加速度越大,故A 正确; 雨滴对屋顶的压力:尺=代=/昭cos &,贝I 」倾角〃越大,雨滴对屋顶压力越小,故B 错误;根据三角关系判断,屋顶坡而的长度x =入(:〃,由 心*倚in 〃•/可得:t =可见〃越大,雨滴从顶端0下滑至於时的速度越大,C 正确.9. 为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平, 如图所示,当此车减速上坡时,则乘客(仅考虑乘客与水平面之间的作用)()A. 处于超重状态B. 不受摩擦力的作用C. 受到向后(水平向左)的摩擦力作用D. 所受合力竖直向上解析:C 当车减速上坡吋,加速度方向沿斜坡向下,人的加速度 与车的加速度相同,根据牛顿第二定律知人的合力方向沿斜面向下, 合力的大小不变.人受重力、支持力和水平向左的静摩擦力,如图.将加速度沿竖直方向和水平方向分解,则有竖直向下的加速度, 则:mg —F\=ma y .FSg,乘客处于失重状态,故A 、B 、D 错误,C 正确.A. 倾角越大, 雨滴下滑时的加速度越大 B. 倾角 越大, 雨滴对屋顶压力越大c. 倾角越大, 雨滴从顶端o 下滑至屋檐〃时的速度越大 D. 倾角 越大, 雨滴从顶端0下滑至屋檐必吋的吋间越短可见当〃=45°时,用时最短,D 错误;由r=^sin 0 •十可得:$= 0,2厶 弊in 2 010. 某同学近日做了这样一个实验,将一个小铁块(可看成质点)以一定的初速度,沿倾 角可在0〜90°之间任意调整的木板向上滑动,设它沿木板向上能达到的最大位移为上 若 木板倾角不同时对应的最大位移『与木板倾角口的关系如图所示.g 取10 m/s 2.求(结果如 果有根号,可以保留):(1) 小铁块初速度旳的大小以及小铁块与木板间的动摩擦因数“是多少;(2) 当。
2019版高考物理创新一轮复习江苏专用版文档:第三章
基础课3 超重和失重 牛顿运动定律的综合应用知识排查超重和失重1.超重、失重和完全失重比较2.对超重、失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。
(2)物体是否处于超重或失重状态,不在于物体向上运动还是向下运动,而在于物体的加速度方向,只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。
(3)当物体处于完全失重状态时,重力只有使物体产生a =g 的加速度效果,不再有其他效果。
此时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、液体不再产生压强和浮力等。
小题速练1.思考判断(1)超重说明物体的重力增大了。
( )(2)物体超重时,加速度向上,速度也一定向上。
( )(3)物体失重时,也可能向上运动。
( )(4)物体完全失重时,说明物体的重力为零。
( )答案 (1)× (2)× (3)√ (4)×2.[人教版必修1P89插图改编]如图1所示,某同学站在体重计上,下蹲的全过程中她所处的状态()图1A.一直是超重B.一直是失重C.先超重,后失重D.先失重,后超重答案 D3.[人教版必修1P88插图改编]如图2所示,小李同学站在升降电梯内的体重计上,电梯静止时,体重计示数为50 kg,电梯运动过程中,某一段时间内小李同学发现体重计示数为55 kg。
g取10 m/s2,在这段时间内下列说法正确的是()图2A.体重计对小李的支持力大于小李对体重计的压力B.体重计对小李的支持力等于小李的重力C.电梯的加速度大小为1 m/s2,方向竖直向上D.电梯一定竖直向上运动解析体重计对小李的支持力和小李对体重计的压力是一对作用力与反作用力,大小相等,方向相反,故选项A错误;小李的体重只有50 kg,体重计的示数为55 kg,说明体重计对小李的支持力大于小李的重力,故选项B错误;小李处于超重状态,说明电梯有向上的加速度,运动情况可能为:向上加速或向下减速;小李受支持力和重力,由牛顿第二定律可知其加速度为a=F N-mgm=55×10-50×1050m/s 2=1 m/s 2,选项C 正确,D 错误。
高三物理高考一轮复习精编复习资料:第三章牛顿运动定律
6.质量为 10 kg 的物体在 F = 200 N 的水平推力作用下,从粗糙斜 面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角
θ= 37°,如图 9 所示.力 F 作用 2 秒钟后撤去,物体在斜面上继续上
滑了 1.25 秒钟后,速度减为零.求:物体与斜面间的动摩擦因数
μ和
图9
物体的总位移 x.(已知 sin 37 =° 0.6, cos 37 °= 0.8,g= 10 m/s2)
答案 0.25 16.25 m 解析 设力 F 作用时物体沿斜面上升的加速度为
a1,撤去力 F 后其加速度变为 a2,则:
= ma 3 2v2
t2= a3 = 0.8 s 第二次经过 B 点时间为 t=t1+ t2= 1.8 s
所以撤去 F 后,分别经过 1 s 和 1.8 s 物体经过 B 点.
【反思总结】
— 同时关系
— 瞬时关系
— 理解 ―→ — 独立关系
牛顿第二定律 ―→
— 因果关系
— 同体关系
— 由运动求力
— 应用 ―→ — 由力求运动
物块做匀速运动,外力 F 也恒定, B 正确.在 3 s~ 4 s 内,物块做加速度增大的减速运动, 所以外力 F 不断减小, C 对, D 错.
4.如图 8 所示,物体 P 以一定的初速度 v 沿光滑水平面向右运动, 与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压 缩过程中始终遵守胡克定律,那么在 P 与弹簧发生相互作用的整个过程中
a1、a2、a3 分别表示物块 1、2、3 的加速度,
2019版高考物理一轮复习 第三章 牛顿运动定律 3.1 牛顿第一定律 牛顿第三定律
结果后,提出了著名的牛顿第三定律,阐述了作用力和反作用力的关系,从而与牛顿第一
定律和牛顿第二定律形成了完整的牛顿力学体系。下列关于作用力和反作用力的说
法正确的是
导学号04450052( )
K12教育课件
26
A.物体先对地面产生压力,然后地面才对物体产生支持 力
B.物体对地面的压力和地面对物体的支持力互相平衡 C.人推车前进,人对车的作用力大小等于车对人的作用 力大小
B.男运动员受到的重力和冰面对他的支持力是一对平衡力 C.女运动员对男运动员的压力与冰面对男运动员的支持力是一对作用力和反作用力 D.男运动员对冰面的压力与冰面对他的支持力是一对作用力和反作用力
K12教育课件
32
【解析】选D。男运动员稳稳地托举着女运动员一起滑 行,在水平面内运动,竖直方向没有加速度,所以男运动 员对女运动员的支持力等于女运动员受到的重力,选项 A错误。男运动员除了受到重力、冰面对他的支持力外, 还受到女运动员对他的压力,三个力平衡,选项B错误。 女运动员对男运动员的压力与男运动员对女运动员的
K12教育课件
19
2.飞机在迫降前应该把机载的燃油放空;消防车在跑道上喷出了一条泡沫带,下列说法
中正确的是
()
A.放空燃油除了防止起火爆炸,同时也增加了飞机的惯性
B.放空燃油除了防止起火爆炸,同时也减小了飞机的惯性
C.喷出了一条泡沫带是为了减小飞机所受的合力
D.喷出了一条泡沫带是为了减小飞机所受的阻力
(2)牛顿第一定律不是牛顿第二定律的特例,它揭示了物体运动的原因和力的作用对运 动的影响;牛顿第二定律则定量指出了力和运动的联系。
K12教育课件
16
【考点冲关】
1.(多选)(2018·济南模拟)17世纪,意大利物理学家伽利略根据“伽利略斜面实验”指出:
2019届高考物理一轮复习第三章牛顿运动定律第二节牛顿第二定律两类动力学问题课后达标新人教版
第二节 牛顿第二定律 两类动力学问题(建议用时:60分钟)一、单项选择题1.(2018·贵州遵义模拟)2013年6月我国航天员在“天宫一号”中进行了我国首次太空授课活动,其中演示了太空“质量测量仪”测质量的实验,助教聂海胜将自己固定在支架一端,王亚平将连接运动机构的弹簧拉到指定位置;松手后,弹簧凸轮机构产生恒定的作用力,使弹簧回到初始位置,同时用光栅测速装置测量出支架复位时的速度和所用时间;这样,就测出了聂海胜的质量为74 kg.下列关于“质量测量仪”测质量的说法正确的是( )A .测量时仪器必须水平放置B .其测量原理是根据牛顿第二定律C .其测量原理是根据万有引力定律D .测量时仪器必须竖直放置解析:选B.“质量测量仪”是先通过光栅测速装置测量出支架复位时的速度和所用时间,则能算出加速度a =ΔvΔt ,然后根据牛顿第二定律F =ma ,求解质量,所以工作原理为牛顿第二定律.由于在太空中处于完全失重状态,所以测量仪器不论在什么方向上,弹簧凸轮机构产生恒定的作用力都是人所受的合力,故B 正确.2.(2018·安徽四校高三联考)物体以一定的初速度竖直向上抛出,已知空气对物体的阻力大小与速度大小成正比,则下列关于此物体加速度大小的说法正确的是( )A .上升过程加速度增大,下降过程加速度减小B .上升过程加速度增大,下降过程加速度也增大C .上升过程加速度减小,下降过程加速度也减小D .上升过程加速度减小,下降过程加速度增大解析:选C.上升过程中,受到竖直向下的重力,竖直向下的阻力,即mg +kv =ma ,做减速运动,所以加速度在减小,下降过程中,受到竖直向下的重力,竖直向上的阻力,即mg -kv =ma ,速度在增大,所以加速度在减小,故C 正确.3.“儿童蹦极”中,拴在腰间左右两侧的是悬点等高、完全相同的两根橡皮绳.如图所示,质量为m 的小明静止悬挂时,两橡皮绳的夹角为60°,则( )A .每根橡皮绳的拉力为12mgB .若将悬点间距离变小,则每根橡皮绳所受拉力将变小C .若此时小明左侧橡皮绳在腰间断裂,则小明此时加速度a =gD .若拴在腰间左右两侧的是悬点等高、完全相同的两根轻绳,则小明左侧轻绳在腰间断裂时,小明的加速度a =g解析:选B.根据平行四边形定则知,2F cos 30°=mg ,解得F =33mg .故A 错误;根据共点力平衡得,2F cos θ=mg ,当悬点间的距离变小时,θ变小,cos θ变大,可知橡皮绳的拉力变小,故B 正确;当左侧橡皮绳断裂,断裂的瞬间,右侧弹性绳的拉力不变,则重力和右侧橡皮绳拉力的合力与左侧橡皮绳初始时的拉力大小相等,方向相反,合力大小为33mg ,加速度为33g ,故C 错误;当两侧为轻绳时,左侧绳断裂瞬间,右侧绳上拉力发生突变,将重力沿绳方向和垂直于绳方向正交分解,合力为mg sin 30°,加速度为12g ,方向沿垂直于右侧绳的方向斜向下,故D 错误.4.质量为M 的皮带轮工件放置在水平桌面上,一细绳绕过皮带轮的皮带槽,一端系一质量为m 的重物,另一端固定在桌面上.如图所示,工件与桌面、绳之间以及绳与桌子边缘之间的摩擦都忽略不计,则重物下落过程中,工件的加速度为( )A.mg2MB .mgM +mC.2mgM +4mD .2mgM +2m解析:选C.相等时间内重物下落的距离是工件运动距离的2倍,因此,重物的加速度也是工件加速度的2倍,设绳子上的拉力为F ,根据牛顿第二定律mg -F m =2·2FM,解得F =Mmg M +4m ,工件加速度a =2F M =2mgM +4m,所以C 正确. 5.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +MMg D .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +MMg 解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=F +Mg M =M +mMg ,所以C 对. 6.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A 点.竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心.已知在同一时刻a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道AM 、BM 运动到M 点;c 球由C 点自由下落到M 点.则( )A .a 球最先到达M 点B .b 球最先到达M 点C .c 球最先到达M 点D .b 球和c 球都可能最先到达M 点 解析:选C.如图所示,令圆环半径为R ,则c 球由C 点自由下落到M 点用时满足R =12gt 2c ,所以t c=2Rg ;对于a 球令AM 与水平面成θ角,则a 球下滑到M 点用时满足AM =2R sin θ=12g sin θ·t 2a ,即t a =2Rg ;同理b 球从B 点下滑到M 点用时也满足t b =2rg(r 为过B 、M 且与水平面相切于M 点的竖直圆的半径,r >R ).综上所述可得t b >t a >t c ,故选项C 正确.二、多项选择题 7.如图所示,质量为m 2的物体2放在车厢底板上,用竖直细线通过定滑轮与质量为m 1的物体1连接,不计滑轮摩擦,车厢正在水平向右做加速直线运动,连接物体1的细线与竖直方向成θ角,物体2仍在车厢底板上,则( )A .细线拉力为m 1g cos θB .车厢的加速度为g tan θC .底板对物体2的支持力为m 2g -m 1gcos θD .底板对物体2的摩擦力为零解析:选BC.以物体1为研究对象,水平方向有F T sin θ=m 1a ,竖直方向有F T cos θ=m 1g ,解得a =g tan θ,F T =m 1gcos θ,选项A 错误,B 正确;以物体2为研究对象,水平方向有F f =m 2a ,竖直方向有F T +F N =m 2g ,解得F f =m 2g tan θ,F N =m 2g -m 1gcos θ,选项C 正确,D 错误.8.(2018·杭州二中月考)如图所示,总质量为460 kg 的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s 2,当热气球上升到180 m 时,以5 m/s 的速度向上匀速运动,若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g =10 m/s 2.关于热气球,下列说法正确的是( )A .所受浮力大小为4 830 NB .加速上升过程中所受空气阻力保持不变C .从地面开始上升10 s 后的速度大小为5 m/sD .以5 m/s 匀速上升时所受空气阻力大小为230 N解析:选AD.刚开始上升时,空气阻力为零,F 浮-mg =ma ,解得F 浮=m (g +a )=4 830 N ,A 正确;加速上升过程,若保持加速度不变,则热气球上升到180 m 时,速度v =2ah =65m/s >5 m/s ,所以热气球做加速度减小的加速直线运动,上升10 s 后的速度v ′<at =5 m/s ,C 错误;再由F 浮-F 阻-mg =ma 可知空气阻力F 阻增大,B 错误;匀速上升时,F 浮=F 阻+mg ,所以F 阻=F 浮-mg =230 N ,D 正确.9.(2018·山东济南模拟)如图所示,两轻质弹簧a 、b 悬挂一质量为m 的小球,整体处于平衡状态,弹簧a 与竖直方向成30°,弹簧b 与竖直方向成60°,弹簧a 、b 的形变量相等,重力加速度为g ,则( )A .弹簧a 、b 的劲度系数之比为 3∶1B .弹簧a 、b 的劲度系数之比为 3∶2C .若弹簧a 下端松脱,则松脱瞬间小球的加速度大小为3gD .若弹簧b 下端松脱,则松脱瞬间小球的加速度大小为g2解析:选AD.由题可知,两个弹簧相互垂直,对小球受力分析,如图所示,设弹簧的伸长量都是x ,由受力分析图知,弹簧a 中弹力F a =mg cos 30°=32mg ,根据胡克定律可知弹簧a 的劲度系数为k 1=F a x =3mg 2x ,弹簧b 中的弹力F b =mg cos 60°=12mg ,根据胡克定律可知弹簧b 的劲度系数为k 2=F b x =mg2x ,所以弹簧a 、b 的劲度系数之比为3∶1,A 正确,B错误;弹簧a 中的弹力为32mg ,若弹簧a 的下端松脱,则松脱瞬间弹簧b 的弹力不变,故小球所受重力和弹簧b 弹力的合力与F a 大小相等、方向相反,小球的加速度a =F a m =32g ,C 错误;弹簧b 中弹力为12mg ,若弹簧b 的下端松脱,则松脱瞬间弹簧a 的弹力不变,故小球所受重力和弹簧a 弹力的合力与F b 大小相等、方向相反,故小球的加速度a ′=F b m =12g ,D正确.10.(2018·湖南郴州质检)如图(a)所示,质量为5 kg 的小物块以初速度v 0=11 m/s 从θ=53°固定斜面底端先后两次滑上斜面,第一次对小物块施加一沿斜面向上的恒力F .第二次无恒力F .图(b)中的两条线段a 、b 分别表示存在恒力F 和无恒力F 时小物块沿斜面向上运动的v -t 图线.不考虑空气阻力,g =10 m/s 2,(sin 53°=0.8、cos 53°=0.6)下列说法中正确的是( )A .恒力F 的大小为5 NB .恒力F 的大小为10 NC .物块与斜面间的动摩擦因数为13D .物块与斜面间的动摩擦因数为0.5 解析:选AD.由题图可得:a =ΔvΔt ;有恒力F 时:a 1=Δv Δt =111.1m/s 2=10 m/s 2;无恒力F 时:a 2=Δv Δt =111m/s 2=11 m/s 2由牛顿第二定律得:无恒力F 时:mg sin θ+μmg cos θ=ma 2 解得:μ=0.5有恒力F 时:mg sin θ+μmg cos θ-F =ma 1 解得:F =5 N ,故A 、D 正确,B 、C 错误. 三、非选择题 11.(2018·江西重点中学六校联考)如图所示,一个竖直固定在地面上的透气圆筒,筒中有一劲度系数为k 的轻弹簧,其下端固定,上端连接一质量为m 的薄滑块,圆筒内壁涂有一层新型智能材料——ER 流体,它对滑块的阻力可调.滑块静止时,ER 流体对其阻力为零,此时弹簧的长度为L .现有一质量也为m (可视为质点)的物体在圆筒正上方距地面2L 处自由下落,与滑块碰撞(碰撞时间极短)后黏在一起,并以物体碰前瞬间速度的一半向下运动.ER 流体对滑块的阻力随滑块下移而变化,使滑块做匀减速运动,当下移距离为d 时,速度减小为物体与滑块碰撞前瞬间速度的四分之一.取重力加速度为g ,忽略空气阻力,试求:(1)物体与滑块碰撞前瞬间的速度大小; (2)滑块向下运动过程中的加速度大小;(3)当下移距离为d 时,ER 流体对滑块的阻力大小.解析:(1)设物体与滑块碰撞前瞬间的速度大小为v 0,由自由落体运动规律有v 20=2gL ,解得v 0=2gL .(2)设滑块做匀减速运动的加速度大小为a ,取竖直向下为正方向,则有-2ax =v 22-v 21,x =d ,v 1=v 02,v 2=v 04,解得a =3gL 16d.(3)设下移距离d 时弹簧弹力为F ,ER 流体对滑块的阻力为F ER ,对物体与滑块组成的整体,受力分析如图所示,由牛顿第二定律得F +F ER -2mg =2ma F =k (d +x 0) mg =kx 0联立解得F ER =mg +3mgL 8d-kd .答案:(1)2gL (2)3gL 16d (3)mg +3mgL8d -kd12.(2018·陕西西安模拟)小物块以一定的初速度v0沿斜面(足够长)向上运动,由实验测得物块沿斜面运动的最大位移x与斜面倾角θ的关系如图所示.取g=10 m/s2,空气阻力不计.可能用到的函数值:sin 30°=0.5,sin 37°=0.6.求:(1)物块的初速度v0;(2)物块与斜面之间的动摩擦因数μ;(3)计算说明图线中P点对应的斜面倾角为多大?在此倾角条件下,小物块能滑回斜面底端吗?说明理由(设最大静摩擦力与滑动摩擦力相等).解析:(1)当θ=90°时,物块做竖直上抛运动,末速度为0由题图得上升最大位移为x m=3.2 m由v20=2gx m,得v0=8 m/s.(2)当θ=0时,物块相当于在水平面上做匀减速直线运动,末速度为0由题图得水平最大位移为x=6.4 m由运动学公式有:v20=2ax由牛顿第二定律得:μmg=ma,得μ=0.5.(3)设题图中P点对应的斜面倾角值为θ,物块在斜面上做匀减速运动,末速度为0由题图得物块沿斜面运动的最大位移为x′=3.2 m由运动学公式有:v20=2a′x′由牛顿第二定律有:mg sin θ+μmg cos θ=ma′得10sin θ+5cos θ=10,得θ=37°.因为mg sin θ=6m>μmg cos θ=4m,所以能滑回斜面底端.答案:(1)8 m/s (2)0.5 (3)37°能滑回底端理由见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后分级演练(八) 牛顿第二定律 两类动力学问题【A 级——基础练】1.一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a 表示物块的加速度大小,F 表示水平拉力的大小.能正确描述F 与a 之间关系的图象是( )解析:C 物块在水平方向上受到拉力和摩擦力的作用,根据牛顿第二定律,有F -F f =ma ,即F =ma +F f ,该关系为线性函数.当a =0时,F =F f ;当F =0时,a =-F f m.符合该函数关系的图象为C.2.如图所示,圆柱形的仓库内有三块长度不同的滑板aO 、bO 、cO ,其下端都固定于底部圆心O ,而上端则搁在仓库侧壁上,三块滑板与水平面的夹角依次是30°、45°、60°.若有三个小孩同时从a 、b 、c 处开始下滑(忽略阻力),则( )A .a 处小孩最后到O 点B .b 处小孩最后到O 点C .c 处小孩最先到O 点D .a 、c 处小孩同时到O 点解析:D 三块滑板与圆柱形仓库构成的斜面底边长度均为圆柱形仓库的底面半径,则Rcos θ=12gt 2sin θ,t 2=4R g sin 2θ,当θ=45°时,t 最小;当θ=30°和60°时,sin 2θ的值相同,故只有D 正确.3.如图甲所示,物块静止在粗糙水平面上.某时刻(t =0)开始,物块受到水平拉力F 的作用.拉力F 在0~t 0时间内随时间变化情况如图乙所示,则物块的速度-时间图象可能是( )解析:D 拉力较小时,拉力小于最大静摩擦力,物块静止;拉动后,由F -μmg =ma可知,随着拉力的增大,物块的加速度增大,所以速度-时间图象切线斜率增大.4.如图所示,公共汽车沿水平面向右做匀变速直线运动,小球A 用细线悬挂在车顶上,质量为m 的一位中学生手握扶杆始终相对于汽车静止站在车厢底板上.学生鞋底与公共汽车间的动摩擦因数为μ.若某时刻观察到细线偏离竖直方向θ角,则此刻公共汽车对学生产生的作用力的大小和方向为( )A .mg ,竖直向上B.mg cos θ,斜向左上方 C .mg tan θ,水平向右 D .mg 1+μ2,斜向右上方解析:B 对小球A ,由牛顿第二定律得m ′g tan θ=m ′a ,则人与车的加速度为a =g tan θ,方向水平向左,因此车对人的作用力为F =mg 2+mg tan θ2=mg cos θ,方向斜向左上方,因此选项B 正确,其他选项均错. 5.(多选)如图所示,A 、B 、C 三球的质量均为m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间由一轻质细线连接,B 、C 间由一轻杆相连.倾角为θ的光滑斜面固定在地面上,弹簧、细线与轻杆均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法正确的是( )A .A 球的加速度沿斜面向上,大小为g sin θB .C 球的受力情况未变,加速度为0C .B 、C 两球的加速度均沿斜面向下,大小均为g sin θD .B 、C 之间杆的弹力大小为0解析:CD 初始系统处于静止状态,把BC 看成整体,BC 受重力2mg 、斜面的支持力F N 、细线的拉力F T ,由平衡条件可得F T =2mg sin θ,对A 进行受力分析,A 受重力mg 、斜面的支持力、弹簧的拉力F 弹和细线的拉力F T ,由平衡条件可得:F 弹=F T +mg sin θ=3mg sin θ,细线被烧断的瞬间,拉力会突变为零,弹簧的弹力不变,根据牛顿第二定律得A 球的加速度沿斜面向上,大小a =2g sin θ,选项A 错误;细线被烧断的瞬间,把BC 看成整体,根据牛顿第二定律得BC 球的加速度a ′=g sin θ,均沿斜面向下,选项B 错误,C 正确;对C 进行受力分析,C 受重力mg 、枰的弹力F 和斜面的支持力,根据牛顿第二定律得mg sin θ+F =ma ′,解得F =0,所以B 、C 之间杆的弹力大小为0,选项D 正确.6.(2017·三湘名校联盟三模)在明德中学教学楼顶吊着一口大钟,每年元旦会进行敲钟仪式,如图所示,在大钟旁边并排吊着撞锤,吊撞锤的轻绳长为L ,与吊撞锤的点等高且水平相距23L 3处有一固定的光滑定滑轮,一同学将轻绳一端绕过定滑轮连在撞锤上,然后缓慢往下拉绳子另一端,使得撞锤提升竖直高度L /2时突然松手,使撞锤自然地摆动下去撞击大钟,发出声音.(重力加速度为g )则( )A .在撞锤上升过程中,该同学对绳子的拉力大小不变B .在撞锤上升过程中,撞锤吊绳上的拉力大小不变C .突然松手时,撞锤的加速度大小等于gD .突然松手时,撞锤的加速度大小等于32g 解析:D 因该同学缓慢拉绳子,则撞锤在缓慢上升,处于动态平衡状态,对撞锤受力分析可知,其受两绳的拉力和重力作用.因重力的大小和方向恒定不变,由平衡条件可知两绳拉力的合力与重力等大反向,而两绳拉力方向均在变化,由平行四边形定则分析可知,两绳上的拉力大小均在变化,A 、B 错误:突然松手时,撞锤此时受重力和吊撞锤的绳子对它的拉力作用.如图所示,根据几何关系知两绳子的夹角为90°,且吊撞锤的绳子与竖直方向的夹角为60°,则F 合=mg sin 60°=32mg ,根据牛顿第二定律得其加速度大小a =F m =32g ,C 错误,D 正确.7.如图所示,两根长度分别为L 1和L 2的光滑杆AB 和BC 在B 点垂直焊接,当按图示方式固定在竖直平面内时,将一滑环从B 点由静止释放,分别沿BA 和BC 滑到杆的底端经历的时间相同,则这段时间为( )A.2L 1L 2g B.2L 1L 2gC.2L 21+L 22g D.L 21+L 22g L1+L 2解析:C 设BA 和BC 倾角分别为α和β,根据牛顿第二定律得:滑环沿BA 下滑的加速度为a 1=mg sin αm =g sin α① 沿BC 下滑的加速度为a 2=mg sin βm=g sin β② 设下滑时间为t ,由题有: L 1=12a 1t 2③L 2=12a 2t 2④由几何知识有:sin α=cos β⑤联立以上各式解得t =2L 21+L 22g ,故选C.8. (多选)(2017·淄博二模)如图所示,某杂技演员在做手指玩耍盘子的高难度表演.若盘的质量为m ,手指与盘之间的动摩擦因数为μ,重力加速度为g ,设最大静摩擦力等于滑动摩擦力,盘底处于水平状态且不考虑盘的自转.则下列说法正确的是( )A .若手指支撑着盘,使盘保持静止状态,则手指对盘的作用力等于mgB .若手指支撑着盘并一起水平向右匀速运动,则盘受到水平向右的静摩擦力C .若手指支撑着盘并一起水平向右匀加速运动,则手指对盘的作用力大小为μmgD .若盘随手指一起水平匀加速运动,则手指对盘的作用力大小不可超过1+μ2mg 解析:AD 若手指支撑着盘,使盘保持静止状态,则盘受力平衡,手指对盘的作用力与盘的重力等大反向,则手指对盘的作用力等于mg ,选项A 正确;若手指支撑着盘并一起水平向右匀速运动,则水平方向盘不受力,即盘不受静摩擦力,选项B 错误;若手指支撑着盘并一起水平向右匀加速运动,则手指对盘的作用力为静摩擦力,大小不一定等于μmg ,选项C 错误;若盘随手指一起水平匀加速运动,则手指对盘子水平方向的最大静摩擦力为μmg ,竖直方向对盘子的支持力为mg ,则手指对盘的作用力大小的最大值mg 2+μmg 2=1+μ2mg ,即手指对盘的作用力大小不可超过1+μ2mg ,选项D 正确.9.(多选)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功解析:BD 设小球的密度为ρ,其质量m =4ρπr 33,设阻力与球的半径的比值为k ,根据牛顿第二定律得:a =mg -kr m =g -kr 4ρπr 33=g -3k 4ρπr 2,由此可见,由m 甲>m 乙,ρ甲=ρ乙,r 甲>r 乙,可知a 甲>a 乙,选项C 错误;由于两球由静止下落,两小球下落相同的距离则由x =12at 2,t 2=2x a,t 甲<t 乙,选项A 错误;由v 2=2ax 可知,甲球末速度的大小大于乙球末速度的大小,选项B 正确;由于甲球质量大于乙球质量,所以甲球半径大于乙球半径,甲球所受的阻力大于乙球所受的阻力,则两小球下落相同的距离甲球克服阻力做的功大于乙球克服阻力做的功,选项D 正确.10.如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上A 点由静止释放,最终停在水平面上的C 点.已知A 点距水平面的高度h =0.8 m ,B 点到C 点的距离L =2.0 m(滑块经过B 点时没有能量损失,取g =10 m/s 2).求:(1)滑块在运动过程中的最大速度的大小;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A 点释放后,经过时间t =1.0 s 时速度的大小.解析:(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B 点时达到速度最大值v m ,设滑块在斜面上运动的加速度大小为a 1,由牛顿第二定律得mg sin 30°=ma 1.由运动学公式知v 2m =2a 1h sin 30°解得v m =4 m/s(2)设滑块在水平面上运动的加速度大小为a 2,由牛顿第二定律得μmg =ma 2又v 2m =2a 2L解得μ=0.4(3)设滑块在斜面上运动的时间为t 1,则v m =a 1t 1解得t 1=0.8 s由于t >t 1,故t =1.0 s 时滑块已经经过B 点,做匀减速运动的时间为t -t 1=0.2 s 设t =1.0 s 时速度大小为v ,则v =v m -a 2(t -t 1)解得v =3.2 m/s答案:(1)4 m/s (2)0.4 (3)3.2 m/s【B 级——提升练】11. (多选)如图所示,劲度系数为k 的轻质弹簧下端固定在倾角为θ的粗糙斜面底端的挡板C 上,另一端自然伸长到A 点.质量为m 的物块从斜面上B 点由静止开始滑下,与弹簧发生相互作用,最终停在斜面上某点.下列说法正确的是( )A .物块第一次滑到A 点时速度最大B .物块速度最大时弹簧的压缩量小于mg sin θkC .物块压缩弹簧后被反弹过程做加速度逐渐减小的加速运动D .物块最终停在斜面上时受到的摩擦力小于mg sin θ解析:BD 当物块受力平衡时速度最大,由kx +μmg cos θ=mg sin θ,解得x =mg sin θ-μmg cos θk,故A 错误,B 正确;物块压缩弹簧后被反弹过程先做加速度逐渐减小的加速运动,后做加速度增大的减速运动,故C 错误;由于物块能够由静止下滑,可得最大静摩擦力小于重力沿斜面方向的分力,故最终停止运动时弹簧有弹力,根据受力平衡知,物块受到的摩擦力小于mg sin θ,故D 正确.12.如图所示,有一半圆,其直径水平且与另一圆的底部相切于O 点,O 点恰好是下半圆的圆心,有三条光滑轨道AB 、CD 、EF ,它们的上下端分别位于上下两圆的圆周上,三轨道都经过切点O ,轨道与竖直线的夹角关系为α>β>θ.现在让一物块先后从三轨道顶端由静止开始下滑至底端,则物块在每一条倾斜轨道上滑动时所经历的时间关系为( )A .t AB =t CD =t EFB .t AB >t CD >t EFC .t AB <t CD <t EF D .t AB =t CD <t EF解析:B 在倾斜轨道上,设轨道与竖直方向间夹角为r ,对物块由牛顿第二定律有mg cosr =ma ,得加速度a =g cos r ,又位移x =2R 1cos r +R 2,再结合运动学公式x =12at 2,得t =4R 1g+2R 2g cos r ,由此关系式可知随r 的增大t 增大,因α>β>θ,则t AB >t CD >t EF ,故选B.13.如图所示,水平桌面由粗糙程度不同的AB 、BC 两部分组成,且AB =BC ,物块P (可视为质点)以某一初速度从A 点滑上桌面,最后恰好停在C 点,已知物块经过AB 与BC 两部分的时间之比为1∶4,则物块P 与桌面上AB 、BC 部分之间的动摩擦因数μ1、μ2之比为(物块P 在AB 、BC 上所做的运动均可看作匀变速直线运动)( )A .1∶1B .1∶4C .4∶1D .8∶1解析:D 由牛顿第二定律可知,物块P 在AB 段减速的加速度a 1=μ1g ,在BC 段减速的加速度a 2=μ2g ,设物块P 在AB 段运动时间为t ,则可得:v B =μ2g ·4t ,v 0=μ1gt +μ2g ·4t ,由x AB =v 0+v B2·t ,x BC =v B2·4t ,x AB =x BC 解得:μ1=8μ2,故D 正确. 14.如图所示,在倾角θ=37°的粗糙斜面上距离斜面底端s =4 m 处,有一质量m =1 kg 的物块,受水平恒力F 作用由静止开始沿斜面下滑,到达底端时立即撤去水平恒力F ,然后在水平面上滑动一段距离后停止.每隔0.2 s 通过传感器测得物块的瞬时速度,下表给出了部分测量数据.若物块与各接触面之间的动摩擦因数均相等,不计物块撞击水平面时的能量损失,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)(2)物块与水平面间的动摩擦因数;(3)水平恒力F 的大小.解析:(1)由表中数据可得物块沿斜面加速下滑的加速度大小a 1=Δv 1Δt =0.40.2m/s 2=2 m/s 2.由v 2=2a 1s ,代入数据解得v =2a 1s =2×2×4 m/s =4 m/s.(2)物块沿水平面减速滑行时,加速度大小a 2=Δv 2Δt =0.40.2 m/s 2=2 m/s 2,在水平面上由牛顿第二定律得μmg =ma 2,解得μ=a 2g=0.2.(3)物块沿斜面加速下滑时,有mg sin θ-F cos θ-μ(mg cos θ+F sin θ)=ma 1,代入数据解得F =2.6 N.答案:(1)4 m/s (2)0.2 (3)2.6 N15.避险车道(标志如图甲所示)是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图乙所示的竖直平面内,制动坡床视为与水平面夹角为θ的斜面.一辆长12 m 的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s 时,车尾位于制动坡床的底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m 时,车头距制动坡床顶端38 m ,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cos θ=1,sin θ=0.1,g =10 m/s 2.求:(1)货物在车厢内滑动时加速度的大小和方向;(2)制动坡床的长度.解析:(1)设货物的质量为m ,货物与车厢间的动摩擦因数μ=0.4,货物在车厢内滑动过程中,受到的摩擦力大小为F f ,加速度大小为a 1,则F f +mg sin θ=ma 1①F f =μmg cos θ②联立①②式并代入数据得a 1=5 m/s 2③ a 1的方向沿制动坡床向下(2)设货车的质量为M ,车尾位于制动坡床底端时的车速为v =23 m/s.货物在车厢内开始滑动到车头距制动坡床顶端s 0=38 m 的过程中,用时为t ,货物相对制动坡床的运动距离为s 1,在车厢内滑动的距离s =4 m ,货车的加速度大小为a 2,货车相对制动坡床的运动距离为s 2.货车受到制动坡床的阻力大小为F ,F 是货车和货物总重的k 倍,k =0.44,货车长度l 0=12 m ,制动坡床的长度为l ,则Mg sin θ+F -F f =Ma 2④F =k (m +M )g ⑤s 1=vt -12a 1t 2⑥s 2=vt -12a 2t 2⑦s =s 1-s 2⑧l =l 0+s 0+s 2⑨联立①②④~⑨并代入数据得l =98 m ⑩答案:(1)5 m/s 2 方向沿制动坡床向下 (2)98 m。