【全国百强校word】河北省衡水中学2017届高三下学期六调数学(理)试题

合集下载

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(原卷版)

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(原卷版)

河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,或,则()A. B. C. D.2. 若复数满足为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为()A. B. C. D.4. 已知命题;命题,则下列命题中为真命题的是()A. B. C. D.5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.6. 若实数满足条件,则的最大值为()A. B. C. D.7. 已知,则二项式的展开式中的常数项为()A. B. C. D.8. 已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么()A. B. C. D.9. 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B.C. D.10. 执行如图所示的程序框图,输出的值等于()A. B.C. D. ...11. 椭圆的左焦点为,上顶点为,右顶点为,若的外接圆圆心在直线的左下方,则该椭圆离心率的取值范围为()A. B. C. D.12. 已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,若,则__________.14. 在中,分别为角的对边,,若,则__________.15. 已知点分别是双曲线的左、右焦点,为坐标原点,点在双曲线的右支上,且满足,则双曲线的焦点的取值范围为__________.16. 点为正方体的内切球球面上的动点,点为上一点,,若球的体积为,则动点的轨迹的长度为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列满足.(1)求数列的通项公式;(2)设以为公比的等比数列满足),求数列的前项和.18. 如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;(2)若该人到达后停留3天(到达当日算1天〉,设是此人停留期间空气重度污染的天数,求的分布列与数学期望.19. 如图,四棱锥中,平面平面,底面为梯形,,且与均为正三角形,为的重心.(1)求证:平面;(2)求平面与平面所成锐二面角的正切值.20. 已知抛物线的焦点为为上位于第一象限的任意一点,过点的直线交于另一点,交轴的正半轴于点.(1)若,当点的横坐标为时,为等腰直角三角形,求的方程;(2)对于(1)中求出的抛物线,若点,记点关于轴的对称点为交轴于点,且,求证:点的坐标为,并求点到直线的距离的取值范围.21. 设函数).(1)若直线和函数的图象相切,求的值;(2)当时,若存在正实数,使对任意都有恒成立,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程...在直角坐标系中中,曲线的参数方程为为参数,). 以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;(2)若曲线上所有的点均在直线的右下方,求的取值范围.23. 选修4-5:不等式选讲已知定义在上的函数,且恒成立.(1)求实数的值;(2)若,求证:.。

【数学】河北省衡水中学高三下学期六调考试试卷(理)(解析版)

【数学】河北省衡水中学高三下学期六调考试试卷(理)(解析版)

河北省衡水中学高三下学期六调考试数学试卷一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意)1.已知,,为虚数单位,且,则的值为()A. 4B.C. -4D.【答案】C【解析】根据复数相等的概念可知,,∴,∴,故选C2.已知集合,,则下列结论中正确的是()A. B. C. D.【答案】C【解析】由得,故,选项为C.3.已知的面积为2,在所在的平面内有两点、,满足,,则的面积为()A. B. C. D. 1【答案】C【解析】由题意可知,P为AC的中点,2,可知Q为AB的一个三等分点,如图:因为S△ABC2.所以S△APQ.故选:B.4.如图,一个空间几何体的正视图、侧视图都是面积为,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为()A. B. C. 8 D. 4【答案】D【解析】因为一个空间几何体的正视图、侧视图都是面积为,且一个内角为的菱形,所以菱形的边长为,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,底面边长为,侧棱长为,所以几何体的表面积为:,故选D.5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图所示的是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.【答案】D【解析】设正方形的边长为则①处面积和右下角黑色区域面积相同故黑色部分可拆分成一个等腰直角三角形和一个直角梯形等腰直角三角形面积为:直角梯形面积为:黑色部分面积为:则所求概率为:本题正确选项:6.定义运算:,将函数的图像向左平移个单位,所得图像对应的函数为偶函数,则的最小值是()A. B. C. D.【答案】C【解析】,将函数化为再向左平移()个单位即为:又为偶函数,由三角函数图象的性质可得,即时函数值为最大或最小值,即或,所以,即,又,所以的最小值是.7.已知,,,则下列选项正确的是()A. B. C. D.【答案】D【解析】,,,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x),则f′(x),当x=e时,f′(x)=0,当x>e时,f′(x)>0,当0<x<e时,f′(x)<0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.8.双曲线的左右焦点分别为,,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A. B.C. D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.9.如图①,利用斜二侧画法得到水平放置的的直观图,其中轴,轴.若,设的面积为,的面积为,记,执行如图②的框图,则输出的值A. 12B. 10C. 9D. 6【答案】A【解析】∵在直观图△A′B′C′中,A′B′=B′C′=3,∴S′A′B′•B′C′•sin45°由斜二侧画法的画图法则,可得在△ABC中,AB=6.BC=3,且AB⊥BC∴S AB•BC=9则由S=kS′得k=2,则T=T(m﹣1)=T2(m﹣1)故执行循环前,S=9,k=2,T=0,m=1,满足进行循环的条件,执行循环体后,T=0,m=2当T=0,m=2时,满足进行循环的条件,执行循环体后,T=2,m=3当T=2,m=3时,满足进行循环的条件,执行循环体后,T=6,m=4当T=6,m=4时,满足进行循环的条件,执行循环体后,T=12,m=5当T=12,m=5时,不满足进行循环的条件,退出循环后,T=12,故输出的结果为12故选:A.10.如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正边形“扩展”而来的多边形的边数为,则()A. B. C. D.【答案】A【解析】,猜想,,,故选A.11.过椭圆上一点作圆的两条切线,点,为切点,过,的直线与轴,轴分别交于点,两点,则的面积的最小值为()A. B. C. 1 D.【答案】B【解析】∵点在椭圆上,∴设,∵过椭圆上一点作圆的两条切线,点为切点,则∴以O为圆心,以|AM|为半径的圆的方程为①.又圆的方程为②.①-②得,直线AB的方程为:∵过A,B的直线l与x轴,y轴分别交于点P,Q两点,∴P,Q,∴△POQ面积,∵-1≤sin2θ≤1,∴当sin2θ=±1时,△POQ面积取最小值.12.若函数在其图象上存在不同的两点,,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:①:②:③:④.其中为“柯西函数”的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】由柯西不等式得对任意的实数都有≤0,当且仅当时取等,此时即A,O,B三点共线,结合“柯西函数”定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点共线过原点直线与f(x)有两个交点.①,画出f(x)在x>0时,图像若f(x)与直线y=kx有两个交点,则必有k≥2,此时,,所以(x>0),此时仅有一个交点,所以不是柯西函数;②,曲线过原点的切线为,又(e,1)不是f(x)图像上的点,故f(x)图像上不存在两点A,B与O共线,所以函数不是;③;④.显然都是柯西函数.故选:B二、填空题(每题5分,共20分.)13.若等比数列的第5项是二项式展开式的常数项,则________【答案】【解析】,则其常数项为,所以,则14.已知在平面直角坐标系中,,,,,动点满足不等式,,则的最大值为________.【答案】4【解析】∵,,,,,∴,又∵∴故本例转化为在线性约束条件下,求线性目标函数的最大值问题.可作出如右图的可行域,显然在点时为最优解.∵即∴15.已知数列的前项和为,且,则使不等式成立的的最大值为________.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.16.若四面体的三组对棱分别相等,即,,,则________.(写出所有正确结论的编号)①四面体每个面的面积相等②四面体每组对棱相互垂直③连接四面体每组对棱中点的线段相互垂直平分④从四面体每个顶点出发的三条棱的长都可以作为一个三角形的三边长【答案】【解析】由题意可知四面体ABCD为长方体的面对角线组成的三棱锥,如图所示;由四面体的对棱相等可知四面体的各个面全等,它们的面积相等,则正确;当四面体棱长都相等时,四面体的每组对棱互相垂直,则错误;由长方体的性质可知四面体的对棱中点连线必经过长方体的中心,由对称性知连接四面体ABCD每组对棱中点的线段相互垂直平分,则正确;由,,,可得过四面体任意一点的三条棱的长为的三边长,则正确.故答案为:.三、解答题(本大题共6小题,共62分,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17.设的三内角、、的对边长分别为、、,已知、、成等比数列,且.(I)求角的大小;(Ⅱ)设向量,,当取最小值时,判断的形状.解:(I)因为、、成等比数列,则.由正弦定理得.又,所以·因为,则.因为,所以或.又,则,当且仅当a=c等号成立,即故.(Ⅱ)因为,所以.所以当时,取得最小值.此时,于是.又,从而为锐角三角形.18.在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,.(1)求证:;(2)设为的中点,点在线段上,若直线平面,求的长;(3)求二面角的余弦值.(1)证明:∵是正三角形,是中点,∴,即.又∵平面,∴.又,∴平面.∴.(2)解:取中点,连接,则平面,又直线平面,EG∩EF=E所以平面平面,所以∵为中点,,∴.∵,,∴,则三角形AMF为直角三角形,又,故(3)解:分别以,,为轴,轴,轴建立如图的空间直角坐标系,∴,,,.为平面的法向量.,.设平面的一个法向量为,则,即,令,得,,则平面的一个法向量为,设二面角的大小为,则.所以二面角余弦值为.19.在一次高三年级统一考试中,数学试卷有一道满分10分选做题,学生可以从,两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.(1)若采用随机数表法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;(2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:(3)若采用分层轴样,按照学生选择题目或题目,将成绩分为两层,且样本中题目的成绩有8个,平均数为7,方差为4:样本中题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差. 解:(1)根据题意,读出的编号依次是:512,916(超界),935(超界),805,770,951(超界),512(重复),687,858,554,876,647,547,332.将有效的编号从小到大排列,得332,512,547,554,647,687,770,805,858,876,的故中位数为.(2)由题易知,按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,故样本编号之和即为该数列的前10项之和.(3)记样本中8个题目成绩分别为,,…,2个题目成绩分别为,,由题意可知,,,,故样本平均数为.样本方差为.故估计该校900名考生该选做题得分的平均数为7.2,方差为3.56.20.已知椭圆的左,右焦点,,上顶点为,,为椭圆上任意一点,且的面积最大值为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若点.为椭圆上的两个不同的动点,且(为坐标原点),则是否存在常数,使得点到直线的距离为定值?若存在,求出常数和这个定值;若不存在,请说明理由.解:(Ⅰ)由题得, ,解得 ,椭圆的标准方程为.(Ⅱ)设,,当直线AB 的斜率存在时,设其直线方程为:,则原点到直线的距离为,联立方程,化简得,,由得,则,,即对任意恒成立,则,,当直线斜率不存在时,也成立. 故当时,点到直线AB 的距离为定值.21.已知函数. (1)令,若在区间上不单调,求的取值范围;(2)当时,函数的图象与轴交于两点,,且,又是的导函数.若正常数,满足条件,.试比较与0的关系,并给出理由 解:(1)因为,所以,因为在区间上不单调,所以在上有实数解,且无重根,由,有,,令t =x +1>4的则y=2(t+在t>4单调递增,故(2)∵,又有两个实根,,∴,两式相减,得,∴,于是.∵,∴,∴.要证:,只需证:只需证:.(*)令,∴(*)化为,只需证∵在上单调递增,,∴,即.∴.请考生在22、23三题中任选一题做答,如果多做,则按所做的第一题记分.22.选修4一4:坐标系与参数方程选讲:已知平面直角坐标系.以为极点,轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的极坐标方程为(1)写出点的直角坐标及曲线的普通方程;(2)若为上的动点,求中点到直线(为参数)距离的最小值.解:(1)x=ρcosθ,y=ρsinθ∴点的直角坐标由得,即所以曲线的直角坐标方程为(2)曲线的参数方程为(为参数)直线的普通方程为设,则那么点到直线的距离,所以点到直线的最小距离为23.选修4-5:不等式选讲.设函数,.(1)求不等式的解集;(2)如果关于的不等式在上恒成立,求实数的取值范围.解:(1)当时,,,则;当时,,,则;当时,,,则.综上可得,不等式的解集为.(2)设,由函数的图像与的图像可知:在时取最小值为6,在时取最大值为,若恒成立,则.。

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(解析版)

河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,或,则()A. B. C. D.【答案】D【解析】因为,所以,应选答案D。

2. 若复数满足为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】因为,所以该复数在复平面内对于的点位于第三象限,应选答案C。

3. 某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为()A. B. C. D.【答案】B【解析】根据题意抽取比例为故总人数为所以高三被抽取的人数为4. 已知命题;命题,则下列命题中为真命题的是()A. B. C. D.【答案】A5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.【答案】D【解析】由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:落在内切圆内的概率为,故落在圆外的概率为6. 若实数满足条件,则的最大值为()A. B. C. D.【答案】A【解析】根据题意画出可行域:=,所以目标函数最值问题转化为可行域中的点与原点连线斜率的问题,可知取点F,G时目标函数取到最值,F(2,1),G(1,3),所以最大值将点F代入即可得最大值为17. 已知,则二项式的展开式中的常数项为()...A. B. C. D.【答案】B【解析】=2,所以的展开式中的常数项为:,令r=3得常数项为8. 已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么()A. B. C. D.【答案】D【解析】由奇函数,是边长为的正三角形,可得,是最高点且,得A=,所以9. 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B.C. D.【答案】B【解析】从题设所提供的三视图中的图形信息与数据信息可知该几何体是底面分别是腰长为的等腰直角三角形,高为4的柱体,如图,其全面积,应选答案B。

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

绝密★启用前【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题试卷副标题考试范围:xxx ;考试时间:69分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .2、椭圆的左焦点为,上顶点为,右顶点为,若的外接圆圆心在直线的左下方,则该椭圆离心率的取值范围为( )A .B .C .D .3、执行如图所示的程序框图,输出的值等于( )A .B .C .D .4、如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .B .C .D .5、已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么( )A .B .C .D .6、已知,则二项式的展开式中的常数项为( )A .B .C .D .7、若实数满足条件,则的最大值为( )A .B .C .D .8、已知命题;命题,则下列命题中为真命题的是( ) A .B .C .D .9、某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为( ) A .B .C .D .10、若复数满足为虚数单位),则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11、已知集合,或,则( )A .B .C .D .A. B. C. D.第II 卷(非选择题)二、填空题(题型注释)13、点为正方体的内切球球面上的动点,点为上一点,,若球的体积为,则动点的轨迹的长度为__________.14、已知点分别是双曲线的左、右焦点,为坐标原点,点在双曲线的右支上,且满足,则双曲线的焦点的取值范围为__________.15、在中,分别为角的对边,,若,则__________.16、已知,若,则__________.三、解答题(题型注释)17、选修4-5:不等式选讲 已知定义在上的函数,且恒成立.(1)求实数的值;(2)若,求证:.18、选修4-4:坐标系与参数方程在直角坐标系中中,曲线的参数方程为为参数,). 以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;(2)若曲线上所有的点均在直线的右下方,求的取值范围.19、设函数 ).(1)若直线和函数的图象相切,求的值; (2)当时,若存在正实数,使对任意都有恒成立,求的取值范围.20、已知抛物线的焦点为为上位于第一象限的任意一点,过点的直线交于另一点,交轴的正半轴于点.(1)若当点的横坐标为,且为等腰三角形,求的方程;(2)对于(1)中求出的抛物线,若点,记点关于轴的对称点为交轴于点,且,求证:点的坐标为,并求点到直线的距离的取值范围.21、如图,四棱锥中,平面平面,底面为梯形,,且与均为正三角形,为的重心.(1)求证:平面;(2)求平面与平面所成锐二面角的正切值.22、如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;(2)若该人到达后停留3天(到达当日算1天〉,设是此人停留期间空气重度污染的天数,求的分布列与数学期望.23、已知数列满足.(1)求数列的通项公式;(2)设以为公比的等比数列满足),求数列的前项和.参考答案1、C2、A3、A4、B5、D6、B7、A8、A9、B10、C11、D12、D13、14、15、16、17、(1)(2)见解析18、(1)(2)19、(1);(2).20、(1)(2)21、(1)见解析(2)22、(1)(2)23、(1)(2)【解析】1、当k=0时,即解f(x)<0即可,构造函数,所以可令+c,所以由得c=1所以,即f(x)<0得解集为其中恰有两个整数-2,-1,所以k=0成立,排除AD,当k=,则f(x)<0即<,h(x)=得函数在(-4,-1)递减,递增,且,此时的解集至少包括-4,-2,-3,-1所以违背题意,故不能取,排除B,故选C点睛:对于比较复杂的函数问题首先要根据题意构造新函数,转化为分析等价新函数的问题,另外对于选择题还可根据选项的区别可以逐一排除选项2、设,且的外接圆的方程为,将分别代入可得,由可得,即,所以,即,所以,应选答案A。

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(原卷版)

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(原卷版)

河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,或,则()A. B. C. D.2. 若复数满足为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为()A. B. C. D.4. 已知命题;命题,则下列命题中为真命题的是()A. B. C. D.5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.6. 若实数满足条件,则的最大值为()A. B. C. D.7. 已知,则二项式的展开式中的常数项为()A. B. C. D.8. 已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么()A. B. C. D.9. 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B.C. D.10. 执行如图所示的程序框图,输出的值等于()A. B.C. D. ...11. 椭圆的左焦点为,上顶点为,右顶点为,若的外接圆圆心在直线的左下方,则该椭圆离心率的取值范围为()A. B. C. D.12. 已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,若,则__________.14. 在中,分别为角的对边,,若,则__________.15. 已知点分别是双曲线的左、右焦点,为坐标原点,点在双曲线的右支上,且满足,则双曲线的焦点的取值范围为__________.16. 点为正方体的内切球球面上的动点,点为上一点,,若球的体积为,则动点的轨迹的长度为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列满足.(1)求数列的通项公式;(2)设以为公比的等比数列满足),求数列的前项和.18. 如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;(2)若该人到达后停留3天(到达当日算1天〉,设是此人停留期间空气重度污染的天数,求的分布列与数学期望.19. 如图,四棱锥中,平面平面,底面为梯形,,且与均为正三角形,为的重心.(1)求证:平面;(2)求平面与平面所成锐二面角的正切值.20. 已知抛物线的焦点为为上位于第一象限的任意一点,过点的直线交于另一点,交轴的正半轴于点.(1)若,当点的横坐标为时,为等腰直角三角形,求的方程;(2)对于(1)中求出的抛物线,若点,记点关于轴的对称点为交轴于点,且,求证:点的坐标为,并求点到直线的距离的取值范围. 21. 设函数).(1)若直线和函数的图象相切,求的值;(2)当时,若存在正实数,使对任意都有恒成立,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程...在直角坐标系中中,曲线的参数方程为为参数,). 以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;(2)若曲线上所有的点均在直线的右下方,求的取值范围.23. 选修4-5:不等式选讲已知定义在上的函数,且恒成立.(1)求实数的值;(2)若,求证:.。

【全国百强校】河北省衡水中学2017届高三下学期第三次摸底考试数学(理)试题(解析版)

【全国百强校】河北省衡水中学2017届高三下学期第三次摸底考试数学(理)试题(解析版)

河北衡水中学2016-2017学年度 高三下学期数学第三次摸底考试(理科)必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则集合等于( )A. B.C.D.【答案】D 【解析】 ,选D.2.,若,则等于( )A. B. C. D.【答案】A 【解析】设,则,选A.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3. 数列为正项等比数列,若,且,则此数列的前5项和等于 ( )A. B. 41 C. D.【答案】A 【解析】因为,所以,选A.4. 已知、分别是双曲线的左、右焦点,以线段为边作正三角形,如果线段的中点在双曲线的渐近线上,则该双曲线的离心率等于()A. B. C. D. 2【答案】D【解析】由题意得渐近线斜率为,即,选D.5. 在中,“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】时,,所以必要性成立;时,,所以充分性不成立,选B.6. 已知二次函数的两个零点分别在区间和内,则的取值范围是()A. B. C. D.【答案】A...【解析】由题意得,可行域如图三角形内部(不包括三角形边界,其中三角形三顶点为):,而,所以直线过C取最大值,过B点取最小值,的取值范围是,选A.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.7. 如图,一个简单几何体的正视图和侧视图都是边长为2的等边三角形,若该简单几何体的体积是,则其底面周长为()A.B. C. D.【答案】C【解析】由题意,几何体为锥体,高为正三角形的高 ,因此底面积为 ,即底面为等腰直角三角形,直角边长为2,周长为,选C.8. 20世纪30年代,德国数学家洛萨---科拉茨提出猜想:任给一个正整数 ,如果是偶数,就将它减半;如果是奇数,则将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“”猜想.如图是验证“”猜想的一个程序框图,若输出的值为8,则输入正整数的所有可能值的个数为( )A. 3B. 4C. 6D. 无法确定【答案】B 【解析】由题意得;,因此输入正整数的所有可能值的个数为4,选B.9. 的展开式中各项系数的和为16,则展开式中项的系数为( )A.B.C. 57D. 33【答案】A【解析】由题意得,所以展开式中项的系数为,选A.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.10. 数列为非常数列,满足:,且对任何的正整数都成立,则的值为()A. 1475B. 1425C. 1325D. 1275【答案】B【解析】因为,所以,即,所以,叠加得,,,即从第三项起成等差数列,设公差为,因为,所以解得,即,所以,满足,,选B.11. 已知向量满足,若,的最大值和最小值分别为,则等于()A. B. 2 C. D.【答案】C【解析】因为所以;因为,所以...的最大值与最小值之和为,选C.12. 已知偶函数满足,且当时,,关于的不等式在上有且只有200个整数解,则实数的取值范围是()A. B. C. D.【答案】C【解析】因为偶函数满足,所以,因为关于的不等式在上有且只有200个整数解,所以关于的不等式在上有且只有2个整数解,因为,所以在上单调递增,且,在上单调递减,且,因此,只需在上有且只有2个整数解,因为,所以,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上13. 为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场商品的售价元和销售量件之间的一组数据如下表所示:价格销售量由散点图可知,销售量与价格之间有较好的线性相关关系,其线性回归方程是,则__________.【答案】39.4【解析】点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.14. 将函数的图象向右平移个单位(),若所得图象对应的函数为偶函数,则的最小值是__________.【答案】【解析】向右平移个单位得为偶函数,所以,因为,所以...点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.15. 已知两平行平面间的距离为,点,点,且,若异面直线与所成角为60°,则四面体的体积为__________.【答案】6【解析】设平面ABC与平面交线为CE,取,则16. 已知是过抛物线焦点的直线与抛物线的交点,是坐标原点,且满足,则的值为__________.【答案】【解析】因为,所以因此,所以因为,所以,因此三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 如图,已知关于边的对称图形为,延长边交于点,且,.(1)求边的长;(2)求的值.【答案】(1)(2)【解析】试题分析:(1)先由同角三角函数关系及二倍角公式求出.再由余弦定理求出,最后根据角平分线性质定理得边的长;(2)先由余弦定理求出,再根据三角形内角关系及两角和余弦公式求的值.试题解析:解:(1)因为,所以,所以.因为,所以,所以,又,所以.(2)由(1)知,所以,所以,因为,所以,所以....18. 如图,已知圆锥和圆柱的组合体(它们的底面重合),圆锥的底面圆半径为,为圆锥的母线,为圆柱的母线,为下底面圆上的两点,且,,.(1)求证:平面平面;(2)求二面角的正弦值.【答案】(1)见解析(2)【解析】试题分析:(1)先根据平几知识计算得,再根据圆柱性质得平面,即有,最后根据线面垂直判定定理得平面,即得平面平面;(2)求二面角,一般利用空间向量进行求解,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与向量夹角之间关系求解试题解析:解:(1)依题易知,圆锥的高为,又圆柱的高为,所以,因为,所以,连接,易知三点共线,,所以,所以,解得,又因为,圆的直径为10,圆心在内,所以易知,所以.因为平面,所以,因为,所以平面.又因为平面,所以平面平面.(2)如图,以为原点,、所在的直线为轴,建立空间直角坐标系.则.所以,设平面的法向理为,所以,令,则.可取平面的一个法向量为,所以,所以二面角的正弦值为.19. 如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为.(1)求游戏结束时小华在第2个台阶的概率;(2)求的分布列和数学期望.【答案】(1)(2)...【解析】试题分析:(1)根据等可能性知每次赢、平、输的概率皆为.再分两种情况分别计数:一种是小华在第1个台阶,并且小明在第2个台阶,最后一次划拳小华平;另一种是小华在第2个台阶,并且小明也在第2个台阶,最后一次划拳小华输,逆推确定事件数及对应划拳的次数,最后利用互斥事件概率加法公式求概率,(2)先确定随机变量取法,再分别利用组合求对应概率,列表可得分布列,最后根据数学期望公式求期望.试题解析:解:(1)易知对于每次划拳比赛基本事件共有个,其中小华赢(或输)包含三个基本事件上,他们平局也为三个基本事件,不妨设事件“第次划拳小华赢”为;事件“第次划拳小华平”为;事件“第次划拳小华输”为,所以.因为游戏结束时小华在第2个台阶,所以这包含两种可能的情况:第一种:小华在第1个台阶,并且小明在第2个台阶,最后一次划拳小华平;其概率为,第二种:小华在第2个台阶,并且小明也在第2个台阶,最后一次划拳小华输,其概率为所以游戏结束时小华在第2个台阶的概率为.(2)依题可知的可能取值为2、3、4、5,,,,所以的分布列为:所以的数学期望为:.20. 如图,已知为椭圆上的点,且,过点的动直线与圆相交于两点,过点作直线的垂线与椭圆相交于点.(1)求椭圆的离心率;(2)若,求.【答案】(1)(2)【解析】试题分析:(1)根据题意列方程组:,解方程组可得,,再根据离心率定义求椭圆的离心率;(2)先根据垂径定理求圆心到直线的距离,再根据点到直线距离公式求直线AB的斜率,根据垂直关系可得直线PQ的斜率,最后联立直线PQ与椭圆方程,利用韦达定理及弦长公式求.试题解析:解:(1)依题知,解得,所以椭圆的离心率;(2)依题知圆的圆心为原点,半径为,所以原点到直线的距离为,因为点坐标为,所以直线的斜率存在,设为.所以直线的方程为,即,所以,解得或.①当时,此时直线的方程为,所以的值为点纵坐标的两倍,即;②当时,直线的方程为,将它代入椭圆的方程,消去并整理,得,设点坐标为,所以,解得,所以.点睛:有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及中点弦问题往往利用点差法.21. 已知函数,其中为自然对数的底数.(参考数据:)(1)讨论函数的单调性;(2)若时,函数有三个零点,分别记为,证明:.【答案】(1)见解析(2)见解析【解析】试题分析:(1)先求函数导数,根据参数a讨论:当时,是常数函数,没有单调性.当时,先减后增;当时,先增后减;(2)先化简方程,整体设元转化为一元二次方程:.其中,再利用导数研究函数的图像,根据图像确定根的取值范围,进而可证不等式.试题解析:解:(1)因为的定义域为实数,所以.①当时,是常数函数,没有单调性.②当时,由,得;由,得.所以函数在上单调递减,在上单调递增.③当时,由得,;由,得,...所以函数在上单调递减,在上单调递增.(2)因为,所以,即.令,则有,即.设方程的根为,则,所以是方程的根.由(1)知在单调递增,在上单调递减.且当时,,当时,,如图,依据题意,不妨取,所以,因为,易知,要证,即证.所以,又函数在上单调递增,所以,所以.选考部分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中直线的倾斜角为,且经过点,以坐标系的原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,过点的直线与曲线相交于两点,且.(1)平面直角坐标系中,求直线的一般方程和曲线的标准方程;(2)求证:为定值.【答案】(1),(2)【解析】试题分析:(1)根据点斜式可得直线的一般方程,注意讨论斜率不存在的情形;根据将曲线的极坐标方程化为直角坐标方程,配方化为标准方程.(2)利用直线参数方程几何意义求弦长:先列出直线参数方程,代入圆方程,根据及韦达定理可得,类似可得,相加即得结论.试题解析:解:(1)因为直线的倾斜角为,且经过点,当时,直线垂直于轴,所以其一般方程为,当时,直线的斜率为,所以其方程为,即一般方程为.因为的极坐标方程为,所以,因为,所以.所以曲线的标准方程为.(2)设直线的参数方程为(为参数),...代入曲线的标准方程为,可得,即,则,所以,同理,所以.23. 选修4-5:不等式选讲已知实数满足.(1)求的取值范围;(2)若,求证:.【答案】(1)(2)见解析【解析】试题分析:(1)因为,所以,又,即得的取值范围;(2)因为,而,即证.试题解析:解:(1)因为,所以.①当时,,解得,即;②当时,,解得,即,所以,则,而,所以,即;(2)由(1)知,因为当且仅当时取等号,所以.。

河北省衡水中学2017-2018学年高三下学期第六次调研考试理数试题(A卷) Word版含解析

河北省衡水中学2017-2018学年高三下学期第六次调研考试理数试题(A卷) Word版含解析

2017-2018学年一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.复数122ii+-的共轭复数是( ) A .35iB .35i -C .iD . i -【答案】D 【解析】 试题分析:由于122i i +-i ii ii =-+=)2()21(,因此应选D . 考点:复数的运算. 2.已知集合()(){}240,2101x A x RB x R x a x a x ⎧-⎫=∈≤=∈---<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( ) A .()2,+∞B .[)2,+∞C .{}[)12,+∞D .()1,+∞ 【答案】C考点:二次不等式的解法和集合的运算.3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为:5:3k ,现用分层抽样方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( ) A .24B .30C .36D .40 【答案】C 【解析】试题分析:因120248=+k k ,故36120103,2=⨯=k ,应选C.考点:抽样方法及计算. 4.如图给出的是计算111124620+++⋅⋅⋅+的值的一个框图,其中菱形判断框内应填入的条件是( ) A .8?i >B .9?i >C .10?i >D .11?i >【答案】C 【解析】试题分析:从所给算法流程可以看出当10=i 时仍在运算,当1011>=i 时运算就结束了,所以应选C.考点:算法流程图的识读和理解.5.已知把函数()sin f x x x =+的图像向右平移4π个单位,再把横坐标扩大到原来的2倍,得到函数()g x ,则函数()g x 的一条对称轴为( ) A .6x π=B .76x π=C .12x π=D .56x π=【答案】D考点:三角函数的图象和性质.6.已知等比数列{}n a 的前n 项的和为12n n S k -=+,则()3221f x x kx x =--+的极大值为( ) A .2B .3C .72D .52【答案】D 【解析】试题分析:因k a S S k a a S k a S +=+=+=+=+==4,2,132321211,即2,1,1321==+=a a k a ,故题设21,1)1(2-==+k k ,所以1221)(23+-+=x x x x f ,由于)1)(23(23)(2/+-=-+=x x x x x f ,因此当)1,(--∞∈x 时, )(,0)(/x f x f >单调递增;当)32,1(-∈x 时, )(,0)(/x f x f <单调递减,所以函数)(x f 在1-=x 处取极大值2512211)1(=+++-=-f ,应选D. 考点:等比数列的前n 项和与函数的极值.7.已知身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有( ) A .48种B .72种C .78种D .84种 【答案】A考点:排列组合数公式及两个计数原理的运用.8.已知椭圆221167x x +=的左、右焦点12,F F 与双曲线()222210x x a b a b-=>>的焦点重合.且直线10x y --=与双曲线右支相交于点P ,则当双曲线离心率最小时的双曲线方程为( )A .2218x x -= B .22163x x -= C .22172x x -= D .22154x x -= 【答案】D 【解析】试题分析:因3716=-=c ,故)0,3(2F ,设交点)0)(1,(>-t t t P ,则2PF =,右准线方程为32a x =,点P 到这条直线的距离为32a t d -=,所以31082322a t t t a-+-=,即2222221082)3(a t a t a a t +-=-,也即0102)92(42222=-+--a a t a t a ,该方程有正根,所以0)10)(92(444224≥---=∆a a a a ,解之得52≤a 或92≥a ,所以当52=a 时,双曲线的离心率最小,此时4592=-=b ,应选D. 考点:双曲线的几何性质.【易错点晴】本题考查的是圆锥曲线的基本量的计算问题.解答这类问题的一般思路是依据题设条件想方设法建构含c b a ,,的方程,然后再通过解方程或方程组使问题获解.解答本题的难点是如何建立和求出关于离心率的目标函数,再进一步探求该函数取得最小值时的条件,从而求出双曲线的标准方程中的b a ,的值.本题中的函数是运用两点之间的距离公式建立的,求解时是解不等式而求出b a ,的值.9.一个长方体的四个顶点构成一个四面体EFHG ,在这个长方体中把四面体EFHG 截出如图所示,则四面体EFHG 的侧视图是( )A .B .C .D .【答案】D考点:三视图的识读和理解.10.已知函数()321f x x ax =++的对称中心的横坐标为()000x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(),0-∞B .,2⎛⎫-∞- ⎪ ⎪⎝⎭C .()0,+∞D .(),1-∞- 【答案】B 【解析】试题分析:由于)32(323)(2/a x x ax x x f +=+=因此函数()321f x x ax =++有两个极值点32,0a -,因01)0(>=f ,故01274)32(3<+=-a a f ,即2233-<a ,应选B.考点:导数在研究函数的零点中的运用.11.已知三棱锥P ABC -的四个顶点都在球O 的球面上,若2PA AB ==,1AC =,120BAC ∠=︒,且PA ⊥平面ABC ,则球O 的表面积为( )A .403πB .503πC .12πD .15π【答案】A考点:球的几何性质与表面积的计算.【易错点晴】本题考查的是多面体的外接球的表面积问题.解答本题的难点是如何求出该四棱锥的外接球的半径,如何确定球心的位置,这对学生的空间想象能力的要求非常高.解答时充分借助题设条件,先求出三角形ABC ∆的外接圆的半径37=r ,再借助PA ⊥平面ABC ,球心O 与ABC ∆的外接圆的圆心1O 的连线也垂直于ABC ∆所在的平面,从而确定球心O 与1,,O A P 共面.求出了球的半径,找到解题的突破口.12.已知函数()21,0,log ,0,kx x f x x x +≤⎧=⎨>⎩下列是关于函数()()1y f f x =+的零点个数的四种判断:①当0k >时,有3个零点;②当0k <时.有2个零点;③当0k >时,有4个零点;④当0k <时,有1个零点.则正确的判断是( ) A .③④B .②③C .①④D .①② 【答案】A 【解析】 试题分析:若xx f x 2log )(,0=>.当log 2>x ,即1>x 时,01)(log log ))((22=+=x x f f ,解得2=x ;当0lo g 2≤x ,即10≤<x 时,011)(log ))((2=++=x k x f f ,当0>k ,解得122<=-kx 适合;当0<k ,解得122>=-kx 不适合.若1)(,0+=≤kx x f x ,若01<+kx ,则011))((2=+++=k x k x f f ,即022=++k x k ,当22,0kk x k +-=>合适,0<k 时不合适;若01>+kx ,则01)1(log ))((2=++=kx x f f ,即211=+kx 也即kx 21-=,当0>k 时适合;当0<k 不合适.因此当0>k 时有四个根k kk k21,2,2,222-+--;当0<k 只有一个根2=x ,应选A. 考点:函数的零点和分类整合思想.【易错点晴】本题考查的是函数零点的个数及求解问题.解答时借助题设条件,合理运用分类整合的数学思想,通过对变量x 的分类讨论,建立了关于函数)(x f 的方程,再通过对参数k 的分类讨论,求解出方程01))((=+x f f 的根,求解时分类务必要求合乎逻辑力争做到不重不漏,要有条理.解答本题的难点是如何转化方程01))((=+x f f ,如何进行分类整合.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.已知抛物线()220y px p =>的焦点为F ,ABC ∆的顶点都在抛物线上,且满足FA FB FC +=-,则111AB BC CAk k k ++=______. 【答案】0考点:抛物线的几何性质.14.设曲线()1*n y xx N +=∈在点()1,1处的切线与x 轴的交点横坐标为n x ,则 20151201522015320152014log log log log x x x x +++⋅⋅⋅+的值为______.【答案】1- 【解析】试题分析:因n x n x f )1()(/+=,而1)1(/+=n f ,即切线的斜率1+=n k ,故切线方程为)1)(1(1-+=-x n y ,令0=y 得1+=n n x n ,所以11143322121+=+⋅⋅⋅=⋅⋅⋅n n n x x x n ,而20151201522015320152014log log log log x x x x +++⋅⋅⋅+1120141log )(log 20152014212015-=+=⋅⋅⋅=x x x .考点:导数的几何意义.15.已知ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,已知cos 2cos 22cos 2A B C +=,则cos C 的最小值为______. 【答案】21考点:余弦定理和基本不等式的运用.【易错点晴】本题考查的是以三角形中的三角变换为背景,其实是和解三角形有关的最小值问题.求解本题的关键是如何将题设条件cos 2cos 22cos 2A B C +=与cos C 的最小值进行联系,这也是解答好本题的突破口.解答时先运用二倍角公式将其化为C B A 222sin 2sin sin =+,再运用正弦定理将其转化为三角形的边的等式2222c b a =+.然后再借助余弦定理和基本不等式进行联系,从而求出cos C 的最小值. 16.若函数()f x 在定义域D 内的某个区间I 上是增函数,且()()f x F x x=在I 上也是增函数,则称()y f x =是I 上的“完美函数”.已知()ln 1xg x e x x =+-+,若函数()g x 是区间,2m ⎡⎫+∞⎪⎢⎣⎭上的“完美函数”,则整数m 的最小值为______. 【答案】3 【解析】试题分析:令x x x e x G x 1ln )(+-+=,则2//2ln )1()(,11)(x x e x x G x e x g x x -+-=-+=,当2=m 时, 02)(,0)1(//<-=>=x G e g ,不合题设;当3=m 时, 3/231()023g e =+>,32/13ln 2322()0924e G +-=>符合题设,所以所求最小的正整数3=m .考点:导函数的几何意义.【易错点晴】本题以新定义的完美函数为背景,考查的是导函数的与函数的单调性之间的关系的应用问题.解答本题的关键是如何建立满足不等式的实数m 的值.求解时依据题设条件先对函数()ln 1x g x e x x =+-+和xx g x F )()(=求导,建立不等式组,求参数m 的值时运用的是试验验证法,即根据题设条件对适合条件的实数m 的值进行逐一检验,最终获得答案. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,且首项()*113,3n n n a a S n N +≠=+∈. (1)求证:{}3nn S -是等比数列;(2)若{}n a 为递增数列,求1a 的取值范围. 【答案】(1)证明见解析;(2)()()+∞-,33,9 .(2)由(1)得,()11332nn n S a --=-⨯,所以()11323n n n S a -=-⨯+.当2n ≥时,考点:等比数列及递增数列等有关知识的运用.18.(本小题满分12分)有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频率分布如下表:频数假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).(l)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车,A B按(1)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.【答案】(1) 汽车A选择公路1,汽车B选择公路2;(2)汽车B为生产商获得毛利润更大..X=.(Ⅱ)设X表示汽车A选择公路1时,销售商付给生产商的费用,则42,40,38,36X的分布列如下:()420.2400.4380.2360.239.2E X=⨯+⨯+⨯+⨯=.-=(万元).∴表示汽车A选择公路1时的毛利润为39.2 3.236.0设Y 表示汽车B 选择公路2时的毛利润,42.4,40.4,38.4,36.4Y =. 则Y 的分布列如下:0.4()42.40.140.40.438.40.436.40.139.4E Y =⨯+⨯+⨯+⨯=.∵36.039.4<,∴汽车B 为生产商获得毛利润更大.考点:概率和随机变量的分布列与数学期望等有关知识的运用. 19.(本小题满分12分)如图,平面PAC ⊥平面ABC ,AC BC ⊥,PAC ∆为等边三角形,PE BC ,过BC 作平面交AP 、AE 分别于点N 、M .(1)求证:MN PE ;(2)设ANAPλ=,求λ的值,使得平面ABC 与平面MNC 所成的锐二面角的大小为45︒.【答案】(1)证明见解析;(2) 1λ=.考点:空间直线与平面的位置关系及空间向量等有关知识的运用.【易错点晴】空间向量是理科高考的必考的重要内容之一,也是高考的难点之一.解答这类问题的关键是运算求解能力不过关和灵活运用数学知识和思想方法不到位.解答本题的两个问题时,都是通过建立空间直角坐标系,充分借助题设条件和空间向量的有关知识进行推证和求解.第一问中的求证是借助向量共线定理进行推证的;第二问中充分运用向量的数量积公式建立方程的,通过解方程从而求出1λ=.如何通过计算建立方程是解答好本题的难点和关键之所在.20.(本小题满分12分)如图,已知圆(22:16E x y +=,点)F,P 是圆E 上任意一点线段PF 的垂直平分线和半 径PE 相交于Q .(1)求动点Q 的轨迹Γ的方程;(2)设直线l 与(1)中轨迹Γ相交下,A B 两点,直线,,OA l OB 的斜率分别为12,,k k k (其中0k >).OA B ∆的面积为S ,以,O A O B 为直径的圆的面积分别为12,S S .若12,,k k k 恰好构成等比数列,求12S S S+的取 值范围.【答案】(1) 2214x y +=;(2)5,4π⎡⎫+∞⎪⎢⎣⎭.(2)设直线l 的方程为y kx m =+,()()1122,,,A x y B x y由2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()()222148410k x kmx m +++-=,又22221212144x x y y +=+= 则()222222121122123324444S S x y x y x x ππ⎛⎫+=⋅+++=⋅++ ⎪⎝⎭()212123521624x x x x πππ⎡⎤=+-+=⎣⎦为定值.12分∴125544S S S ππ+=≥当且仅当1m =±时等号成立. 综上:125,4S S S π+⎡⎫∈+∞⎪⎢⎣⎭.14分考点:直线与椭圆的位置关系等有关知识的运用. 21.(本小题满分12分) 已知函数()()1ln 0x f x x a ax-=-≠.(l )求函数()f x 的单调区间;(2)当1a =时,求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值()0.69ln 20.70<<;(3)求证:21ln e x x x+≤. 【答案】(1) 若0a <,函数()f x 的单调减区间为()0,+∞,若0a >,()f x 的单调增区间为10,a ⎛⎫ ⎪⎝⎭,单调减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)最大值为0,最小值为1ln 2-+;(3)证明见解析.考点:导数在研究函数的单调性和最值中的运用.【易错点晴】本题以探求函数的单调性和不等式的推证为背景,考查的是导函数的与函数的单调性之间的关系的综合应用问题.解答本题的第一问时,是直接依据题设条件运用分类讨论的思想求出单调区间;第二问中的最值求解则是运用导数研究函数在各个区间上的单调性,再依据最值的定义求出最值;第三问中的不等式的证明和推证则是依据题设条件,将问题进行合理有效的转化为求最值问题.体现数学中的化归与转化的数学思想的巧妙运用.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲已知直线AC 与圆O 相切于点B ,AD 交圆O 于F 、D 两点,CF 交圆于,E F ,BD CE ,AB BC =,2AD =,1BD =.(1)求证:BDF FBC ∆∆∽; (2)求CE 的长.【答案】(1)证明见解析;(2)4CE =.考点:圆的有关知识的及运用.23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,圆C 的方程为()2cos 0a a ρθ=≠,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为31,43x t y t =+⎧⎨=+⎩(t 为参数).(1)求圆C 的标准方程和直线l 的普通方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.【答案】(1) 4350x y -+=,()222x a y a -+=;(2) 59a ≤-或5a ≥.考点:极坐标方程和参数方程等有关知识及运用.24.(本小题满分10分)选修4-5:不等式选讲(1)设函数()5,2f x x x a x R =-+-∈,若关于x 的不等式()f x a ≥在R 上恒成立,求实数a 的最大值;(2)已知正数,,x y z 满足231x y z ++=,求321x y z++的最小值.【答案】(1)54;(2)16+【解析】 试题分析:(1)依据题设条件运用绝对值不等式的性质求解;(2)借助题设条件运用柯西不等式求解.试题解析:考点:绝对值不等式和柯西不等式等有关知识及运用.。

【全国百强校】河北省衡水中学2017届高三下学期第三次摸底考试数学(理)试题(原卷版)

【全国百强校】河北省衡水中学2017届高三下学期第三次摸底考试数学(理)试题(原卷版)

河北衡水中学2016-2017学年度高三下学期数学第三次摸底考试(理科)必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则集合等于()A. B. C. D.2. ,若,则等于()A. B. C. D.3. 数列为正项等比数列,若,且,则此数列的前5项和等于()A. B. 41 C. D.4. 已知、分别是双曲线的左、右焦点,以线段为边作正三角形,如果线段的中点在双曲线的渐近线上,则该双曲线的离心率等于()A. B. C. D. 25. 在中,“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 已知二次函数的两个零点分别在区间和内,则的取值范围是()A. B. C. D.7. 如图,一个简单几何体的正视图和侧视图都是边长为2的等边三角形,若该简单几何体的体积是,则其底面周长为()A. B. C. D.8. 20世纪30年代,德国数学家洛萨---科拉茨提出猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“”猜想.如图是验证“”猜想的一个程序框图,若输出的值为8,则输入正整数的所有可能值的个数为()A. 3B. 4C. 6D. 无法确定9. 的展开式中各项系数的和为16,则展开式中项的系数为()A. B. C. 57 D. 3310. 数列为非常数列,满足:,且对任何的正整数都成立,则的值为()A. 1475B. 1425C. 1325D. 127511. 已知向量满足,若,的最大值和最小值分别为,则等于()A. B. 2 C. D.12. 已知偶函数满足,且当时,,关于的不等式在上有且只有200个整数解,则实数的取值范围是()...A. B. C. D.二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上13. 为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场商品的售价元和销售量件之间的一组数据如下表所示:由散点图可知,销售量与价格之间有较好的线性相关关系,其线性回归方程是,则__________.14. 将函数的图象向右平移个单位(),若所得图象对应的函数为偶函数,则的最小值是__________.15. 已知两平行平面间的距离为,点,点,且,若异面直线与所成角为60°,则四面体的体积为__________.16. 已知是过抛物线焦点的直线与抛物线的交点,是坐标原点,且满足,则的值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 如图,已知关于边的对称图形为,延长边交于点,且,.(1)求边的长;(2)求的值.18. 如图,已知圆锥和圆柱的组合体(它们的底面重合),圆锥的底面圆半径为,为圆锥的母线,为圆柱的母线,为下底面圆上的两点,且,,.(1)求证:平面平面;(2)求二面角的正弦值....19. 如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为.(1)求游戏结束时小华在第2个台阶的概率;(2)求的分布列和数学期望.20. 如图,已知为椭圆上的点,且,过点的动直线与圆相交于两点,过点作直线的垂线与椭圆相交于点.(1)求椭圆的离心率;(2)若,求.21. 已知函数,其中为自然对数的底数.(参考数据:)(1)讨论函数的单调性;(2)若时,函数有三个零点,分别记为,证明:.选考部分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中直线的倾斜角为,且经过点,以坐标系的原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,过点的直线与曲线相交于两点,且.(1)平面直角坐标系中,求直线的一般方程和曲线的标准方程;(2)求证:为定值.23. 选修4-5:不等式选讲已知实数满足.(1)求的取值范围;(2)若,求证:.。

河北省衡水中学2017届高三下学期六调理科综合试题 Word版含答案

河北省衡水中学2017届高三下学期六调理科综合试题 Word版含答案

衡水中学2016~2017学年度下学期高三年级六调考试理科综合试卷可能用到的相对原子质量H~1 O~16 C~12 N~14 S~32 F~19 Cl~35.5 Br~80 I~127 Si~28 Na~23 K~39 Ca~40 Mg~24 AI~27 Fe~56 Cu~64 Ag~108 Zn~65 Ba~137 Pb~207第Ⅰ卷(选择题,共126 分)一、选择题:本题共13 小题,每小题 6 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于细胞结构和功能的叙述,错误的是()A.脂质中的磷脂是构成细胞膜的重要物质,所有细胞都含有磷脂B.性激素主要是由内质网上的核糖体合成C.细胞中衰老的细胞器、失活的酶将被溶酶体吞入后清除D.真核细胞的核孔对大分子物质的进出也具有选择性2.下列关于细胞的基因表达的叙述,不正确的是()A.乳酸菌的基因的转录和翻译过程在时间和空间上是分不开的B.衰老细胞和处于分裂期的细胞的核基因难以复制和转录C.转录产物的功能之一是降低化学反应的活化能D.DNA 转录是以DNA —条链为模板,翻译则是以DNA 另一条链为模板3.下列关于光合作用和有氧呼吸过程的叙述,错误的是()A.光合作用光反应阶段的产物可为有氧呼吸第三阶段提供原料B.有氧呼吸第三阶段的产物可为光合作用光反应阶段提供原料C.两者产生气体的阶段都有水参与D.两者产生气体的阶段都与生物膜有关4.科研人员为了探究某药物M 诱导正常小鼠发生体液免疫而导致糖尿病的机A.药物M 没有改变小鼠肝细胞表面胰岛素受体蛋白B.药物M 使小鼠产生了抗肝细胞表面胰岛素受体蛋白的抗体C.该种糖尿病小鼠可以通过注射胰岛素进行治疗D.该种糖尿病小鼠体内抗利尿激素含量可能较高5.密林熊蜂直接在角蒿花的花筒上打洞,盗取其中的花蜜(盗蜜),花筒上虽留下小孔,被盗蜜的花仍会开花,但影响结实率。

密林熊蜂偏爱从较大、较高的花盗密,其身体不会接触到花的柱头。

精品解析:【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(解析版)

精品解析:【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(解析版)

河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,或,则()A. B. C. D.【答案】D【解析】因为,所以,应选答案D。

2. 若复数满足为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】因为,所以该复数在复平面内对于的点位于第三象限,应选答案C。

学科网3. 某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为()A. B. C. D.【答案】B【解析】根据题意抽取比例为故总人数为所以高三被抽取的人数为4. 已知命题;命题,则下列命题中为真命题的是()A. B. C. D.【答案】A5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.【答案】D【解析】由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:落在内切圆内的概率为,故落在圆外的概率为6. 若实数满足条件,则的最大值为()A. B. C. D.【答案】A【解析】根据题意画出可行域:=,所以目标函数最值问题转化为可行域中的点与原点连线斜率的问题,可知取点F,G时目标函数取到最值,F(2,1),G(1,3),所以最大值将点F代入即可得最大值为17. 已知,则二项式的展开式中的常数项为()学#科#网...A. B. C. D.【答案】B【解析】=2,所以的展开式中的常数项为:,令r=3得常数项为8. 已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么()A. B. C. D.【答案】D【解析】由奇函数,是边长为的正三角形,可得,是最高点且,得A=,所以9. 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B.C. D.【答案】B【解析】从题设所提供的三视图中的图形信息与数据信息可知该几何体是底面分别是腰长为的等腰直角三角形,高为4的柱体,如图,其全面积,应选答案B。

【全国百强校word】河北省衡水中学2017届高三下学期三调考试数学(理)试题

【全国百强校word】河北省衡水中学2017届高三下学期三调考试数学(理)试题

河北衡水中学2016~2017学年度 高三下学期数学第三次调研(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足iiiz 2134++=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 已知集合}0)12(log |{3≤-=x x A ,}23|{2x x y x B -==,全集R U =,则)(B C A U 等于( )A .]1,21( B .)32,0( C .]1,32( D .)32,21(3.若),2(ππα∈,且)4sin(2cos 3απα-=,则α2sin 的值为( )A .181-B .181C .1817-D .18174. 已知2)(,12)(xx g x x f x =-=,则下列结论正确的是( )A .)()()(x g x f x h +=是偶函数B .)()()(x g x f x h +=是奇函数 C. )()()(x g x f x h =是奇函数 D .)()()(x g x f x h =是偶函数5.已知双曲线E :)0,0(12222>>=-b a by a x ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为双曲线E 的两个焦点,且双曲线E 的离心率是2,直线AC 的斜率为k ,则||k 等于( )A .2B .23 C. 25D .3 6.在ABC ∆中,41=,P 是直线BN 上的一点,若m 52+=,则实数m 的值为( )A .4-B .1- C. 1 D .47.已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的图象与直线)0(A a a y <<=的三个相邻交点的横坐标分别是2,4,8,则)(x f 的单调递减区间是( )A .)](36,6[Z k k k ∈+ππB .)](6,36[Z k k k ∈-ππ C. )](36,6[Z k k k ∈+ D .)](6,36[Z k k k ∈-8. 某旅游景点统计了今年5月1号至10号每天的门票收入(单位:万元),分别记为1a ,2a ,…,10a (如:3a 表示5月3号的门票收入),下表是5月1号到5月10号每天的门票收入,根据表中数据,下面程序框图输出的结果为( )A .3B .4 C. 5 D .69.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每天还会说其他三国语言的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:①甲是日本人,丁不会说日语,但他俩都能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③甲、乙、丙、丁交谈时,找不到共同语言沟通;④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言,正确的推理是( )A .甲日德、乙法德、丙英法、丁英德B .甲日英、乙日德、丙德法、丁日英 C. 甲日德、乙法德、丙英德、丁英德 D .甲日法、乙英德、丙法德、丁法英 10.如图,已知正方体''''DC B A ABCD -的外接球的体积为π23,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )A .2329+ B .33+或2329+ C. 32+ D .2329+或32+11.如图,已知抛物线的方程为)0(22>=p py x ,过点)1,0(-A 作直线l 与抛物线相交于Q P ,两点,点B 的坐标为)1,0(,连接BQ BP ,,设BP QB ,与x 轴分别相交与N M ,两点.如果QB 的斜率与PB 的斜率之积为3-,则MBN ∠的大小等于( )A .2π B .4π C. 32π D .3π 12.已知R b a ∈,,且b x a e x+-≥)1(对R x ∈恒成立,则ab 的最大值是( )A .321e B .322e C. 323e D .3e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在92017)11(xx +-的展开式中,含3x 项的系数为 . 14. 在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3kD V =,欧几里得未给出k 的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式3kD V =中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式3kD V =求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长).假设运用此体积公式求得球(直径为a )、等边圆柱(底面圆的直径为a )、正方体(棱长为a )的“玉积率”分别为1k ,2k ,3k ,那么=321::k k k .15.由约束条件⎪⎩⎪⎨⎧+≤+-≤≥1330,kx y x y y x ,确定的可行域D 能被半径为22的圆面完全覆盖,则实数k 的取值范围是 .16.如图,已知O 为ABC ∆的重心,90=∠BOC ,若AC AB BC ⋅=24,则A 的大小为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列}{n a 的前n 项和为n S ,01≠a ,常数0>λ,且n n S S a a +=11λ对一切正整数n 都成立.(1)求数列}{n a 的通项公式;(2)设100,01=>λa ,当n 为何值时,数列}1{lgna 的前n 项和最大? 18.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:(1)该同学为了求出y 关于x 的线性回归方程a x b yˆˆˆ+=,根据表中数据已经正确计算出6.0ˆ=b,试求出a 的值,并估计该厂6月份生产的甲胶囊产量数; (2)若某药店现有该制药厂今年二月份的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为X ,求X 的分布列和数学期望.19.已知多面体ABCDEF 如图所示,其中ABCD 为矩形,DAE ∆为等腰等腰三角形,AE DA ⊥,四边形AEFB 为梯形,且BF AE //, 90=∠ABF ,22===AE BF AB .(1)若G 为线段DF 的中点,求证://EG 平面ABCD ;(2)线段DF 上是否存在一点N ,使得直线BN 与平面FCD 所成角的余弦值等于521?若存在,请指出点N 的位置;若不存在,请说明理由.20.如图,椭圆E :)0(12222>>=+b a by a x 左、右顶点为A 、B ,左、右焦点为1F 、2F ,4||=AB ,32||21=F F .直线m kx y +=(0>k )交椭圆E 于点D C ,两点,与线段21F F 、椭圆短轴分别交于N M ,两点(N M ,不重合),且||||DN CM =.(1)求椭圆E 的方程;(2)设直线AD ,BC 的斜率分别为21,k k ,求21k k 的取值范围. 21.设函数ax xbxx f -=ln )(,e 为自然对数的底数.(1)若函数)(x f 的图象在点))(,(22e f e 处的切线方程为0432=-+e y x ,求实数b a ,的值; (2)当1=b 时,若存在],[,221e e x x ∈,使a x f x f +≤)(')(21成立,求实数a 的最小值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,斜率为1的直线l 过定点)4,2(--.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为0cos 4sin 2=-θθρ. (1)求曲线C 的直角坐标方程以及直线l 的参数方程;(2)两曲线相交于N M ,两点,若)4,2(--P ,求||||PN PM +的值. 23.选修4-5:不等式选讲已知函数|23||12|)(-++=x x x f ,且不等式5)(≤x f 的解集为}5354|{bx a x ≤≤-,R b a ∈,.(1)求b a ,的值;(2)对任意实数x ,都有53||||2+-≥++-m m b x a x 成立,求实数m 的最大值.试卷答案一、选择题1-5: CDCAB 6-10: BDAAB 11、12:DA二、填空题13. 84- 14.1:4:6ππ 15.]31,(-∞ 16.3π三、解答题17.解:(1)令1=n ,得0)2(,22111121=-==a a a S a λλ,因为01≠a ,所以λ21=a ,当2≥n 时,n n S a +=λ22,1122--+=n n S a λ,两式相减得)2(221≥=--n a a a n n n ,所以)2(21≥=-n a a n n ,从而数列}{n a 为等比数列, 所以λnn n a a 2211=⋅=-.(2)当01>a ,100=λ时,由(1)知,2lg 22lg 100lg 1002lg 1lg ,1002n a b a n nn n n n -=-====,所以数列}{n b 是单调递减的等差数列,公差为2lg -,所以01lg 64100lg 2100lg6621=>==>>>b b b 当7≥n 时,01lg 2100lg 77=<=≤b b n ,所以数列}1{lg n a 的前6项和最大. 18.解:(1)3)54321(51=++++=x ,5)66544(51=++++=y ,因线性回归方程a x b yˆˆˆ+=过点),(y x ,∴2.366.05ˆ=⨯-=-=x b y a ∴6月份的生产胶囊的产量数:8.62.366.0ˆ=+⨯=y. (2)3,2,1,0=X ,4254810)0(3935====C C X P ,21108440)1(392514====C C C X P ,1458430)2(391524====C C C X P ,211844)3(3934====C C X P ,其分布列为∴343211214121042)(=⨯+⨯+⨯+⨯=X E . 19.(1)因为AE DA ⊥,AB DA ⊥,A AE AB = ,故⊥DA 平面ABFE ,故⊥CB 平面ABFE ,以B 为原点,BC BF BA ,,分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系,则)0,2,0(F ,)1,0,2(D ,)21,1,1(G ,)0,1,2(E ,)1,0,0(C ,所以)21,0,1(-=EG ,易知平面ABCD 的一个法向量)0,1,0(=,所以0)0,1,0()21,0,1(=⋅-=⋅n EG ,所以n EG ⊥,又⊄EG 平面ABCD ,所以//EG 平面ABCD .(2)当点N 与点D 重合时,直线BN 与平面FCD 所成角的余弦值等于521.理由如下: 直线BN 与平面FCD 所成角的余弦值为521,即直线BN 与平面FCD 所成角的正弦值为52,因为)0,0,2(),1,2,2(=-=,设平面FCD 的法向量为),,(1111z y x n =, 由⎪⎩⎪⎨⎧=⋅=⋅0011n n ,得⎩⎨⎧==+-020221111x z y x ,取11=y 得平面FCD 的一个法向量)2,1,0(1=n 假设线段FD 上存在一点N ,使得直线BN 与平面FCD 所成角的正弦值等于52,设)10(≤≤=λλ,则),2,2()1,2,2(λλλλ-=-=,),22,2(λλλ-=+=,所以5248952)22()2(52|||||,cos sin 2222111=+-⋅=+-+⋅=>=<=λλλλλαn BN n BN n ,所以01892=--λλ,解得1=λ或91-=λ(舍去) 因此,线段DF 上存在一点N ,当N 点与D 点重合时,直线BN 与平面FCD 所成角的余弦值为521. 20.解:(1)因为322,42==c a ,所以1222=-=c a b ,所以椭圆的方程为1422=+y x . (2)将直线m kx y +=代入椭圆1422=+y x ,得0448)41(222=-+++m mkx x k . 设),(),,(2211y x C y x D ,则22212214144,418k m x x k km x x +-=+-=+, 又),0(),0,(m N k m M -,由||||DN CM =得N M x x x x +=+21,即kmk km -=+-2418,因为0,0>≠k m ,得21=k ,此时22,222121-=⋅-=+m x x m x x ,因为直线l 与线段21F F 、椭圆短轴分别交于不同两点, 所以323≤-≤-m 且0≠m ,即2323≤≤-m 且0≠m . 因为2,2222111-=+=x y k x y k ,所以)2()2(122121+-=x y x y k k ,两边平方得212121211212212222212122222221)(24)(24)2)(2()2)(2()2)(41()2)(41()2()2()(1x x x x x x x x x x x x x x x x x y x y k k +++++-=++--=----=+-= 2222)1()1(22)2(2422)2(24-+=-+-+-+--=m m m m m m ,所以1211121---=-+=m m m k k ,又因为12121---=m k k 在]23,0(),0,23[-上单调递增,所以34723123111231231347+=-+≤-+≤+-=-m m ,且111≠-+mm,即34734721+≤≤-k k ,且121≠k k ,所以]347,1()1,347[21+-∈ k k .21.解:(1)由已知得1,0≠>x x ,a x x b x f --=2)(ln )1(ln )(',则22)(2222e ae be e f -=-=,且434)('2-=-=a b e f ,解之得1,1==b a . (2)当1=b 时,a x x x f --=2)(ln 1ln )(',又a x a x x a x x x f -+--=-+-=--=41)21ln 1(ln 1)ln 1()(ln 1ln )('222+故当21ln 1=x 即2e x =时,a xf -=41)('max . “存在],[,221e e x x ∈,使a x f x f +≤)(')(21成立”等价于“当],[2e e x ∈时,有a x f x f +≤max min )(')(”又当],[2e e x ∈时,a x f -=41)('max ,∴41)('max =+a x f , 问题等价于“当],[2e e x ∈时,有41)(min ≤x f ”.①当41≥a 时,)(x f 在],[2e e 上为减函数,则412)()(22min ≤-==ax e e f x f ,故24121ea -≥; ②当41<a 时,a x x f -+--=41)21ln 1()('2在],[2e e 上的值域为]41,[a a --, (i )当0≥-a ,即0≤a 时,0)('≥x f 在],[2e e 上恒成立,故)(x f 在],[2e e 上为增函数,于是41)()(min >≥-==e ae e e f x f ,不合题意; (ii )当0<-a ,即410<<a 时,由)('x f 的单调性和值域知,存在唯一∈0x ),(2e e ,使0)('=x f ,且满足当∈0x ),(0x e 时,0)('<x f ,)(x f 为减函数;当∈0x ),(20e x 时,0)('>x f ,)(x f 为增函数. 所以),(,41ln )()(200000min e e x ax x x x f x f ∈≤-==,所以412141ln 141ln 22000-<->-≥e e x x x a ,与410<<a 矛盾. 综上,得a 的最小值为24121e -. 22.解:(1)由0cos 4sin 2=-θθρ得0cos 4sin 22=-θρθρ,所以曲线C 的直角坐标方程为042=-x y ,即x y 42=,所以直线l 的参数方程为是⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222(t 为参数). (2)将直线l 的参数方程代入x y 42=中,得到0482122=+-t t ,设N M ,对应的参数分别为21,t t ,则21221=+t t ,04821>=t t ,故212||||||||2121=+=+=+t t t t PN PM .23.解:(1)若21-≤x ,原不等式可化为52312≤+---x x ,解得54-≥x ,即2154-≤≤-x ;若3221<<-x ,原不等式可化为52312≤+-+x x ,解得2-≥x ,即3221<<-x ; 若32≥x ,原不等式可化为52312≤-++x x ,解得56≤x ,即5632≤≤x ; 综上所述,不等式5|23||12|≤-++x x 的解集为]56,54[-,所以2,1==b a . (2)由(1)知2,1==b a ,所以3|21||2||1|||||=---≥++-=++-x x x x b x a x , 故3532≤+-m m ,0232≤+-m m ,所以21≤≤m ,即实数m 的最大值为2.。

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试理数试题解析(解析版)

河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,或,则()A. B. C. D.【答案】D【解析】因为,所以,应选答案D。

2. 若复数满足为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】因为,所以该复数在复平面内对于的点位于第三象限,应选答案C。

3. 某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为()A. B. C. D.【答案】B【解析】根据题意抽取比例为故总人数为所以高三被抽取的人数为4. 已知命题;命题,则下列命题中为真命题的是()A. B. C. D.【答案】A5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.【答案】D【解析】由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:落在内切圆内的概率为,故落在圆外的概率为6. 若实数满足条件,则的最大值为()A. B. C. D.【答案】A【解析】根据题意画出可行域:=,所以目标函数最值问题转化为可行域中的点与原点连线斜率的问题,可知取点F,G时目标函数取到最值,F(2,1),G(1,3),所以最大值将点F代入即可得最大值为17. 已知,则二项式的展开式中的常数项为()...A. B. C. D.【答案】B【解析】=2,所以的展开式中的常数项为:,令r=3得常数项为8. 已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么()A. B. C. D.【答案】D【解析】由奇函数,是边长为的正三角形,可得,是最高点且,得A=,所以9. 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B.C. D.【答案】B【解析】从题设所提供的三视图中的图形信息与数据信息可知该几何体是底面分别是腰长为的等腰直角三角形,高为4的柱体,如图,其全面积,应选答案B。

【全国百强校】河北省衡水中学2017届高三下学期第六次调研考试理数(解析版)

【全国百强校】河北省衡水中学2017届高三下学期第六次调研考试理数(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若imi-+11为纯虚数,则m 的值为( ) A.1-=m B.1=m C.2=m D.2-=m 【答案】B 【解析】法一:,若其为纯虚数,则,解得.法二:因为为纯虚数,设为纯虚数,设(为实数),则则,且,则.选B.2.已知全集R U =,集合⎭⎬⎫⎩⎨⎧+==1)21(xy y A ,集合{}R b b y y B ∈==,,若Φ=B A ,则b 的取值范围是( )A.0<bB.0≤bC.1<bD.1≤b 【答案】D 【解析】,若,则. 选D.3.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差222丙乙甲,,s s s 的大小关系是( )A.222甲乙丙s s s << B.222乙甲丙s s s << C.222甲丙乙s s s << D.222丙甲乙s s s << 【答案】A4.已知双曲线方程为)0(12222>>=-b a by a x ,它的一条渐近线与圆4)2(22=+-y x 相切,则双曲线的离心率为( )A.2B.2C.3D.22 【答案】A【解析】方法一:双曲线的渐近线方程为,则,圆的方程,圆心为,所以,化简可得,则离心率.方法二:因为焦点到渐近线的距离为,则有平行线的对应成比例可得知,即则离心率为. 选A.5.已知8,,,221--a a 成等差数列,8,,,,2321--b b b 成等比数列,则212b a a -等于( )A.41 B.21 C.21- D.21或21- 【答案】B考点:1、等差数列的性质;2、等比数列的性质.6.执行如图所示的框图,若输出的sum 的值为2047,则条件框中应填写的是( )A .9<iB .10<i C.11<i D .12<i【答案】C 【解析】,故选.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 7.已知()6332z y x ++的展开式中,系数为有理数的项的个数为( )A .4B .5 C.6 D .7 【答案】D点睛:求二项展开式有关问题的常见类型及解题策略 (1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.8.如图,网格上小正方形的边长为1,粗线画出的是某个多面体的三视图,若该多面体的所有顶点都在球O 表面上,则球O 的表面积是( )A .π36B .π48 C.π56 D .π64 【答案】C 【解析】根据三视图知几何体是:三棱锥为棱长为的正方体一部分,直观图如图所示:该多面体的所有顶点都在球,且球心是正方体的中心,由正方体的性质得,球心到平面的距离,由正方体的性质可得,,设的外接圆的半径为,在中,由余弦定理得,,,则,由正弦定理可得,,则,则球的半径,球的表面积. 选C.点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 9.已知锐角βα、满足2cos sin cos sin <+αββα,设()x x f a a log ,tan tan =⋅=βα,则下列判断正确的是( ) A .()()βαcos sin f f > B .()()βαsin cos f f > C.()()βαsin sin f f > D .()()βαcos cos f f > 【答案】A【解析】解:若锐角满足,则,即;同理可得这与矛盾,故锐角满足,即且,,单调递减,故选:.10.以抛物线2x y =的一点()1,1M 为直角顶点作抛物线的两个内接MCD Rt MAB Rt ∆∆,,则线段AB 与线段CD 的交点E 的坐标为( )A .()2,1-B .()1,2- C.()4,2- D .()4,1- 【答案】B 【解析】设,则,的方程为因为,所以带入上式可得于是在直线上,同理点也在上,因为交点为.故选:.11.将单位正方体放置在水平桌面上(一面与桌面完全接触),沿其一条棱翻动一次后,使得正方体的另一面与桌面完全接触,称一次翻转。

河北省衡水中学2017届高三下学期第六周周测数学(理)试题及参考答案

河北省衡水中学2017届高三下学期第六周周测数学(理)试题及参考答案

(
). B.必要不充分条件 D.既不充分也不必要条件
1 时, b ta (t R) 取最小值 2

3 ,向量 c 满足 (c b) (c a) ,则当 c (a b) 取最大值时, c b 等于(
A. 6 B. 2 3 C. 2 2 D.
A.充分不必要条件 C.充 要条件
2 2
区域为 V . (1)定义横、纵坐标为整数的点为“整点” ,在区域 U 内任取 3 个整点,求这些整点中恰有 2 个整点在区域 V 内的概率; (2) 在区域 U 内任取 3 个点, 记这 3 个点在区域 V 内的个数为 X , 求 X 的分布列和数学期望.
D
A
20. (本 小 题 满 分 12 分 ) 已知椭圆 C1; + =1(a>b>0)与椭圆 C2: +y =1 有相同的离心率,经过椭圆 C2 的
13. 某校共有高一、高二、高三学生共有 1290 人,其中高一 480 人,高二比高三多 30 人.为 了解该校学生健 康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生 96 人, 则该样本中的高三学生人数为 .
的正方
14. 在正三棱锥 S—ABC 中,AB= 2 ,M 是 SC 的中点,AM⊥SB,则正三棱锥 S-ABC 外接球的 球心到平面 ABC 的距离为____________. 1 15. △ABC 中,tan A 是以-4 为第三项,-1 为第七项的等差数列的公差,tan B 是以 为第三 2 项,4 为第六项的等比数列的公比,则该三角形的形状为________. 16. 已知函数 f x x cos x ,有下列 4 个结论: ①函数 f x 的图象关于 y 轴对称; ②存在常数 T 0 ,对任意的实数 x,恒有 f x T f x 成立; ③对于任意给定的正数 M,都存在实数 x0 ,使得 f x0 M ; ④函数 f x 的图象上存在无数个点,使得该函数在这些点处的切线与 x 轴平行. 其中,所有正确结论的序号为 三、解答题 17. (本小题满分 10 分) 如图,在△ ABC 中,∠B=30°,AC=2 ,D 是边 AB 上一点. (1)求△ ABC 的面积的最大值; (2)若 CD=2,△ ACD 的面积为 4,∠ACD 为锐角,求 BC 的长. .

【全国百强校】河北省衡水中学2017届高三下学期六调数学(理)试题

【全国百强校】河北省衡水中学2017届高三下学期六调数学(理)试题

衡水中学2016—2017 学年度下学期六调考试高三年级(理科)数学试卷第Ⅰ卷(选择题部分,共 60 分)一、选择题:共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.若复数11mii+-为纯虚数,则m 的值为( )A .1m =-B .1m =C .2m =D .2m =-2.全集U R =,集合A= {}1()12x y y =+,集合B={},y y b b R =∈,若A B φ=,则b 的取值范围是( )A .0b <B .0b ≤C .1b <D .1b ≤3.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差2s 甲,2s 乙 ,2s 丙的大小关系是. ()A. 2s丙< 2s乙<2s甲B. 2s丙< 2s甲<2s乙C 2s乙<2s丙<2s甲D. 2s乙<2s甲<2s丙4.已知双曲线22221(0,0)x y a b a b-=>>,它的一条渐近线与圆22(2)4x y -+=相切,则双曲线的离心率为()A. B .2 CD. 5.已知2-,1a ,2a ,8-成等差数列,2-,1b ,2b ,3b ,8-成等比数列,则212a ab -等于( )A .14B .12C .12-D .12或12-6..执行如图所示的框图,若输出的sum 的位为2047,则条 件框中应城写的是( ) A .9i < B .10i < C .11i < D . 12i <7.已知6)z ++展开式中,系数为有理数的项的个数为( ) A .4 B .5 C .6 D . 78.如图,网格纸上小正方形的边长为1.粗线画出 的是某个多面体的三视图,若该多面休的所有顶 点都在球O 表面上,则球O 的表面积是( )A .36πB .48πC .56πD .64π9.已知锐角α、β满足sin sin 2cos cos αββα+<.设tan tan ,()log ,x a a f x αβ==侧下列判断正确的是( )A .(sin )(cos )f f αβ>B .(cos )(sin )f f αβ>C .(sin )(sin )f f αβ>D .(cos )(cos )f f αβ> 10.以抛物线2y x =的一点(1,1)M 为直角顶点作抛物线的两个内接Rt MAB ∆,Rt MCD ∆,则线段AB 与线段CD 的交点E 的坐标为( ) A .(1,2)- B .(2,1)- C .(2,4)- D .(1,4)- 11.将单位正方体放置在水平桌面上(一面与桌面完全接触). 沿其一条棱翻动一次后.使得正方体的另一面与桌面完全接触. 称一次翻转.如图,正方体的顶点A.经任意翻转三次后.点A 与其终结位置的直线距离不可能为( ) A .0 B .1 C .2 D .412.已知'()f x 为函数()f x 的导函致.且2''11()(0)(1),2x f x x f x f e -=-+若21()()2g x f x x x =-+,则方程2()0x g x x a --=有且仅有一个根时,a 的取值范围是( ) A .(,0)-∞ B .(,1)-∞ C .{}(,0)1-∞ D .(0,1) 第II 卷(非选择题90分)二、填空题(每小题5分.共20分.把每小题的答案填在答题纸的相应位置)13.如图.BC 、DE 是半径为1的圆O 的两条直径,2BF FO =.则FD FE 的值是___。

【全国百强校】河北省衡水中学2017届高三下学期二调考试数学(理)试题

【全国百强校】河北省衡水中学2017届高三下学期二调考试数学(理)试题

河北省衡水中学2017届高三下学期二调考试理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|2}A x x =<,{|21,}xB y y x A ==-∈,则AB =( )A .(,3)-∞B .[2,3)C .(,2)-∞D .(1,2)- 2.已知复数1z i =-(i 为虚数单位),则22z z-的共轭复数的虚部是( ) A .13i - B .13i + C .13i -+ D .13i --3.有一长、宽分别为50m 、30m 的矩形游泳池,一名工作人员在池边巡逻,某时刻出现在池边任一位置可能性相同,一人在池中心(对角线交点)处呼唤工作人员,其声音可传出152m ,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是( ) A .34 B .38 C .316π D .12332π+ 4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长五尺,松日自半,竹日自倍,松竹何日而长等,下图是源于其思想的一个程序框图,若输入的,a b 分别为5、2,则输出的n =( )A . 2B . 3 C. 4 D .55.已知数列{}n a 的前n 项和为n S ,若12(2)n n S a n =+≥,且12a =,则20S =( ) A .1921- B .2122- C. 1921+ D .2122+6.已知圆C :224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB ,,A B 为切点,则直线AB 经过定点( )A .48(,)99B .24(,)99C. (2,0) D .(9,0) 7.某几何体的三视图如图所示,则该几何体的体积为( )A .43B .53 C. 63 D .838. 212()log (21)f x ax x =+-,22sin(2)6()sin 3cos x g x x x π++=+,若不论2x 取何值,对12()()f x g x >任意173[,]102x ∈总是恒成立,则a 的取值范围是( ) A .7(,)10-∞-B .4(,)5-∞- C. 63(,)80-+∞ D .404(,)495-- 9.如图,三个边长为2的等边三角形有一条边在同一直线上,边33B C 上有10个不同的点1210,,P P P ,记2(1,2,,10)i i m AB AP i =∙=,则1210m m m +++的值为( )A .153B .45 C. 603 D .18010.已知函数()f x 是定义在R 上的单调函数,且对任意的,x y R ∈都有()()()f x y f x f y +=+,若动点(,)P x y 满足等式22(22)(83)0f x x f y y +++++=,则x y +的最大值为( ) A . 265- B . -5 C. 265+ D .5 11.数列{}n a 满足143a =,*1(1)()n n n a a a n N +=-∈,且12111n nS a a a =+++,则n S 的整数部分的所有可能值构成的集合是( )A .{0,1,2}B .{0,1,2,3} C. {1,2} D .{0,2}12.等腰直角三角形AOB 内接于抛物线22(0)y px p =>,O 为抛物线的顶点,OA OB ⊥,AOB ∆的面积是16,抛物线的焦点为F ,若M 是抛物线上的动点,则||||OM MF 的最大值为( ) A .33 B .63 C. 233 D .263第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某校今年计划招聘女教师x 人,男教师y 人,若,x y 满足2526x y x y x -≥⎧⎪-≤⎨⎪<⎩,则该学校今年计划招聘教师最多 人. 14.已知函数2()2sin()12f x x x x π=-+的两个零点分别为,()m n m n <,则21nmx dx -=⎰.15.已知四面体ABCD 的每个顶点都在球O 的表面上,5AB AC ==,8BC =,AD ⊥底面ABC ,G 为ABC ∆的重心,且直线DG 与底面ABC 所成角的正切值为12,则球O 的表面积为 . 16.已知是定义在R 上的函数,且满足①(4)0f =;②曲线(1)y f x =+关于点(1,0)-对称;③当(4,0)x ∈-时,2||()log (1)xx x f x e m e=+-+,若()y f x =在[4,4]x ∈-上有5个零点,则实数m 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量(3sin ,1)m x ω=,2(cos ,cos 1)n x x ωω=+,设函数()f x m n b =∙+.(1)若函数()f x 的图象关于直线6x π=对称,且[0,3]ω∈时,求函数()f x 的单调增区间;(2)在(1)的条件下,当7[0,]12x π∈时,函数()f x 有且只有一个零点,求实数b 的取值范围. 18. 如图,已知四棱锥S ABCD -中,SA ⊥平面ABCD ,90ABC BCD ∠=∠=,且2SA AB BC CD ===,E 是边SB 的中点.(1)求证://CE 平面SAD ;(2)求二面角D EC B --的余弦值大小.19. 某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择,若投资甲项目一年后可获得的利润为1ξ(万元)的概率分布列如表所示:且1ξ的期望1()120E ξ=;若投资乙项目一年后可获得的利润2ξ(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否受第二和第三季度进行产品的价格调整,两次调整相互独立,且调整的概率分别为(01)p p <<和1p -,乙项目产品价格一年内调整次数X (次)与2ξ的关系如表所示:(1)求,m n 的值; (2)求2ξ的分布列;(3)根据投资回报率的大小请你为公司决策:当p 在什么范围时选择投资乙项目,并预测投资乙项目的最大投资回报率是多少?(投资回报率=年均利润/投资总额×100%)20. 如图,曲线Γ由曲线22122:1(0,0)x y C a b y a b+=>>≤和曲线22222:1(0,0,0)x y C a b y a b-=>>>组成,其中点12,F F 为曲线1C 所在圆锥曲线的焦点,点34,F F 为曲线2C 所在圆锥曲线的焦点.(1)若23(2,0),(6,0)F F -,求曲线Γ的方程;(2)如图,作直线l 平行于曲线2C 的渐近线,交曲线1C 于点,A B ,求证:弦AB 的中点M 必在曲线2C 的另一条渐近线上;(3)对于(1)中的曲线Γ,若直线1l 过点4F 交曲线1C 于点,C D ,求1CDF ∆的面积的最大值. 21. 设(4)ln ()31x a xf x x +=+,曲线()y f x =在点(1,(1))f 处的切线与直线10x y ++=垂直.(1)求a 的值;(2)若对于任意的[1,)x ∈+∞,()(1)f x m x ≤-恒成立,求m 的取值范围; (3)求证:*1ln(41)16()(41)(43)ni in n N i i =+≤∈+-∑. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),曲线2C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(0,a b ϕ>>为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线:l θα=与12,C C 各有一个交点,当0α=时,这两个交点间的距离为2,当2πα=时,这两个交点重合.(1)分别说明12,C C 是什么曲线,并求a 与b 的值; (2)设当4πα=时,l 与12,C C 的交点分别为11,A B ,当4πα=-时,l 与12,C C 的交点分别为22,A B ,求直线1212,A A B B 的极坐标方程. 23.选修4-5:不等式选讲设函数()||,0f x x a a =-<. (1)证明:1()()2f x f x+-≥; (2)若不等式1()(2)2f x f x +<的解集是非空集,求a 的范围.试卷答案1-12 DABCC AADDA BC 13. 10 14. 2π 15. 6349π 16. 42[3,1){}e e ----17. 解:向量(3sin ,1)m x ω=,(cos ,cos 21)n x x ωω=+,2()3sin cos cos 1f x m n b x x x b ωωω=∙+=+++3133sin 2cos 2sin(2)22262x x b x b πωωω=+++=+++(1)∵函数()f x 图象关于直线6x π=对称,∴2()662k k Z πππωπ∙+=+∈,解得:31()k k Z ω=+∈,∵[0,3]ω∈,∴1ω=,∴3()sin(2)62f x x b π=+++,由222262k x k πππππ-≤+≤+, 解得:()36k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调增区间为[,]()36k k k Z ππππ-+∈.(2)由(1)知3()sin(2)62f x x b π=+++,∵7[0,]12x π∈, ∴42[,]663x πππ+∈, ∴2[,]662x πππ+∈,即[0,]6x π∈时,函数()f x 单调递增; 42[,]663x πππ+∈,即7[,]612x ππ∈时,函数()f x 单调递减. 又(0)()3f f π=,∴当7()0()312f f ππ>≥或()06f π=时函数()f x 有且只有一个零点. 即435sinsin326b ππ≤--<或3102b ++=, 所以满足条件的335(2,]{}22b -∈--. 18.(1)证明:取SA 中点F ,连接EF ,FD ,∵E 是边SB 的中点,∴//EF AB ,且12EF AB =,又∵90ABC BCD ∠=∠=,∴//AB CD ,又∵2AB CD =,即12CD AB =∴//EF CD ,且EF CD =,∴四边形EFDC 为平行四边形,∴//FD EC ,又FD ⊆面SAD ,CE ⊄面SAD ,∴CE ∥面SAD . (2)解:在底面内过点A 作直线//AM BC ,则AB AM ⊥,又SA ⊥平面ABCD , 以,,AB AM AS 所在直线分别为,,x y z 轴,建立空间直角坐标系,如图.设2AB =,则(0,0,0),(2,0,0),(2,2,0),(1,2,0),(1,0,1)A B C D E , 则(0,2,0),(1,0,1)BC BE ==-,(1,0,0),(1,2,1)CD CE =-=--,设面BCE 的一个法向量为(,,)n x y z =,则00n BC n BE ⎧∙=⎪⎨∙=⎪⎩,即200y x z =⎧⎨-+=⎩令1x =,则1z =,∴(1,0,1)n =.同理可求面DEC 的一个法向量为(0,1,2)m =,10cos ,5||||n m n m n m ∙<>==, 由图可知,二面角D EC B --是钝二面角, 所以其平面角的余弦值为105-. 19.解:(1)由题意得:0.411101200.4170120m n m n ++=⎧⎨+⨯+=⎩,得:0.5,0.1m n ==.(2)2ξ的可能取值为41.2,117.6,204.0,2(41.2)(1)[1(1)](1)P p p p p ξ==---=-222(117.6)[1(1)](1)(1)(1)P p p p p p p ξ==--+--=+-2(204.0)(1)P p p ξ==-所以2ξ的分布列为2ξ41.2 117.6 204.0P(1)p p -22(1)p p +-(1)p p -(3)由(2)可得:222()41.2(1)117.6[(1)]204.0(1)E p p p p p p ξ=⨯-+⨯+-+⨯-21010117.6p p =-++根据投资回报率的计算办法,如果选择投资乙项目,只需12()()E E ξξ<,即21201010117.6p p <-++,得0.40.6p <<.因为22()1010117.6E p p ξ=-++,所以当12P =时,2()E ξ取到最大值为120.1,所以预测投资回报率的最大值为12.01%.20.(Ⅰ)2222223620416a b a a b b ⎧⎧+==⎪⎪⇒⎨⎨-==⎪⎪⎩⎩, 则曲线Γ的方程为221(0)2016x y y +=≤和221(0)2016x y y -=> (Ⅱ)曲线2C 的渐近线为b y x a =±,如图,设直线:()bl y x m a=- 则2222()1b y x m a x y a b ⎧=-⎪⎪⎨⎪+=⎪⎩22222()0x mx m a ⇒-+-= 22222(2)42()4(2)022m m a a m a m a ∆=-∙∙-=->⇒-<<又由数形结合知m a ≥,∴2a m a ≤<设点112200(,),(,),(,)A x y B x y M x y ,则1222122x x mm a x x +=⎧⎪⎨-=⎪⎩,∴12022x x m x +==,00()2b b my x m a a =-=-∙ ∴00b y x a =-,即点M 在直线by x a=-上. (Ⅲ)由(Ⅰ)知,曲线221:1(0)2016x y C y +=≤,点4(6,0)F 设直线1l 的方程为6(0)x ny n =+>22221(45)4864020166x y n y ny x ny ⎧+=⎪⇒+++=⎨⎪=+⎩222(48)464(45)01n n n ∆=-∙∙+>⇒>设3344(,),(,)C x y D x y ,由韦达定理:34234248456445n y y n y y n -⎧+=⎪⎪+⎨⎪=⎪+⎩∴2234343421||()416545n y y y y y y n --=+-=+11414221434221111||||||8165645224545CDF CF F DF F n n S S S F F y y n n ∆∆∆--=-=∙-=∙∙∙=++ 令210t n =->,∴221n t =+, ∴1216456459494CDF t S t t t∆=∙=∙++∵0t >,∴9412t t +≥,当且仅当32t =,即132n =时等号成立 132n =时,∴1max 1165645123CDF S ∆=∙= 21.(Ⅰ)'24(4ln )(31)3(4)ln ()(31)x ax x x a xx f x x +++-+=+ 由题设'(1)1f =,∴414a+= ∴0a =. (Ⅱ)4ln ()31x x f x x =+,[1,)x ∀∈+∞,()(1)f x m x ≤-,即14ln (32)x m x x≤--设1()4ln (32)g x x m x x=---,即[1,)x ∀∈+∞,()0g x ≤. 2'224134()(3)mx x m g x m x x x-+-=-+=,'(1)44g m =- ①若'0,()0m g x ≤>,()(1)0g x g ≥=,这与题设()0g x ≤矛盾②若(0,1)m ∈,当2'243(1,),()03m x g x m+-∈>,()g x 单调递增,()(1)0g x g >=,与题设矛盾.③若1m ≥,当'(1,),()0x g x ∈+∞≤,()g x 单调递减,()(1)0g x g ≤=,即不等式成立 综上所述,1m ≥ .(Ⅲ)由(Ⅱ)知,当1x >时, 1m =时, 11ln (32)4x x x ≤--成立. 不妨令4143i x i +=-,*i N ∈,所以4116ln 43(41)(43)i i i i i +≤-+-, 4116ln43(41)(43)+≤-+- 421162ln423(421)(423)⨯+⨯≤⨯-⨯+⨯- 431163ln 433(431)(433)⨯+⨯≤⨯-⨯+⨯- ………… 4116ln 43(41)(43)n n n n n +≤-+- 累加可得∴*1ln(41)16()(41)(43)n i i n n N i i =+≤∈+-∑ 22.(本题满分10分)【选修4—4 坐标系统与参数方程】(Ⅰ) 1C 是圆,2C 是椭圆当0α=时,射线l 与1C ,2C 交点的直角坐标分别为(1,0),(,0)a ,因为这两点间的距离为2,所以3a =; 当2πα=时,射线l 与1C ,2C 交点的直角坐标分别为(0,1),(0,)b ,因为这两点重合,所以1b =.(Ⅱ) 1C ,2C 的普通方程分别为221x y +=和2219x y += 当4πα=时,射线l 与1C 的交点1A 的横坐标为22x =,与2C 的交点1B 的横坐标为'31010x = 当4πα=-时,射线l 与1C ,2C 的交点2A ,分别与1A ,1B 关于x 轴对称因此直线12A A 、12B B 垂直于极轴,故直线12A A 和12B B 的极坐标方程分别为2sin 2ρθ=,310sin 10ρθ= 23.(Ⅰ)函数()||,0f x x a a =-<则1111()()||||||||||f x f x a a x a a x a a x x x x+-=-+--=-++≥-++ 111||||||2||||2x x x x x x=+=+≥∙= (Ⅱ) ()(2)|||2|,0f x f x x a x a a +=-+-<当x a ≤时,()223f x a x a x a x =-+-=-, 则()f x a ≥-, 当2a a x <<时,()2f x x a a x x =-+-=-, 则()2a f x a -<<-; 当2a x ≥时,()232f x x a x a x a =-+-=-, 则()2a f x ≥-, 于是()f x 的值域为[,)2a -+∞ 由不等式1()(2)2f x f x +<的解集是非空集, 即122a >-, 解得1a >-,由于0a <,则a 的取值范围是(1,0)-.。

河北省衡水中学2017届高三下学期第六周周测数学(理)试题

河北省衡水中学2017届高三下学期第六周周测数学(理)试题

河北省衡水中学2017届高三下学期第六周周测数学(理)试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数2(1)1i z i+=-的共轭复数所对应的点位于复平面的A .第一象限B .第二象限C .第三象限D .第四象限 2、已知等比数列{}n a中,257a a -+=⎰,则6468(2)a a a a ++=的值为A .216π B .24π C .22π D .2π3、已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,且经过点,则双曲线C 的标准方程为A .22123x y -= B .22139x y -= C .22146x y -= D .221x y -= 4、阅读如图的程序框图,如输入4,6m n ==,则输出的,a i 分别等于 A .12,2 B .12,3 C .24,2 D .24,35、已知条件p 关于x 的不等式13x x m -+-<有解;条件():(73)xq f x m =-为减函数,则p 成立是q 成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6、已知不等式组3410043x y x y +-≥⎧⎪≤⎨⎪≤⎩表示的区域D ,过区域D 中任意一点P 作圆的两条切线且切点分别为A 、B ,当APB ∠最大时,cos APB ∠= A.12 C..12-7、已知(0,)απ∈,若1tan()43πα-=,则sin 2α=A .45-B .45C .54-D .548、一个几何体的三视图如图所示,正视图与侧视图为全等的矩形, 俯视图为正方形,则该几何体的体积为 A .8 B .4 C .83 D .439、已知F 为抛物线24y x =的焦点,点A 、B 在该抛物线上,0OA OB ⋅=(其中O 为坐标原点),则ABO ∆与BFO ∆面积之差的最小值是A .4B .8C ..10、若函数111ln y x x =,函数223y x =-,则221212()()x x y y -+- 的最小值为A .2B .1CD .211、若非零向量a 与向量b 的夹角为钝角,2b =,且当12t =-时,()b ta t R -∈向量c 满足()()c b c a -⊥-,则当()c a b ⋅+取最大值时,c b -等于A B .. D .5212、已知函数()2ln ()()x x b f x b R x +-=∈,若存在1[,2]2x ∈,使得()()0f x xf x '+>,则实数b 的取值范围是A .3(,)2-∞ B .9(,)4-∞ C .(,3)-∞ D .(-∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

河北衡水中学2016~2017学年度 高三下学期数学第二次摸底考试(理科)考生注意:1.本试卷分必考部分和选考部分两部分,共150分,考试时间120分钟。

2.请将各题答案填在试卷后面的答题卡上。

3.本试卷主要考试内容:高考全部内容必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|10}A k N k N =∈-∈,{|23,}N x x n x n n N ===∈或,则AB =( )A .{6,9}B .{3,6,9}C .{1,6,9,10}D .{6,9,10}2.若复数z 满足2(12)|13|z i i -+=+(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查。

已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,()ln 2x p x e x ∃>>;命题:1,1,log 2log 22a b q a b b a ∀>>+≥,则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧C .()p q ∧⌝D .()p q ∨⌝5.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .310πB .320π C .3110π-D .3120π-6.若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C .1619D .127.已知()22214sin a x x dx π-=-+⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212-C .54-D .1-8.已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么1()3f =( )A .32π-B .12-C .14D .34π-9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .2843122++B .3643122++C .3642123++D .44122+10.执行如图所示的程序框图,输出S 的值等于( )A .2321tan9π-- B .25tan3922tan9ππ-- C .2322tan9π-- D .25tan3921tan9ππ-- 11.椭圆()222101y x b b +=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A .2,12⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .20,2⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭12.已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(x f x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦C .21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上。

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

【全国百强校】河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题

河北衡水中学2016~2017学年度 高三下学期数学第二次摸底考试(理科)考生注意:1.本试卷分必考部分和选考部分两部分,共150分,考试时间120分钟。

2.请将各题答案填在试卷后面的答题卡上。

3.本试卷主要考试内容:高考全部内容必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|10}A k N k N =∈-∈,{|23,}N x x n x n n N ===∈或,则AB =( )A .{6,9}B .{3,6,9}C .{1,6,9,10}D .{6,9,10}2.若复数z 满足2(12)|13|z i i -+=+(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查。

已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,()ln 2x p x e x ∃>>;命题:1,1,log 2log 22a b q a b b a ∀>>+≥,则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧C .()p q ∧⌝D .()p q ∨⌝5.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .310πB .320π C .3110π-D .3120π-6.若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C .1619D .127.已知()22214sin a x x dx π-=-+⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212-C .54-D .1-8.已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么1()3f =( )A .32π-B .12-C .14D .34π-9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .2843122++B .3643122++C .3642123++D .44122+10.执行如图所示的程序框图,输出S 的值等于( )A .2321tan9π-- B .25tan3922tan9ππ-- C .2322tan9π-- D .25tan3921tan9ππ-- 11.椭圆()222101y x b b +=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A .2,12⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .20,2⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭12.已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(x f x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦C .21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷第1页,共8页绝密★启用前【全国百强校word 】河北省衡水中学2017届高三下学期六调数学(理)试题试卷副标题考试范围:xxx ;考试时间:0分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知成等差数列,成等比数列,则等于( )A .B .C .D .或2、将单位正方体放置在水平桌面上(一面与桌面完全接触),沿其一条棱翻动一次后,使得正方体的另一面与桌面完全接触,称一次翻转.如图,正方体的顶点,经任意翻转三次后,点与其终结位置的直线距离不可能为( )A .B .C .D .试卷第2页,共8页3、已知为函数的导函数,且,若,则方程有且仅有一个根时,的取值范围是() A .B .C .D .4、以抛物线的一点为直角顶点作抛物线的两个内接,则线段与线段的交点的坐标为() A .B .C .D .5、已知锐角满足,设,则下列判断正确的是() A . B . C .D .6、如图,网格上小正方形的边长为,粗线画出的是某个多面体的三视图,若该多面体的所有顶点都在球表面上,则球的表面积是()A .B .C .D .7、已知的展开式中,系数为有理数的项的个数为()A .B .C .D .试卷第3页,共8页8、执行如图所示的框图,若输出的的值为,则条件框中应填写的是()A .B .C .D .9、已知双曲线方程为,它的一条渐近线与圆相切,则双曲线的离心率为()A .B .C .D .10、甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差的大小关系是()A .B .C .D .11、已知全集,集合,集合,若,则的取值范围是()试卷第4页,共8页A .B .C .D .12、若为纯虚数,则的值为()A .B .C .D .试卷第5页,共8页第II 卷(非选择题)二、填空题(题型注释)13、各项均为正数的数列首项为,且满足,公差不为零的等差数列的前项和为,,且成等比数列设,求数列的前项和__________.14、在平面直角坐标系中,横坐标、纵坐标均为整数的点称为“格点”,如果函数的图象恰好通过个格点,则称函数为“阶格点函数”,下列函数中是“一阶格点函数”的有__________. ①②③④⑤15、如图,是半径为的圆的两条直径,,则的值是__________.16、已知实数满足,在这两个实数之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为__________.三、解答题(题型注释)17、选修4-5:不等式选讲已知函数试卷第6页,共8页(1)求的解集;(2)若对任意的,都存在一个使得,求的取值范围.18、选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数,),曲线的上点对应的参数,将曲线经过伸缩变换后得到曲线,直线的参数方程为(1)说明曲线是哪种曲线,并将曲线转化为极坐标方程;(2)求曲线上的点到直线的距离的最小值.19、已知函数 .(1)若在处,和图象的切线平行,求的值;(2)设函数,讨论函数零点的个数.20、已知抛物线的方程为,点为抛物线上一点,F 为抛物线的焦点,曲线在一点的法线即与该点切线垂直的直线。

(1)若点的法线被抛物线所截的线段最短,求点坐标;(2)任意一条和轴平行的直线交曲线于点,关于在点Q 的法线对称的直线为,直线通过一个定点,求定点坐标.试卷第7页,共8页21、中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料,进入全面勘探时期后,集团按网络点米布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口断井,以节约勘探费用,勘探初期数据资料见下表:出油量(1)~号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值; (2)现准备勘探新井,若通过号并计算出的的值(精确到)与(1)中的值差不超过,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井? (参考公式和计算结果:)(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有口井中任意勘探口井,求勘探优质井数的分布列与数学期望.22、如图所示,五面体中,正的边长为,平面,,且试卷第8页,共8页(1)设与平面所成的角为,,若,求k 的取值范围;(2)在(1)和条件下,当取得最大值时,求平面与平面所成角的余弦值.23、在中,,点在边上,,且.(1)若的面积为,求; (2)若,求.参考答案1、B2、B3、C4、B5、A6、C7、D8、C9、A10、A11、D12、B13、14、②15、16、17、(1)(2)或.18、(1),(2)19、(1)(2)见解析20、(1)见解析(2)21、(1)24(2)使用位置最接近的已有旧井.(3)22、(1)(2)23、(1)(2)或.【解析】1、试题分析:因为成等差数列,所以.又成等比数列,所以(舍去),,所以选.考点:1.等差数列的性质;2.等比数列的性质.2、试题分析:第一次向前翻,第二次向左翻,第三次向后翻,点A在原位置,此时距离为0,故A 正确;第一次向后翻,第二次向右翻,第三次向前翻,点与其终结位置的直线距离为2,C正确;第一次向右翻,第二次向右翻,第三次向右翻,点与其终结位置的直线距离为4,D正确考点:几何体翻转3、所以,令当时,此时方程有且仅有一个根;当时,,函数先减后增,且,所以要使方程有且仅有一个根;需,即,又所以,综上的取值范围是,选C. 点睛:涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.4、设,则,的方程为因为,所以带入上式可得于是在直线上,同理点也在上,因为交点为.故选:.5、解:若锐角满足,则,即;同理可得这与矛盾,故锐角满足,即且,,单调递减,故选:.6、根据三视图知几何体是:三棱锥为棱长为的正方体一部分,直观图如图所示:该多面体的所有顶点都在球,且球心是正方体的中心,由正方体的性质得,球心到平面的距离,由正方体的性质可得,,设的外接圆的半径为,在中,由余弦定理得,,,则,由正弦定理可得,,则,则球的半径,球的表面积. 选C.点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.7、的展开式为,其中,且为整数,整理之后得,要使上市的系数为有理数,则为的倍数,为的倍数,则. 选D.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.8、,故选.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9、方法一:双曲线的渐近线方程为,则,圆的方程,圆心为,所以,化简可得,则离心率.方法二:因为焦点到渐近线的距离为,则有平行线的对应成比例可得知,即则离心率为. 选A.10、根据方差表示数据稳定程度,越稳定方差越小,甲乙丙三人数据中丙集中在6环,乙平均分散,甲分散在两边,所以丙最稳定,方差最小;甲最不稳定,方差最大;所以选A.11、,若,则. 选D.12、法一:,若其为纯虚数,则,解得.法二:因为为纯虚数,设为纯虚数,设(为实数),则则,且,则.选B.13、解:(1),因为各项均为正数,则即则上面个式子相乘得,设的公差,,解之得,,.点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如 (其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.14、①中,当时,不为“一阶格点”函数,故①错误;②中,时,.当时,均为非整数,故只有一个格点,故函数为“一阶格点”函数,故②正确;③中,时,时,不为“一阶格点”函数,故③错误;④中,时,,当时,,故不为“一阶格点”函数,故④错误;⑤中,时,,当时,故不为“一阶格点”函数,故⑤错误.15、,且.16、设五个数分别为,则等差数列的公差 ,则,可设 ,由约束条件画出可行域,令 ,得 ,结合图像可知当经过点时,目标函数有最大值 ,此时有最大值.故本题填.点睛:本题为线性规划问题.掌握常见的几种目标函数的最值的求法:①利用截距的几何意义;②利用斜率的几何意义;③利用距离的几何意义.往往是根据题中给出的不等式,求出的可行域,利用的条件约束,做出图形.数形结合求得目标函数的最值. 17、试题分析:(1)先根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求交集,(2)不等式有解问题一般转化为对应函数最值问题:再利用绝对值三角不等式求最值,最后解不等式,得或.试题解析:解:(1)或或解之得所以不等式的解集为(2)依题意可得所以,解之得或.18、试题分析:(1)先由对应的参数得,解得,再代入得,根据三角函数同角关系:消参数得普通方程,最后利用将曲线的直角坐标方程化为极坐标方程;(2)根据将直线的极坐标方程化为直角坐标方程,再利用参数方程表示点到直线距离公式得,最后利用三角函数有界性求最值.试题解析:解:(1)当,所以曲线的参数方程为(为参数,),有得,带入得,即,化为普通方程为,为椭圆曲线化为极坐标方程为(2)直线的普通方程为,点到直线的方程距离为所以最小值为19、试题分析:(1)根据导数几何意义得解得,(2)按正负讨论函数单调性及值域:当时,在单增,,没有零点; 当时,有唯一的零点;当时,在上单调递减,在上单调递增,;在单增,,所以时有个零点;时有个零点. 试题解析:(1),由,得,所以,即(2)(1)当时,在单增,,故时,没有零点. (2)当时,显然有唯一的零点(3)当时,设,令有,故在上单调递增,在上单调递减,所以,,即在上单调递减,在上单调递增,(当且仅当等号成立)有两个根(当时只有一个根)在单增,令为减函数,故只有一个根.时有个零点;时有个零点;时有个零点;时有个零点;时,有个零点.20、试题分析:(1)先确定抛物线方程:再设切点,利用导数几何意义求切线斜率,得法线斜率,根据点斜式得法线方程,与抛物线方程联立方程组,结合韦达定理及弦长公式可得法线被抛物线截得的线段的长度,最后利用导数求函数最值,确定切点坐标,(2)设直线:,则根据对称求出直线方程:,令得,即直线通过定点.试题解析:解:(1)把代入抛物线方程,解得,抛物线方程为,设切点为,显然点不为原点,在点处的法线方程为,即,消元得,法线被抛物线截得的线段的长度为,设为偶函数,不妨设,所以当所以当,故在减函数,在增函数,所以当时,法线被抛物线截得的线段最短.(2)设直线:,其关于法线对称的直线为,设与抛物线的交点交轴的点为,切线交轴的点为,由于平行于轴,且与关于法线对称,由此可以推出,因此为等腰三角形,于是,从而,化简得,所以,对称直线都过定点.21、试题分析:(1)先求平均值,再根据求,再求当时对应函数值为的预报值;(2)先求平均值,再根据求,利用求,最后计算比值差,根据结果确定选择.(3)根据定义确定这口井是优质井,因此随机变量取值为,再利用组合求对应概率,列表可得分布列,最后根据数学期望公式求期望.试题解析:(Ⅰ)利用前5组数据得到,回归直线方程为,当时,的预报值为24.(Ⅱ),,即,均不超过,使用位置最接近的已有旧井.(Ⅲ)由题意,这口井是优质井,这两口井是非优质井,勘察优质井数的可能取值为,,可得的分布列为:.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.22、试题分析:(1)先根据线面垂直确定线面角:取中点,则由正三角形性质得,又由面,得,因此面,所以为与平面所成角,再根据,由,求k的取值范围;(2)先作二面角平面角:延长交与点,计算易得,根据三垂线定理可知,即为平面与平面所成的角;最后利用直角三角形求余弦值为.试题解析:解:方法一:(Ⅰ)取中点,连结,由为正三角形,得,又面,则,可知面,所以为与平面所成角,,因为,得,得.(Ⅱ)延长交与点,连,可知平面.由,且,又因为从而,又面,由三垂线定理可知,即为平面与平面所成的角;则.方法二:(Ⅰ)如图以为坐标原点,为轴,垂直于的直线为轴,建立空间直角坐标系(如图),则设,取的中点,则,易知,的一个法向量为,由题意,由,则,得(Ⅱ)由(Ⅰ)知,最大值为,则当时,设平面法向量为,则,取,又平面法向量为,,平面与平面所成角余弦值为.23、试题分析:(1)由三角形面积公式求出.再由余弦定理求.(2)由正弦定理,有,,联立消CD得,解得利用诱导公式得或.试题解析:解:(1)因为,即,又,所以.在中,由余弦定理得,,解得. (2)在中,,可设,则,又,由正弦定理,有,所以.在中,,由正弦定理得,,即,化简得,于是,因为,所以,所以或,解得或,故或.。

相关文档
最新文档