运筹学实例分析及lingo求解

合集下载

运筹学实验报告lingo

运筹学实验报告lingo

二. 实验题目
1、求解线性规划:
max
z x 1 2x
2
2x 1 5x 2 12 s.t. x 1 2x 2 8 x , x 0 2 1
并对价值系数、右端常量进行灵敏度分析。
2、已知某工厂计划生产I,II,III三种产品,各 产品需要在A、B、C设备上加工,有关数据如下:
Allowable Decrease:允许减少量
Current RHS :当前右边常数项
结论1:
该线性规划问题的最优解为:X*=(35,10,0)T 最优值为:z*=215
结论2:
c1=5 c1在(4,8)内原最优解不变,但最优值是要变的 c2=4 c2在(2.7,5)内原最优解不变,但最优值是要变的 c3=3 c3在(-∞ ,7)内原最优解,最优值都是不变的 b1=45 b1在(40, 50)内原最优基不变,但最优解和最优值是要变的 b2=80 b2在(67.5, 90)内原最优基不变,但最优解和最优值是要变的 b3=90 b3在(65, ∞ )内原最优基不变,但最优解和最优值是要变的
Row 1 2 3 4 Slack or Surplus 215.0000 0.000000 0.000000 25.00000 Dual Price 1.000000 3.000000 1.000000 0.000000
激活灵敏度计算功能
法一:打开command window,输入range;
法二:LINGO——options —— General Solver —Dual Computations——Prices & Ranges
LINGO
Outline
一.熟悉LINDO软件的灵敏度分析功能

运用lingo解决问题的例子

运用lingo解决问题的例子

运用lingo解决问题的例子
以下是一个运用LINGO解决实际问题的例子:
问题描述:
某公司生产A、B两种产品,已知生产1单位A产品需要3单位原料1和2单位原料2,同时产生2单位废料;生产1单位B产品需要4单位原料1和2单位原料2,同时产生3单位废料。

该公司有10单位原料1和8单位原料2,同时最多可以产生10单位废料。

请为公司制定一个生产计划,使得A、B两种产品的产量最大。

模型建立:
1. 设x1为A产品的产量,x2为B产品的产量。

2. 设原料1的消耗为3x1 + 4x2,原料2的消耗为2x1 + 2x2,废料产生为2x1 + 3x2。

3. 原料1的限制条件为3x1 + 4x2 <= 10,原料2的限制条件为2x1 +
2x2 <= 8,废料的限制条件为2x1 + 3x2 <= 10。

4. 目标函数为max x1 + x2,即最大化A、B两种产品的产量之和。

LINGO代码:
SETS:
I / 1 /;
J / 1,2 /;
K / I,J /;
PARAMETERS:
C(K) / 3I + 4J, 2I + 2J, 2I + 3J /; D(I) / 10 /;
E(I) / 8 /;
F(I) / 10 /;
VARIABLES:
X(K) / >=0 /;
MAXIMIZE Z: X(1) + X(2); SUBJECT TO:
3X(1) + 4X(2) <= D(1);
2X(1) + 2X(2) <= E(1);
2X(1) + 3X(2) <= F(1); ENDSETS
END。

附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2

附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2

附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。

根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元,每公斤A2获利16元。

现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。

试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?数学模型:设每天用x1桶牛奶生产A1 ,用x2桶牛奶生产A2目标函数:设每天获利为z元。

x1桶牛奶可生产3x1公斤A1,获利24*3x,x2桶牛奶可生产4*x2公1斤A2,获利16*4x2,故z=72x1+64x2约束条件:原料供应:生产A1、A2的原料(牛奶)总量不超过每天的供应50桶,即x1+x2≤50劳动时间:生产A1、A2的总加工时间不超过每天正式工人总的劳动时间480小时,即12x1+8x2≤480设备能力:A1的产量不得超过设备甲每天的加工能力100小时,即3x1≤100≥0非负约束:x1、x2均不能为负值,即x1≥0,x2综上所述可得max z=72x1+64x2s.t.x1+x2≤5012x1+8x2≤4803x1≤100x1≥0,x2≥0显然,目标函数和约束条件都是线性的,这是一个线性规划(LP),求出的最优解将给出使净利润最大的生产计划,要讨论的问题需要考虑参数的变化对最优解和影响,一般称为敏感性(或灵敏度)分析。

LINGO求解线性规划用LINGO求解线性规划时,首先在LINGO软件的模型窗口输入一个LP模型,模型以MAX或MIN 开始,按线性规划问题的自然形式输入(见下面例子所示)。

用LINGO软件求解目标规划问题

用LINGO软件求解目标规划问题

10 x1 + 15 x2 + d1 d1+ = 40 + x1 + x2 + d 2 d 2 = 10 s.t. d1+ = 0 x1 , x2 , d , d + ≥ 0, j = 1,2 j j
用LINGO求解,得最优解 d = d 具体LINGO程序及输出信息如下:LINGO程序为(参见图 4.4.4):
+ 1
=0, 1
d2 = 6 ,最优值为6.
精品课程《运筹学》
图4.4.4
精品课程《运筹学》
LINGO运算后输出为(参见图4.4.5):
图4.4.5 精品课程《运筹学》
d 对应于第三优先等级,将d1+ =0, 2 = 6 作为约束条件, 建立线性规划问题:
min z = d 3 10 x1 + 15 x2 + d1 d1+ = 40 + x1 + x2 + d 2 d 2 = 10 x2 + d 3 d 3+ = 7 s.t. d1+ = 0, d 2 = 6 + x1 , x2 , d j , d j ≥ 0, j = 1,2,3
10 x1 + 15 x 2 + d 1 d 1+ = 40 + x1 + x 2 + d 2 d 2 = 10 s.t. x 2 + d 3 d 3+ = 7 x1 , x 2 , d , d + ≥ 0, j = 1,2,3 j j
精品课程《运筹学》
解:首先对应于第一优先等级,建立线性规 划问题:
x1 = 4, x2 = 0, d1+ = d1 = 0 , 用LINGO求解,得最优解是

Lingo软件在运筹学中的应用

Lingo软件在运筹学中的应用

Lingo软件在运筹学中的应用Lingo软件在运筹学中的应用随着信息技术的不断发展,计算机软件在各个领域中的应用越来越广泛,尤其是在运筹学领域。

运筹学是研究在复杂决策环境下,如何高效地进行决策的学科。

Lingo软件作为一款运筹学建模和求解工具,为运筹学的研究和应用带来了很大的便利和效率。

本文将介绍Lingo软件在运筹学中的应用,并通过实例来说明其实际效果。

首先,Lingo软件在线性规划问题中的应用非常广泛。

线性规划是一种数学优化技术,用于在给定的约束条件下最大化或最小化线性目标函数。

Lingo软件提供了直观的图形用户界面,使得用户可以轻松地建立线性规划模型,并通过内置的求解器进行求解。

用户只需输入决策变量、约束条件和目标函数,Lingo就能自动找到最优解。

这对于一些复杂的决策问题,如生产规划、资源调度和供应链优化等,提供了很大的帮助。

其次,Lingo软件在整数规划和混合整数规划问题中也有着广泛的应用。

整数规划是在线性规划的基础上,将决策变量限制为整数解的优化问题。

混合整数规划在整数规划的基础上,允许部分决策变量取非整数解。

这种类型的决策问题在实际中很常见,如生产工作安排、旅行路线规划和仓储优化等。

Lingo软件提供了强大的分支定界算法和割平面算法,能够有效地求解整数规划和混合整数规划问题。

用户只需调整问题的参数,Lingo就能快速找到最优解,大大减少了优化问题的求解时间。

此外,Lingo软件还可以用于非线性规划问题的建模和求解。

非线性规划是在线性规划的基础上,将决策变量限制为非线性函数的优化问题。

非线性规划在许多实际问题中都有着广泛的应用,如投资组合优化、工程设计和市场定价等。

Lingo软件提供了多种求解算法,如牛顿法、拟牛顿法和遗传算法等,能够有效地求解非线性规划问题。

用户只需选择合适的算法和调整参数,Lingo就能找到最优解或是近似最优解。

最后,Lingo软件还具有灵活的扩展性和集成性。

它可以与其他优化软件和模拟软件进行集成,提供更强大的求解能力和模型分析能力。

运筹学lingo实验报告

运筹学lingo实验报告

运筹学lingo实验报告
运筹学lingo实验报告
一、引言
实验目的
本次实验旨在探索运筹学lingo在解决实际问题中的应用,了解lingo的基本使用方法和解题思路。

实验背景
运筹学是一门研究决策和规划的学科,其能够帮助我们优化资源分配、解决最优化问题等。

lingo是一种常用的运筹学工具,具有强大的求解能力和用户友好的界面,被广泛应用于各个领域。

二、实验步骤
准备工作
•安装lingo软件并激活
•熟悉lingo界面和基本功能
确定问题
•选择一个运筹学问题作为实验对象,例如线性规划、整数规划、网络流等问题
•根据实际问题,使用lingo的建模语言描述问题,并设置变量、约束条件和目标函数
运行模型
•利用lingo的求解器,运行模型得到结果
结果分析
•分析模型求解结果的合理性和优劣,对于不符合要求的结果进行调整和优化
结论
•根据实验结果,总结lingo在解决该问题中的应用效果和局限性,对于其他类似问题的解决提出建议和改进方案
三、实验总结
实验收获
•通过本次实验,我熟悉了lingo软件的基本使用方法和建模语言,增加了运筹学领域的知识和实践经验。

实验不足
•由于时间和条件的限制,本次实验仅涉及了基本的lingo应用,对于一些复杂问题的解决还需要进一步学习和实践。

•在以后的学习中,我将继续深入研究lingo的高级功能和应用场景,以提升运筹学问题的求解能力。

以上就是本次实验的相关报告内容,通过实验的实践和总结,我对lingo在运筹学中的应用有了更深入的理解,为今后的学习和研究奠定了基础。

运筹学实例分析及lingo求解

运筹学实例分析及lingo求解

运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。

各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。

解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。

ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。

目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai;Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000C( W1, V8) 9.000000 0.000000 C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000X( W1, V4) 0.000000 7.000000 X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000X( W6, V8) 0.000000 3.000000 Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。

实验二、利用Lingo求解整数规划及非线性规划问题

实验二、利用Lingo求解整数规划及非线性规划问题

建立数学模型
根据问题要求,建立相应的数 学模型,包括变量、约束条件 和目标函数等。
设置求解参数
根据问题类型和规模,设置合 适的求解参数,如求解方法、 迭代次数等。
分析结果
对求解结果进行分析,验证模 型的正确性和可行性。
05 整数规划问题求解实例
问题描述
问题背景
本实验将通过一个具体的整数规划问题,展示如 何利用LINGO软件进行求解。该问题涉及到生产 计划优化,目标是最大化利润,同时满足一系列 约束条件。
非线性规划问题在数学、经济、工程等领域有广泛应用,是 优化理论的重要分支。
非线性规划问题的分类
01
按照目标函数的性质,非线性规划问题可以分为凸规
划和凹规划。
02
按照约束条件的性质,非线性规划问题可以分为无约
束、有界约束和等式约束三种类型。
03
按照决策变量的个数,非线性规划问题可以分为单变
量和多变量规划。
定义约束条件
使用LINGO的FROM命令定义约束条件,例 如FROM ... >= ... (P1,P2,...,Pn)。
LINGO求解过程及果分析
求解过程
在LINGO中输入模型,选择求解器类型(整数求解器或线性求解器),设置参数,运行求解过程。
结果分析
查看求解结果,包括最优解、最优值、松弛解等信息。对结果进行解释和评估,分析其对实际问题的 指导意义。
07 实验总结与展望
实验收获与体会
掌握整数规划和非线性规划的基本概念和求解方法
通过实验,我深入了解了整数规划和非线性规划的基本概念和求解方法,包括数学模型 建立、约束条件处理、目标函数处理等。
熟练使用LINGO软件
通过实验,我掌握了LINGO软件的基本操作和参数设置,能够利用LINGO软件求解整 数规划和非线性规划问题。

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。

•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。

实验目的•了解运筹学的基本原理和应用。

•掌握LINGO软件的使用方法。

•运用LINGO进行优化建模和求解实际问题。

实验内容1.使用LINGO进行线性规划的建模和求解。

2.使用LINGO进行整数规划的建模和求解。

3.使用LINGO进行非线性规划的建模和求解。

4.使用LINGO进行多目标规划的建模和求解。

实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行建模,设定目标函数和约束条件。

•运行LINGO求解线性规划问题。

2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。

•使用LINGO进行整数规划的建模和求解。

3. 非线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行非线性规划的建模和求解。

4. 多目标规划•确定多个目标函数和相应的权重。

•使用LINGO进行多目标规划的建模和求解。

实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。

结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。

•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。

讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。

•提出对于实验内容或方法的建议和改进方案。

参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。

致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。

以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。

实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。

用lingo求解规划问题实例

用lingo求解规划问题实例

用lingo求解规划问题实例用Lingo求解规划问题实例问题一:某公司打算向它的3个营业区增设6个销售店,每个营业区至少增设一个。

从各区赚取的利润与增设的销售店个数有关,其数据如下表所示。

试求各区应分配几个增设的销售店,才能使总利润最大。

销售点增加数 0 1 2 3 4A区利润/万元 100 200 280 330 340B区利润/万元 200 210 220 225 230C区利润/万元 150 160 170 180 200分析:要设置集合zone/A,B,C/,表示三个地区。

因为获得的利润与地区和各地的销售点增加数均相关,所以可以仿照运输模型,用number/1..4/表示每个地区可选的销售点增加数,1,在i地区新增j个销售点,然后用一个派生集links(zone,number):c,profit,定义 c,,ij0,其他,profit(i,j)为在i地区新增j个销售点能获得的利润。

可写出约束条件为:4, c,1i,1,2,3,ijj,1c,0或1 ij34cj,6 ,,ijij,,11所求函数为max=@sum(links:c*profit);Lingo程序如下:model:sets:zone/A,B,C/; !A,B,C三个地区;number/1..4/; !各地区可选择新建的销售点数目,可选1~4中的一个数,通过links把zone和number联系起来;links(zone,number):c,profit; !若在i地区新建j个销售点,则c(i,j)=1,否则c(i,j)=0.profit(i,j)表示在i地区新建j个销售点的利润; endsets data:profit=200 280 330 340210 220 225 230160 170 180 200;enddatamax=@sum(links:c*profit);@for(zone(I):@sum(number(J):c(I,J))=1); !对于每一个地区,新建销售点的数目是一定的,c的和为1;@sum(zone(I):@sum(number(J):c(I,J)*J))=6; !三个地区新建的销售点总数为6;@for(links(i,j):@bin(c(i,j))); !每一个c(i,j)只能取0或1;end用Lingo求解,结果如下:Global optimal solution found.Objective value: 710.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostC( A, 1) 0.000000 -200.0000C( A, 2) 0.000000 -280.0000C( A, 3) 1.000000 -330.0000C( A, 4) 0.000000 -340.0000C( B, 1) 1.000000 -210.0000C( B, 2) 0.000000 -220.0000C( B, 3) 0.000000 -225.0000C( B, 4) 0.000000 -230.0000C( C, 1) 0.000000 -160.0000C( C, 2) 1.000000 -170.0000C( C, 3) 0.000000 -180.0000C( C, 4) 0.000000 -200.0000 则在A,B,C区域应分别新增3,1,2个销售点,可获得的最大利润为710万元。

运筹学的应用简介及实例(lindo,lingo,ahp)

运筹学的应用简介及实例(lindo,lingo,ahp)

运筹学的应用简介及实例(lindo,lingo,ahp)一.运筹学可以用于物流中心选址:配送中心合理选址的目的是为了提高物流企业的服务质量,最大限度地增加物流企业的经济效益。

科学合理的选址不仅能够减少货物运输费用,大幅度地降低运营成本,而且能为客户带来方便快捷的服务。

二.运筹学可以用于路线选择:利用运筹学中的图论和线性规划方法,对已有的空运、水运、公路运输、管道运输、铁路运输组成的交通网,根据不同的决策目标制定不同的调运方案,可以是最短时间的运输路线、最少费用的运输路线或是最大运输量最低运费的运输线路等,从而达到降低物流成本的目的。

三.运筹学中排队论在物流中应用:排队论主要研究具有随机性的拥挤现象,在物流中有许多问题涉及,诸如机场跑道设计和机场设施数量问题, 如何才能既保证飞机起降的使用要求, 又不浪费机场资源又如码头的泊位设计和装卸设备的购置问题, 如何达到既能满足船舶到港的装卸要求, 而又不浪费港口资源等等。

四.运筹学中库存论在物流中应用:库存论主要是研究物资库存策略的理论, 即确定物资库存量、补货频率和一次补货量。

合理的库存是生产和生活顺利进行的必要保障, 可以减少资金的占用, 减少费用支出和不必要的周转环节, 缩短物资流通周期, 加速再生产的过程等。

在物流领域中的各节点如工厂、港口、配送中心、物流中心、仓库、零售店等都或多或少地保有库存。

五.运筹学中对策论在物流中应用:对策论研究有利害冲突的双方在竞争性的活动中是否存在自己制胜对方的最优策略, 以及如何找出这些策略等问题。

在这些问题中, 把双方的损耗用数量来描述, 并找出双方最优策略。

对策论的发展, 考虑有多方参加的竞争活动, 在这些活动中, 竞争策略要通过参加者多次的决策才能确定。

参考文献:[1] 左元斌.运筹学在物流配送中心的应用研究[J].商场现代化,2006(458):125-127.[2] 李宇鸣.浅谈运筹学在物流管理中应用与发展[J].吉林工商学报,2007(4):55-56.[3] 田进波.运筹学在管理物流管理中的应用[J].石油工程建设,2010(36):153-155.LINDO 求解目标规划:题目:一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。

运筹学lingo的实验

运筹学lingo的实验
9 25.64103 0.000000
得出Min Z=32.4359;
【实验结论】(结果)
最佳采购方案为采购第四种饲料39.74kg,第五种饲料25.64,其他饲料不采购,此时费用最省,为32.4359元
【实验小结】(收获体会)
本次实验学会了用Matlab和Lingo软件求解线性规划问题,通过这次实验,加深了对课本知识的理解和对运筹学实际运用的认识。对进一步学习运筹学和提高对运筹学的学习兴趣都有帮助。
Variable Value Reduced Cost
X1 0.000000 0.5961538E-01
X2 0.000000 0.5935897
X3 0.000000 0.3525641
X4 39.74359 0.000000
X5 25.64103 0.000000
Row Slack or Surplus Dual Price
【实验环境】
计算机,Matlab软件,lingo软件,运筹学软件
二、实验内容:
【实验方案】
通过对实际问题的具体分析,建立线性规划模型,再利用MATLAB中的线性规划函数进行求解.
【实验过程】(实验步骤、记录、数据、分析)
实验(一):
某饲养场饲养动物出售,设每头动物每头至少需700g蛋白质、30g矿物质、100mg维生素。现有五种饲料可供选用,各种饲养每kg营养成分含量及单价如表:
1 32.43590 -1.000000
2 0.000000 -0.4358974E-01
3 62.30769 0.000000
4 0.000000 -0.1923077E-01
5 0.000000 0.000000
6 0.000000 0.000000

用lingo求解LP,ILP问题实验报告(一)

用lingo求解LP,ILP问题实验报告(一)

桂林理工大学理学院运筹学上机报告实验一实验名称用lingo求解LP,ILP问题实验时间2012年月日姓名班级会计09-1班学号成绩一、实验目的二、实验内容与步骤三、实验程序四、实验结果五、实验结果的分析六、实验出现的问题一、实验目的学会用lingo求解LP,ILP问题二、实验内容与步骤进一步熟悉基解的概念;掌握变量定界函数;能够利用lingo求解LP,ILP问题。

三、实验程序(LP1)model:title会计09-1班;max = -3*x1 - x2 + 5*x3 + 2*x4;x1+5*x2+2*x3-x4<2;2*x1-x2+4*x3+3*x4<5;6*x1+2*x2+x3+3*x4<3;End(LP2)model:title会计09-1班3090825;min = x1 - 3*x2 - 2*x3;3*x1-x2+2*x3<7;-2*x1+4*x2<12;4*x1+3*x2+8*x3<10;end(LP3)model:title会计09-1班3090825;min = 2*x1 + 3*x2 + x3;x1+4*x2+2*x3>8;3*x1+2*x3>6;x1+8*x2+x3>18;end(LP4)model:title会计09-1班309082511;max = 3*x1 + 4*x2;3*x1+4*x2<8;x2<6;@free(x1);end四、实验结果(LP1)Global optimal solution found.Objective value: 5.900000Infeasibilities: 0.000000Total solver iterations: 3Model Title: 会计09-1班3090825Variable Value Reduced Cost X1 0.000000 5.500000 X2 0.000000 3.600000 X3 1.100000 0.000000 X4 0.2000000 0.000000Row Slack or Surplus Dual Price1 5.900000 1.0000002 0.000000 0.70000003 0.000000 0.90000004 1.300000 0.000000(LP2) Global optimal solution found. Objective value: -9.250000 Infeasibilities: 0.000000 Total solver iterations: 2Model Title: 会计09-1班3090825Variable Value Reduced Cost X1 0.000000 0.8750000 X2 3.000000 0.000000 X3 0.1250000 0.000000Row Slack or Surplus Dual Price1 -9.250000 -1.0000002 9.750000 0.0000003 0.000000 0.56250004 0.000000 0.2500000(LP3) Global optimal solution found. Objective value: 8.625000 Infeasibilities: 0.000000 Total solver iterations: 2Model Title: 会计09-1班3090825Variable Value Reduced Cost X1 0.000000 0.6875000 X2 1.875000 0.000000 X3 3.000000 0.000000Row Slack or Surplus Dual Price1 8.625000 -1.0000002 5.500000 0.0000003 0.000000 -0.31250004 0.000000 -0.3750000 (LP4) Global optimal solution found. Objective value: 8.000000 Infeasibilities: 0.000000 Total solver iterations: 0Model Title: 会计09-1班3090825Variable Value Reduced Cost X1 2.666667 0.000000 X2 0.000000 0.000000Row Slack or Surplus Dual Price1 8.000000 1.0000002 0.000000 1.0000003 6.000000 0.000000(ILP5) Global optimal solution found. Objective value: -3.000000 Objective bound: -3.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0Model Title: 会计09-1班30908251Variable Value Reduced Cost X1 2.000000 -1.000000 X2 1.000000 -1.000000Row Slack or Surplus Dual Price1 -3.000000 -1.0000002 5.000000 0.0000003 1.000000 0.0000004 1.000000 0.000000(ILP6) Global optimal solution found. Objective value: 2.000000 Objective bound: 2.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0Model Title: 会计09-1班3090825Variable Value Reduced Cost X1 0.000000 4.000000 X2 0.000000 3.000000 X3 1.000000 2.000000Row Slack or Surplus Dual Price1 2.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 0.000000 0.000000(ILP7) Global optimal solution found.Objective value: 85.00000 Objective bound: 85.00000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 2Model Title: 会计09-1班3090825Variable Value Reduced Cost X1 3.000000 -15.00000X2 2.000000 -20.00000Row Slack or Surplus Dual Price1 85.00000 1.0000002 1.000000 0.0000003 1.000000 0.000000五、实验结果的分析六、实验出现的问题运用lingo求解可从Global Opt知7个问题得到的都是全局最优解。

lingo软件在运输问题中的应用

lingo软件在运输问题中的应用

172科技创新导报 Science and Technology Innovation Herald2008 NO.36Science and Technology Innovation Herald管 理 科 学随着社会经济的发展,运输业在经济生活中的地位越来越重要,国内国际的物流、人流最终都离不开具体的运输环节。

在社会产品的最终成本中,运输成本约占10%-30%,所以,开展合理运输,节约运输成本,对于降低社会产品的总成本起着重要作用。

因此,运输企业需要在众多运输方案中选择总运费最小的。

这样的问题,在物流运筹学中称为运输问题。

在求解运输问题方面,我们通常介绍的是表上作业法。

这是一种手工做法。

当输出地个数M,和输入地个数N比较大时,这种手工的表上作业法就显得很繁琐了,这时我们要处理的是至少M+1行N+1列的表格。

因此,我们考虑用计算机来处理这个问题。

可以用来求解运输问题的软件常见的有,lingo、lindo、MATLAB、office中的excel等。

他们各有特色,今天,我就通过一个实例来介绍lingo软件在运输问题中的应用。

 傲来公司有三个仓库:H1、H2、H3,A商品在这三仓库中的库存分别为100吨,95吨,110吨;另知有四家大型超市(S1、S2、S3、S4)需要该公司的A商品,他们的需求量分别是55吨,80吨,90吨,75吨 。

我们面临的问题是如何利用现有库存资源满足这四家超市的需求,并使总运输成本最低。

从三个仓库向四家超市送货的运输成本价(元/吨)如表1所示。

表1该运输问题的目标很明了,就是总运费最小化。

所以我们令Xij表示从仓库Hi到超市Sj运送的商品吨数。

从而有运输问题的数学模型:目标函数:MIN=25*X11+20*X12….+20*X33+22*X34库存约束:∑X1j<=100;∑X2j<=95;∑X3j<=110;j=1,2,3,4需求约束:∑Xi1=55;∑Xi2=80;∑Xi3=90;∑Xi4=75;i=1,2,3非负约束:Xij>=0用lingo求解的过程如下:model:!3仓库,4超市运输问题模型;sets:h/h1 h2 h3/:capacity;s/s1 s2 s3 s4/:demand;links(h,s):cost,x;endsets!目标函数;min=@sum(links(i,j):cost(i,j)*x(i,j));!需求函数;@for(s(j):@sum(h(i):x(i,j))=demand(j));!供用约束;@for(h(i):@sum(s(j):x(i,j))<=capacity(i));!数据段;data:capacity=100 95 110;demand=55 80 90 75;cost=25 20 22 19 20 18 11 20 15 1820 22;enddata在lingo8.0,windows2000环境中运行结果如下:Global optimal solution found.Objective value: 4720.000Total solver iterations: 4Variable Value Reduced CostCAPACITY( H1)100.0000 0.000000CAPACITY( H2) 95.0000 0.000000CAPACITY( H3)110.0000 0.000000DEMAND( S1) 55.00000 0.000000DEMAND( S2) 80.00000 0.000000DEMAND( S3) 90.00000 0.000000DEMAND( S4) 75.00000 0.000000COST( H1, S1)25.00000 0.000000COST( H1, S2)20.00000 0.000000COST( H1, S3)22.00000 0.000000COST( H1, S4)19.00000 0.000000COST( H2, S1)20.00000 0.000000COST( H2, S2)18.00000 0.000000COST( H2, S3)11.00000 0.000000COST( H2, S4)20.00000 0.000000COST( H3, S1)15.00000 0.000000COST( H3, S2)18.00000 0.000000COST( H3, S3)20.00000 0.000000COST( H3, S4)22.00000 0.000000X( H1, S1) 0.000000 8.000000X( H1, S2) 20.00000 0.000000X( H1, S3) 0.000000 9.000000X( H1, S4) 75.00000 0.000000X( H2, S1) 0.000000 5.000000X( H2, S2) 5.000000 0.000000X( H2, S3) 90.00000 0.000000X( H2, S4) 0.000000 3.000000X( H3, S1) 55.00000 0.000000X( H3, S2) 55.00000 0.000000X( H3, S3) 0.000000 9.000000X( H3, S4) 0.000000 5.000000Row Slack or Surplus Dual Price1 4720.000 -1.0000002 0.000000 -17.000003 0.000000 -20.000004 0.000000 -13.000005 0.000000 -19.000006 5.000000 0.0000007 0.000000 2.0000008 0.000000 2.000000该结果显示最低运费为4720元,最优运输方案是仓库1向超市2供货20吨,仓库1向超市4供货75吨,仓库2向超市2供货5吨,仓库2向超市3供货90吨,仓库3向超市1供货55吨,仓库3向超市2供货55吨。

运筹学上机实践报告(LINGO软件)

运筹学上机实践报告(LINGO软件)

Southwest university of science and technology实验报告LINGO软件在线性规划中的运用学院名称环境与资源学院专业名称采矿工程学生姓名学号指导教师陈星明教授二〇一五年十一月实验LINGO软件在线性规划中的运用实验目的掌握LINGO软件求解线性规划问题的基本步骤,了解LINGO软件解决线性规划问题的基本原理,熟悉常用的线性规划计算代码,理解线性规划问题的迭代关系。

实验仪器、设备或软件电脑,LINGO软件实验内容1.LINGO软件求解线性规划问题的基本原理;2.编写并调试LINGO软件求解线性规划问题的计算代码;实验步骤1.使用LINGO计算并求解线性规划问题;2.写出实验报告,并浅谈学习心得体会(线性规划的基本求解思路与方法及求解过程中出现的问题及解决方法)。

实验过程有一艘货轮,分为前、中、后三个舱位,它们的容积与允许载重量如下表所示。

现有三种商品待运,已知有关数据列于下表中。

又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。

具体要求前、后舱分别与中舱之间的载重量比例偏差不超过15%,前、后舱之间不超过10%。

问货轮应装载A、B、C各多少件,运费收入为最大?试建立这个问题的线性规首先分析问题,建立数学模型:确定决策变量假设i=1,2,3分别代表商品A、B、C,8用j=1,2,3分别代表前、中、后舱,设决策变量x ij为装于j舱位的第i种商品的数量(件)。

确定目标函数商品A 的件数为:商品B 的件数为:商品A 的件数为:为使运费最高,目标函数为:确定约束条件前、中、后舱位载重限制为:前、中、后舱位体积限制为:A 、B 、C 三种商品数量的限制条件:各舱最大允许载重量的比例关系构成的约束条件:且决策变量要求非负,即x ij ≥0,i=1,2,3;j=1,2,3。

综上所述,此问题的线性规划数学模型为:111213x x x ++212223x x x ++313233x x x ++()()()111213212223313233 1000700600Max Z x x x x x x x x x =++++++++112131122232132333865200086530008651500x x x x x x x x x ++≤++≤++≤112131122232132333105740001057540010571500x x x x x x x x x ++≤++≤++≤1112132122233132336001000800x x x x x x x x x ++≤++≤++≤1121311222321323331222321121311323338x 6x 5x 22(10.15)(1+0.15)38x 6x 5x 38x 6x 5x 11(10.15)(1+0.15)28x 6x 5x 28x 6x 5x 44(10.10)(1+0.10)38x 6x 5x 3++-≤≤++++-≤≤++++-≤≤++()()()111213212223313233112131122232132333112131122232132333 1000700600865200086530008651500105740001057540010571500Max Z x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++++≤++≤++≤++≤++≤++≤x ij ≥0,i=1,2,3;j=1,2,3。

LINDO及LINGO解运筹学问题(数学规划方面)

LINDO及LINGO解运筹学问题(数学规划方面)

LINDO、LINGO入门教程要学好用这两个软件最好的办法就是学习他们自带的HELP文件。

下面拟举数例以说明这两个软件的最基本用法(例子均选自张莹《运筹学基础》)。

例1.(选自《运筹学基础》P54.汽油混合问题,线性规划问题)一种汽油的特性可用两个指标描述:其点火性用“辛烷数”描述,其挥发性用“蒸汽压力”描述。

某炼油厂有四种标准汽油,设其标号分别为1,2,3,4,其特性及库存量列于下表1中,将上述标准汽油适量混合,可得两种飞机汽油,某标号为1,2,这两种飞机汽油的性能指标及产量需求列于表2中。

问应如何根据库存情况适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。

表11107.57.11*10^(-2) 380000293.011.38*10^(-2) 262200387.0 5.69*10^(-2) 4081004108.028.45*10^(-2) 130100(1 g/cm^2=98Pa)表21>=91<=9.96*10^(-2) 越多越好2>=100<=9.96*10^(-2) >=250000建模过程略(详见《运筹学基础》P54—55)目标函数:max z=x1+x2+x3+x4约束条件:x5+x6+x7+x8>=250000x1+x5<=380000x2+x6<=265200x3+x7<=408100x4+x8<=1301002.85x1-1.42x2+4.27x3-18.49x4>=02.85x5-1.42x6+4.27x7-18.49x8>=016.5x1+2.0x2-4.0x3+17x4>=07.5x5-7.0x6-13.0x7+8.0x8>=0xj>=0(j=1,2 (8)下面我们就用LINDO来解这一优化问题。

输入语句:max(不区分大小写) x1+x2+x3+x4ST(大写或写subject to)x5+x6+x7+x8>=250000x1+x5<=380000x2+x6<=265200x3+x7<=408100x4+x8<=1301002.85x1-1.42x2+4.27x3-18.49x4>=02.85x5-1.42x6+4.27x7-18.49x8>=016.5x1+2.0x2-4.0x3+17x4>=07.5x5-7.0x6-13.0x7+8.0x8>=0end然后再按运算符键即可得结果。

利用Lingo解一个具体的运输问题例子

利用Lingo解一个具体的运输问题例子

1、 实验目的和任务1.1. 进一步掌握Lingo 编程操作;1.2通过实验进一步掌握运筹学运输问题的建模以及求解过程,提高学生分析问题和解决问题能力。

2、 实验仪器、设备及材料计算机、Lingo3、 实验内容运输问题问题P271设有某种物资需要从m 个产地12,,...,m A A A 运到n 个销地12,,...,n B B B ,其中每个产地的生产量为12,,...,m a a a ,每个销地的需求量为12,,...,n b b b 。

设从产地i A 到销地j B 的运费单价为(1,2,...,,1,2,...,),ij c i m j n ==,问如何调运可使总运费最少?3个产地4个销地的运输问题建模决策变量:决策变量就是产地i A 到销地j B 的运量ij x目标函数:11min m nij ij i j z c x ===∑∑,约束条件:第i 个产地的运出量应小于或等于该地的生产量,即1,1,2,...,.n ij i j xa i m =≤=∑第j 个销地的运入量应等于该地的需求量,即1,1,2,....m ij j i xb j n ===∑求解过程编写模型程序:model :! 3 Warehouse,4 Customer Transportation Problem;sets :Warehouse/1..3/:a;Customer/1..4/:b;Routes(warehouse,customer):c,x;endsets!here are the parameters;data :a=30,25,21;b=15,17,22,12;c=6,2,6,7,4,9,5,3,8,8,1,5;enddata! The objective;[obj] min =@sum (routes:c*x);!The supply constraints;@for (warehouse(i):[sup]@sum (customer(j):x(i,j))<=a(i));!The demand constraints;@for (customer(j):[dem] @sum (warehouse(i):x(i,j))=b(j));end计算结果:Global optimal solution found.Objective value: 161.0000Total solver iterations: 6Variable Value Reduced CostA( 1) 30.00000 0.000000A( 2) 25.00000 0.000000A( 3) 21.00000 0.000000B( 1) 15.00000 0.000000B( 2) 17.00000 0.000000B( 3) 22.00000 0.000000C( 1, 1) 6.000000 0.000000C( 1, 2) 2.000000 0.000000C( 1, 3) 6.000000 0.000000C( 1, 4) 7.000000 0.000000C( 2, 1) 4.000000 0.000000C( 2, 2) 9.000000 0.000000C( 2, 3) 5.000000 0.000000C( 2, 4) 3.000000 0.000000C( 3, 1) 8.000000 0.000000C( 3, 2) 8.000000 0.000000C( 3, 3) 1.000000 0.000000C( 3, 4) 5.000000 0.000000X( 1, 1) 2.000000 0.000000X( 1, 2) 17.00000 0.000000X( 1, 3) 1.000000 0.000000X( 1, 4) 0.000000 2.000000X( 2, 1) 13.00000 0.000000X( 2, 2) 0.000000 9.000000X( 2, 3) 0.000000 1.000000X( 2, 4) 12.00000 0.000000X( 3, 1) 0.000000 7.000000X( 3, 2) 0.000000 11.00000X( 3, 3) 21.00000 0.000000X( 3, 4) 0.000000 5.000000Row Slack or Surplus Dual PriceOBJ 161.0000 -1.000000SUP( 1) 10.00000 0.000000SUP( 2) 0.000000 2.000000SUP( 3) 0.000000 5.000000DEM( 1) 0.000000 -6.000000DEM( 2) 0.000000 -2.000000DEM( 3) 0.000000 -6.000000事实上,我们关心更多的是那些非零变量,因此,可选择“Lingo|solution..”弹出一个对话框(介绍此对话框),选择“nonzeros only”,即可只列出非零变量:Global optimal solution found.Objective value: 161.0000Total solver iterations: 6Variable Value Reduced CostA( 2) 25.00000 0.000000A( 3) 21.00000 0.000000B( 1) 15.00000 0.000000B( 2) 17.00000 0.000000B( 3) 22.00000 0.000000B( 4) 12.00000 0.000000C( 1, 1) 6.000000 0.000000C( 1, 2) 2.000000 0.000000C( 1, 3) 6.000000 0.000000C( 1, 4) 7.000000 0.000000C( 2, 1) 4.000000 0.000000C( 2, 2) 9.000000 0.000000C( 2, 3) 5.000000 0.000000C( 2, 4) 3.000000 0.000000C( 3, 1) 8.000000 0.000000C( 3, 2) 8.000000 0.000000C( 3, 3) 1.000000 0.000000C( 3, 4) 5.000000 0.000000X( 1, 1) 2.000000 0.000000X( 1, 2) 17.00000 0.000000X( 1, 3) 1.000000 0.000000X( 2, 1) 13.00000 0.000000X( 2, 4) 12.00000 0.000000X( 3, 3) 21.00000 0.000000Row Slack or Surplus Dual PriceSUP( 2) 0.000000 2.000000SUP( 3) 0.000000 5.000000DEM( 1) 0.000000 -6.000000DEM( 2) 0.000000 -2.000000DEM( 3) 0.000000 -6.000000DEM( 4) 0.000000 -5.000000结果分析由于Lingo软件中采用集,数据段和循环函数的编写方式,因此便于程序推广到一般形式使用,例如,只需修改运输问题中产地和销地的个数,以及参数a,b,c的值,就可以求解任何运输问题。

实用运筹学4.2 目标规划的Lingo求解

实用运筹学4.2 目标规划的Lingo求解
ቤተ መጻሕፍቲ ባይዱ
(2) 当任务重时,可以采用加班的方法扩大生产,但每周加 班最好不超过10小时;
(3) 尽量达到销售指标;
(4) 尽可能减少加班时间.
试建立该问题的目标规划模型,并为该厂给出一个满意的生 产方案.
从计算结果可以看出,问题的最优解(满意解 )为甲机械生产10辆,乙机械和丙机械均生产8辆 ,获得利润78万元,有28个设备工时未利用.
练习: 假设某洗衣机厂生产全自动和半自动两种洗衣机,每 生产一台这两种洗衣机都需要工时为1(h/台). 工厂的正常 生产能力是每日两班、每周工作80小时. 根据市场需求,每 周的最大销售量为全自动70台,半自动35台.已知每售出一 台全自动和半自动洗衣机的利润分别为250元和150元,为了 制定合理的生产计划,负责人提出: (1) 尽量避免开工不足;
应用Lingo软件求解可得如下结果: Variable Value Reduced Cost D1_ 0.000000 9669.667 D2 0.000000 0.000000 D3 0.000000 100.0000 D4_ 28.00000 0.000000 D4 0.000000 2.000000 X1 10.00000 0.000000 X2 8.000000 0.000000 X3 8.000000 0.000000 D1 0.000000 330.3333 D2_ 0.000000 1000.000 D3_ 0.000000 0.000000
例4.2.1 某机床厂拟生产甲、乙、丙三种型号的机 床,每生产一台甲、乙、丙型号的机床需要的工时 分别为6小时、9小时、10小时,根据历史销售经验 ,甲、乙、丙型号的机床每月市场需求分别为10台 、12台、8台,每销售一台的利润分别为2.2万元、 3万元、4万元.生产线每天的工作时间为8小时. 企业负责人在制定生产计划时,首先要保证利润不 低于计划利润78万元;其次,根据市场调查,乙型 机床销量有下降的趋势,丙型机床销量有上升的趋 势,因而,乙型机床的产量不应多于丙型机床的产 量;此外,由于市场变化,甲型机床的原材料成本 增加,使得利润下降,应适当降低其产量;最后, 要充分利用原有的设备台时,尽量不要加班生产. 试为该企业制定合理的生产计划.

2013运筹学实验报告3-lingo应用

2013运筹学实验报告3-lingo应用
实验要求的主要命令和
程序
清单
@bin(x)限制x为0或1
@bnd(L,x,U)限制L≤x≤U
@free(x)取消对变量x的默认下界为0的限制,即x可以取任意实数
@gin(x)限制x为整数
实验过程及
结果记录
实验过程及
结果记录
1、彩电生产
某彩电生产企业计划在下季度生产甲、乙两种型号的彩电.已知每台甲型、乙型彩电的销售利润分别为3和2个单位.而生产一台甲型、乙型彩电所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型彩电产量分别不低于5台和10台.试建立一个数学模型,确定生产甲型、乙型彩电的台数,使获利润最大.并求出最大利润.要求写出建模分析,数学模型建立,用lingo编写程序代码,并计算出结果和分析结论。
表1
前舱
中舱
后舱
最大允许载重量(t)
2000
3000
1500
容积(m3)
4000
5400
1500
表2
商品
数量(件)
每件体积(m3/件)
每件重量(t/件)
运价(元/件)
A
600
10
8
1000
B
1000
5
6
700
C
800
7
5
600
解:数学模型:
程序代码
运行结果
思考及习题
结合实验结果及相关理论完成思考及习题内容
解:数学模型:
程序代码
运行结果
2、载货问题
有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如表1所示。现有三种货物待运,已知有关数据列于表2中。又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。具体要求前、后舱分别与中舱之间载重量比例上偏差不超过15%,前、后舱之间不超过10%。问该货轮应装载A、B、C各多少件,运费收入为最大?要求写出建模分析,数学模型建立,并用lingo编写程序代码,并计算出结果和分析结论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。

各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。

解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。

ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。

目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai;Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value:Total solver iterations: 0Variable Value Reduced Cost AI( W1)AI( W2)AI( W3)AI( W4)AI( W5)AI( W6)DJ( V1)DJ( V2)DJ( V3)DJ( V4)DJ( V5)DJ( V6)DJ( V7)DJ( V8)C( W1, V1)C( W1, V2)C( W1, V3)C( W1, V4)C( W1, V5)C( W1, V6)C( W1, V8) C( W2, V1) C( W2, V2) C( W2, V3) C( W2, V4) C( W2, V5) C( W2, V6) C( W2, V7) C( W2, V8) C( W3, V1) C( W3, V2) C( W3, V3) C( W3, V4) C( W3, V5) C( W3, V6) C( W3, V7) C( W3, V8) C( W4, V1) C( W4, V2) C( W4, V3) C( W4, V4) C( W4, V5) C( W4, V6) C( W4, V7) C( W4, V8) C( W5, V1) C( W5, V2) C( W5, V3) C( W5, V4) C( W5, V5) C( W5, V6) C( W5, V7) C( W5, V8) C( W6, V1) C( W6, V2) C( W6, V3) C( W6, V4) C( W6, V5) C( W6, V6) C( W6, V7) C( W6, V8) X( W1, V1) X( W1, V2)X( W1, V4) X( W1, V5) X( W1, V6) X( W1, V7) X( W1, V8) X( W2, V1) X( W2, V2) X( W2, V3) X( W2, V4) X( W2, V5) X( W2, V6) X( W2, V7) X( W2, V8) X( W3, V1) X( W3, V2) X( W3, V3) X( W3, V4) X( W3, V5) X( W3, V6) X( W3, V7) X( W3, V8) X( W4, V1) X( W4, V2) X( W4, V3) X( W4, V4) X( W4, V5) X( W4, V6) X( W4, V7) X( W4, V8) X( W5, V1) X( W5, V2) X( W5, V3) X( W5, V4) X( W5, V5) X( W5, V6) X( W5, V7) X( W5, V8) X( W6, V1) X( W6, V2) X( W6, V3) X( W6, V4) X( W6, V5) X( W6, V6)X( W6, V8)Row Slack or Surplus Dual Price 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。

二、运输规划重庆有三家电子厂分别是新普,隆宇和恒华,生产的笔记本电脑将要运向北京,天津,广东,上海四个城市销售,其产量和销售量见下表:(单位:万台)表:1-1问:哪种销售方案将会取得最少的运输费用,费用为多少针对该运输问题,为了方便计算,可以设新普(A 1),隆宇(A 2)和恒华(A 3)分别销往北京(B 1)、天津(B 2)、广东(B 3)和上海(B 4)四个城市销售量为111213142122232431323334x x x x x x x x x x x x 、、、、、、、、、、、.建立以下模型:表:1-2目标(The objective )最少费用:34333231242322312114131211415x x 8x 8x 3x 5x 9x 4x 7x 6x 2x 6x z Min +++++++++++==∑∑==i j j i j i x c约束条件:供应限制(The supply constrains ) 指标约束(The damandconstrains )⎪⎩⎪⎨⎧≤+++≤+++≤+++21x x x x 25x x x x 30x x x x 343332312423222114131211 ⎪⎪⎩⎪⎪⎨⎧=++=++=++=++12x x x 22x x x 17x x x 15x x x 342414332312322212312111LINGO 模型: model: sets:origin/1..3/:a; sale/1..4/:b;routes(origin,sale):c,x; endsets data: a=30,25,21; b=15,17,22,12;c=6,2,6,7,4,9,5,3,8,8,1,5; enddata[OBJ]min=@sum(routes:c*x);@for(origin(i):[SUP]@sum(sale(j):x(i,j))<=a(i));@for(sale(j):[DEM]@sum(origin(i):x(i,j))=b(j));endlingo结果:Global optimal solution found.Objective value:Infeasibilities:Total solver iterations: 6Variable Value Reduced Cost X( 1, 1)X( 1, 2)X( 1, 3)X( 1, 4)X( 2, 1)X( 2, 2)X( 2, 3)X( 2, 4)X( 3, 1)X( 3, 2)X( 3, 3)X( 3, 4)Row Slack or Surplus Dual Price OBJSUP( 1)SUP( 2)SUP( 3)DEM( 1) DEM( 2) DEM( 3) DEM( 4)从计算结果可以得出,新普(A1)分别销往北京(B1)、天津(B2)、广东(B3)和上海(B4)四个城市销售量为分别为2万台,17万台,1万台,0万台,剩余10万台;隆宇(A2)分别销往北京(B1)、天津(B2)、广东(B3)和上海(B4)四个城市销售量为别为13万台,0万台,0万台,12万台,剩余0万台;恒华(A3)分别销往北京(B1)、天津(B2)、广东(B3)和上海(B4)四个城市销售量为分别为0万台,0万台,21万台,0万台,剩余0万台;总费用为161个单位.三、整数规划某公司打算向它的3个营业区增设6个销售店,每个营业区至少增设一个。

从各区赚取的利润与增设的销售店个数有关,其数据如下表所示。

试求各区应分配几个增设的销售店,才能使总利润最大。

要设置集合zone/A,B,C/,表示三个地区。

因为获得的利润与地区和各地的销售点增加数均相关,所以可以仿照运输模型,用number/1..4/表示每个地区可选的销售点增加数,然后用一个派生集links(zone,number):c,profit ,定义⎩⎨⎧=,其他个销售点地区新增,在01j i c ijprofit(i,j)为在i 地区新增j 个销售点能获得的利润。

可写出约束条件为:41341111,2,3016ij j ij ij i j c i c c j ===⎧==⎪⎪⎪=⎨⎪⎪=⎪⎩∑∑∑,或所求函数为max=@sum(links:c*profit);Lingo程序如下:model:sets:zone/A,B,C/; !A,B,C三个地区;number/1..4/; !各地区可选择新建的销售点数目,可选1~4中的一个数,通过links把zone和number联系起来;links(zone,number):c,profit; !若在i地区新建j个销售点,则c(i,j)=1,否则c(i,j)=(i,j)表示在i地区新建j个销售点的利润;endsetsdata:profit=200 280 330 340210 220 225 230160 170 180 200;enddatamax=@sum(links:c*profit);@for(zone(I):@sum(number(J):c(I,J))=1); !对于每一个地区,新建销售点的数目是一定的,c的和为1;@sum(zone(I):@sum(number(J):c(I,J)*J))=6; !三个地区新建的销售点总数为6;@for(links(i,j):@bin(c(i,j))); !每一个c(i,j)只能取0或1;end用Lingo求解,结果如下:Global optimal solution found.Objective value:Extended solver steps: 0Total solver iterations: 0Variable Value Reduced Cost C( A, 1)C( A, 2)C( A, 3)C( A, 4)C( B, 1)C( B, 2)C( B, 3)C( B, 4)C( C, 1)C( C, 2)C( C, 3)C( C, 4)则在A,B,C区域应分别新增3,1,2个销售点,可获得的最大利润为710万元。

相关文档
最新文档