八上数学导学手册答案

合集下载

新人教版八年级数学上册导学案(全 有答案)之欧阳音创编

新人教版八年级数学上册导学案(全 有答案)之欧阳音创编

河南省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

八年级数学导学案答案doc答案

八年级数学导学案答案doc答案

1-3章 导学案答案第一章 勾股定理1.1.1 三、1、× × × ; 2、10;12四、1、41、8、20 ; 2、答:不正确。

因为△ABC 不一定是直角三角形。

3、30m五、1、C 、B ; 2、6、8 ; 3、25或7;1.1.2 三、1、144; 2、正确.3、4、5是一组勾股数。

四、1、D ;2、48 cm 2 ; 3、AB=3.5 cm ,CD=1.68 cm , 4、36 m 2 五、3 cm1.2 三、1、是、是、否、否;2、是直角三角形;是直角三角形(用勾股定理逆定理)四、1、①②④⑤,直角三角形,∠A ,90; 2、36; 3、约4.62五、1、C ;2、直角三角形;1.3 三、1、12米;13米;2、2.5米四、1、C ,17m ;2、24米;8米;3、15m 五、25 cm第一章 复习课参考答案Ⅰ.题组练习一1.D ;2.C ;3.合格;4.17或161;5.B ;Ⅲ.题组练习二6--9.CBAB ;10.1cm; 11.5; 12.略; 13.24平方米;Ⅳ题组练习三14.D ;15.(1)12-=n a ,n b 2=,12+=n c ;(2)是直角三角形.过程略.第一章 达标检测题参考答案一、ACC ; 6--10.CBBDC.二、11.5;12.4;13.48cm 2;14.直角; 15.4;16.169;17.98π;18.10;19.36;20.能.三、21.因为AB=DE=2.5,BC=1.5,∠C=90°,所以AC 2=AB 2-BC 2=2.52-1.52=4,所以AC=2.又BD=0.5,所以在Rt △ECD 中,CE 2=DE 2-CD 2=2.52-(CD+BD )2=2.52-(1.5+0.5)2=2.25,所以CE=1.5.所以AE=AC-CE=2-1.5=0.5.答:滑杆顶端A 下滑0.5米.22.过点B 作BD ⊥AD 于D ,则AD =4-(2-0.5)=2.5,BD =4.5+1.5=6.在Rt △ADB 中,由勾股定理,得AB 2=AD 2+BD 2=2.52+62=42.25,所以AB=6.5.所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.23.(1)如图;(2)因为小正方形的边长为1,所以AC 2=5,CD 2=5,AD 2=10,所以AC 2+CD 2=AD 2.所以△ACD是直角三角形,且∠ACD=90°.(3)S四边形ABCD =2S△ACD=2×5212==⋅ACCDAC.24.(1)猜想:AP=CQ.理由:因为∠ABC=∠PBQ=60°,所以∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ.又AB=CB,BP=BQ,所以△ABP≌△CBQ,所以AP=CQ.(2)△PQC是直角三角形.理由:由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a.连接PQ,在△PBQ中,因为PB=BQ=4a,∠PBQ=60°,所以△PBQ为正三角形,所以PQ=4a.由(1)知△ABP≌△CBQ,所以CQ=PA=3a.在△PQC中,因为PQ2+QC2=(4a)2+(3a)2=25a2=(5a)2=PC2.所以△PQC是直角三角形.25.由题意,知5秒时P点运动的距离为2×5=10(厘米),所以P点与D点重合,如图.动点Q运动的距离为2.8×5=14(厘米).因为DC=BC=BA=5,所以BQ=14-10=4(厘米).在△BPQ中,因为BD=5厘米,BQ=4厘米,DQ=3厘米,所以BQ2+DQ2=42+32=25=BD2,所以△BPQ为直角三角形,且∠BQP=90°.所以∠AQD=90°,即△APQ为直角三角形.第二章实数2.1.1 三、1、不是,是;2、是;3、h不可能是整数,不可能是分数四、1、不是,是,是;2、B 3、设对角线为a,a2=13,32<a2=13<42,a不可能是整数,又分数的平方还是分数,a不可能是分数;4、略;5、不可能是整数,不可能是分数,不可能是有理数;五、以1、2为直角边构成的直角三角形的斜边为边长的正方形即可。

人教版最新八年级上册数学导学案全集-导学案八年级上册答案数学

人教版最新八年级上册数学导学案全集-导学案八年级上册答案数学

11.1.1三角形的边一、学习目标1.认识三角形,能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题二、重点:知道三角形三边不等关系.难点:判断三条线段能否构成一个三角形的方法.三、合作学习(一)精讲知识点一:三角形概念及分类1、学生自学教科书内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段顺次首尾连接所组成的图形叫做三角形。

如图,线段____、______、______是三角形的边;点A、B、C是三角形的______; _____、 ______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。

图中三角形记作__________。

(2)三角形按角分类可分为___________、___________、______________。

(3)三角形按边分类可分为 _____________(二)精练一:1、如图.下列图形中是三角形的___________?2、图3中有几个三角形?用符号表示这些三角形.精讲知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_____AC AB + AC _____ BC AC +BC _____ AB 结论:三角形任意两边的和大于第三边,任意两边的差小于第三边..........................精练二:1、下列长度的三条线段能否组成三角形?为什么?(1)3,4,8;(2)5,6,11;(3)5,6,102、有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个数是_______个。

3、如果三角形的两边长分别是3和5,那么第三边长可能是()A、1B、9C、3D、104、阅读教科书例题,仿照例题解法完成下面这个问题:5、一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长。

人教版八年级数学上册导学案(全-有答案)

人教版八年级数学上册导学案(全-有答案)

第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

新人教版八年级数学上册导学案全有答案

新人教版八年级数学上册导学案全有答案

河南省实验中学资料第一章轴对称与轴对称图形我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗? 思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。

华师大版八年级数学上册导学案含答案-14.2 勾股定理的应用

华师大版八年级数学上册导学案含答案-14.2   勾股定理的应用

14.2 勾股定理的应用学习目标:1.会运用勾股定理求线段长及解决简单的实际问题;(重点)2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.(难点)自主学习一、知识链接1. 你能补全以下勾股定理的内容吗?如果直角三角形的两直角边长分别为a,b,斜边长为c,那么____________.2.勾股定理公式的变形:a=_________,b=_________,c=_________.3.在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=_________;(2)若a=5,c=13,则b=_________.合作探究一、探究过程探究点1:勾股定理的应用例1如图,一根12米高的电线杆CD两侧各用15米的铁丝固定,求两个固定点A、B之间的距离.【方法总结】解题关键是利用转化思想将实际问题转化成直角三角形模型,然后利用勾股定理求出未知的边长.【针对训练】如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?探究点2:勾股定理逆定理的应用例2如图,某港口P位于东西方向的海岸线上. “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:题目已知“远航”号的航向、两艘船的一个半小时后的航程及距离,实质是要求出两艘船航向所成角,由此容易联想到勾股定理的逆定理.【方法总结】解决实际问题的步骤:构建几何模型(从整体到局部);标注有用信息,明确已知和所求;应用数学知识求解.例3一个零件的形状如图①所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图②所示,这个零件符合要求吗?【针对训练】如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30,DC=12,AB=3,BC=4,求△ABC的面积.探究点3:利用勾股定理求最短距离例4如图是一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米?(已知油罐的底面半径是2 m,高AB是5 m,π取3)例5如图,一个牧童在小河的南4 km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?【方法总结】求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.【针对训练】如图,一只蚂蚁从棱长为12cm的正方体纸盒的顶点A处,沿纸盒表面爬到点B处,已知BC=4 cm,则蚂蚁爬行的最短距离是多少?二、课堂小结当堂检测1.一个梯子(如图)靠在垂直于地面的墙上,顶端到地面的距离为2.8m,底端距离墙面2.1m,则这个梯子的长度为()A.2.1c mB.2.8c mC.3.5c mD.3.7c m第1题图第2题图第4题图2.如图,一支铅笔放在圆柱体笔筒中,上面露出一截,笔筒的内部底面直径是9c m,内壁高12c m,则这只铅笔的长度可能是()A.9c mB.12c mC.15c mD.18c m3.已知甲、乙两人在同一地点出发,甲往东走4 km,乙往南走了3 km,这时甲、乙两人相距km.4.如图,有一个三级台阶,它的每一级的长、宽和高分别是16,3,1,点A和点B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点,则最短路程是.5.如图,已知AB=13cm,AD=4cm,CD=3cm,BC=12cm,∠D=90°,求四边形ABCD 的面积.6.高速公路的同一侧有A,B两城镇,如图所示,它们到高速公路所在直线MN的距离分别为AA′=2km,BB′=4km,且A′B′=8km,要在高速公路上A′,B′之间建一个出口P,使A,B两城镇到P的距离之和最短,求这个最短路程.参考答案自主学习一、知识链接1. a²+b²=c²2.22b-c22a-c22ba+ 3.5 12合作探究一、探究过程探究点1:例1解:在△ADC中,∠ADC=90°,AC=15米,CD=12米,∴AD=9米.同理可得BD=9米,∴AB=9+9=18(米).即A、B之间的距离为18米.【针对训练】解:如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,连接AC.∴EB=4米,EC=8米,AE=AB-EB=10-4=6(米).在Rt△AEC中,AC=2286+=10(米),故小鸟至少飞行10 米.探究点2:例2解:由题意可得RP=18海里,PQ=24海里,QR=30海里.∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°.∵“远航”号沿东北方向航行,∠QPN=45°,∴∠RPN=45°,∴“海天”号沿西北方向航行.例3解:∵AD=4,AB=3,BD=5,DC=13,BC=12,∴AB2+AD2=BD2,BD2+BC2=DC2,∴△ABD、△BDC是直角三角形,∠A=90°,∠DBC=90°,则这个零件符合要求. 【针对训练】解:∵S△ADC=,∴AC=5.∵AB2+CB2=42+32=25=AC2.∴△ABC是直角三角形,且∠ABC=90°.∴△ABC的面积=.探究点3:例4解:如图,∵油罐的底面半径是2m,∴油罐的底面周长为2π×2=4π≈12 m.又∵高AB为5m,即展开图中,BC=5m,∴AB=22512+≈13(m).故所建梯子最短约为13m.例5解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则从A沿AP 到P再沿PB到B,所走路程最短,此时AP+BP=A′B.在Rt△A′DB中,由勾股定理得A′B=22DB+DA′=17(km).答:他要完成这件事情所走的最短路程是17 km.【针对训练】解:蚂蚁爬行的最短路径展开图如图所示:易得AB==20cm,∴蚂蚁爬行的最短路程是20cm.当堂检测1.D2.D3.54.205.解:连接AC.∵AD=4cm,CD=3cm,∠ADC=90°,∴AC===5(cm).∴S△ACD=CD•AD=6(cm2).在△ABC中,∵52+122=132,即AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴S△ABC=AC•BC=30(cm2).∴S四边形ABCD=S△ABC﹣S△ACD=30﹣6=24(cm2).6.解:如图,作A点关于直线MN的对称点C,再连接CB,交直线MN于点P,则此时AP+PB 最小,为CB的长.过点B作BD⊥CA交CA的延长线于点D.∵AA′=2km,BB′=4km,A′B′=8km,∴A′C=2km,A′D=4km,BD=8km,则CD=6km,在Rt△CDB中,CB ==10(km),即最短距离为10km.~。

华师大版八年级数学上册导学案含答案-15.2 2.利用统计图表传递信息

华师大版八年级数学上册导学案含答案-15.2   2.利用统计图表传递信息

2.利用统计图表传递信息学习目标:1.让学生掌握常用的三种统计图的功能及其特点;2.让学生能根据实际问题和收集到的数据的特点,选择合适的统计图,获取有价值的信息(重点);3.结合各种统计图,让学生学会从中获取正确的信息,并会作出合理的解释、推断和计算(难点).自主学习一、知识链接1.前面我们学习了哪些描述数据的方法?它们各自有什么特点?2.扇形统计图能清楚地表示各部分在总体中所占的________.扇形圆心角的大小等于各部分数量占总数量的________乘以360°.合作探究一、探究过程探究点1:利用统计表传递信息例1天津及杭州两城市某年月降水量统计表如下(单位:1mm):城市一月二月三月四月五月六月七月八月九月十月十一十二天津 30 58 90 265 287 707 1755 1820 489 177 60 63 杭州 287 297 482 677 855 960 1592 1830 1234 946 600 588 根据上表,回答下列问题:(1)哪个城市一年的降水量大?哪个城市的降水量幅度大?(2)两城市在哪个月的降水量相差最大?差是多少?(3)哪个月两城市的降水量相差在30毫米之内?探究点2:利用折线统计图传递信息例2如图是我市某一天内的气温变化图:①这一天中最高气温是24℃;②这一天中最高气温与最低气温的差为16℃;③这一天中2时至14时之间的气温在逐渐升高;④这一天中只有14时至24时之间的气温在逐渐降低.根据图表,下列说法中正确的是.(填序号)方法:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,以折线的上升或下降来表示统计数量增减变化;折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.探究点3:利用条形统计图传递信息例3某市下半年PM2.5每月的平均浓度变化情况如图所示.根据统计图提供的信息,有下面三个推断:①该市下半年PM2.5平均浓度最高的月份是11月;②7月﹣10月,该市PM2.5平均浓度逐月持续下降;③7月﹣12月,这半年的平均浓度值为51微克/立方米(每月按30天计算).其中推断不合理的序号是:.探究点4:统计图表的综合应用例4“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整;(3)求出图乙中B等级所占圆心角的度数.【针对训练】某超市销售的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5∶4∶2∶1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:请根据以上信息解答问题:(1)补全条形统计图;(2)四种家电销售总量为万台;(3)扇形统计图中彩电部分所对应的圆心角是多少度?二、课堂小结数据的表示统计表把收集到的数据制成表格的形式,使数据更直观、清楚、便于分析.扇形统计图能清楚地表示出各部分在总体中所占的_______.折线统计图能清楚地反映事物的变化情况.条形统计图能清楚地表示出每个项目的具体数目.当堂检测1.根据条形统计图可知,下列说法正确的是()A.步行人数为50人B.步行与骑自行车的人数和比坐公共汽车的人要少C.坐公共汽车的人占总数的50%D.步行人最少只有90人第1题图第3题图2.某次数学测验,抽取部分同学的成绩(得分为整数),整理制成如下统计表,根据表中信息,下列描述不正确的是()分数段49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100人数 4 10 18 12 6A.抽样的学生共有50人B.估计及格率(60分及以上)在92%左右C.估计优秀率(80分及以上)在36%左右D.59.5~69.5这一分数段的频率为10 3.如图是某厂连续7年产量增长率(相对于上年的增长率)统计图,仔细观察图形,下列说法正确的是()A.这几年产量有增有减B.产量不断增加C.开始产量下降,后来产量回升D.以上说法都不对4.护士若要统计一病人一昼夜体温变化情况,应选用统计图.5.在一个样本中,100个数据分布在5个组内,第一、二、四、五组的频数分别为9,16,40,15,若用扇形图对这些数据进行统计,则第三组对应的扇形圆心角的度数为.6.某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据.下面两图(如图)是根据这组数据绘制的两幅不完整的统计图,则在这次活动中“最喜欢的职业”为教师的共人.7.某校根据课程设置要求,开设了数学类拓展性课程.为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如图所示的统计图(不完整):请根据图中信息回答问题: (1)求m ,n 的值; (2)补全条形统计图.参考答案自主学习 一、知识链接1.扇形图、条形图、折线图.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.2.百分比 百分比 合作探究一、探究过程 探究点1:例1 解:(1)杭州一年的降水量大,天津降水量幅度大. (2)十月降水量相差最大,差为:946﹣177=769 (mm).(3)八月:1830﹣1820=10 mm <30 mm ,故八月两城市的降水量相差在30 mm 之内. 探究点2: 例2 ①③ 探究点3: 例3 ①③ 探究点4:例4 解:(1)10÷20%=50(人),所以抽取了50个学生进行调查. (2)B 等级的人数=50-15-10-5=20(人).补充折线统计图如图.(3)图乙中B 等级所占圆心角的度数为360°×2050=144°.【针对训练】解:(1)洗衣机销量为:15×2=30(万台),彩电销量为:15×4=60(万台),冰箱销量为15×5=75(万台).如图.(2)180(3)360°×412=120°.故扇形统计图中彩电部分所对应的圆心角是120°.二、课堂小结百分比当堂检测1.C2.D3.B 4.折线5.72°6.407.解:(1)∵被调查的总人数为12÷20%=60(人),∴m=×100%=25%,n=×100%=15%.(2)D类别人数为60×30%=18(人),E类别人数为60﹣(12+15+9+18)=6(人),补全条形统计图如下:~。

八年级数学上册导学案 (全册,答案)

八年级数学上册导学案 (全册,答案)

第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

人教版八年级数学上册导学案全有答案

人教版八年级数学上册导学案全有答案

第一章轴对称与轴对称图形我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗? 思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。

最新八年级数学上册导学案全册有答案

最新八年级数学上册导学案全册有答案

八年级数学上册导学案全册有答案第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知仅供学习与交流,如有侵权请联系网站删除谢谢- 190 -1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

仅供学习与交流,如有侵权请联系网站删除谢谢- 190 -⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

华师大版2020-2021年八年级数学上册导学案:13.2 4 第1课时 角边角【含答案】

华师大版2020-2021年八年级数学上册导学案:13.2   4 第1课时  角边角【含答案】

华师大版2020-2021年八年级数学上册导学案4 角边角第1课时角边角学习目标:1.掌握三角形全等的判定方法------“角边角”(ASA);(重点)2.应用“角边角”证明两个三角形全等,进而证明线段或角相等.(难点)自主学习一、知识链接1.能够的两个三角形叫做全等三角形.2.已经掌握的判定两个三角形全等的方法:边角边:及其对应相等的两个三角形全等.二、新知预习1.在三角形中,我们研究了已知两边一角的情况,今天我们接着探究已知两角一边是否可以判断两三角形全等,那么三角形中已知两角一边又分哪几种呢?2.现实情境:一张教学用的三角板硬纸不小心被撕坏了,如图所示.你能制作一张与原来同样大小的新道具吗?能恢复原来三角形的原貌吗?(1)以①为模板,画一画,能还原吗?(2)以②为模板,画一画,能还原吗?(3)以③为模板,画一画,能还原吗?(4)第③块中,三角形的边角六个元素中,固定不变的元素是_____________.【猜想】两角及其夹边分别相等的两个三角形_______.合作探究一、探究过程探究点1:利用“角边角(ASA)”证明三角形全等问题:先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?你能得出什么结论? AB CABC FED 【要点归纳】分别相等的两个三角形全等(简称“角边角”或“ASA”).【几何语言】如图,在△ABC和△DEF中,∴△ABC≌△DEF.例1如图,∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.【针对训练】如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.探究点2:全等三角形的判定(角边角)与性质的综合运用例2如图,点D在AB上,点E在AC上,AB=AC, ∠B=∠C,求证:AD=AE.【方法总结】证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.二、课堂小结全等三角形判定定理简称图示符号语言有两角及夹边对应相等的两个三角形全等“角边角”或“ASA”∴△ABC≌△A1B1C1(ASA).易错提醒:“三个角分别相等的两个三角形________全等(填“一定”或“不一定”).⎪⎩⎪⎨⎧∠=∠=∠=∠,,,1111BBBAABAA当堂检测1.在△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列条件中正确的是()A.AC=DF B.∠A=∠F C.∠A=∠D D.∠C=∠B2. 在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°,且AC=A′C′,那么这两个三角形()A.一定不全等 B.一定全等C.不一定全等 D.以上都不对3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判断△ABC和△DBC是否全等: .第3题图第4题图4.如图,∠ACB=∠DFE,BC=EF,那么需补充一个条件:,才能用“ASA”判定△ABC≌△DEF.5.如图,AC与BD相交于点O,∠OAB=∠OBA,OA=OB,∠DAB=∠CBA.求证:△DAO ≌△CBO.拓展提升6.如图,要测量河流AB的长,因为无法测河流附近的点A,可以在AB线外任取一点D,在AB的延长线上任取一点E,连接ED和BD,并且延长BD到点G,使DG=BD;延长ED到点F,使DF=ED;连接FG,并延长FG到点H,使点H,D,A在同一直线上.求证:HG=AB.参考答案自主学习一、知识链接1.完全重合2.两个三角形的两边 夹角二、新知预习1.答:角边角:两角及其夹边 角角边:两角及其中一角所对应的边2.(1)不能. (2)不能. (3)能. (4)两角及其夹边 【猜想】全等合作探究一、探究过程 探究点1【要点归纳】两角及其夹边【几何语言】∠A ∠D AC DF ∠C ∠F例1 证明:在△ABC 和△DCB 中,⎪⎩⎪⎨⎧DBC.ACB CB,CB DCB,ABC =∠∠==∠∠∴△ABC ≌△DCB (ASA ). 【针对训练】证明:∵AD ∥BC ,BE ∥DF ,∴∠A=∠C ,∠DFE=∠BEC.∵AE=CF ,∴AE+EF=CF+EF ,即AF=CE .在△ADF 和△CBE 中,⎪⎩⎪⎨⎧BEC,=∠DFA ∠CE,=AF C,=∠A ∠∴△ADF ≌△CBE (ASA ). 探究点2 例2证明:在△ABE 与△ACD 中,⎪⎩⎪⎨⎧C,B AC,AB A,A =∠∠==∠∠∴△ABE ≌△ACD (ASA ).∴AD=AE .二、课堂小结 不一定当堂检测1.C2. B3.不全等4.∠B=∠E5.证明:∵∠OAB =∠OBA ,∠DAB =∠CBA ,∴∠DAO =∠CBO.在△DAO 和△CBO 中,,∴△DAO ≌△CBO (ASA ). 6.证明:∵DB =DG ,∠BDE =∠GDF ,DE =DF ,∴△BED ≌△GFD (SAS ).∴∠EBD =∠FGD .∴∠ABD =∠HGD .又∵BD =GD ,∠ADB =∠HDG ,∴△ABD ≌△HGD (ASA ).∴AB =GH .。

人教八级数学上册导学案全有答案

人教八级数学上册导学案全有答案

第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗? 思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。

新人教版八年级数学上册导学案(全 有答案)之欧阳歌谷创作

新人教版八年级数学上册导学案(全 有答案)之欧阳歌谷创作

河南省实验中学资料欧阳歌谷(2021.02.01)第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

华师大版八年级数学上册导学案含答案-14.1 1 第2课时 勾股定理的验证及简单应用

华师大版八年级数学上册导学案含答案-14.1   1  第2课时  勾股定理的验证及简单应用

1.直角三角形三边的关系第2课时勾股定理的验证及简单应用学习目标:1.掌握勾股定理,能用拼图的方法验证勾股定理(难点);2.会用勾股定理解决简单的问题(重点).自主学习一、知识链接1.勾股定理的内容是什么?直角三角形两直角边的平方和_____斜边的平方.2.如果用a、b、c分别表示直角三角形的两直角边长和斜边长,那么一定有__________,即勾2+股2=弦2.二、新知预习利用我国古代数学家赵爽的“赵爽弦图”证明勾股定理.证明:∵S大正方形=________,S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.合作探究一、探究过程探究点1:勾股定理的验证例1比较图中两个正方形的面积,并验证勾股定理.【归纳总结】利用面积验证勾股定理,即从两个不同角度看一个图形的面积,建立含直角三角形三边的等式得到a2+b2=c2.【针对训练】请你利用如图的直角梯形验证勾股定理,即证明a2+b2=c2.探究点2:勾股定理的简单应用例2如图,在湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C,测得CA=130米,CB=120米,求A、B两点间的距离.【针对训练】如图,学校教学楼前有一块长为4米,宽为3米的长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“近路”,却踩伤了花草.(1)求这条“近路”的长;(2)他们仅仅少走了几步(假设2步为1米)?例3在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?【方法总结】利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.二、课堂小结利用________求长度勾股定理的应用利用勾股定理解决实际问题当堂检测1.如图是某地的长方形大理石广场示意图(单位:米),小琴从A角走到C角,至少走()A.90米B.100米C.120米D.140米第1题图第2题图第3题图2.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF=90mm,BE=137mm,则剪去的直角三角形的斜边长为mm.3.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则AD=米.4.如图,甲、乙两人同时从A地出发,分别以3km/h和4km/h的速度步行,甲向正南方向,乙向正东方向,1.5h后两人相距多远?拓展提升5.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假设宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄A的村民能否听到宣传?请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分,那么村庄A的村民总共能听到多长时间的宣传?参考答案自主学习一、知识链接1.等于2.a2+b2=c2二、新知预习c²(b-a)² 4 c² 2ab (b-a)²合作探究一、探究过程探究点1:例1 解:(a+b)²=c2+21ab×4,化简可得c2=a2+b2.【针对训练】解:∵S梯形=(a+b)(a+b)=(a2+b2+2ab),S梯形=2×ab+c2,∴(a+b)2=2×ab+c2,整理得a2+b2=c2.探究点2:例2 解:在Rt△ABC中,AC=130米,BC=120米.由勾股定理,得AB=22BCAC-=50米.即AB两点之间的距离为50米.【针对训练】解:(1)这条“近路”的长为2234+=5(米).(2)少走的步数为2×(3+4-5)=4(步).例3 解:如图,在Rt△ABC中,AB=6米,BC=8米.由勾股定理,得AC=22BCAB+=10米.∴AC+AB=10+6=16(米).故大树折断之前有16米高.二、课堂小结勾股定理当堂检测1.B 2.200 3.1.54.解:1.5h后甲走的路程为3×1.5=4.5(km),1.5h后乙走的路程为4×1.5=6(km),由勾股定理得两人的距离为=7.5(km).答:1.5h后两人相距7.5 km.5.解:(1)村庄A的村民能听到宣传.理由如下:∵村庄A到公路MN的距离为600米<1000米,∴村庄A的村民能听到宣传.(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶到Q点结束对村庄的影响,则AP=AQ=1000米.∵AB=600米,∴BP=BQ=(米).∴PQ=1600(米).∴影响村庄的时间为1600÷200=8(分钟),∴村庄A的村民总共能听到8分钟的宣传.~。

华师大版八年级数学上册导学案含答案-13.4.1-3 尺规作图

华师大版八年级数学上册导学案含答案-13.4.1-3  尺规作图

13.4 尺规作图1.作一条线段等于已知线段2.作一个角等于已知角3.作已知角的平分线学习目标:1.了解尺规作图的概念,会用尺规作图法作线段和角;2.熟悉尺规作图的步骤并能熟练运用作图语言(重点);3.会作一条线段等于已知线段,作一个角等于已知角,作已知角的平分线(难点).自主学习一、新知预习直尺、量角器、圆规都是都是大家很熟悉的工具,大家都知道用直尺可以画线,用量角器可以画角,用圆规可以画圆.请大家画一条长4cm的线段,画一个48°的角,画一个半径为3cm的圆.如果只用无刻度的直尺和圆规,你还能画出符合条件的线段、角吗?实际上,我们把只能使用______和_________的直尺这两种工具作几何图形的方法称为尺规作图.合作探究一、探究过程探究点1:作一条线段等于已知线段操作1 已知线段a,用直尺和圆规准确地画一条线段等于已知线段a.【方法总结】画一条线段等于已知线段,先画出一条射线,然后用圆规以一射线的端点为圆心,以已知线段的长为半径截取,即可得到该线段.【针对训练】如图,已知线段a和线段b,画线段AB,要求AB=b-a.探究点2:作一个角等于已知角操作2 已知∠AOB,用直尺和圆规准确地画∠A′O′B′,要求∠A′O′B′=∠AOB.【方法总结】画一个角等于已知角,(1)画射线OA.(2)以∠MPN的顶点P为圆心,以适当长为半径画弧,交∠MPN的两边于E、F.(3)以点O为圆心,以PE长为半径画弧,交OA于点C.(4)以点C为圆心,以EF长为半径画弧,交前一条弧于点D.(5)经过点D作射线OB.∠AOB就是所画的角.问题根据作图过程,请你说明操作2中∠A′O′B′=∠AOB的原因.探究点3:用尺规作已知角的角平分线操作3 按下面步骤画图,(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.二、课堂小结内容作一条线段等于已知线段(1)作射线A’C’;(2)以点A’为圆心,以AB的长为半径画弧,交射线A’C’于点B’,A’B’就是所求作的线段.作一个角等于已知角(1)已知∠AOB,以O为圆心,取任意长度为半径,作圆弧交∠AOB的两条边于C,D;(2)以O’为端点作一条射线,用圆规取OC的长度为半径,以O’为圆心画弧,交射线于C’;(3)以C’为圆心,CD的长度为半径,作圆弧交第二步所作圆弧于D’,过点D’作射线O’ B’.如图所示:∠A’ O’ B’=∠AOB.作已知角的平分线(1)作法:①以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N;②分别以M,N为圆心,大于12MN的长为半径画弧,两弧相交在∠AOB的内部于点C;③画射线OC,射线OC即为所求.(2)上述作角平分线的理论依据是________.当堂检测1.如图,小李用直尺和圆规作∠CAB的平分线AD,已知∠CAD=25°,则∠DAB=()A.30°B.50°C.25°D.无法得到结论2.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的长为半径作圆弧,两弧交于点P,作射线AP,交CD 于点M.若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°第2题图第3题图3.如图,∠C=90°,根据作图痕迹可知∠ADC=°.4.已知∠α和线段a,求作△ABC,使∠A=∠α,∠B=2∠α,AB=2α.(保留作图痕迹,不写作法)参考答案自主学习一、新知预习圆规没有刻度合作探究一、探究过程探究点1操作1 解:如图,AC即为所求作.【针对训练】解:如图,AB即为所求作.探究点2操作2解:如图所示:问题解:由作图知,OD=O′D′,OC=O′C′,CD=C′D′,∴△OCD≌△O′C′D′(SSS).∴∠A′O′B′=∠AOB.探究点3操作3 解:如图所示:问题解:由作图知,ON=OM,CN=CM,OC=OC,∴△OCM≌△OCN(SSS).∴∠AOC=∠BOC.即OC是∠AOB的平分线.二、课堂小结SSS当堂检测1.C 2.B 3.704.解:如图,△ABC为所作.~。

华师大版八年级数学上册导学案含答案-12.2.1 单项式与单项式相乘

华师大版八年级数学上册导学案含答案-12.2.1 单项式与单项式相乘

12.2 整式的乘法1.单项式与单项式相乘学习目标:1.掌握单项式与单项式相乘的运算法则(重点);2.能够灵活地进行单项式与单项式相乘的运算(难点).自主学习一、知识链接幂的运算性质:(1)同底数幂的乘法公式:a m·a n=____________(m,n为正整数).(2)幂的乘方公式:(a m)n=____________(m,n为正整数).(3)积的乘方公式:(ab)n=____________(n为正整数).二、新知预习问题1 假如要给下面这两幅风景图片加一个美丽的相框,需要知道这两幅图片的大小,现在告诉你,左图的长为2x,宽为2,你能计算出该图片的面积吗?若另一张风景图片的长为ab,宽为b,你能计算出图片的面积吗?列式:_______________ 列式:________________问题2光在真空中的传播速度约是3×108m/s,则3×107s传播路程约是多少?列式:____________________________合作探究一、探究过程探究点:单项式乘单项式思考:如果将“问题2”中的数字改为字母,比如ac8 ·bc7,怎样计算这个式子?【归纳总结】单项式与单项式相乘,把它们的_______、____________分别相乘,对于只在一个单项式里含有的字母,则连同它的________一起作为积的一个因式.例1计算:(1) 3x2·5x3; (2)4y ·(-2xy2); (3)(-2a)3·(-3a)2.【方法总结】(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算,有乘方运算,要先算乘方,再算乘法;(3)不要漏掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【针对训练】计算:(1)2a•3a2 =;(2)(﹣2x2y)•(﹣3x2y3)=.例2已知-2x3m+1与7x m -6的积与x4是同类项,求m的值.【方法总结】单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项的定义,列出方程求出参数的值,然后代入求值即可.【针对训练】若单项式﹣6x2y m与x n﹣1y3是同类项,则这两个单项式的积是.二、课堂小结实质注意事项单项式乘单项式转化为同底数幂乘法的运算(1)注意符号问题;(2)不要出现漏乘现象;(3)运算顺序不要出错.当堂检测1.计算6x2•x3的结果是()A.6x B.6x5C.6x6D.6x92.计算:(1)8xy•x=;(2)2x2y3•(﹣7x3y)=;(3)=;(4)(﹣ab5)2•(﹣2a2b)3=.3.计算2x•(﹣3xy)2•(﹣x2y)3的结果是 .4.若(a m b n)·(a2b)=a5b3 ,那么m+n= .5.计算:(1)2a2•3a5;(2)(﹣2x2y3)•3xy2;(3)(﹣8ab2)(﹣a)3;(4)(3a2b)2•(a2)4•(﹣b2)5;(5)3x3y3•(﹣x2y2)+(﹣x2y)3•9xy2.6.小明有一把长为a厘米的尺子,量得黑板的长为20个尺子的长,黑板的宽为16个尺子的长,则黑板的面积是多少?参考答案自主学习一、知识链接(1)a m+n (2)a mn (3)a n b n二、新知预习问题1 2x·2 ab·b问题2(3×108)×(3×107)合作探究一、探究过程探究点:思考 ac 8·bc 7=ab c 15【归纳总结】系数 相同字母的幂 指数例1 解:(1) 原式=15x 5. (2) 原式=-8xy 3. (3) 原式=-72a 5.【针对训练】(1)6a 3 (2) 6x 4y 4例2 解:-2x 3m +1·7x m -6=-14x 4m-5,由题意,得4m-5=4,解得m=49. 【针对训练】﹣3x 4y 6当堂检测1.B2.(1)2x 2y (2)﹣14x 5y 4 (3)﹣x 5 (4)﹣8a 8b 133.﹣18x 9y 5 4.55. 解:(1)原式=6a 7. (2)原式=﹣6x 3y 5. (3)原式=a 4b 2.(4)原式=﹣9a 12b 12. (5)原式=﹣2x 5y 5﹣x 7y 5.6.解:黑板的面积是20a ·16a=320a 2(平方厘米). ~。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学(八上)创新教育实验手册参考答案(苏科版)第一章轴对称图形1. 1 轴对称与轴对称图形【实践与探索】例1 请观察26个大写英文字母,写出其中成轴对称的字母.解:成轴对称的字母有:A、B、C、D、E、H、I、K、M、O、T、U、V、W、X、Y.注意:字母“N、S、Z”也具有对称的特点,但它们不是轴对称图形.例2 国旗是一个国家的象征,观察图1.1.1中的国旗,说说哪些是轴对称图形,并找出它们的对称轴.(略)【训练与提高】一、选择题:1.A2.D3.B4.A5.A二、填空题:6.(1)(2)(5)(6)7.2,3,1,4 8.10∶21三、解答题:9.如图:10.长方形、正方形、正五边形【拓展与延伸】1.(3)比较独特,有无数条对称轴B 1CBAC 1A 1图1.2.12.1.2 轴对称的性质(1)【实践与探索】例1 已知△ABC 和△A 1B 1C 1是轴对称图形,画出它们的对称轴.解: 连接AA 1,画出AA 1的垂直平分线L ,直线L 就是△ABC 和△A 1B 1C 1的对称轴.回顾与反思 连接轴对称图形的任一组对称点,再画对称点所连接线段的垂直平分线,就得该图形的对称轴.例2 如图1.2.2,用针扎重叠的纸得到关于L 对称的两个图案,并从中找出两对对称点、两条对称线段.解:可标注不同的对称点.例如:A 与A '是对称点,B 与B '是对称点. 对称线段有AB 与A 'B ',CD 与C 'D '等.回顾与反思 研究对称点是研究对称图形的基础,一般先研究对称点,再研究对称线段,这能更清楚地了解轴对称的性质. 【训练与提高】 一、选择题:1.B 2.D 3.B 4.A 二、填空题:5.轴对称,3条 6.略 7.810076 8.AB =CD BE =DE ∠B =∠D 三、解答题:9.2,4,5 10.略 11.不是,不是 12.略 13.在对称轴上 【拓展与延伸】 1.如图:图1.2.2图1.2.3(1) (2)图1.2.4 图1.2.52.如图:1.2轴对称的性质(2)【实践与探索】例1 画出图1.2.3中△ABC 关于直线L 的对称图形.解: 在图1.2.3(1)和图1.2.3(2)中,先分别画出点A 、B 、C 关于直线L 的对称点1A 、1B 和1C ,然后连接11B A 、11C B 、11A C ,则△111C B A 就是△ABC 关于直线L 对称的图形.回顾与反思 (1)如果图形是由直线、线段或射线组成时,那么在画出它关于某一条直线对称的图形时,只要画出图形中的特殊点(如线段的端点、角的顶点等)的对称点,然后连接对称点,就可以画出关于这条直线的对称图形; (2)对称轴上的点(如图1.2.3(1)中的点B ),其对称点就是它本身.例2 问题1:如图1.2.4,在一条笔直的河两岸各有一个居民点A 和B ,为方便往来,必须在河上架桥,在河的什么位置架桥,才能使A 和B 两地的居民走的路最短?问题2:如图1.2.5,在一条河的同岸有两个居民点A 和B ,现拟在岸上修建一个码头,问码头修在何处,才能使码头到A 和B 两地的总长最短?①②③④图1.2.4 问题1和问题2之间有联系吗?能从前一个问题受到启发来解决这个问题吗? 探索:对问题1,显然只要连接AB ,AB 与a 的交点就是所要找的点. 对问题2,即要在直线a 上找一点C ,使AC +BC 最小. 分析: 我们用“翻折”———轴对称的方法.画点C :(1)作点A 关于直线a 的对称点A ';(2)连结A 'B 交a 于点C ,点C 就是所求作的点.理由:如图1.2.4,如果C '是直线a 上异于点C 的任意一点,连A C '、B C '、A ' C ',则由于A 、A '关于直线a 对称,所以有'''',C A AC C A AC ==.所以 '''''BC C A BC AC +=+>BC AC BC C A B A +=+=''. 这说明,只有C 点能使AC +BC 最小.【训练与提高】 一、选择题:1.C 2.C 3.B 4.A 二、填空题:5.(1)等腰三角形 (2)矩形 (3)等边三角形 (4)正方形 (5)五角星 (6)圆 6.不对称、不对称 7.5个 三、解答题: 8.略 9.略10.画图略 11.如图:12.画出点A 关于直线L 的对称点A ',连结A 'B 与直线L 的交点即为所求停靠点.【拓展与延伸】图1.3.11.图略 2.图略1.3设计轴对称图形【实践与探索】例1 剪纸,千百年来在民间时代流传,给我们的生活带来无限的美丽!动手学一学:观察一下,图1.3.1中最后的展开图是一个轴对称图形吗?它有几条对称轴? 例2 如图1.3.2,以直线L 为对称轴,画出图形的另一半.图1.4.1【训练与提高】 一、选择题: 1.B 2.B 二、填空题: 3.M 、P 、N 、Q 三、解答题: 4.如图:5.略 6.如日本、韩国 、等 7.略 8.图略 【拓展与延伸】 1.图略2.图略,答案不唯一1.4 线段、角的轴对称性(1)【实践与探索】例1 如图1.4.1,在△ABC 中,已知边AB 、BC 的垂直平分线相交于点P . (1)你知道点P 与△ABC 的三顶点有什么关系? (2)当你再作出AC 的垂直平分线时,你发现了什么?解:(1)点P 与△ABC 的三顶点距离相等,即P A =PB =PC . (2)如图,AC 的垂直平分线也经过P 点.即三角形的三条中垂线交于一点. 例2 如图1.4.2,在△ABC 中,已知AB =AC ,D 是AB 的中点,且DE ⊥AB ,交AC 于E .已知△BCE 周长为8,且AB -BC =2,求AB 、BC 的长.分析:由题意可知,DE垂直平分AB,则有AE=BE,因此△BCE的周长就转化为AC+BC,问题即可解决.解:因为D是AB的中点,且DE上AB,所以AE=BE,则△BCE的周长=BE+CE+BC-AE+CE+BC=AC+BC=8.又因为AB-BC=2,AB=AC,所以AC-BC=2.由上可解得AC=5,BC=3.回顾与反思(1)本题中利用“E是线段AB的垂直平分线上的点”得到“AE=BE”,从而实现了“线段BE"的转移,这是我们常用的方法;(2)利用“线段的中垂线的性质”可以说明两条线段相等.【训练与提高】一、选择题:1.C2.D3.D4.A二、填空题:5.无数个6.6,2 7.10,8 cm 8.9 cm三、解答题:9.24010.连结AB,作AB的中垂线交直线L于P,点P即为所求作的点11.24 cm 12.(1) 35 0(2)55 0【拓展与延伸】1.图略(1)只要任意找一个以A为顶点的格点正方形,过点A的对角线或其延长线与BC的交点就是点P(2)找与A为顶点的正方形中与A相对的顶点.2.9 cm1.4 线段、角的轴对称性(2)【实践与探索】例1 如图1.4.3,在△ABC中,已知∠ABC和∠ACB的角平分线相交于O.请问:(1)你知道点O与△ABC的三边之间有什么关系吗?图1.4.3(2)当你再作出∠A的平分线时,你发现了什么?图1.4.4解: (1)点O 到△ABC 的三边的距离相等;(2)如图1.4.3,∠A 的平分线也经过点D ,即三角形的三条角平分线交于一点.例2 已知:如图1.4.4, AD ∥BC , DC ⊥BC , AE 平分∠BAD ,且点E 是DC 的中点.问:AD 、BC 与AB 之间有何关系?试说明之.分析:此题结论不确定,从已知中收集有效信息,并大胆尝试 (包括用刻度尺测量)是探索、猜想结论的方法.(1)将“AE 平分∠BAD "与“DE ⊥AD "结合在一起考虑,可以联想到, 若作EF ⊥AB 于F ,就构成角平分线性质定理的基本图形,可得AF =AD . (2)再结合“点E 是DC 的中点”,可得:ED = EF =EC .于是连接BE ,可证BF =BC . 这样,AD + BC =AF + BF =AB .解:AD 、BC 与AB 之间关系:AD + BC =AB .证明思路简记如下: 作EF ⊥AB ,连接BE ,易证△ADE ≌△AFE ( AAS ),∴AD = AF . 再由EF =ED ,EF =EC ,可得△BFE ≌△BCE ( HL ),∴ BF =BC ,AD +BC =AB .回顾与反思 (1)根据例1的结论,我们可以在三角形内找到一点,使它到三角形三边距离都相等;(2)利用角平分线的性质,可以说明两条线段相等,这也是我们常用的办法.【训练与提高】 一、选择题:1.A 2.B 3.A 4.C 二、填空题:5.线段的垂直平分线、角平分线 6.3 7.900 三、解答题:8.略 9.过P 点分别作垂线 10.作图略 11.作MN 的中垂线,∠AOB 的平分线交点即是 12.6 cm 【拓展与延伸】图1.5.1BE D CFA1.600 2.略1.5 等腰三角形的轴对称性(1)【实践与探索】例1 (1)已知等腰三角形的一个角是1000,求它的另外两个内角的度数; (2)已知等腰三角形的一个角是800,求它的另外两个角的度数.分析: (1)由于等腰三角形两底角相等,且三角形的内角和为1800,所以1000的角一定是这个三角形的顶角;(2)等腰三角形的一个角是800,要分底角为800或顶角为800两种情况. 解:(1)由于等腰三角形两底角相等,且三角形的内角和等于1800,这个三角形的顶角等于1000,所以这个三角形的另两个内角应为21(1800 - 1000)=400. (2)①底角为800时,另外两角分别为800和200;②顶角为800时,另外两角分别为500和500.回顾与反思 :(1)当不知道已知的角是等腰三角形的顶角还是底角,此时须进行讨论;(2)若把已知角改为α,则这个等腰三角形另外两个角的度数是怎样的呢?例2 如图1.5.1,在△ABC 中,AB =AC ,D 为BC 的中点, DE ⊥AB ,垂足为E , DF ⊥AC ,垂足为F .试说明DE =DF 的道理. 分析:本题可以根据“角平分线上的点到角的两边的距离相等”来说明 DE =DF .也可以利用△ADB 和△ACD 面积相等来说明DE =DF , 或用全等来说明.【训练与提高】 一、选择题:1.A 2.C 3.C 4.C 5.A 二、填空题:图1.5.2图1.5.36.5 cm 7.6 cm ,2 cm ,或4 cm ,4 cm8.(1)12.5 (2)3>a ,120<<b 9.3,3,4或4,4,2 三、解答题:10.(1)700、400 或 550,550 (2) 300,300 11.750,750,300 12.33 cm 13.1080 14.BD =CE . 理由:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED .∴∠ADB =∠AEC .∴ΔABD ≌ΔACE .∴BD =CE【拓展与延伸】 1.1000 2.略1.5 等腰三角形的轴对称性(2)【实践与探索】例1 如图1.5.2,在△ABC 中,已知∠A =360,∠C =720, BD 平分∠ABC ,问图中共有几个等腰三角形?为什么? 解:图中共有3个等腰三角形. ∵∠A =360,∠C =720,∴∠ABC =1800一(∠A +∠C )=1800- (360+720) =720=∠C , ∴△ABC 是等腰三角形.又∵BD 平分∠ABC ,∴∠ABD =∠CBD =21∠ABC =360, ∠BDC =∠A +∠ABD =360+360=720, 即有∠A =∠ABD ,∠BDC =∠C .∴△ABD 和△BCD 都是等腰三角形. ∴图1.5.2中共有3个等腰三角形.例2 如图1.5.3所示,在四边形ABCD 中,∠ABC =∠ADC = 900.,M 、N 分别是AC . BD 的中点,试说明: (1)DM =BM ; (2)MN ⊥BD .图1.5.4解: (1) ∵点M 是Rt △ABC 斜边的中点,∴BM =21AC , 同理DM =21AC ,∴BM =BM ; (2) ∵N 是BD 的中点,又BM =DM ,∴MN ⊥BD . 回顾与反思 (1)“等边对等角”和“等角对等边”是证明角相等或边相等的又一手段,要能够将这两条定理结合在一起灵活运用,要分清区别和联系;(2)看见直角三角形斜边的中点时,要联想“直角三角形斜边上的中线等于斜边的一半”,这是我们常用的思维方式之一. 【训练与提高】 一、选择题:1.D 2.B 3.D 4.C 二、填空题:5.等腰 6.8 7.350 , 218.(1)ΔBDE 或ΔADE (2)ΔBCE(3)ΔAGF 三、解答题:9.等腰三角形 10.ΔABC ,ΔAEF ,ΔEBO ,ΔFCO ,ΔOBC BE =CF =21EF 11.平行 12.10 cm 【拓展与延伸】1.延长AE 交BC 延长线于F 2.略1.5 等腰三角形的轴对称性(3)【实践与探索】例1 如图1.5.4,在△ABC 中,AB =AC ,∠BAC = 1200,点D 、E 在BC 上,且BD =AD ,CE =AE .判断△ADE 的形 状,并说明理由.解: △ADE 是等边三角形.理由:∵AB=AC,∠BAC=120.,∴∠B=∠C=300.∵BD=AD,AE=CE,∴∠B=∠BAD=300,∠C=∠CAE=300,∴∠ADE=∠DAE=∠AED =600.∴△ADE是等边三角形.例2 等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分为两部分之差为3 cm,则腰长为( ) A.2 cm B.8 cm C.2 cm或8 cm D.以上都不对分析可以先画出草图,题中所给条件实质是腰长与底边长之差的绝对值为3 cm.因为底边长为5 cm,所以腰长可能为8 cm或2 cm,但由于2 cm +2 cm <5 cm,故腰长不能为2 cm,只能为8 cm.解:选B.回顾与反思涉及求等腰三角形边或角时,常会出现“两解”的情况.这样的“解”需要检验它是否满足三角形的三边或三角之间的关系.【训练与提高】一、选择题:1.D2.D3.C4.A5.C二、填空题:6.等边、等边7.150 8.1200三、解答题:9.cm1010、略11.(1)EC=BD(2)添加条件:AB=AC,是轴对称图形,此时,∠BOC=1200,12.过D点作AC平行线【拓展与延伸】1.添辅助线,通过ΔACD≌ΔBCE来说明2.略1.6 等腰梯形的轴对称性(1)图1.6.1图1.6.2【实践与探索】例1 如图1.6.1,在梯形ABCD 中,AD ∥BC , AB =CD , 点E 在BC 上,DE ∥AB 且平分∠ADC ,△CDE 是什么三角形? 请说明理由.解: △CDE 是等边三角形.因为AD ∥BC , AB =CD ,所以∠B =∠C .理由:“等腰梯形在同一底上的两个角相等”又因为AD ∥BC ,所以∠ADE =∠CED .由DE 平分∠ADC ,可得∠ADE =∠CDE , 于是∠CED =∠CDE .又因为AB ∥DE ,所以∠B =∠CED ,从而有∠C =∠CED =∠CDE ,所以△CDE 是等边三角形.回顾与反思 等腰梯形与等腰三角形有着紧密的联系.在研究等腰梯形时,要联想到等腰三角形中的知识.例2 如图1.6.2,在梯形纸片ABCD 中,AD ∥BC , ∠B =600, AB =2,BC =6.将纸片折叠,使得点B 与点D 恰好重合,折痕为AE ,求AE 和CE 的长. 解 ∵点B 与点D 沿折痕AE 折叠后重合,∴△ABE ≌△ADE , ∴ ∠1 = ∠B =600, ∠3 =∠4. ∵AD ∥BC , ∴∠1 = ∠2=600.而∠2 + ∠3 + ∠4= 1800, ∴ ∠3 + ∠4 =1200, ∴ ∠3 =∠4=600,而∠B =600,∴∠5 =600,因此,△ABE 是等边三角形. ∴AE - BE =AB =2, ∴CE =BC - BE =4.回顾与反思 解题过程中要把等腰梯形和一般梯形的特征区分开,不可误用. 【训练与提高】 一、选择题: 1.B 2.C 3.B图1.6.3BCFADE二、填空题:4.1080,1080,720 5.27 6.①②③④ 7.1 cm 8.150 三、解答题:9.∠A =∠E 10.72 0 、72 0 、108 0、108 0,11.成立 【拓展与延伸】 1.CE =21(AB +BC ) 过点C 作CF ∥DB ,交AB 的延长线于点F ,先证:ΔDCB ≌ΔFBC ,则CF =DB ,又四边形ABCD 是等腰梯形,则AC =DB ,故AC =CF , 易证:∠AOB =∠ACF ,所以ΔACF 为等腰直角三角形. 又因为CE ⊥AB ,易证:CE =AE =EF =2BCAB . 2.4,61.6等腰梯形的轴对称性(2)【实践与探索】例1 如图1.6.3,△ABC 中,∠ACB =900,D 是AB 的中点,DE ∥AC ,且DE =AC 21,点F 在AC 延长线上,且CF =AC 21,请说明四边形AFED 是等腰梯形.略证:先说明四边形CFED 是平行四边形.由CD ∥EF ,∠F =∠ACD ,且CD 是RT △ABC 斜边上的中线 得∠A =∠F ,证得四边形AFED 是等腰梯形回顾与反思 要证明梯形是等腰梯形时,只要证明同一底上的两个角相等.例2 阅读下面的分析过程,并按要求回答问题.已知在四边形ABCD 中,AB =CD ,AC =BD ,AD ≠BC .则四边形ABCD 是等腰梯形.你能说明理由吗?分析:要证明四边形ABCD 是等腰梯形,因为AB =DC ,所以只需证四边形ABCD(1)(2)(3)(4)图1.6.4是梯形即可;又因为AD ≠BC ,故只需证AD ∥BC .现有如图1.6.4所示的几种添辅助线的方法,可以任意选择其中一种图形,对原题进行证明.友情提示:充分利用全等三角形与等腰三角形来完成.回顾与反思 在研究等腰梯形时,常常通过辅助线,使等腰梯形与等腰三角形、平行四边形联系起来. 【训练与提高】 一、选择题:1.C 2.C 3.B 4.B 5.C 二、填空题:6.24 7.50 0 、50 0 、130 0、130 0, 8.是 9.80 0 、80 0 、100 0, 等腰 三、解答题:10.略 11.ΔABC ≌ΔDCB12.是,理由:∵∠E =∠ACE ,∴AE =AC ∵AD ∥BC ,∴∠DAC =∠ACE ∴∠E =∠DAC ∵AD =BE ,∴ΔABE ≌ΔCDA ∴AB =CD ∴梯形ABCD 是等腰梯形.13.∵AB =AC ,∴∠ABC =∠ACB .∵BD ⊥AC ,CE ⊥AB ,∴∠BEC =∠CDB =900,BC =BC ∴ΔBEC ≌ΔCDB .∴BE =CD ∴AE =AD .∴AED =∠ADE =21800A ∠-.∵∠ABC =∠ACB =21800A∠-,∴∠AED =∠ABC .∴ED ∥BC .∵BE 与CD 相交于点A ,∴BE 与CD 不平行.∴四边形BCDE 是梯形.∵∠EBC =∠DCB ,∴梯形BCDE 是等腰梯形.M NF DCBA E 【拓展与延伸】 1.26,322.解:设经过x 秒后梯形MBND 是等腰梯形, ∵作ME ⊥BC 于点E ,DF ⊥BC 于点F .∴BE =FN =AM =x .∴EF =MD =21-x ,CN =2x ,BN =24-2x . ∴BN =2AM +MD .即24-2x =2x +21-x ,∴x =1.第一章复习题A 组:1.A 2.C 3.B 4.D 5.C 6.、18或21,22 7.35 0 、35 0 ;40 0、100 0或700、700 8.3 cm 或7 cm 9.7,10或8.5, 8.5 10.(1)300, (2)19 11.1000 12.(1)400,(2)350,(3)360 13.450 1350 等腰 14.等腰梯形 15.3 B 组:16.略 17.略 18.27 300 19.提示:先证:ΔADE ≌ΔADC ,则DE =DC ,所以∠DEC =∠DCE ,又EF ∥BC ,所以∠DCE =∠FEC ,则∠FEC =∠DEC 20.51221.略 22.提示:连结CR 、BP ,利用直角三角形斜边上的中线等于斜边的一半.第二章 勾股定理与平方根答案2.1 平方根⑴例1解: ⑴∵(±10)2=100,∴100的平方根是±10,即10100±=±;⑵∵(±1.3)2=1.69,∴1.69的平方根是±1.3,即3.169.1±=±; ⑶∵49412= ,(±23)2=49,∴49的平方根是±23,即23412±=±; ⑷∵02=0,∴0的平方根是0,即00=.回顾与反思:⑴正数的平方根有两个,它们互为相反数,要防止出现100的平方根是10的错误;⑵当被开方数是带分数时.应先将它化成假分数后再求平方根; ⑶ 0的平方根只有一个,就是0,负数没有平方根. 例2解: ⑴∵-64<0,∴-64没有平方根;⑵∵(-4)2=16>0; ∴(-4)2有两个平方根,即416)4(2±=±=-±;⑶∵-52=-25<0, ∴-52没有平方根;⑷∵81表示81的正的平方根是9,∵9>0, ∴81的平方根有两个是±3.回顾与反思:象(-4)2、81这样的数求平方根时,应先将这些数化简,再求化简后的数的平方根.例3解:⑴ ∵1962=x ,∴x 是196的平方根,即14196±=±=x ; ⑵ ∵01052=-x ,∴22=x ,x 是2的平方根,即2±=x ; ⑶ ∵()0253362=--x , ∴()362532=-x , ∴()3-x 是3625的平方根,即653±=-x ; ∴6231=x ,6132=x【训练与提高】1. B ; 2D ; 3B . 4.3; 5.±17;±4; 6.±15;54-; 7.-1; 49; 8.9;81; 9.0. 10.⑴-8;⑵±1.3;⑶35-;⑷-9;11.⑴±5;⑵±9;⑶21±;⑷3,-1;12.25; 13.±4.【拓展与延伸】1. ±9;2.±3. 2.1 平方根⑵例1分析:10000表示10000的_________根; 225121-表示225121的算术平方根的相反数; 8149±表示8149的__________根.解 ⑴100100100002==; ⑵ 1511)1511(2251212-=-=-; ⑶ 97)97(81492±=±=±. 回顾与反思:10000表示10000的算术平方根,要防止出现10000=±100的错误. 探索:⑴发现: 当0≥a 时,a a =2)(. ⑵发现:当0>a 时,a a =2, 当0<a 时,a a -=2;当0=a 时, 02=a .即⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||2a a a a a a a .例2解: ⑴ 2)3(-=3; ⑵2)3(-=3; ⑶ 当x >0时,x x =2)(;⑷当0<a 时,03<a ,a a a a 3|3|)3(922-===.回顾与反思:等式)0(2≥=a a a 和⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||2a a a a a a a ,是算术平方根的两个重要性质.以后经常会用到它们. 【训练与提高】1.B ;2.A ;3.B4.D ;5.D ;6.C .7.⑴±15,15;⑵127± , 127;⑶±0.1,0.1;⑷17,17±.⑸±2,2;8.169;3± 9.0≥a ,2;10.9=x ;11.-1; 12.-3,互为相反数. 13.⑴ 1;⑵65-; ⑶136±;⑷0.17;⑸.5;⑹.-0.3;⑺954.⑻152.【拓展与延伸】1. ±5,±1 ;12. 5. 2.2立方根例1分析 因为立方与开方互为逆运算,因此我们可以用立方运算来求一个数的立方根,也可以通过立方运算来验证一个数是否为另一个数的立方根.例1解 ⑴∵278)32(3=,∴322783=; ⑵∵278)32(3-=-,∴322783-=-;⑶、⑷、⑸略.例2解 ⑴34)34(2764271023333-==-=--; ⑵52)52(125812583333===--. ⑶略.回顾与反思:⑴当被开方数带“-”号时,可把“-”提取到根号外后再计算; ⑵当被开方数是带分数时,应先化成假分数; ⑶当被开方数没化简时,应先化简后再求值.例3解 ⑴28,8,16233-=-=-=-=3x x x ;⑵略回顾与反思:平方根与立方根的区别如下:⑴表示的意义不同;⑵a 与3a 中的被开方数a 的取值范围不同,a 中的a 应满足a ≥0,3a 中的a 可为任何数;⑶一个数的平方根与立方根的个数也不同,一个数的平方根最多有两个,也可能是一个或者不存在,而它的立方根总有且只有一个;⑷负数没有平方根,但负数有立方根. 【训练与提高】1. B ;2.C ;3.D ;4.B ;5.±8,4,8;6.-1,5,65-,23. 7. 100;±8; 8.7,-3; 9.⑴-10; ⑵45-;⑶72;⑷23;⑸34-;⑹3. ⑺0.3;⑻6. 10.⑴56-.⑵8;⑶-16;⑷-4. 11.⑴5;⑵39;⑶-4;⑷-2. 【拓展与延伸】 1.39; 2. 37.5㎝2.2.3实数⑴例1如图将两个边长为1的正方形分别沿它的对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形,容易知道,这个大正方形的面积是2,所以大正方形的边长是2.这就是说,边长为1的正方形的对角线长是2,利用这个事实,我们容易在数轴上画出表示2的点,如图2.3.2所示.图2.3.1例2分析 无理数有两个特征:一是无限小数,二是不循环.因此,要判定一个数是不是无理数,应从它的定义去判断,而不是从表面上去判断.如带根号的数不一定是无理数,而我们熟悉的圆周率π就是无理数.解 有理数有-3.1415926,113335, ∙31.0 ,3625.无理数有π-,39 ,22, 0.1010010001…. 回顾与反思:有理数与无理数的区别是:前者是有限小数或无限循环小数,而后者一定是无限不循环小数.例3解 ⑴ 不正确.如∙∙53.2是无限小数,但它不是无理数; ⑵ 不正确. 如∙∙53.2是有理数,但它是无限小数;⑶ 正确.因为无理数是无限不循环小数,当然是无限小数; ⑷ 不正确.如4是有理数. 【训练与提高】1.B ;2. C ;3.C .4.实数;5.25 ,722,0,252252225 ,∙64.3; 5.121121121…,2π,18-,32. 6.6;7.±5. 【拓展与延伸】 1. C ; 2. 8. 2.3实数⑵例1分析 在实数范围内,相反数、绝对值、倒数的意义与有理数范围内的意义完全相同.所以我们可以用在有理数范围内的同样方法来求一个实数的相反数、绝对值.解 ⑴ ∵4646433-=-=-,∴364-的相反数是4,绝对值是4;π-3的相反数是3-π,∵π-3<0,∴3|3|-=-ππ.⑵ ∵3|3|=,3|3|=-,∴这个数是±3解 由图可知,,0<a ∴a a -=.∵c b <,∴0>-b c ,∴b c b c -=- ∵0,0<<b a ,∴b a b a --=+,∴c b a b c a b a b c a b a b c a =++-+-=----+-=+--+)()(回顾与反思:⑴根据实数在数轴上的位置可以确定各数的符号以及这些数的大小关系; ⑵在求一个数的绝对值时,首先要确定这个数的符号,然后根据“正数和零的绝对值是本身,负数和零的绝对值是它的相反数”来求出它的绝对值.⑶每个有理数都可以用数轴上的点来,但数轴上的点并不都表示有理数,数轴上的点与实数是一一对应的,即每个实数都可以用数轴上的一个点来表示,反过来数轴上的每一个点都表示一个实数.例3解: (1)∵5)5(2= ,425)25(2=,又4255<, ∴ 255<. (2)∵255<,∴2315<-, ∴43215<- 回顾与反思:比较两个无理数的大小,通常可以用计算器求它们的近似值再进行比较.估算一个无理数的大小 ,还可以用与它相近的有理数逐步逼近的方法来实现.【训练与提高】1. D ;2.B ;3.⑴2,2;⑵ 312,312;⑶-3,3;⑷25-, 25-. 4. <, <,<; 5.-1,0,1; 6.37-; 7.⑴2.02;⑵-10.95;⑶-0.98 ;⑷1.29; 8.⑴-5;⑵-4;⑶535--;⑷-9. 9.b -2 a -2c . 10<; <; <; >. 【拓展与延伸】1. 2a -b .2. 4-2. 2.3近似数与有效数字例1分析 生活中形形色色的数, 哪些是近似数?哪些是准确数?需要我们仔细去辨别.脱离了现实背景的数,有时则无法区分.解 略.例2解 ⑴ 43.8精确到十分位(即精确到0.1),有3个有效数字, 分别为4、3、8. ⑵ 0.03086精确到十万分位,有4个有效数字,分别为3、0、8、6. ⑶ 2.40万精确到百位,有3个有效数字,分别为2、4、0.回顾与反思:由于2.40万的单位是万,所以不能看成精确到百分位,另外2.4万和2.40万作为近似数,它们是不一样的.例3解 ⑴3.4802≈3.48 ; ⑵ 3.4802≈3.480; ⑶3.1415926≈3.14; ⑷ 26802≈2.7×104. 回顾与反思:(1)本题⑴、⑵小题,由于精确度要求不同,同一个数的近似结果是不一样的,所以第⑵题中3.480后面的0不能省略不写;反之同一个近似结果所对应的原数也不一定相同,你能举例说明吗?(2)第⑷小题中若把结果写成27000,就看不出哪些是保留的有效数字,所以此时要用科学计数法,把结果写成2.7×104. 【训练与提高】1. D ;2.C ;3.A ;4.略;5. ⑴ 百分位,4个; ⑵ 个位,2个; ⑶ 千分位,3个; ⑷ 个位,5个;⑸ 万分位,3个; ⑹万位,3个; ⑺ 百分位,3个; ⑻百万位,3个.【拓展与延伸】 ⑴1×102;⑵-0.54;⑶-3.64×103;;⑷3.5. 2.4 勾股定理(1)例1解:⑴在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵a =6,c =10,∴b 2=c 2-a 2=64,∴b =8.(b =-8舍去) ⑵在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵a =40, b =9,∴c 2=a 2+b 2=1681,∴c =41. .(c =-41舍去) ⑶在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵b =15,c =25, ∴a 2=c 2-b 2=400, ,∴a =20. .(a =-20舍去) ⑷在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵3a =4b ,∴a ︰b =4︰3, ∴设a =4k ,b =3k ,则c =5k .∵c =2.5,∴k =0.5,∴a =2,,b =1.5. 回顾与反思:勾股定理反映直角三角形.....中三边的关系,运用勾股定理在直角三角形的三边中已知任意两边就可以求出第三边.例2解 ①∵△ABC 中, ∠ACB =90°,AC =BC =1, ∴AB =2112222=+=+BC AC ,②∵△ABC 中, ∠ACB =90°, BC =1,AB =2,∴AC =3122222=-=-BC AB回顾与反思:运用勾股定理的前提是三角形必须是直角三角形.若已知条件中没有直角三角形时,应构造直角三角形后方可运用勾股定理. 【训练与提高】1.D ;2.A ;3. 13,60;4. 225,39, 225;5. 5,76.5;7. 49;8.13;9. a 3【拓展与延伸】4. 2.4 勾股定理(2)例1略例2解:由题意得∠AOB =90°,AO =30,BO =40.5040302222=+=+=BO AO AB (海里)答:1小时后两舰相距50海里例3分析 此题首先要解决△ABC 的面积,为此,可考虑作AD ⊥BC 于D .解 过A 作AD ⊥BC 于D ,则AD 2=AB 2-BD 2=AC 2-CD 2. 设BD =x ,则CD =14-x ,∴132―x 2=152―(14-x )2, ∴x =5即BD =5,∴AD 2=144.∴AD =12,S △ABC =21BC ·AD =84m 2. ∴费用84×50=4200元. 回顾与反思:(1)勾股定理揭示了直角三角形的三边之间的关系,已知直角三角形中任意两边就可以依据勾股定理求出第三边.在实际问题中若存在现成的直角三角形,就可以直接运用勾股定理解决问题.(2)涉及面积计算往往需要添加辅助线(高)来构造直角三角形,从而运用勾股定理求得相应的线段,进而求出所需面积. 【训练与提高】1. D . 2.D . 3.4,6 ,2. 4. 7 ,1.8 ; 5. 3㎝; 6. 略. 【拓展与延伸】 1.图略; 2. 图略. 2.5 神秘的数组(例1解 ⑴∵22222225625247c b a ===+=+.根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形是直角三角形,且∠C =90°.⑵∵2222225.225.65.12a c b ===+=+.根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形是直角三角形,且∠A =90°.⑶∵c > a , c > b , 16411452222=+⎪⎭⎫ ⎝⎛=+b a ,而9253522=⎪⎭⎫ ⎝⎛=c ,∴222c b a ≠+,根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形不是直角三角形.回顾与反思:要判定一个三角形是否为直角三角形,只要计算两条较短边的平方和,以及最长边的平方,然后看它们是否相等即可.例2解 ∵在△ABD 中,AB 2+AD 2=9+16=25=BD 2,∴△ABD 是直角三角形,∠A 是直角.∵在△BCD 中,BD 2+BC 2=25+144=169=CD 2, ∴△BCD 是直角三角形,∠DBC 是直角. ∴这个零件符合要求.回顾与反思:像(3,4,5)、(6,8,10)、(5,12,13)等满足a 2+b 2=c 2的一组正整数,通常称为勾股数.利用勾股数可以构造直角三角形.例3解 ∵12412)2()1(2422422222++=++-=+-=+n n n n n n n b a . 222)1(c n =+=根据直角三角形的判定条件,得∠C =90°. 【训练与提高】1. B ;2.B ;3.C ;4. C ;5.C ;6. 直角三角,B ;7. 12,13,5;直角三角形;8. 直角三角形,略9. ∵AB ⊥BC ,∴∠B =90°,∴AC 2=AB 2+BC 2=5,又∵AC 2+CD 2=5+4=9=AD 2.∴∠ACD =90°,∴AC ⊥CD . 10.是,略; 11.连接AC ,∵∠ADC =90°,AD =4,CD =3,∴AC 2=AD 2+CD 2=25,∴AC =5,∵AB =13,BC =12,∴AC 2+BC 2=25+144=169=AB 2,∠ACB =90°,S =30-6=24. 【拓展与延伸】1. 连结EC ,∵D 是BC 的中点,DE ⊥BC 于D ,交AB 于E ,∴BE =CE ∵BE 2-EA 2=AC 2,∴CE 2-EA 2=AC 2,∴CE 2=EA 2+AC 2∴∠A =90°.2.略 2.6 勾股定理的应用(1)例1分析 ⑴根据勾股定理,直角三角形中若两直角边长分别为1个单位和3个单位,则斜边长为10个单位,因此,以原点为圆心,10个单位长为半径画圆与数轴的交点表示的数即分别为±10.解:⑴如图图2.6.1①; ⑵如图图2.6.1②例2分析:几何应用问题重在将实际问题转化为数学问题,此题若设AE =x km ,由△DAE 、△EBC 均为直角三角形,且它们的斜边相等,运用勾股定理可建立方程.解:设AE =x km ,则BE =(25-x )km. ∵CE =DE ,∴CE 2=DE 2 .由勾股定理得 152+x 2=(25-x ) 2+102解得 x =10 . 答:E 站应建在距A 站10km 处.回顾与反思:(1)运用勾股定理的前提是三角形必须是直角三角形.若已知条件中没有直角三角形时,应构造直角三角形后方可运用勾股定理.(2)勾股定理是直角三角形中三边数量之间的一个关系式,也常被用作列方程的等量关系;【训练与提高】1. B .2.C ;3.34;4. 5,13;5. 24,4.8.6. 2.7. 能,略8. 能,略; 9. 略; 10.10; 11. 4; 12. 25 . 【拓展与延伸】1. 19.5m ;2. 作AD ⊥BC 于D ,设BD =x ,由题意10―x 2=172―(x +9)2,解得x =6.由勾股定理得AD =8.2.6 勾股定理的应用⑵例1分析:设EC =x ,则DE =8-x ,由于折叠长方形的边AD ,且D 落在点F 处,故△AFE 和△ADE 全等,则EF =8-x ,AF =AD =10,在Rt △EFC 中,运用勾股定理得到关于x 的方程,可以求出x 的值.解:设EC =x cm ,则DE =(8-x )cm ,∵D 、F 关于AE 对称∴△AFE ≌△ADE , ∴AF =AD =BC =10,EF = DE =8-x .在Rt △ABF 中,6222=-=AB AF BF∴FC =BC -BF =4.在Rt △EFC 中,由勾股定理得:222)8(4x x -=+ ,解得 x =3.答:EC 长为3cm.. 回顾与反思:(1)折叠问题和轴对称密切相关,要注意翻折图形的特征;(2)从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a 2+b 2=c 2”,看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把实际问题的条件转化为解方程.例2分析 求证的结论中出现平方的形式,我们常可联想勾股定理.要运用勾股定理,首先要找到与结论中的线段有关的直角三角形,若题中没有现成的直角三角形,则需要构造直图2.6.1A FECDB图2.6.3角三角形.解 作AE ⊥BC 于E ,则在△ADE 中,AD 2=DE 2+AE 2; 又∵∠BAC =90°,AB =AC ,∴AE =BE =CE . ∵BD 2+CD 2=(BE -DE )2+(CE +DE )2=BE 2+CE 2+2DE 2=2AE 2+2DE 2=2AD 2,∴BD 2+CD 2=2AD 2. 回顾与反思:(1)在三角形中若要说明某个角是直角,常常想到勾股定理的逆定理. (2)说明含某些线段的平方形式的问题,常通过作垂线构造直角三角形,运用勾股定理来解决.【训练与提高】1. 1.5. 2.直角三角形;2.5. 3.不一定,也可能只是a =b ; 4.略; 5⑴3,⑵设CD =x ,由题意62+x 2= (8- x )2,解得x =47∴CD =47. 【拓展与延伸】 1. 2a 2; 2.略.第二章复习题1. ±8;8;4;±5. 2.π,93- . 3.-1,0,1. 4.<,>. 5. 32-,32-. 6. ±4. 7. ±1,±2. 8. 12. 9. 2,3. 10.233+. 11. 0≥x . 任何实数.12. ⑴52. ⑵32,⑶10,24. 13. 41. 14. 30. 15. B .16.C . 17.B . 18.B . 19.C . 20.C . 21.⑴2±.⑵-3.⑶3,-1; 22.直角三角形. 23. 5㎝. 24. 43.4. 25. ±1. 26. 2. 27. 2010.28. x =6. 29. 2,74. 30. 3. 31. 132. 32. 2,5,10,17,21n +. 33. 12.34. 102,106. 35. 2n. 36. 6(提示:设CD =x ,由勾股定理得x 2+92+x 2+42=132). 37. 327. 38. <,>.第三章 中心对称图形(一)参考答案3.1 图形的旋转例1 如图3.1.1,△ABC 是等边三角形,D 是BC 上的一点,△ABD 经过旋转后达到△ACE 的位置.⑴旋转中心是哪一点? ⑵旋转了多少度? ⑶如果M 是AB 的中点,那么经过上述旋转后点M 转到了什么位置? ⑷图中相等的线段有哪些?相等的角有哪些?分析 解决本题只需利用旋转的定义及其特征. 解 ⑴旋转中心是点A ; ⑵旋转了60°;⑶点M 转到了AC 的中点位置上;⑷相等的线段有:AB=BC=AC ,AD=AE ,BD=CE ;相等的角有:∠B=∠BCA=∠CAB=∠DAE=60°,∠BAD=∠CAE ,∠BDA=∠CEA .回顾与反思:本题应用了旋转的定义及特征,知道旋转图形哪些变,哪些不变.本题的难点在于旋转角度,注意图中∠DAC 不是旋转角度.另外,注意到对应线段AB 、AC 所在直线的夹角是60°(旋转角度),那么对应线段BD 、CE 所在直线的夹角呢?由此你想到什么?例2 已知,如图3.1.2,△ABC 中,∠BAC=120°,⑴以点A 为旋转中心,将△BAC 逆时针旋转60°得△ADE ,画出△ADE ;⑵设题⑴中AD 、BC 交于F ,AC 、DE 交于点G ,请你猜想旋转后△ABF 能否与△ADG 重合?为什么?解 ⑴△ADE 如图所示(画法略);⑵△ABF 能与△ADG 重合,理由如下:∵∠BAC=120°,∠BAD=60°,∴∠DAG=60°=∠BAF ;又由旋转知∠B=∠D ,BA=DA ,∴△ABF ≌△ADG (ASA ).回顾与反思:观察一下△AFC 与△AGE 是否也具备这样的关系?本题中△ABF 与△ADG 能够重合是由∠BAC 及旋转角的特殊性导致的,如果,将△ADE 再绕点A 逆时针旋转过1°,则∠BAD=59°,∠DAG=61°,结论就不成立.【训练与提高】1.D 2.点A ,逆时针旋转45° 3.⑴点A ,⑵△AEF 是等腰直角三角形,⑶略 4.⑴110°或290°,⑵180° 5.以A 为中心逆时针旋转120°得△AEF ,以C 为中心顺时针旋转120°得△CED ,以AC 中点为中心旋转180°得△ACE 6.417.图略8.图略,用SAS 证△EAC ≌△BAD ,再证BD ⊥EC【拓展与延伸】1.图略.△A′′B′′C′′可由△ABC 绕点P 旋转2∠P 得到 2.图略3.2 中心对称与中心对称图形⑴例1 如图3.2.1,已知△ABC 和点O ,试画出△DEF ,使△DEF 和△ABC 关于点O 成中心对称.解 ①连接AO 并延长AO 到D ,使OD =OA ,得到点A 的对称点D ;②同样方法画出点B 、C 的对称点E 、F ; ③顺次连接DE 、EF 、FD . 所以,△DEF 即为所求的三角形.回顾与反思:画出一个别图形关于某一点成中心对称图形,关键在图3.1.2GF EDCBA 图3.2.1EB。

相关文档
最新文档