2020-2021西安市高新第一中学初一数学下期末试卷(及答案)
2020-2021西安市初一数学下期末试卷带答案
2020-2021西安市初一数学下期末试卷带答案一、选择题1.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 3.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多4.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50) 5.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间6.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-4 7.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50° 8.不等式组1212x x +>⎧⎨-≤⎩的解集是( ) A .1x < B .x ≥3 C .1≤x ﹤3 D .1﹤x ≤39.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°10.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 11.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)二、填空题13.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.14.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.16.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.17.已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________. 18.若关于x 的不等式组0532x m x +<⎧⎨-⎩无解,则m 的取值范围是_____. 19.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________.20.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.三、解答题21.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .22.(1)(感知)如图①,//AB CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,试说明AEC A DCE ∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ),12AEC ∠=∠+∠,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?24.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______ ;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______ .25.解不等式-3+3+1 21-3-18-xxx x ⎧≥⎪⎨⎪<⎩()【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩, 故选C .【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.2.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 3.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.4.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.5.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B .【点睛】是解题关键.6.D解析:D【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.7.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.8.D解析:D【解析】【分析】【详解】解:1212xx+>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3;故选D.解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.10.C解析:C【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.11.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角, 同旁内角,解题关键在于掌握各性质定义.12.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.二、填空题13.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.14.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=解析:48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=48(cm 2)故答案为48 cm 2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.3【解析】试题分析:先根据二元一次方程的定义得出关于mn 的方程求出mn 的值再代入m-n 进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m -3=1解得m=4;2-n=1解得n=1∴m -n=4-解析:3【解析】试题分析:先根据二元一次方程的定义得出关于m 、n 的方程,求出m 、n 的值,再代入m-n 进行计算即可.∵方程x m-3+y 2-n =6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.17.【解析】【分析】首先确定不等式组的解集先利用含a 的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解:解得不等式组的解集为:且∵不等式组只有2 解析:4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键18.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m 的范围【详解】解不等式x+m <0得:x <﹣m 解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答解析:m ≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m 的范围.【详解】解不等式x +m <0,得:x <﹣m ,解不等式5﹣3x ≤2,得:x ≥1,∵不等式组无解,∴﹣m ≤1,则m ≥﹣1,故答案为:m ≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.5【解析】【分析】先根据在轴上计算出m 的值根据纵坐标的绝对值即是线段长度可得到答案【详解】∵在轴上∴横坐标为0即解得:故∴线段长度为故答案为:5【点睛】本题只要考查了再y 轴的点的特征(横坐标为零)在 解析:5【解析】【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.【详解】∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.20.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF 然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC 沿BC 方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF ,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题21.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD∥EG,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)22.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;EF AB,根据平行线的性质、平行公理的推论解答即可;(2)如图④,过点E作//(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】EF AB,解:(1)证明:如图①,过点E作//A∴∠=∠(两直线平行,内错角相等),1AB CD(已知),EF//AB(辅助线作法),//∴(平行于同一条直线的两直线互相平行),//EF CD∴∠=∠(两直线平行,内错角相等),2DCE12∠=∠+∠,AEC∴∠=∠+∠ (等量代换);AEC A DCE(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.23.(1)6万元、4万元 (2)甲、乙型机器人各4台【解析】【分析】(1)设甲型机器人每台的价格是x 万元,乙型机器人每台的价格是y 万元,根据“购买一台甲型机器人比购买一台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买a 台甲型机器人,则购买(8-a )台乙型机器人,根据总价=单价×数量结合总费用不超过41万元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 为整数可得出共有几种方案,逐一计算出每一种方案的每小时的分拣量,通过比较即可找出使得每小时的分拣量最大的购买方案.【详解】解:(1) 设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意的: 22324x y x y =+⎧⎨+=⎩解得:64x y =⎧⎨=⎩答:甲、乙两种型号的机器人每台价格分别是6万元、4万元:(2)设该公可购买甲型机器人a 台,乙型机器人()8a -台,根据题意得:()64841a a +-≤解得: 4.5a ≤ a 为正整数∴a=1或2或3或4当1a =,87a -=时.每小时分拣量为:12001100078200⨯+⨯=(件);当2a =,86a -=时.每小时分拣量为:12002100068400⨯+⨯=(件);当3a =,85a -=时.每小时分拣量为:12003100058600⨯+⨯=(件);当4a =,84a -=时.每小时分拣量为:12004100048800⨯+⨯=(件);∴该公司购买甲、乙型机器人各4台,能使得每小时的分拣量最大.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】试题分析:(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2. 解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.25.﹣2<x≤1.【解析】【分析】【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2) xxx x-⎧++⎪⎨⎪--<-⎩,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.。
【必考题】初一数学下期末试卷(及答案)(1)
【必考题】初一数学下期末试卷(及答案)(1)一、选择题1.已知关于x 的不等式组的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤52.计算2535-+-的值是( )A .-1B .1C .525-D .255- 3.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣3 4.16的平方根为( )A .±4 B .±2 C .+4D .2 5.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-46.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.8 7.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-39.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,410.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角11.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .212.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________ 14.不等式71x ->的正整数解为:______________.15.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.16.64的立方根是_______.17.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 18.二项方程32540x +=在实数范围内的解是_______________19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.三、解答题21.作图题:如图,在平面直角坐标系xOy 中,(4,1)A -,(1,1)B -,(5,3)C -(1)画出ABC ∆的AB 边上的高CH ;(2)将ABC ∆平移到DEF ∆(点D 和点A 对应,点E 和点B 对应,点F 和点C 对应),若点D 的坐标为(1,0),请画出平移后的DEF ∆;(3)若(3,0)M ,N 为平面内一点,且满足BCH ∆与MND ∆全等,请直接写出点N 的坐标.22.解不等式组()x1<0{2x 13x+1--≤,并把解集在数轴上表示出来.23.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元;营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为x 元,销售每件服装奖励y 元.(1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?24.如图,已知在ABC ∆中,FG EB P ,23∠∠=,说明180EDB DBC ∠+∠=︒的理由.解:∵FG EB P (已知),∴_________=_____________(____________________).∵23∠∠=(已知),∴_________=_____________(____________________).∴DE BC ∥(___________________).∴180EDB DBC ∠+∠=︒(_________________________).25.把一堆书分给几名学生,如果每人分到 4 本,那么多 4 本;如果每人分到 5 本,那么最 后 1 名学生只分到 3 本.问:一共有多少名学生?多少本书?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m 的范围即可.【详解】不等式组解集为1<x <m ,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】 解:2535+-(253525351-+=-+=,故选B.【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.3.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.4.A解析:A【解析】【分析】根据平方根的概念即可求出答案.【详解】∵(±4)2=16,∴16的平方根是±4.故选A.【点睛】本题考查了平方根的概念,属于基础题型.5.D解析:D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.6.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.7.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.8.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A9.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.10.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.12.D解析:D【解析】解:∵直线l 1∥l 2,∴∠3=∠1=44°.∵l 3⊥l 4,∠2=90°-∠3=90°-44°=46°.故选D .二、填空题13.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.14.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.15.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.16.【解析】【分析】根据立方根的定义即可求解【详解】∵43=64∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义解题的关键是熟知立方根的定义解析:【解析】【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.17.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.18.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键解析:x=-3【解析】【分析】由2x3+54=0,得x3=-27,解出x值即可.【详解】由2x 3+54=0,得x 3=-27,∴x=-3,故答案为:x=-3.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.19.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.20.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x 2+(m -2)x +9是一个完全平方式,∴x 2+(m -2)x +9=(x ±3)2. 而(x ±3)2=x 2±6x +9,∴m -2=±6,∴m =8或m =-4.故答案为8或-4. 三、解答题21.(1)见详解;(2)见详解;(3)(3,4)或(3,-4)或(1,4)或(1,-4).【解析】【分析】(1)根据三角形高的定义画出图形即可;(2)先算出每个点平移后对应点的坐标,利用平移的性质画出图形即可;(3)根据三角形全等的定义和判断,由DM=CH=2,即可找到N 点的坐标使得BCH ∆与MND ∆全等;【详解】解:(1)过点C 作CP ⊥AB ,交BA 的延长线于点P ,则CP 就是△ABC 的AB 边上的高;(2)点A (-4,1)平移到点D (1,0),平移前后横坐标加5,纵坐标减1,因此:点B 、C 平移前后坐标也作相应变化,即:点B (-1,1)平移到点E (4,0),点C (-5,3)平移到点F (0,2),平移后的△DEF 如上图所示;(3) 当(3,0)M ,N 为平面内一点,且满足BCH ∆与MND ∆全等时,此时DM 的长度为2,刚好与CH 的长度相等,又BH 的长度等于4,根据三角形全等的性质(对应边相等), 如下图,可以找到4点N ,故N 点的坐标为:(3,4)或(3,-4)或(1,4)或(1,-4).【点睛】本题主要考查的知识点有平移变换、三角形全等的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.﹣2≤x <2,见解析【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【详解】 解:()x 1<02x 13x 1⎧-⎪⎨⎪-≤⎩①+②,解不等式①得,x <2,解不等式②得,x≥﹣2,∴不等式组的解集是﹣2≤x <2.在数轴上表示如下:23.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥14333m ≥14333m ≥的最小整数是434答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元.则3235023370a b c a b c ++=⎧⎨++=⎩∴ 444720a b c ++=∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.24.1∠;2∠;两直线平行,同位角相等;1∠;3∠;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】先根据FG ∥EB 得出12∠=∠,进而推导出13∠=∠,证明DE ∥BC ,从而得出同旁内角互补.【详解】解:∵FG ∥EB (已知),∴12∠=∠(两直线平行,同位角相等).∵23∠∠=(已知),∴13∠=∠(等量代换).∴DE ∥BC (内错角相等,两直线平行).∴180EDB DBC ∠+∠=︒(两直线平行,同旁内角互补).【点睛】本题考查平行线的性质和证明,需要注意仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.一共有6名学生,28本书【解析】【分析】可设有 x 名学生,y 本书.根据总本数相等,每人分到4本,那么多4 本;如果每人分到5 本,那么最 后 1 名学生只分到3本,可列出方程组,求解即可.【详解】解:设一共有x 名学生,y 本书,依题意得:445(1)3x y x y +=⎧⎨-+=⎩解得628x y =⎧⎨=⎩答:一共有6名学生,28本书【点睛】本题考查了二元一次方程组的应用,根据该班人数表示出图书数量得出方程组是解题关键.。
2020-2021西安高新一中初中校区初一数学下期末模拟试卷(附答案)
解析:3
【解析】
找到立方等于27的数即可.
解:∵33=27,
∴27的立方根是3,
故答案为3.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
15.【解析】【分析】如图在直角三角形中的斜边长为因为斜边长即为半径长且OA为半径所以OA=即A表示的实数是【详解】由题意得OA=∵点A在原点的左边∴点A表示的实数是-故答案为-【点睛】本题考查了勾股定理
17.关于 的不等式 的非负整数解为________.
18.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=_____.
19.不等式 的最大整数解是______
20.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于8,则四边形ABFD的周长等于_______.
【分析】
首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.
【详解】
解: ,
解不等式①得:x<2,
解不等式②得:x≥-1,
在数轴上表示解集为:
,
故选:B.
【点睛】
本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.
(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______.
25.若关于x,y的方程组 有相同的解.
2020-2021初一数学下期末试题(及答案)
2020-2021初一数学下期末试题(及答案) 2020-2021初一数学下期末试题(及答案)一、选择题1.已知实数a,b,若a>b,则下列结论错误的是A。
a-7>b-7B。
6+a>b+6C。
a/5>b/5D。
-3a>-3b2.计算2-5+3-5的值是()A。
-1B。
1C。
-20D。
203.估计10+1的值应在()A。
3和4之间B。
4和5之间C。
5和6之间D。
6和7之间4.XXX对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示。
下列说法中正确的是()A。
喜欢乒乓球的人数(1)班比(2)班多B。
喜欢足球的人数(1)班比(2)班多C。
喜欢羽毛球的人数(1)班比(2)班多D。
喜欢篮球的人数(2)班比(1)班多5.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5-1/2的值()A。
在1.1和1.2之间B。
在1.2和1.3之间C。
在1.3和1.4之间D。
在1.4和1.5之间6.已知关于x,y的二元一次方程组2ax+by=3ax-by=1y=-1的解为,则a-2b的值是()A。
-2B。
2C。
3D。
-37.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(2,5),则点B(-4,-1)的对应点D的坐标为()A。
(-8,-3)B。
(4,2)C。
(0,1)D。
(1,8)8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A。
≥-1B。
1C。
-3< x ≤-1D。
-39.将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B到达点D,使得点A到达点C(4,2),点B到达点D,则点D的坐标是()A。
(7,3)B。
(6,4)C。
(7,4)D。
(8,4)10.在平面直角坐标系中,点A的坐标为(0,1),点B 的坐标为(3,3),将线段AB平移,使得A到达点C(1,1),B到达点D,则点D的坐标为()A。
2020-2021学年陕西省西安市七年级(下)期末数学试卷(含解析)
2020-2021学年陕西省西安市七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B.C. D.2.下列事件是必然事件的是()A. 人掷一枚质地均匀的硬币10次,一定有5次正面朝上B. 从一副扑克牌中抽出一张恰好是黑桃C. 任意一个三角形的内角和等于180°D. 打开电视,正在播广告3.下面四个图形中,线段BD是△ABC其中一条边上的高,正确的是()A. B.C. D.4.在圆的面积公式S=πR2中,常量与变量分别是()A. 2是常量,S、π、R是变量B. π是常量,S、R是变量C. 2是常量,R是变量D. 2是常量,S、R是变量5.如图所示,AB,CD,AE和CE均为笔直的公路,已知AB//CD,AE与AB的夹角∠BAE为32°,若线段CF与EF的长度相等,则CD与CE的夹角∠DCE为()A. 58°B. 32°C. 16°D. 15°6.下列运算正确的是()A. √81=±9B. (a2)3(−a2)=a8C. 3√−27=−3D. (a−b)2=a2−b27.下列长度的三条线段能组成三角形的是()A. 4、5、6B. 2、4、7C. 8、10、20D. 5、15、88.如图所示,在等边△ABC中,点A.E分别为边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A. 60。
B. 45。
C. 40。
D. 30。
9.在数学活动课上,小明提出这样一个问题:如右图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是()A. 65°B. 55°C. 45°D. 35°10.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A. 景点离小明家180千米B. 小明到家的时间为17点C. 返程的速度为60千米每小时D. 10点至14点,汽车匀速行驶二、填空题(本大题共4小题,共12.0分)11.一种细菌的半径是0.00003厘米,数据0.00003用科学记数法表示为______.12.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,请你添加一个适当的条件:______ (答案不唯一),使△ADB≌△CEB.13.某学校准备购买某种树苗,有A,B,C三家公司出售.查阅有关信息:A,B,C三家公司生产该树苗的成活频率分别稳定在0.902,0.913,0.899,该学校选择成活概率大的树苗,应该选择购买______公司.14.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是______.三、计算题(本大题共1小题,共6.0分)15.计算题(1)20−(+18)+|−5|+(−25)(2)(−12+23−14)×(−24)(3)−32+1÷4×14−|−114|×(−0.5)2(4)先化简,再求值:x2−(5x2−4y)+3(x2−y),其中x=−1,y=2.四、解答题(本大题共10小题,共73.0分)16.在实数范围内,对于任意实数m,n(m≠0))规定一种新运算:m⊗n=m n+mn−3.例如:4⊗2=42+4×2−3=21.若x⊗2=12,求x的值.17.如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.18.如图,以BD为直径的⊙O经过点A.连接AB、AD(AB>AD).(1)尺规作图:在BD的延长线上作出点C,使∠CAD=∠ABD;(要求保留作图痕迹,不写作法)(2)请判断直线AC与⊙O的位置关系,并说明理由.19.如图所示,已知BE平分∠ABC,∠1=∠2,求证:∠AED=∠C.完善以下推理过程.证明:∵BE平分∠ABC,∴∠1=∠3(______ ).又∵∠1=∠2(已知),∴______ =______ (等量代换),∴______ //______ (______ )∴∠AED=∠C(______ ).20.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫格点,△ABC的每个顶点都在格点上.(1)将△ABC向左平移4个单位长度,得到△A1B1C1,画出△A1B1C1,并写出C1点的坐标.(2)在平面直角坐标系中,△A2B2C2与△ABC关于原点O成中心对称,请画出△A2B2C2.(3)在x轴上是否存在点P,使PA+PC的长度最短?如果存在,请在平面直角坐标系中作出点P,并保留作图痕迹,若不存在,请说明理由.21.如图,要测量湖两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点D、C,使CD=CB,再过D点作BF的垂线,在此直线上取一点E,使E、C、A三点在一条直线上,这时测得ED的长度就是AB的长度,试予以证明.(要求写出已知、求证、证明)22.某中学选拔一名青年志愿者:经笔试、面试,结果小明和小丽并列第一.评委会决定通过抓球来确定人选.规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小丽再取出一个球.若两次取出的球都是红球,则小明胜出;若两次取出的球是一红一绿,则小丽胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.23.某校八年级学生小丽、小强和小红到某超市参加了牡公实践活动.在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克.如图所示是他们在活动结束后的对话:(1)求每天的销售量y(千克)与销售单价x(元)之间的函数关系式;(2)该超市销售这种水果每天获取的利润为1040元.那么销售单价为多少元?24.你能求(x−1)(x2019+x2018+x2017+⋯+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x−1)(x+1)=x2−1②(x−1)(x2+x+1)=x3−1③(x−1)(x3+x2+x+1)=x4−1…由此我们可以得到:(x−1)(x2019+x2018+x2017+⋯+x+1)=______.请你利用上面的结论,再完成下面两题的计算:(1)(−2)99+(−2)98+(−2)97+⋯+(−2)+1;(2)若x3+x2+x+1=0,求x2020的值.25.已知BD⊥AC,CF⊥AB,垂足分别是D、点E,BD和CF相交于点F,BF=CF,求证:点F在∠BAC的平分线上(10分)答案和解析1.【答案】C【解析】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.根据等腰三角形,平行四边形、矩形、圆的性质即可判断.本题考查中心对称图形、轴对称图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.【答案】C【解析】解:A、人掷一枚质地均匀的硬币10次,一定有5次正面朝上是随机事件;B、从一副扑克牌中抽出一张恰好是黑桃是随机事件;C、任意一个三角形的内角和等于180°是必然事件;D、打开电视,正在播广告是随机事件;故选:C.根据事件的分类对各选项进行逐一分析即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】D【解析】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.根据高的画法知,过点B作AC边上的高,垂足为D,其中线段BD是△ABC的高.本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.【答案】B【解析】解:∵在圆的面积公式S=πR2中,S与R是改变的,π是不变的;∴变量是S、R,常量是π.故选:B.根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.本题考查了常量与变量的知识,属于基础题,变量是指在程序的运行过程中随时可以发生变化的量.5.【答案】C【解析】解:∵AB//DC,∴∠DFE=∠BAE=32°,又∵CF=EF,∠DFE=16°,∴∠DCE=12故选:C.利用平行线的性质得出∠BAF=∠DFE,再利用等腰三角形的性质得到∠FCE=∠E,进而得出答案.此题主要考查了平行线的性质以及等腰三角形的性质,正确把握平行线的性质是解题关键.6.【答案】C【解析】解:A、√81=9,故本选项不合题意;B、(a2)3(−a2)=a6⋅(−a2)=−a8,故本选项不合题意;3=−3,故本选项符合题意;C、√−27D、(a−b)2=a2−2ab+b2,故本选项不合题意.故选:C.分别根据算术平方根的定义,幂的乘方与积的乘方以及同底数幂的乘法法则,立方根的定义以及完全平方公式逐一判断即可.本题主要考查了算术平方根,完全平方公式,同底数幂的乘法以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.7.【答案】A【解析】解:A、4+5>6,能组成三角形,故此选项符合题意;B、2+4<7,不能组成三角形,故此选项不符合题意;C、8+10<20,不能组成三角形,故此选项不符合题意;D、5+8<15,不能组成三角形,故此选项不符合题意;故选:A.利用三角形的三边关系可得答案.此题主要考查了三角形的三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.【答案】A【解析】考查等边三角形的性质和三角形全等的判定,先证明△ABD≌△CAE(SAS)得到∠ACE=∠BAD,又∠DFC=∠DAC+∠ACE所以∠DFC=∠DAC+∠BAD=∠BAC=60°.故选:A.9.【答案】D【解析】解:过点E作EF⊥AD,垂足为F.∵∠C=90°,∠CED=35°,∴∠CDE=55°.∵DE平分∠ADC,∴∠EDF=55°.∴∠CDA=110°.∵∠B=∠C=90°,∴AB//CD.∴∠CDA+∠DAB=180°.∴∠DAB=70°.∵DE 平分∠CDA ,EF ⊥AD ,EC ⊥DC ,∴EF =EC .∵E 是BC 的中点,∴EF =BE .在Rt △AEF 和Rt △AEB 中,{EF =BE AE =AE, ∴Rt △AEF≌Rt △AEB .∴∠EAF =∠EAB .∴∠EAB =12∠DAB =12×70°=35°. 故选:D .过点E 作EF ⊥AD ,垂足为F.由三角形的内角和定理求得∠CDE =55°,由角平分线的定义可知∠CDA =110°,由平行线的判定定理可知AB//CD ,由平行线的性质可求得∠DAB =70°,由角平分线的性质可知EF =EC ,于是得到EF =BE ,根据HL 可证明Rt △AEF≌Rt △AEB ,从而得到∠EAB =12∠DAB =35°.本题主要考查的是角平分线的性质、全等三角形的性质和判定、平行线的性质和判定、三角形的内角和定理,由角平分线的性质证得EF =EC 是解题的关键. 10.【答案】D【解析】解:A 、由纵坐标看出景点离小明家180千米,故A 正确;B 、由纵坐标看出返回时1小时行驶了180−120=60千米,180÷60=3,由横坐标看出14+3=17,故B 正确;C 、由纵坐标看出返回时1小时行驶了180−120=60千米,故C 正确;D 、由纵坐标看出10点至14点,路程不变,汽车没行驶,故D 错误;故选:D .根据函数图象的纵坐标,可判断A ;根据函数值与自变量的对应关系,可判断B ;根据函数图象的纵坐标,可得返回的路程,根据函数图象的横坐标,可得返回的时间,根据路程与时间的关系,可判断C ;根据函数图象的纵坐标,可判断D .本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间是解题关键.11.【答案】3×10−5【解析】解:0.00003=3×10−5.故答案是:3×10−5.绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】AB=BC【解析】解:添加AB=BC.∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB,在△ADB和△CEB中,{∠ADB=∠CEB ∠B=∠BAB=BC,∴△ADB≌△CEB(AAS).故答案为AB=BC.要使△ADB≌△CEB,已知∠B为公共角,∠BEC=∠BDA,具备了两组角对应相等,故添加AB=BC或BE=BD或EC=AD后可分别根据AAS、ASA、AAS能判定△ADB≌△CEB.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.添加条件时,要首选明显的、简单的,由易到难.13.【答案】B【解析】解:因为A,B,C三家公司生产该树苗的成活频率分别稳定在0.902,0.913,0.899,所以选择成活概率大的树苗,应该选择购买B公司,故答案为:B根据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率解答即可.本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【答案】80°【解析】解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°−∠CAD−∠ADC=180°−50°−50°=80°.故答案为:80°.先根据线段垂直平分线的性质得出CD=BD,由三角形外角的性质得出∠ADC的度数,再根据三角形内角和定理即可得出结论.本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.【答案】解:(1)20−(+18)+|−5|+(−25)=20−18+5−25=−18;(2)(−12+23−14)×(−24)=12×24−23×24+14×24=12−16+6 =2;(3)−32+1÷4×14−|−114|×(−0.5)2=−9+116−54×14=−914;(4)x2−(5x2−4y)+3(x2−y)=x2−5x2+4y+3x2−3y=−x2+y,当x=−1,y=2时,原式=−1+2=1.【解析】此题考查了有理数混合运算、整式的加减−化简求值,熟练掌握运算法则是解本题的关键,属于基础题.(1)、(2)、(3)根据有理数混合运算的法则计算即可;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.16.【答案】解:由题意得:x⊗2=x2+2x−3=12,∴x2+2x−15=0,(x−3)(x+5)=0,解得:x1=3,x2=−5.【解析】直接利用运算法则计算得出答案.此题主要考查了一元二次方程的解法以及实数运算,正确运用公式计算是解题关键.17.【答案】解:(1)∵BD,CE分别是△ABC的高,∴∠ADB=∠CDB=∠AEC=∠BEC=90°,∴图中有6个直角三角形,分别为△ABD、△CBD、△ACE、△BCE、△OBE、△OCD;(2)图中有与∠2相等的角为∠1,理由如下:∵∠2+∠A=90°,∠1+∠A=90°,∴∠1=∠2;(3)∵∠CDB=90°,∠ACB=65°,∴∠3=90°−∠ACB=90°−65°=25°,∵∠A=55°,∠ACB=65°,∴∠ABC=180°−∠A−∠ACB=180°−55°−65°=60°,∵∠BEC=90°,∴∠4=90°−∠ABC=30°,∴∠5=∠BOC=180°−∠3−∠4=180°−25°−30°=125°.【解析】(1)由题意得出∠ADB=∠CDB=∠AEC=∠BEC=90°,进而得出结论;(2)由直角三角形的性质即可得出答案;(3)由直角三角形的性质和三角形内角和定理进行推理计算即可.本题考查了直角三角形的性质以及三角形内角和定理;熟练掌握直角三角形的性质和三角形内角和定理是解题的关键.18.【答案】解:(1)如图,点C即为所求作.(2)AC是⊙O的切线.理由:由作图可知,AC⊥OA,∴AC是⊙O的切线.【解析】(1)连接OA,过点A作AC⊥OA交BD于点C,点C即为所求作.(2)根据作图可知AC⊥OA,可得结论.本题考查作图−复杂作图,圆周角定理,直线与圆的位置关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.【答案】角平分线定义;∠2;∠3;DE;BC;内错角相等,两直线平行;两直线平行,同位角相等【解析】【分析】本题主要考查了平行线的性质与判定有关知识,先根据等量代换,得出∠2=∠3,再根据平行线的判定,得出DE//BC,最后根据平行线的性质,得出∠AED=∠C.【解答】证明:∵BE平分∠ABC,∴∠1=∠3(角平分线定义),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴DE//BC(内错角相等,两直线平行),∴∠AED=∠C(两直线平行,同位角相等).故答案为角平分线定义,∠2,∠3,DE,BC,内错角相等,两直线平行,两直线平行,同位角相等.20.【答案】解:(1)如图,△A 1B 1C 1即为所求,C 1点的坐标(1,1).(2)如图,△A 2B 2C 2即为所求.(3)如图,点P 即为所求.【解析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.(2)作点B 关于x 轴的对称点B′,连接AB′交x 轴于点P ,连接PB ,此时PA +PB 的值最小.本题考查作图−旋转变换,轴对称最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】已知:BC =CD ,DE ⊥BC ,AB ⊥BC ,求证:AB =DE ,证明:∵DE ⊥BC ,AB ⊥BC ,∴∠B =∠D =90°,BC =CD ,∠ACB =∠ECD ,即{∠B =∠D =90°BC =CD ∠ACB =∠ECD∴△ABC≌△EDC(ASA),∴AB =DE .【解析】由对顶角相等,两个直角相等及BD =CD ,可以判断两个三角形全等;所以AB =DE .此题主要考查了全等三角形的应用,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系,做题时要认真观察图形,根据已知选择方法.22.【答案】解:如图所示:一共9种情况,其中两次取出的球都是红球的可能性是49;两次取出的球是一红一绿的可能性是49.故这个规则对双方公平.【解析】直接利用树状图法列举出所有的可能,注意小明摸出一个球,记下颜色后放回搅动,然后小丽再取出一个球,再分别求出两次取出的球都是红球,两次取出的球是一红一绿的可能性,再比较即可求解.此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.23.【答案】解:(1)设每天的销售量y(千克)与销售单价x(元)之间的函数关系式为y =kx +b(k ≠0),将(10,300),(13,240)代入y =kx +b ,得:{10k +b =30013k +b =240, 解得:{k =−20b =500, ∴每天的销售量y(千克)与销售单价x(元)之间的函数关系式为y =−20x +500. ∵y >200,∴−20x +500>200,∴x <15.∵该水果的进价为8元/千克,∴8≤x <15.∴每天的销售量y(千克)与销售单价x(元)之间的函数关系式为y =−20x +500(8≤x <15).(2)依题意,得:(x −8)(−20x +500)=1040,整理,得:x 2−33x +252=0,解得:x 1=12,x 2=21.∵8≤x <15,∴x =12.答:销售单价为12元/千克.【解析】(1)根据点的坐标,利用待定系数法可求出每天的销售量y(千克)与销售单价x(元)之间的函数关系式,结合进价及每天的销售量,即可得出x 的取值范围;(2)根据总利润=每千克的利润×销售数量,即可得出关于x 的一元二次方程,解之即可得出x 的值,结合(1)中x 的取值范围,即可确定结论.本题考查了一元二次方程的应用、一次函数图象上点的坐标特征以及待定系数法求一次函数解析式,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)找准等量关系,正确列出一元二次方程.24.【答案】x2020−1【解析】解:(x−1)(x2019+x2018+x2017+⋯+x+1)=x2020−1;故答案为:x2020−1;(1)(−2)99+(−2)98+(−2)97+⋯+(−2)+1=(−2−1)⋅(−2)99+(−2)98+⋯+(−2)+1−3=(−2)100−1−3=1−21003;(2)∵(x−1)(x3+x2+x+1)=x4−1,x3+x2+x+1=0,∴x4=1,则x=±1,∵x3+x2+x+1=0,∴x<0,∴x=−1,∴x2020=1.归纳总结得到一般性规律,写出即可;(1)原式变形后,利用得出的规律计算即可求出值;归纳总结得到一般性规律,写出即可;(2)根据(x−1)(x3+x2+x+1)=x4−1,代入已知可得x的值,根据x3+x2+x+ 1=0,x2≥0,得x<0,可得x=−1,代入可得结论.此题考查了平方差公式,以及规律型:数字的变化类,熟练掌握平方差公式是解本题的关键.25.【答案】∵BD⊥AC,CF⊥AB,∴∠CDF=∠BEF,在△CDF和△BEF中,∵∠CDF=∠BEF,∠BFE=∠CFD,BF=CF,∴△CDF≌△BEF(AAS)∴DF=EF∵BD⊥AC,CF⊥AB∴由角平分线性质可知,点F在∠BAC的平分线上。
2020-2021学年陕西省西安市七年级(下)期末数学试卷及参考答案
.
三、解答题(共 11 小题,计 78 分解答应写出过程) 15.(5 分)化简:6x2y(﹣2xy+y3)÷xy2. 16.(5 分)如图,是边长为 1 的正方形网格,△ABC 的顶点均在格点上,画出△ABC 关于
直线 DE 对称的△A1B1C1.
17.(5 分)如图,已知△ABC,利用尺规在 AC 边上求作一点 D,连接 BD,BD 平分∠ABC.(保 留作图痕迹,不写作法)
砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域
中灰色部分的概率,P(乙)表示小球停留在乙区域中灰色部分的概率,下列说法中正确
的是( )
A.P(甲)<P(乙)
B.P(甲)>P(乙)
C.P(甲)=P(乙)
D.P(甲)与 P(乙)的大小关系无法确定
10.(3 分)如图,点 B、C、E、在同一直线上,△ABC 与△CDE 为等腰三角形,CA=CB,
2020-2021 学年陕西省西安市七年级(下)期末数学试卷
一、选择题(共 10 小题,每小题 3 分,计 30 分每小题只有一个选项是符合题意的 1.(3 分)计算(﹣1)0﹣2﹣3 正确的是( )
A.﹣
B.
C.6
D.7
2.(3 分)下列四个图形中,是轴对称图形的是( )
A.
B.
C.
D.
3.(3 分)一个不透明的袋子里装有黄、白、红三种颜色的球,摇匀后每次随机从袋中摸出
第 4页(共 6 页)
21.(7 分)在高铁站广场前有一块长为(2a+b)米,宽为(a+b)米的长方形空地(如图).计 划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为 b 米的人行通道. (1)请用代数式表示广场面积并化简. (2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.
2020-2021学年陕西省西安市雁塔区高新一中七年级(下)期中数学试卷(附答案详解)
2020-2021学年陕西省西安市雁塔区高新一中七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·陕西省西安市·期中考试)2a⋅3b的计算结果是()A. 6aB. 6bC. 5abD. 6ab2.(2021·陕西省·期中考试)下面四个图形中,∠1=∠2一定成立的是()A. B.C. D.3.(2021·陕西省西安市·期中考试)一个蓄水池有水50m3,打开放水闸门匀速放水,水池中的水量和放水时间的关系如表,下面说法不正确的是()放水时间(min)1234…水池中水量(m3)48464442…A. 放水时间是自变量,水池中的水量是因变量B. 每分钟放水2m3C. 放水25min后,水池中的水全部放完D. 放水10min后,水池中还有水28m34.(2021·陕西省·期中考试)如图,从人行横道线上的点P处过马路,下列线路中最短的是()A. 线路PAB. 线路PBC. 线路PCD. 线路PD5.(2021·陕西省西安市·期中考试)下列运算结果正确的是()A. (a+b)(a−b)=a2−b2B. (a−b)(b−a)=a2−b2C. (a−b)2=a2−b2D. (a−b)2=a2+2ab−b26.(2021·陕西省西安市·期中考试)下列说法不正确的是()A. 平面内,过一点有且只有一条直线与已知直线垂直B. 平行于同一条直线的两条直线平行C. 如果两条直线被第三条直线所截,那么内错角必相等D. 如果两个角的两边分别平行,那么这两个角相等或互补7.(2021·湖南省·期中考试)如图所示,DE//BC,EF//AB,图中与∠BFE互补的角共有()A. 3个B. 2个C. 5个D. 4个8.(2021·陕西省西安市·期中考试)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8,则(x−1)※x的结果为()A. x2B. x2−1C. x2+1D. x2−2x+19.(2020·福建省·月考试卷)一个等腰三角形的两边长分别是3和7,则它的周长为()A. 17B. 15C. 13D. 13或1710.(2021·陕西省西安市·期中考试)如图1,在长方形ABCD中,动点P从点A出发,沿A→B→C→D方向运动至点D处停止.设点P出发时的速度为每秒bcm,a秒后点P改变速度,以每秒1cm向点D运动,直到停止.图2是△APD的面积S(cm2)与时间x(s)的图象,则b的值是()A. 34B. 43C. 2D. 83二、填空题(本大题共7小题,共21.0分)11.(2021·陕西省西安市·期中考试)计算:12m2n÷mn=______ .12.(2021·陕西省西安市·期中考试)直线a、b、c、d的位置如图所示,如果∠1=65°,∠2=65°,∠3=70°,那么∠4的度数是______ .13.(2020·河南省洛阳市·期中考试)一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度ℎ(厘米)与燃烧时间t(时)之间的关系式是ℎ=______(0≤t≤5).14.(2021·陕西省西安市·期中考试)如图,将纸片△ABC沿DE折叠,使点A落在BE边上的点A′处,若∠A=18°,则∠1=______ .15.(2021·陕西省西安市·期中考试)已知(x+a)(x+3)=x2+5x+b,则a+b=______ .16.(2021·陕西省西安市·期中考试)(2+1)(22+1)(24+1)(28+1)的个位数字是______ .17.(2021·陕西省西安市·期中考试)将一副三角板中的两块直角三角板的顶点C按如图方式放在一起,其中∠A=30°,∠E=∠ECD=45°,且B、C、D三点在同一直线上.现将三角板CDE绕点C顺时针转动α度(0°<α<180°).在转动过程中,若三角板CDE和三角板ABC有一组边互相平行,则转动的角度α为______ .三、解答题(本大题共8小题,共69.0分)18.(2021·陕西省西安市·期中考试)计算:(1)a(a+2b)+2b(b−a);(2)(x+5)(x−1)−(x−2)2;(3)(a+b+3)(a+b−3).19.(2021·陕西省西安市·期中考试)先化简,再求值:[(x−y)2−(x+y)2+y(2x−y)]÷y,其中2x+y=4.20.(2021·陕西省西安市·期中考试)尺规作图:如图,已知点P为直线AB外一点,求作直线PE,使PE//AB.(不写作法,保留作图痕迹)21.(2021·陕西省西安市·期中考试)如图1,有A、B、C三种不同型号的卡片,其中A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长为a、宽为b的长方形.(1)小明选取4张C型卡片在纸上按图2的方式拼图,剪出中间的正方形D型卡片,由此可验证的等量关系为______ ;(2)小亮想用这三种卡片拼成一个如图3所示的长为2a+b,宽为a+b的长方形,那么需要A型卡片2张,B型卡片______ 张,C型卡片______ 张,并在图3中画出一种拼法.(图中标上卡片型号)22.(2021·陕西省西安市·期中考试)如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)解:DE//BC,理由如下:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4.∴______ //______ (内错角相等,两直线平行).∴∠3=______ (______ ).∵∠3=∠B(已知),∴______ =______ (等量代换).∴DE//BC(同位角相等,两直线平行).23.(2021·陕西省西安市·期中考试)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的教学楼、图书馆、食堂依次在同一条直线上,图书馆离教学楼700m,食堂离教学楼1000m.某日中午,小亮从教学楼出发,匀速走了7min到图书馆;在图书馆停留16min借书后,匀速走了5min到食堂;在食堂停留30min吃完饭后,匀速走了10min返回教学楼.给出的图象反映了这个过程中小亮离教学楼的距离y(m)与离开教学楼的时间x(min)之间的对应关系.请根据相关信息,解答下列问题:(1)填表:离开教学楼的2202530时间/min离教学楼的距______ 700______ ______ 离/m(2)当小亮离教学楼的距离为600m时,求他离开教学楼的时间.24.(2021·陕西省西安市·期中考试)我们知道,将完全平方公式(a±b)2=a2±2ab+b2适当的变形,可以解决很多数学问题.请你观察、思考,并解决以下问题:(1)若x+y=8,xy=12,求x2+y2的值;(2)如图,王叔叔打算用长为140m的篱笆围一个长方形院子(即长方形ABCD).以AB、AD为边分别向外作正方形ABEF、正方形ADGH,并在两块正方形空地上种植不同品种的农作物,其种植面积和为2500m2,求长方形院子ABCD的面积.25.(2021·陕西省西安市·期中考试)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)猜想直线AB与直线CD有怎样的位置关系?说明你的理由;(2)若点G为直线CD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①如图2,当点G在射线FD上运动时,若β=56°,求α的度数;②当点G在直线CD上运动时,请直接写出α和β的数量关系.答案和解析1.【答案】D【知识点】单项式乘单项式【解析】解:2a⋅3b=(2×3)⋅a⋅b=6ab.故选:D.根据单项式相乘法则计算求解判断即可.此题考查了单项式乘以单项式,熟练掌握单项式相乘法则是解题的基础.2.【答案】C【知识点】对顶角、邻补角【解析】解:A、∠1+∠2=180°,但∠1与∠2不一定相等,本选项不符合题意;B、∠1与∠2不一定相等,本选项不符合题意;C、∠1与∠2是对顶角,一定相等,本选项符合题意;D、∠1与∠2不一定相等,本选项不符合题意;故选:C.根据邻补角、对顶角的性质判断即可.本题考查的是对顶角、邻补角的概念和性质,掌握对顶角相等是解题的关键.3.【答案】D【知识点】常量与变量、函数的表示方法【解析】解:根据表格数据知:蓄水池原有水50m3,每分钟水闸排水2m3.水池剩余水量可以看以时间为自变量的函数故A正确.∵每分钟水闸排水2m3.故B正确.∵2×25=50.故C正确放水10分钟,还剩水:50−2×10=30(m3).故D错误.故选:D.根据表格数据找到每分钟排水量即可.本题考查函数的应用,提取表格数据反应的信息是求解本题的关键.4.【答案】C【知识点】垂线段最短【解析】解:从人行横道线上的点P处过马路,下列线路中最短的是线路PC.故选:C.根据垂线段最短矩形判断.本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.5.【答案】A【知识点】平方差公式、完全平方公式【解析】解:(a+b)(a−b)=a2−b2,故A计算结果正确;(a−b)(b−a)=−(a−b)2=−a2+2ab−b2,故B计算结果错误;(a−b)2=a2−2ab+b2,故C计算结果错误;(a−b)2=a2−2ab+b2,故D计算结果错误;故选:A.根据平方差公式、完全平方公式逐一求解判断即可.此题考查了平方差公式,熟练掌握平方差公式、完全平方公式是解题的关键.6.【答案】C【知识点】平行公理及推论、余角和补角、同位角、内错角、同旁内角、平行线的判定与性质【解析】解:A.如图:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B.如图:∵直线a//直线b,直线c//直线b,∴直线a//直线c,即平行于同一条直线的两直线平行,故本选项不符合题意;C.如图:内错角∠CMB和∠MNF不一定相等,只有CD//EF时,∠CMB=∠MNF,即如果两条直线被第三条直线所截,那么内错角不一定相等,故本选项符合题意;D.如图:∵AB//CD,EF//MN,∴∠AQF=∠QRP,∠AQR+∠CRQ=180°,即如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:C.根据平行线的性质和判定,平行公理及推理,垂线的性质逐个判断即可.本题考查了平行线的性质,同位角、内错角、同旁内角,垂线的性质等知识点,能熟记知识点是解此题的关键,注意:平行线的性质定理有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.7.【答案】D【知识点】平行线的性质【解析】解:∵DE//BC,∴∠DEF=∠EFC,∠ADE=∠B,又∵EF//AB,∴∠B=∠EFC,∴∠DEF=∠EFC=∠ADE=∠B,∵∠BFE的邻补角是∠EFC,∴与∠BFE互补的角有:∠DEF、∠EFC、∠ADE、∠B.故选D.先找到∠BFE的邻补角∠EFC,再根据平行线的性质求出与∠EFC相等的角即可.解答此题要明确两方面的问题:①邻补角互补.②平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.8.【答案】B【知识点】有理数的混合运算【解析】解:根据题中的新定义得:原式=(x−1)(x+1)=x2−1.故选:B.原式利用题中的新定义化简,计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.【答案】A【知识点】三角形三边关系、等腰三角形的性质【解析】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.【答案】B【知识点】动点问题的函数图象【解析】解:由图象可知,当0≤x≤10时,点P在AB上;当10<x≤16时,点P在BC上;当x>16时,点P在CD上.则BC=(16−10)×1=6=AD,∴12AD⋅(10−a)×1=36−24,解得a=6,又∵12AD⋅ab=24,即12×6×6b=24,解得b=43.故选:B.根据图象,结合题意先求出AD的长,再根据三角形的面积公式求出a,进而得出b的值.本题考查了动点问题的函数图象,解答本题的关键是根据图象求出a的值.11.【答案】12m【知识点】整式的除法【解析】解:12m2n÷mn=12m.故答案为:12m.直接利用整式的除法运算法则计算得出答案.此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12.【答案】110°【知识点】平行线的判定与性质【解析】解:∵∠1=65°,∠2=65°,∴∠1=∠2,∴直线a//直线b,∴∠3=∠5,∵∠3=70°,∴∠5=70°,∴∠4=180°−∠5=110°,故答案为:110°.求出∠1=∠2,根据平行线的判定推出直线a//直线b,根据平行线的性质得出∠3=∠5,再求出答案即可.本题考查了平行线的性质和判定,能灵活运用定理进行推理和计算是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,反之亦然.13.【答案】20−4t【知识点】根据实际问题列一次函数关系式【解析】解:∵蜡烛点燃后平均每小时燃掉4厘米,∴t小时燃掉4t厘米,由题意知:ℎ=20−4t.蜡烛点燃后平均每小时燃掉4厘米,则t小时燃掉4t厘米,已知蜡烛的总高度,即可表达出剩余的高度.根据实际问题列一次函数关系式,与根据实际问题列方程解应用题具有共性,即都需要确定等量关系,不同点是函数关系是两个变量,而方程一般是一个未知数.14.【答案】36°【知识点】三角形内角和定理【解析】解:∵纸片△ABC沿DE折叠,使点A落在BE边上的点A′处,∴∠DA′A=∠A=18°,∴∠1=∠DA′A+∠A=36°.故答案为36°.利用折叠性质得到∠DA′A=∠A=18°,然后根据三角形外角性质求解.本题考查了三角形内角和定理:三角形内角和是180°.也考查了折叠的性质.15.【答案】8【知识点】多项式乘多项式【解析】解:∵(x+a)(x+3)=x2+3x+ax+3a=x2+(3+a)x+3a=x2+5x+b,∴3+a=5,3a=b,∴a=2,b=6,∴a+b=2+6=8.故答案为:8.根据多项式乘多项式的法则先求出(x+a)(x+3)=x2+(3+a)x+3a,再根据(x+ a)(x+3)=x2+5x+b,得出3+a=5,3a=b,然后求出a,b的值,再代入要求的式子进行计算即可得出答案.本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.【答案】5【知识点】平方差公式、数式规律问题【解析】解:(2+1)(22+1)(24+1)(28+1)=(2−1)(2+1)(22+1)(24+1)(28+1)=(22−1)(22+1)(24+1)(28+1)=(24−1)(24+1)(28+1)=(28−1)(28+1)=216−1,21=2,22=4,23=8,24=16,25=32……个位数字依次为2、4、8、6,并依次循环出现,∵16÷4=4,∴28的个位数字为6,因此28−1的个位数字为5,故答案为:5.求出(2+1)(22+1)(24+1)(28+1)的结果为28−1,判断出28的个位数字,即可得出28−1的个位数字.本题考查平方差公式的应用,掌握公式特征是正确应用的前提,找出个位数字规律性的出现是解决问题的关键.17.【答案】30°或45°或90°【知识点】平行线的性质、旋转的基本性质【解析】解:若△CDE和△ABC只有一组边互相平行,分三种情况:①若DE//AC,则α=180°−45°−45°−60°=30°;②若CE//AB,则α=180°−45°−30°−60°=45°;③当DE//BC时,α=90°,故答案为:30°或45°或90°.分三种情况讨论,由平行线的性质可求解.本题考查了旋转的性质,平行线的性质,掌握旋转的性质是本题的关键.18.【答案】解:(1)a(a+2b)+2b(b−a)=a2+2ab+2b2−2ab=a2+2b2;(2)(x+5)(x−1)−(x−2)2=x2+4x−5−x2+4x−4=8x−9;(3)(a+b+3)(a+b−3)=[(a+b)+3][(a+b)−3]=(a+b)2−9=a2+2ab+b2−9.【知识点】整式的混合运算【解析】(1)根据单项式乘多项式可以解答本题;(2)根据多项式乘多项式和完全平方公式可以解答本题;(3)根据平方差公式和完全平方公式可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.19.【答案】解:原式=(x2−2xy+y2−x2−2xy−y2+2xy−y2)÷y=(−2xy−y2)÷y=−2x−y,当2x+y=4时,原式=−(2x+y)=−4.【知识点】整式的混合运算【解析】根据整式的运算法则进行化简,然后将2x+y=4代入即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【答案】解:如图,直线PE即为所求作.【知识点】尺规作图与一般作图、平行线的性质【解析】作直线PC交AB于C,作∠EPC=∠PCB即可.本题考查作图−复杂作图,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】(a−b)2=(a+b)2−4ab 1 3【知识点】多项式乘多项式【解析】解:(1)剪出中间的正方形D的边长为a−b,面积为(a−b)2,这个正方形D的面积还可以表示为:(a+b)2−4ab,故答案为:(a−b)2=(a+b)2−4ab;(2)(2a+b)(a+b)=2a2+2ab+ab+b2=2a2+b2+3ab,∵a2表示卡片A的面积,b2表示卡片B的面积,ab表示卡片C的面积,∴需要A型卡片2张,B型卡片1张,C型卡片3张,故答案为:1,3.(1)剪出中间的正方形的边长为a−b,面积为(a−b)2,这个正方形的面积还可以根据大正方形的面积减去4个长方形的面积计算,根据两种方法的面积相同,即可得到等量关系;(2)三种卡片拼成一个大长方形,面积不变.大长方形的面积为(2a+b)(a+b),根据多项式乘以多项式的法则展开即可知道需要的卡片数.本题考查了多项式乘以多项式的法则,解题的关键是拼前和拼后的面积不变.22.【答案】AB EF∠ADE两直线平行,内错角相等∠B∠ADE【知识点】平行线的判定与性质【解析】解:DE//BC,理由是:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4,∴AB//EF(内错角相等,两直线平行),∴∠3=∠ADE(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠ADE(等量代换),∴DE//BC(同位角相等,两直线平行),故答案为:AB,EF,∠ADE,两直线平行,内错角相等,∠B,∠ADE.求出∠2=∠4,根据平行线的判定得出AB//EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,反之亦然.23.【答案】200 820 1000【知识点】一次函数的应用【解析】解:(1)由图象可得,在前7分钟的速度为700÷7=100(m/min),故当x=2时,离教学楼的距离为100×2=200(m),在23≤x≤28时,速度为(1000−700)÷5=60(m/min),故当x=25时,离教学楼的距离为700+60×(25−23)=820(m),在28≤x≤58时,距离不变,都是1000m,故当x=30时,离教学楼的距离为1000m,故答案为:200,820,1000;(2)小亮离教学楼的距离为600m时,有两种情况,①当0≤x≤7时,∵在前7分钟的速度为700÷7=100(m/min),∴当小亮离教学楼的距离为600m时,他离开教学楼的时间为600÷100=6(min),当58≤x≤68时,小亮离教学楼的距离为600m时,他离开教学楼的时间为(1000−600)÷(1000÷10)+ 58=62(min),∴当小亮离教学楼的距离为600m时,求他离开教学楼的时间6min或62min.(1)根据题意和函数图象,可以将表格补充完整;(2)分两种情况,根据函数图象中的数据,求出当0≤x≤7时,当58≤x≤68时,小亮离教学楼的距离为600m时,求他离开教学楼的时间即可.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)∵x+y=8,xy=12,∴x2+y2=(x+y)2−2xy=82−2×12=40.(2)设AB=x米,AD=y米,则2(x+y)=140,∴x+y=70,∵x2+y2=2500,∴2xy=(x+y)2−(x2+y2)=702−2500=2400,∴xy=1200,故长方形院子ABCD的面积为1200m2.【知识点】完全平方公式的几何背景【解析】(1)根据完全平方公式,将x2+y2化为(x+y)2−2xy即可求解;(2)设AB=x米,AD=y米,根据完全平方公式的变形求出2xy即可得解.此题考查了完全平方公式,熟练掌握完全平方公式及其变形是解题的关键.25.【答案】解:(1)结论:AB//CD.理由:如图1中,∵EM平分∠AEF交CD于点M,∴∠AEM=∠MEF,∵∠FEM=∠FME.∴∠AEM=∠FME,∴AB//CD.(2)①如图2中,∵AB//CD,∴∠BEG=∠EGF=β=56°,∴∠AEG=124°,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=12∠AEG=62°,∵HN⊥EM,∴∠HNE=90°,∴α=∠EHN=90°−∠HEN=28°.②结论:α=12β或α=90°−12β.理由:①当点G在F的右侧时,可得α=12β.∵AB//CD,∴∠BEG=∠EGF=β,∴∠AEG=180°−β,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=12∠AEG=90°−12β,∵HN⊥EM,∴∠HNE=90°,∴α=∠EHN=90°−∠HEN=1 2β.②当点G在F的左侧时,可得α=90°−12β.理由:∵AB//CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF,∴∠HEF=12∠FEG,∠MEF=12∠AEF,∴∠MEH=∠MEF−∠HEF=12(∠AEF−∠FEG)=12∠AEG=12β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°−∠MEH,即α=90°−12β.【知识点】三角形内角和定理【解析】(1)结论:AB//CD.只要证明∠AEM=∠EMD即可.(2)①依据平行线的性质可得∠AEG=124°,再根据EH平分∠FEG,EM平分∠AEF,即∠AEG=62°,再根据HN⊥ME,即可得到Rt△EHN中,∠EHN=90°−可得到∠HEN=1262°=28°;β,当点G在点F的左侧时,②分两种情况进行讨论:当点G在点F的右侧时,α=12α=90°−1β.2本题考查三角形的内角和定理,熟练掌握三角形内角和,平行线的性质,角平分线的定义等知识是解题的关键.。
初一数学期末试卷(附答案)
初一数学期末试卷(附答案)
本文档提供了一份初一数学的期末试卷,试卷包含了各种数学题型,以帮助学生巩固和复他们在这个学期所学的数学知识。
以下是试卷的题目及答案。
选择题
1. 以下哪个是负数?
A. -2
B. 0
C. 3
D. 5
答案:A. -2
2. 如果正方形的边长为4cm,那么它的面积是多少?
答案:16 平方厘米
3. 一个矩形的长度是5cm,宽度是3cm,那么它的周长是多少?
答案:16cm
4. 已知三角形的三边分别为3cm、4cm和5cm,那么它是否是
直角三角形?
答案:是,是一个直角三角形。
5. 下面哪个数是一个素数?
A. 10
B. 15
C. 17
D. 20
答案:C. 17
填空题
6. 8 × 4 = ____
答案:32
7. 将 25% 写成分数形式为 ____
答案:1/4
8. 某商品原价200元,打8折后的价格是 ______ 元。
答案:160元
解答题
9. 请列举出10以内的所有质数。
答案:2, 3, 5, 7
10. 某纸片长10cm,宽8cm,将它剪成若干个正方形,每个正方形的边长相等且尽量大,请问最大的正方形边长是多少?剪出的正方形个数是多少?
答案:最大的正方形边长为4cm,剪出的正方形个数为5个。
请学生根据试卷上的题目进行作答,并使用附答案进行自我评估。
2020-2021学年陕西省西安市高新中学七年级(下)期中数学试卷(含解析)
2020-2021学年陕西省西安市高新中学七年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,共30分)1.如图,AB,CD被EF所截,交点分别为E,D,则∠1与∠2是一对()A.同旁内角B.同位角C.内错角D.对顶角2.某种细胞的直径是0.000024m,将0.000024用科学记数法表示为()A.2.4×10﹣5B.﹣2.4×10﹣4C.﹣0.24×10﹣5D.24×10﹣43.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.(a+3)(a﹣3)C.a(a+3)(a﹣3)D.﹣a(a﹣9)4.利用公式计算(x﹣2y)2的结果为()A.﹣x2﹣2xy﹣4y2B.﹣x2﹣4xy﹣4y2C.x2﹣4xy+4y2D.x2+4xy+4y25.下列各式:①()﹣2=9;②﹣30=1;③(﹣3ab3)2=﹣9a2b6;④﹣12x2y÷(4xy)=﹣3x2y2;⑤22018﹣(﹣22019)=3×22018;其中运算正确的个数有()个.A.1B.2C.3D.46.若(x2+2x)(x+a)的积中不含x的二次项,则常数a的值为()A.0B.﹣1C.2D.﹣27.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.下列说法正确的有()①在同一平面内不相交的两条线段必平行②过两条直线a,b外一点P,一定可做直线c,使c∥a,且c∥b③过直线外一点有且只有一条直线与已知直线平行④两直线被第三条直线所截得的同旁内角的平分线互相垂直A.0个B.1个C.2个D.3个10.若关于x、y的方程组的解为,则方程组的解是()A.B.C.D.二、填空(本题有6个小题,每小题4分,共24分)11.将方程5x﹣2y=﹣1+2x变形为用x的代数式表示y的形式,则y =.12.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放,若∠2=25°,则∠1=.13.若a x=3,a y=2,则a2x﹣y=.14.定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且1*2=5,2*1=6,则a=,b=.15.如图,已知点C为两条相互平行的直线AB,ED之间一点,∠ABC和∠CDE的角平分线相交于F,若∠BCD=∠BFD+60°,则∠BCD的度数为.16.若多项式n4+9n2+k可化为(a+b)2的形式,则单项式k可以是.三、全面答一答(本题有7个小题,共66分)17.计算:(1)a•(﹣2a)﹣(﹣2a)2;(2)|﹣3|﹣(﹣2)0+()﹣2;(3)先化简,再求值:(x+y)2﹣y(2x+y),其中x=,y=.18.如图,在边长为1的正方形网格中有一个△ABC,按要求进行下列作图.(1)过点B画出AC的平行线;(2)将△ABC向右平移5格,向上平移2格,请画出经平移后得到的△A'B'C'.(3)求△ABC的面积.19.解方程:(1);(2).20.如图,已知CD⊥AB,EF⊥AB,垂足分别为D,F,∠B+∠BDG=180°,(1)试判断DG与BC的位置关系,并说明理由.(2)试说明∠BEF=∠CDG.21.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.例如:8=32﹣12,16=53﹣32,24=72﹣52,则8、16、24这三个数都是奇特数.(1)32和2020这两个数是奇特数吗?若是,表示成两个连续奇数的平方差形式.(2)设两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?22.某景点的门票价格如下表:购票人数(人)1~5051~99100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?23.将一副三角板中的两根直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)若∠BCD=150°,求∠ACE的度数;(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时,CD∥AB,并简要说明理由.参考答案一、选择题(本题有10个小题,每小题3分,共30分)1.如图,AB,CD被EF所截,交点分别为E,D,则∠1与∠2是一对()A.同旁内角B.同位角C.内错角D.对顶角解:∠1与∠2是一对同旁内角.故选:A.2.某种细胞的直径是0.000024m,将0.000024用科学记数法表示为()A.2.4×10﹣5B.﹣2.4×10﹣4C.﹣0.24×10﹣5D.24×10﹣4解:0.000024=2.4×10﹣5.故选:A.3.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.(a+3)(a﹣3)C.a(a+3)(a﹣3)D.﹣a(a﹣9)解:a2﹣9a=a(a﹣9).故选:A.4.利用公式计算(x﹣2y)2的结果为()A.﹣x2﹣2xy﹣4y2B.﹣x2﹣4xy﹣4y2C.x2﹣4xy+4y2D.x2+4xy+4y2解:(x﹣2y)2=x2﹣4xy+y2,故选:C.5.下列各式:①()﹣2=9;②﹣30=1;③(﹣3ab3)2=﹣9a2b6;④﹣12x2y÷(4xy)=﹣3x2y2;⑤22018﹣(﹣22019)=3×22018;其中运算正确的个数有()个.A.1B.2C.3D.4解:∵①()﹣2=9;②﹣30=﹣1≠1;③(﹣3ab3)2=9a2b6≠﹣9a2b6;④﹣12x2y÷(4xy)=﹣3x≠﹣3x2y2;⑤22018﹣(﹣22019)=22018+22019=22018+2×22018=3×22018.∴正确的是①⑤.故选:B.6.若(x2+2x)(x+a)的积中不含x的二次项,则常数a的值为()A.0B.﹣1C.2D.﹣2解:(x2+2x)(x+a)=x3+x2a+2x2+2ax=x3+(a+2)x2+2xa,∵(x2+2x)(x+a)的积中不含x的二次项,∴a+2=0,∴a=﹣2.故选:D.7.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°解:延长BC至G,如下图所示,由题意得,AF∥BE,AD∥BC,∵AF∥BE,∴∠1=∠3(两直线平行,同位角相等),∵AD∥BC,∴∠3=∠4(两直线平行,同位角相等),∴∠4=∠1=40°,∵CD∥BE,∴∠6=∠4=40°(两直线平行,同位角相等),∵这条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,∴∠5=∠6=40°,∴∠2=180°﹣∠5﹣∠6=180°﹣40°﹣40°=100°,故选:B.8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.下列说法正确的有()①在同一平面内不相交的两条线段必平行②过两条直线a,b外一点P,一定可做直线c,使c∥a,且c∥b③过直线外一点有且只有一条直线与已知直线平行④两直线被第三条直线所截得的同旁内角的平分线互相垂直A.0个B.1个C.2个D.3个解:在同一平面内不相交、且不在同一条直线上的两条线段必平行,故①错误;过两条直线a,b外一点P,一定可做直线c,使c∥a,当c和b不一定平行,故②错误;过直线外一点有且只有一条直线与已知直线平行,故③正确;两平行线被第三条直线所截得的同旁内角的平分线互相垂直,故④错误;即正确的有1个,故选:B.10.若关于x、y的方程组的解为,则方程组的解是()A.B.C.D.解:∵的解为,∴中等式的两边同时除以3得,再将和﹣y看成整体,即解为,∴原方程组的解为.故选:A.二、填空(本题有6个小题,每小题4分,共24分)11.将方程5x﹣2y=﹣1+2x变形为用x的代数式表示y的形式,则y=x+.解:方程5x﹣2y=﹣1+2x,移项得:﹣2y=﹣1+2x﹣5x,合并得:﹣2y=﹣1﹣3x,解得:y=x+.故答案为:x+.12.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放,若∠2=25°,则∠1=125°.解:由题意可知,∠BDC=25°+30°=55°,又∵l1∥l2,∴∠C+∠BDC=180°,∴∠C=180°﹣55°=125°,∴∠1=∠C=125°.故答案为:125°.13.若a x=3,a y=2,则a2x﹣y= 4.5.解:a2x﹣y=a2x÷a y=(a x)2÷a y=9÷2=4.5,故答案为:4.5.14.定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且1*2=5,2*1=6,则a=1,b=2.解:根据题中的新定义得:,②×2﹣①得:7a=7,解得:a=1,把a=1代入①得:b=2.故答案为:1;2.15.如图,已知点C为两条相互平行的直线AB,ED之间一点,∠ABC和∠CDE的角平分线相交于F,若∠BCD=∠BFD+60°,则∠BCD的度数为160°.解:∵∠ABC和∠CDE的角平分线相交于F,∴∠EDA=∠ADC,∠CBE=∠ABE,又∵AB∥ED,∴∠EDF=∠DAB,∠DFE=∠ABF,设∠EDF=∠DAB=x,∠DFE=∠ABF=y,∴∠BFD=∠EDA+∠ADE=x+y,在四边形BCDF中,∠FBC=x,∠ADC=y,∠BFD=x+y,∴∠BCD=360°﹣2(x+y),∵∠BCD=∠BFD+60°=x+y+60°,∴∠BFD=x+y=100°,∴∠BCD=360°﹣2(x+y)=160°,故答案为:160°.16.若多项式n4+9n2+k可化为(a+b)2的形式,则单项式k可以是±6n3,,.解:n4+9n2+k=(a+b)2,若将9n2看作尾(3n)2,即:n4+k+(3n)2=(n2±3n)2,∴k=±6n3,若将9n2看作首尾积的2倍,则:,∴k=,若将n4看作首尾积的2倍,则9n2+2×3n×+()2=(3n+)2,∴k=,故答案为:±6n3,,.三、全面答一答(本题有7个小题,共66分)17.计算:(1)a•(﹣2a)﹣(﹣2a)2;(2)|﹣3|﹣(﹣2)0+()﹣2;(3)先化简,再求值:(x+y)2﹣y(2x+y),其中x=,y=.解:(1)原式=﹣2a2﹣4a2=﹣6a2.(2)原式=3﹣1+4=6.(3)原式=x2+2xy+y2﹣2xy﹣y2=x2,当x=,y=时,原式=2.18.如图,在边长为1的正方形网格中有一个△ABC,按要求进行下列作图.(1)过点B画出AC的平行线;(2)将△ABC向右平移5格,向上平移2格,请画出经平移后得到的△A'B'C'.(3)求△ABC的面积.解:(1)如图所示,直线BD即为所求.(2)如图所示,△A'B'C'即为所求.(3)△ABC的面积为×3×2=3.19.解方程:(1);(2).解:(1),①﹣②×2得:x=﹣3,将x=﹣3代入②得:y=﹣4,则方程组的解为;(2),①×3﹣②得:22y=10,即y=,将y=代入①得:x=,则方程组的解为.20.如图,已知CD⊥AB,EF⊥AB,垂足分别为D,F,∠B+∠BDG=180°,(1)试判断DG与BC的位置关系,并说明理由.(2)试说明∠BEF=∠CDG.解:(1)DG∥BC,理由是:∵∠B+∠BDG=180°,∴DG∥BC;(2)∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴CD∥BC,∴∠BEF=∠DCB,∵DG∥BC,∴∠CDG=∠DCB,∴∠BEF=∠CDG.21.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.例如:8=32﹣12,16=53﹣32,24=72﹣52,则8、16、24这三个数都是奇特数.(1)32和2020这两个数是奇特数吗?若是,表示成两个连续奇数的平方差形式.(2)设两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?解:(1)32是奇特数,32=92﹣72,2020不是奇特数;(2)两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数,理由:∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n×2=8n,∵n为正整数,∴8n是8的倍数,即两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数.22.某景点的门票价格如下表:购票人数(人)1~5051~99100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?解:(1)设七年级1班有x名学生,2班有y名学生,由题意得:,解得:,答:七年级1班有49名学生,2班有53名学生;(2)设八年级报名a人,九年级报名b人,分两种情况:①若a+b<100,由题意得:,解得:,(不合题意舍去);②若a+b≥100,由题意得:,解得:,符合题意;答:八年级报名48人,九年级报名58人.23.将一副三角板中的两根直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)若∠BCD=150°,求∠ACE的度数;(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时,CD∥AB,并简要说明理由.解:(1)∵∠BCA=∠ECD=90°,∠BCD=150°,∴∠DCA=∠BCD﹣∠BCA=150°﹣90°=60°,∴∠ACE=∠ECD﹣∠DCA=90°﹣60°=30°;(2)∠BCD+∠ACE=180°,理由如下:∵∠BCD=∠ACB+∠ACD=90°+∠ACD,∠ACE=∠DCE﹣∠ACD=90°﹣∠ACD,∴∠BCD+∠ACE=180°;(3)当∠BCD=120°或60°时,CD∥AB.如图②,根据同旁内角互补,两直线平行,当∠B+∠BCD=180°时,CD∥AB,此时∠BCD=180°﹣∠B=180°﹣60°=120°;如图③,根据内错角相等,两直线平行,当∠B=∠BCD=60°时,CD∥AB.。
2020-2021西安市高新第一中学初三数学下期末试卷(及答案)
2020-2021西安市高新第一中学初三数学下期末试卷(及答案)一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0) B .(1,0) C .(32,0) D .(52,0) 2.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A .9B .8C .7D .63.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 4.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .6.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解7.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .96096054848x -=+ B .96096054848x +=+ C .960960548x-= D .96096054848x-=+ 8.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C .24D .0.39.若0xy <,则2x y 化简后为( ) A .x y -B .x yC .x y -D .x y --10.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根11.cos45°的值等于( ) A .2B .1C .3D .2212.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .二、填空题13.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)14.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan∠DCF的值是____.15.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.16.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.18.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.19.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.三、解答题21.2x=600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD=23.过点D 作DF ∥BC ,交AB 的延长线于点F . (1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积; (3)若43AB AC =,DF+BF=8,如图2,求BF 的长.24.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.25.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一 如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.26.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D . 【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.A解析:A 【解析】分析:根据多边形的内角和公式计算即可. 详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.C解析:C 【解析】 【分析】 【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5.C【解析】从上面看,看到两个圆形, 故选C .6.D解析:D 【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.7.D解析:D 【解析】解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.8.B解析:B 【解析】 【分析】 【详解】ABC =D 故选B .9.A解析:A 【解析】 【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.【详解】y>0,∵xy<0, ∴x<0,∴原式=- 故选A 【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义10.A解析:A 【解析】 【分析】先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】解:原方程可化为:2240x x --=,1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A . 【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.11.D解析:D 【解析】 【分析】将特殊角的三角函数值代入求解. 【详解】解:cos45° 故选D . 【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.12.A解析:A 【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A .二、填空题13.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.14.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点解析:2. 【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan∠DCF=DF5x5=CD2x2=.故答案为:5.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.15.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.16.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.19.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.20.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.三、解答题21.无22.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12,在Rt△DEP中,∵,,∴=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1,∴,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即57DF=,解得DF=12,在Rt△BDH中,BH=12S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)23604π⨯⨯-+⨯=932π-; (3)连结CD ,如图2,由43AB AC =可设AB=4x ,AC=3x ,设BF=y ,∵BD CD =,∴CD=BD=23,∵∠F=∠ABC=∠ADC ,∵∠FDB=∠DBC=∠DAC ,∴△BFD ∽△CDA ,∴BD BF AC CD =,即2323=,∴xy=4, ∵∠FDB=∠DBC=∠DAC=∠FAD ,而∠DFB=∠AFD , ∴△FDB ∽△FAD ,∴DF BF AF DF =,即848y y y x y -=+-, 整理得16﹣4y=xy ,∴16﹣4y=4,解得y=3,即BF 的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】 本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键. 25.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是. 【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可. ②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为.性质2:函数图象在第一象限,随的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.26.(1)2000;(2)A型车17辆,B型车33辆【解析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程。
2020-2021学年陕西省西安市雁塔区高新一中七年级(下)期末数学试卷及参考答案
2020-2021学年西安雁塔区高新一中七年级(下)期末数学试卷一、选择题(每小题3分,10小题,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)下列事件为不可能事件的是()A.打开电视,正在播放广告B.明天太阳从东方升起C.投掷飞镖一次,命中靶心D.任意画一个三角形,其内角和是360°3.(3分)若一个三角形的三边长分别为4,7,a,则a的值可能是()A.2B.3C.8D.144.(3分)如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,BC=10cm,点D到AB的距离为4cm,则BD的长为()A.4cm B.5cm C.6cm D.8cm5.(3分)下列计算正确的是()A.2a3•3a2=6a6B.a3+2a2=2aC.﹣2a(a﹣b)=﹣2a2﹣2ab D.(﹣a+b)2=a2﹣2ab+b26.(3分)如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次拐角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C为()A.170°B.160°C.150°D.140°7.(3分)如图,△ABC中,AB=AC,D是BC的中点,AB的垂直平分线分别交AB、AD、AC于点E、O、F,则图中全等三角形的对数是()A.2对B.3对C.4对D.5对8.(3分)为增强居民的节水意识,某市自来水公司采用以户为单位分段计费的方式:即每月用水量不超过10吨时,每吨收费a元;若超过10吨,则10吨水按每吨a元收费,超过10吨的部分按每吨b元收费.如图是自来水公司绘制的水费y(元)与当月用水量x (吨)之间的图象,则下列结论不正确的是()A.a=1.5B.b=2C.若小明家当月用水量为14吨,则应缴水费23元D.若小红家6月份缴水费30元,则当月用水量为18.5吨9.(3分)如图,点P为∠AOB内一点,分别作出P点关于OB、OA的对称点P1,P2,连接P1P2交OB于M,交OA于N,若∠AOB=40°,则∠MPN的度数是()A.90°B.100°C.120°D.140°10.(3分)图1是长为a,宽为b(a>b)的小长方形纸片将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD内,已知CD的长度固定不变,BC的长度可以变化,图中阴影部分(即两个长方形)的面积分别表示为S1,S2,若S=S1﹣S2,且S为定值,则a,b满足的关系是()A.a=2b B.a=3b C.a=4b D.a=5b二、填空题(每小题3分,7小题,共21分)11.(3分)如图,∠ABC=∠DCB,只需补充条件,就可以根据“AAS”得到△ABC≌△DCB.12.(3分)为迎接全国第十四届运动会,我校举行“缓堵保畅,安全出行,小手拉大手活动”每天值班老师和部分学生在校门两边站岗执勤(线段CD所在区域).如图,AB∥OH∥CD,AC与BD相交于O,OD⊥CD于点D,OD=OB,已知AB=300米,请根据上述信息求出执勤区域CD的长度是.13.(3分)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.14.(3分)如图,△ABC中,AB与AC的垂直平分线EF和MN分别交BC于E,N,垂足分别为F,M若∠EAN=40°,则∠BAC的度数是.15.(3分)若(x﹣4)(5﹣x)=﹣8,则(x﹣4)2+(5﹣x)2=.16.(3分)一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x﹣2,2y+1,若这两个三角形全等,则x+y的值是或.17.(3分)如图,正方形ABCD的边长为4,E为AB边上一点,AE=1.5,F为AD边上一动点,连接EF,以EF为边向右作等腰直角△EFG,∠FEG=90°,连接BG.当BG取最小值时,FD的长度是.三、解答题(共69分)18.(8分)计算:(1)(a+2)(a﹣2)﹣a(a+1);(2)4(x+y)2﹣(3x﹣2y)2.19.(6分)先化简,再求值:[(2x﹣y)(x+2y)﹣(x+y)2+3y2]÷2x,其中x=2,y=﹣.20.(6分)如图,AB、AC、BC是三条笔直的公路,点P是线段BC上的一处加油站,要求加油站到公路AB、AC的距离相等,请利用尺规作图确定点P的位置.(保留作图痕迹,不要求写作法)21.(7分)如图,已知AB=AE,AB∥DE,∠ECB+∠D=180°.那么AD与BC相等吗?请说明理由.22.(8分)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下方式决定谁去参加活动:将一个转盘九等分,分别标上1至9九个数字.(1)任意转动一次转盘,转到的数字是2的倍数的概率是多少?(2)若转到的数字是2的倍数(6除外),小亮参加活动;若转到的数字是3的倍数(6除外),小芳去参加活动若转到的数字是6或其它数字,则重新转动转盘.你认为这个游戏公平吗?请说明理由.23.(10分)如图,AB=AC=16cm,BC=10cm,点D为AB的中点,点P在边BC上以每秒2cm的速度由点B向点C运动,同时,点M在边CA上由点C向点A匀速运动.(1)当点M的运动速度与点P的运动速度相同,经过1秒后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?24.(12分)劳动是财富的源泉,也是幸福的源泉高新区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作.如图,现计划利用校园围墙的一段MN(MN长25m)及40m长的篱笆围成一个长方形菜园ABCD.设AB的长为xm(7.5<x<20).(1)BC的长度为m(用含x的代数式表示),长方形菜园的面积S(m2)与AB的长x(m)的关系式为S=;(2)完成下表:(在横线上填上正确的数据)AB的长x(m)…891011121314…菜园的面积S(m2)…192198182168…(3)通过探究,小明发现长方形菜园的面积S(m2)与AB的长x(m)之间的关系式也可写成S=﹣2(x﹣a)2+n的形式,请求出a、n的值及菜园面积S的最大值.25.(12分)问题提出:(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”.如图1,△ABC中,AC=7,BC=9,AB=10,P为AC上一点,当AP=时,△ABP与△CBP是偏等积三角形;问题探究:(2)如图2,△ABD与△ACD是偏等积三角形,AB=2,AC=6,且线段AD的长度为正整数,过点C作CE∥AB交AD的延长线于点E,求AE的长度;问题解决:(3)如图3,四边形ABED是一片绿色花园,△ACB、△DCE是等腰直角三角形,∠ACB =∠DCE=90°(0<∠BCE<90°).①△ACD与△BCE是偏等积三角形吗?请说明理由;②已知BE=60m,△ACD的面积为2100m2.如图4,计划修建一条经过点C的笔直的小路CF,F在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.2020-2021学年陕西省西安市雁塔区高新一中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,10小题,共30分)1.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行解答.【解答】解:A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C.是中心对称图形,故此选项符合题意;D.不是中心对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】根据事件发生的可能性大小判断.【解答】解:A、打开电视,正在播放广告,是随机事件;B、明天太阳从东方升起,是必然事件;C、投掷飞镖一次,命中靶心,是随机事件;D、任意画一个三角形,其内角和是360°,是不可能事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【分析】根据三角形的三边关系列出不等式,即可求出a的取值范围.【解答】解:∵三角形的三边长分别为4,7,a,∴7﹣4<a<7+4,即3<a<11,故选:C.【点评】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.【分析】过点D作DE⊥AB于E,根据角平分线的性质定理得到DC=DE=4cm,结合图形计算,得到答案.【解答】解:过点D作DE⊥AB于E,∵AD平分∠BAC,∠ACB=90°,DE⊥AB,∴DC=DE=4cm,∴BD=BC﹣DC=10﹣4=6(cm),故选:C.【点评】本题考查的是角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.5.【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=6a5,不符合题意;B、原式不能合并,不符合题意;C、原式=﹣2a2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意.故选:D.【点评】此题考查了整式的混合运算,涉及的知识有:单项式乘单项式运算,单项式乘多项式运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.6.【分析】首先过点B作BD∥AE,又由已知AE∥CF,即可得AE∥BD∥CF,然后根据两直线平行,内错角相等,同旁内角互补,即可求得答案.【解答】解:如图,过点B作BD∥AE,由已知可得:AE∥CF,∴AE∥BD∥CF,∴∠ABD=∠A=130°,∠DBC+∠C=180°,∴∠DBC=∠ABC﹣∠ABD=150°﹣130°=20°,∴∠C=180°﹣∠DBC=180°﹣20°=160°.故选:B.【点评】此题考查了平行线的性质.注意掌握两直线平行,内错角相等,同旁内角互补与辅助线的作法是解此题的关键.7.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD ≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∵OD垂直平分线段BC,∴OB=OC,同法可证△AOB≌△AOC(SSS),△ODB≌△ODC(SSS),∵OE垂直平分线段AB,∴OA=OB,在△OEA和△OEB中,,∴△OEA≌△OEB(SSS),故选:C.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等.8.【分析】利用(10,15),(20,35)两点求出a,b的值即可.【解答】解:由图象可知,a=15÷10=1.5;b==2;用水14吨,则应缴水费:1.5×10+2×(14﹣10)=15+8=23(元);缴水费30元,则该用户当月用水为:10+(30﹣15)÷2=17.5(吨).故结论错误的是选项D.故选:D.【点评】本题主要考查了函数的图形,利用数形结合的方法求解是解答本题的关键.9.【分析】首先证明∠P1+∠P2=40°,可得∠PMN=∠P1+∠MPP1=2∠P1,∠PNM=∠P2+∠NPP2=2∠P2,推出∠PMN+∠PNM=2×40°=80°,可得结论.【解答】解:∵P点关于OB的对称点是P1,P点关于OA的对称点是P2,∴PM=P1M,PN=P2N,∠P2=∠P2PN,∠P1=∠P1PM,∵∠AOB=40°,∴∠P2PP1=140°,∴∠P1+∠P2=40°,∴∠PMN=∠P1+∠MPP1=2∠P1,∠PNM=∠P2+∠NPP2=2∠P2,∴∠PMN+∠PNM=2×40°=80°,∴∠MPN=180°﹣(∠PMN+∠PNM)=180°﹣80°=100°,故选:B.【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10.【分析】设BC=n,先算求出阴影的面积分别为S1=a(n﹣4b),S2=2b(n﹣a),即可得出面积的差为S=S1﹣S2=(a﹣2b)n﹣2ab,因为S的取值与n无关,即a﹣2b=0,即可得出答案.【解答】解:设BC=n,则S1=a(n﹣4b),S2=2b(n﹣a),∴S=S1﹣S2=a(n﹣4b)﹣2b(n﹣a)=(a﹣2b)n﹣2ab,∵当BC的长度变化时,S的值不变,∴S的取值与n无关,∴a﹣2b=0,即a=2b.故选:A.【点评】本题主要考查了整式的加减运算,读懂题意列出两块阴影部分面积的代数式是解决本题的关键.二、填空题(每小题3分,7小题,共21分)11.【分析】根据AAS的判定方法可得出答案.【解答】解:补充条件∠A=∠D.理由:在△ABC和△DCB中,,所以△ABC≌△DCB(AAS).故答案为:∠A=∠D.【点评】此题主要考查了全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12.【分析】由AB∥CD,利用平行线的性质可得∠ABO=∠CDO,由垂直的定义可得∠CDO =90°,易得OB⊥AB,由相邻两平行线间的距离相等可得OD=OB,利用ASA定理可得△ABO≌△CDO,由全等三角形的性质可得标语CD的长度.【解答】解:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=300m.即执勤区域CD的长度是300m,故答案为:300m.【点评】本题主要考查了全等三角形的判定及性质定理,平行线的性质,证得△ABO≌△CDO是解答此题的关键.13.【分析】若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,再根据概率公式求解可得.【解答】解:若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,所以该小球停留在黑色区域的概率是=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.14.【分析】根据线段垂直平分线的性质得到AE=BE,AN=CN,根据等腰三角形的性质得到∠BAE=∠B,∠CAN=∠C,根据三角形内角和定理计算,得到答案.【解答】解:EF、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴∠BAE=∠B,∠CAN=∠C,∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,∴∠BAE+∠CAN=70°,∴∠BAC=∠BAE+∠CAN+∠EAN=110°,故答案为:110°.【点评】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.【分析】设(x﹣4)=a,(5﹣x)=b,根据已知等式和完全平方公式求解即可.【解答】解:(1)设x﹣4=a,5﹣x=b,则(x﹣4)(5﹣x)=ab=﹣8,a+b=(x﹣4)+(5﹣x)=1,∴(x﹣4)2+(5﹣x)2=a2+b2=(a+b)2﹣2ab=12﹣2×(﹣8)=1+16=17.故答案为:17.【点评】本题考查了完全平方公式和多项式乘法.熟练掌握完全平方公式是解题的关键.16.【分析】根据全等三角形的性质,可知分两种情况:①,②;解答出即可;【解答】解:由题意得,①,解得,,∴x+y=3+=;②,解得,,∴x+y=4+3=7;故答案为:或7.【点评】本题主要考查了全等三角形的性质,掌握全等三角形的性质,知道本题可分两种情况,是解答的关键.17.【分析】如图所示,过点G作GH⊥AB,交AB的延长线于点H,根据正方形的性质和三角形的内角和可以推出∠1=∠3,根据全等三角形的判定可得△AFE≌△HEG,正方形的边长为4,AE=1.5,设FD=x,BG=y,根据勾股定理可得y²=(1.5﹣x)²+1.5²=(x﹣1.5)²+1.5²,再根据二次函数的性质知,当x=1.5时,y²有最小值1.5²,即当BG取最小值时,FD的长度为1.5.【解答】解:如图所示,过点G作GH⊥AB,交AB的延长线于点H,∵正方形ABCD,∴AD=AB,∠A=90°=∠EHG,又∵∠FEG=90°,FE=EG,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,∴△AFE≌△HEG(AAS),∴AE=GH,AF=EH,∵正方形的边长为4,AE=1.5,设FD=x,BG=y,则EH=AF=4﹣x,EB=4﹣1.5=2.5,GH=AE=1.5,BH=EH﹣EB=4﹣x﹣2.5=1.5﹣x,由BG2=BH2+GH2得,y2=(1.5﹣x)2+1.52=(x﹣1.5)2+1.52,∵(x﹣1.5)2的系数1>0,∴当x=1.5时,y2有最小值1.52,∵y>0,∴y有最小值,∴当BG取最小值时,FD的长度为1.5,故答案为:1.5.【点评】本题考查的是正方形的性质,全等三角形的判定和性质,二次函数的应用等.解本题要熟练掌握正方形的性质,全等三角形的判定和性质等基本知识.三、解答题(共69分)18.【分析】(1)根据平方差公式和单项式乘多项式可以解答本题;(2)根据完全平方公式和合并同类项的方法可以解答本题.【解答】解:(1)(a+2)(a﹣2)﹣a(a+1)=a2﹣4﹣a2﹣a=﹣a﹣4;(2)4(x+y)2﹣(3x﹣2y)2=4×(x2+3xy+y2)﹣(9x2﹣12xy+4y2)=9x2+12xy+4y2﹣9x2+12xy﹣4y2=24xy【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.19.【分析】直接利用整式的混合运算法则化简,进而把已知数据代入得出答案.【解答】解:原式=(2x2+4xy﹣xy﹣2y2﹣x2﹣2xy﹣y2+3y2)÷2x=(x2+xy)÷2x=x+y,当x=2,y=﹣时,原式=x+y=×2+×(﹣)=1﹣=.【点评】此题主要考查了整式的混合运算—化简求值,正确掌握相关运算法则是解题关键.20.【分析】直接作出∠BAC的平分线进而得出其交点即可得出答案.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图﹣应用与设计作图,熟练掌握角平分线的作法是解题关键.21.【分析】由∠ECB+∠D=180°,∠ECB+∠ACB=180°,可得∠D=∠ACB,再由平行线的性质可得∠AED=∠BCA,结合AB=AE,可判断△ADE≌△BCA,从而得AD=BC.【解答】解:AD=BC,理由:∵∠ECB+∠D=180°,∠ECB+∠ACB=180°,∴∠D=∠ACB,∵AB∥DE,∴∠AED=∠BCA,在△ADE与△BCA中,,∴△ADE≌△BCA(AAS),∴AD=BC.【点评】本题主要考查平行线的性质,全等三角形的判定与性质,解答的关键是结合图形分析清楚其中的角或边的数量关系.22.【分析】(1)直接根据概率公式计算可得;(2)利用概率公式计算出两人去参加活动的概率判断即可.【解答】解:(1)∵共有1,2,3,4,5,6,7,8,9这9种等可能的结果,其中2的倍数有4个,∴P(转到2的倍数)=;(2)游戏不公平,理由如下:共有9种等可能的结果,其中3的倍数有3、6、9共3种可能,2的倍数有2,4,6,8共4种可能,由于转到6时需要重新转转盘,故6舍去,∴小亮去参加活动的概率为:=,小芳去参加活动的概率为:,∵>,∴游戏不公平.【点评】本题考查了游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.23.【分析】(1)△BPD与△CMP全等,根据SAS即可判断;(2)利用全等三角形的性质可知CM=BD=8,PC=PB=5,推出t=,推出点M的运动速度=8÷=cm/s;【解答】解:(1)结论:,△BPD与△CMP全等理由:t=1s时,PB=2,CM=2,BD=AB=8,PC=10﹣2=8,∵AB=AC,∴∠B=∠C,在△BDP和△CPM中,,∴△BDP≌CPM.(2)由题意△BPD与△CMP全等,∵CM≠PB,∴CM=BD=8,PC=PB=5,∴t=,∴点M的运动速度=8÷=cm/s.【点评】本题考查全等三角形的判定和性质、行程问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【分析】(1)矩形面积公式:面积=长×宽,另外长方形菜园的面积S(m2)与AB的长x(m)的关系式要注意x的取值范围;(2)分别代入x求解;(3)把函数关系式配方,从而得出结论.【解答】解:(1)设AB的长为xm,∴BC=40﹣AB﹣CD=(40﹣2x)m,∴S=AB•BC=x(40﹣2x)=﹣2x2+40x,故答案为:(40﹣2x),﹣2x2+40x;(2)将x=9,10,12分别代入解析式S=﹣2x2+40x,当x=9时,S=﹣2×92+40×9=198,当x=10时,S=﹣2×102+40×10=200,当x=12时,S=﹣2×122+40×12=192,故答案为:198,200,192;(3)∵S=﹣2x2+40x=﹣2(x2﹣20x)=﹣2(x﹣10)2+200,∴a=10,n=200,∵﹣2<0,∴当x=10时,S有最大值,最大值为200m2.【点评】本题考查二次函数的应用,解题关键是熟练掌握二次函数的性质.25.【分析】(1)当AP=CP时,则AP=,证S△ABP=S△CBP,再证△ABP与△CBP不全等,即可得出结论;=S△ACD,则BD=CD,再证△CDE≌△BDA(AAS),(2)由偏等积三角形的定义得S△ABD则CE=AB=2,ED=AD,得AE=ED+AD=2AD,然后由三角形的三边关系求解即可;(3)①过A作AM⊥DC于M,过B作BN⊥CE于N,证△ACM≌△BCN(AAS),得AM=BN,则S△ACD=S△BCE,再证△ACD与△BCE不全等,即可得出结论;②过点A作AN∥CD,交CG的延长线于N,证得△AGN≌△DGC(AAS),得到AN=CD,再证△ACN≌△CBE(SAS),得∠ACN=∠CBE,由余角的性质可证CF⊥BE,然=BE•CF,S△BCE=S△ACD=2100,求出后由三角形面积和偏等积三角形的定义得S△BCECF=70(m),即可求解.【解答】解:(1)当AP=CP=时,△ABP与△CBP是偏等积三角形,理由如下:=AP•h,S△CBP=CP•h,设点B到AC的距离为h,则S△ABP=S△CBP,∴S△ABP∵AB=10,BC=7,∴AB≠BC,∵AP=CP、PB=PB,∴△ABP与△CBP不全等,∴△ABP与△CBP是偏等积三角形,故答案为:;=BD•n,S△ACD=CD•n,(2)设点A到BC的距离为n,则S△ABD∵△ABD与△ACD是偏等积三角形,=S△ACD,∴S△ABD∴BD=CD,∵CE∥AB,∴∠ECD=∠B,∠E=∠BAD,在△CDE和△BDA中,,∴△CDE≌△BDA(AAS),∴CE=AB=2,ED=AD,∴AE=ED+AD=2AD,∵线段AD的长度为正整数,∴AE的长度为偶数,在△ACE中,AC=6,CE=2,∴6﹣2<AE<6+2,即:4<AE<8,∴AE=6;(3)①△ACD与△BCE是偏等积三角形,理由如下:过A作AM⊥DC于M,过B作BN⊥CE于N,如图3所示:则∠AMC=∠BNC=90°,∵△ACB、△DCE是等腰直角三角形,∴∠ACB=∠DCE=90°,AC=BC,CD=CE,∴∠BCN+∠ACD=360°﹣∠ACB﹣∠DCE=360°﹣90°﹣90°=180°,∵∠ACM+∠ACD=180°,∴∠ACM=∠BCN,在△ACM和△BCN中,,∴△ACM≌△BCN(AAS),∴AM=BN,=CD•AM,S△BCE=CE•BN,∵S△ACD=S△BCE,∴S△ACD∵∠BCE+∠ACD=180°,0°<∠BCE<90°,∴∠ACD≠∠BCE,∵CD=CE,AC=BC,∴△ACD与△BCE不全等,∴△ACD与△BCE是偏等积三角形;②如图3,过点A作AN∥CD,交CG的延长线于N,则∠N=∠GCD,∵G点为AD的中点,∴AG=GD,在△AGN和△DGC中,,∴△AGN≌△DGC(AAS),∴AN=CD,∵CD=CE,∴AN=CE,∵AN∥CD,∴∠CAN+∠ACD=180°,∵∠ACB=∠DCE=90°,∴∠ACD+∠BCE=360°﹣90°﹣90°=180°,∴∠BCE=∠CAN,在△ACN和△CBE中,,∴△ACN≌△CBE(SAS),∴∠ACN=∠CBE,∵∠ACN+∠BCF=180°﹣90°=90°,∴∠CBE+∠BCF=90°,∴∠BFC=90°,∴CF⊥BE.由①得:△ACD与△BCE是偏等积三角形,=BE•CF,S△BCE=S△ACD=2100,∴S△BCE∴CF===70(m),∴修建小路CF的总造价为:600×70=42000(元).【点评】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明△ACM≌△BCN和△ACN≌△CBE是解题的关键,属于中考常考题型.。
2020-2021西安市高新第一中学初一数学下期末试卷(及答案)
2020-2021西安市高新第一中学初一数学下期末试卷(及答案)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=3.已知关于x 的不等式组 的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤54.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( ) A .1600名学生的体重是总体 B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本5.计算2535-+-的值是( ) A .-1B .1C .525-D .255-6.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多7.在实数0,-π,3,-4中,最小的数是( ) A .0 B .-πC .3D .-48.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -=B .321a b +=C .491b a -=-D .941a b +=9.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)10.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-111.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一B .二C .三D .四12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2B .2和3C .3和4D .4和5二、填空题13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…14.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥ ( ) ∴∠BAE= ( 两直线平行,内错角相等 ) 又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE= ∴ ∥NE ( ) ∴∠M=∠N ( )15.若3的整数部分是a ,小数部分是b ,则3a b -=______. 16.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________17.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________.18.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.19.比较大小:2313 20.5______.三、解答题21.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A ,B 两种笔记本作为奖品,已知A ,B 两种每本分别为12元和20元,设购入A 种x 本,B 种y 本. (1)求y 关于x 的函数表达式.(2)若购进A 种的数量不少于B 种的数量. ①求至少购进A 种多少本?②根据①的购买,发现B 种太多,在费用不变的情况下把一部分B 种调换成另一种C ,调换后C 种的数量多于B 种的数量,已知C 种每本8元,则调换后C 种至少有______本(直接写出答案)22.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足2(8)c 40a ++=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动. (1)直接写出点B 的坐标,AO 和BC 位置关系是;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S ∆∆=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.23.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?24.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.25.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.3.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.B解析:B 【解析】 【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 【详解】解:23+-(23231-+=-+=, 故选B . 【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.6.C解析:C 【解析】 【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.7.D解析:D 【解析】 【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【详解】∵正数大于0和一切负数, ∴只需比较-π和-4的大小, ∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.8.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.D解析:D【解析】【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.11.B解析:B 【解析】 【分析】由点P 在x 轴上求出a 的值,从而得出点Q 的坐标,继而得出答案. 【详解】∵点P (a ,a-1)在x 轴上, ∴a-1=0,即a=1, 则点Q 坐标为(-1,2), ∴点Q 在第二象限, 故选:B . 【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.C解析:C 【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4, 故选C .二、填空题13.h =03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2 【解析】 【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式. 【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩,∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2. 故答案为:h =0.3n+2. 【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.见解析【解析】【分析】由已知易得AB∥CD 则∠BAE=∠AEC 又∠1=∠2所以∠MAE=∠AEN 则AM∥EN 故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析 【解析】 【分析】由已知易得AB ∥CD ,则∠BAE=∠AEC ,又∠1=∠2,所以∠MAE=∠AEN ,则AM ∥EN ,故∠M=∠N . 【详解】∵∠BAE +∠AED =180°(已知) ∴AB ∥CD (同旁内角互补,两直线平行) ∠BAE =∠AEC (两直线平行,内错角相等) 又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 15.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】若3的整数部分为a,小数部分为b,-,∴a=1,b=31--=1.∴3a-b=3(31)故答案为1.16.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a<【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.17.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.18.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x轴上的点P到y轴的距离为3,则3x=,∴x=±3.故P的坐标为(±3,0).故答案为:(±3,0).19.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c>y∴c>300235c x--∴c>30037x-,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥300235c x--∴c≥150﹣4x∴c >30037x -, 且x ,y ,c 为正整数,∴C 种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.22.(1)(-4,-4) ,BC ∥AO ;(2)P (−4,0);(3)∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【解析】【分析】(1)由2(8)40a c +++=解出c ,得到B 点,易知BC ∥AO ;(2)过B 点作BE ⊥AO 于E ,设时间经过t 秒,AP =2t ,OQ =t ,CQ =4-t ;用t 表示出PAB S ∆与QBC S ∆,根据2PAB QBC S S ∆∆=列出方程解出t 即可;(3)要分情况进行讨论,①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图1所示,利用平行线的性质可得到∠PQB =∠OPQ +30°;②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图2所示,同样利用平行线的性质可得到,∠BQP +∠OPQ =150°【详解】(1)由2(8)40a c +++=得到c+4=0,得到c=-4(-4,-4) ,BC ∥AO(2)过B 点作BE ⊥AO 于E设时间经过t 秒,则AP =2t ,OQ =t ,CQ =4-t∵BE =4,BC =4,∴APB 1AP 2S =·1BE 2442t t =⨯⨯= ()BCQ 11 S CQ?BC 448222t t ==⨯-⨯=- ∵APB BCQ 2S S =∴()4282t t =-解得t =2∴AP =2t =4∴P (−4,0)(3) ①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图一所示,∴∠OPQ=∠PQH .又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ=30°. ∴∠OPQ +∠BCQ =∠PQH +∠BQH .∴即∠PQB =∠OPQ +∠CBQ.即∠PQB =∠OPQ +30°②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图二所示,∴∠OPQ =∠PQJ.又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ =30°. ∴∠HQB +∠BQP +∠PQJ =180°,∴30°+∠BQP +∠OPQ =180°即∠BQP +∠OPQ =150°综上所述∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【点睛】本题重点考察非负项的性质、三角形面积的计算、平行线的性质等知识点,综合程度比较高,第三问对Q 点进行分情况讨论,作出辅助线是解题关键23.小型车有38辆,中型车有12辆【解析】【分析】设小型车有x 辆,中型车有y 辆,根据“小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元”,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设小型车有x 辆,中型车有y 辆,根据题意得:501015560x y x y +=⎧⎨+=⎩, 解得:3812x y =⎧⎨=⎩, 答:小型车有38辆,中型车有12辆.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.24.(1)B (﹣8,﹣8),D (2,4),120;(2)∠MPO=∠AMP+∠PON ;∠MPO=∠AMP-∠PON ;(3)存在,P 点坐标为(﹣8,﹣6).【解析】【分析】(1)利用点A 、C 的坐标和长方形的性质易得B (﹣8,﹣8),D (2,4),然后根据长方形的面积公式即可计算长方形ABCD 的面积;(2)分点P 在线段AN 上和点P 在线段NB 上两种情况进行讨论即可得;(3)由于AM=8,AP=12t ,根据三角形面积公式可得S △AMP =t ,再利用三角形AMP 的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P 的坐标.【详解】(1)∵点A 、C 坐标分别为(﹣8,4)、(2,﹣8),∴B (﹣8,﹣8),D (2,4),长方形ABCD 的面积=(2+8)×(4+8)=120;(2)当点P 在线段AN 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM+∠QPO=∠AMP+∠PON ,即∠MPO=∠AMP+∠PON ;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).【点睛】 本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.25.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】【分析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。
2020—2021学年最新陕西省西安市初中七年级下期末数学试卷(有答案).doc
2017-2018学年陕西省七年级(下)期末数学试卷一、选择题1.如图所示的四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个2.下列计算正确的是()A.(﹣a3)2=﹣a6B.9a3÷3a3=3a3C.2a3+3a3=5a6 D.2a3•3a2=6a53.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35°B.45°C.55°D.65°4.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中10环B.任取一个有理数x,都有|x|≥0C.画一个三角形,使其三个内角的和为199°D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为1 5.若整式x+3与x﹣a的乘积为x2+bx﹣6,则b的值是()A.1 B.﹣1 C.2 D.﹣26.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.为配合地铁五号线建设,市政部分现对雁翔路某段进行雨、污水管道改造施工,施工单位在工作了一段时间后,因天气原因被迫停工几天,随后施工单位加快了施工进度,按时完成了管道施工任务,下面能反映该工程尚未改造的管道长度y(米)与时间x(天)的关系的大致图象是()A.B.C.D.8.如图,在△ABC中,BD平分∠ABC,DE⊥AB交AB于点E,DF⊥BC交BC于点F,若AB=12cm,=90cm2,则DF长为()BC=18cm,S△ABCA.3cm B.6cm C.9cm D.12cm9.如图,在△ABC中,直线ED是线段BC的垂直平分线,直线ED分别交BC、AB于点D、点E,已知BD=4,△ABC的周长为20,则△AEC的周长为()A.24 B.20 C.16 D.1210.如图,G是△ABC的重心,直线L过A点与BC平行.若直线CG分别与AB,L交于D,E两点,直线BG与AC交于F点,则△AED的面积:四边形ADGF的面积=()A.1:2 B.2:1 C.2:3 D.3:2二、填空题11.用科学记数法表示:0.00000108= .12.一个不透明袋中放入7枚只有颜色不同的围棋棋子,其中4枚黑色,3枚白色,任意摸出一枚,摸到棋子是黑色的概率为.13.若3x=2,9y=6,则3x﹣2y= .14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克1 1.52 2.53 3.54烤制时间/分6080100120140160180设鸭的质量为x千克,烤制时间为t,估计当x=2.9千克时,t的值为.15.已知,则代数式的值为.16.如图,已知△ABC中,AC=BC,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在B'处,DB'、EB'分别交AC于点F、G,若∠ADF=66°,则∠EGC的度数为.17.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.三、解答题18.计算(1)﹣(3x+y)(x﹣y)(2)(4a3b﹣6a2b2+12ab3)÷2ab(3)[4365×(﹣0.25)366﹣2﹣3]×(3.14﹣π)0(4)20152﹣2016×2014.19.作图题(要求尺规作图,保留作图痕迹,不写作法)已知:线段a,∠β.求作:△ABC,使BC=a,∠ABC=∠β,∠ACB=2∠β.20.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知)∴AC∥(内错角相等,两直线平行)∴∠C=∠CEF().∵∠C=∠D(已知),∴=∠CEF(等量代换)∴BD∥CE()21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划,某日小明从省体育场出发沿长安路慢跑,已知他离省体育场的距离s( km)与时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)小明离开省体育场的最远距离是千米,他在120分钟内共跑了千米;(2)小明在这次慢跑过程中,停留所用的时间为分钟;(3)小明在这段时间内慢跑的最快速度是每小时千米.22.如图,△ABC是等边三角形,延长BA至点D,延长CB至点E,使得BE=AD,连结CD,AE.求证:AE=CD.23.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即:a2±2ab+b2=(a±b)2.根据阅读材料解决下面问题:(1)m2+4m+4=()2(2)无论n取何值,9n2﹣6n+1 0(填“<”,“>”,“≤”,“≥”或“=”)(3)已知m,n是△ABC的两条边,且满足10m2+4n2+4=12mn+4m,若该三角形的第三边k的长是奇数,求k的长.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C 开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t (t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= cm,CE= cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.参考答案与试题解析一、选择题1.如图所示的四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:最:不是轴对称图形,不符合题意;美:是轴对称图形,符合题意;铁:不是轴对称图形,不符合题意;一:是轴对称图形,符合题意.故选:B.2.下列计算正确的是()A.(﹣a3)2=﹣a6B.9a3÷3a3=3a3C.2a3+3a3=5a6 D.2a3•3a2=6a5【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的乘除法、合并同类项法则即可作出判断.【解答】解:(A)原式=a6,故A错误;(B)原式=3,故B错误(C)原式=5a3,故C错误故选(D)3.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35°B.45°C.55°D.65°【考点】平行线的性质.【分析】先求出∠ACE的度数,根据平行线的性质得出∠2=∠ACE,即可得出答案.【解答】解:如图,∵∠ACB=90°,∠1=35°,∴∠ACE=90°﹣35°=55°,∵MN∥EF,∴∠2=∠ACE=55°,故选C.4.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中10环B.任取一个有理数x,都有|x|≥0C.画一个三角形,使其三个内角的和为199°D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为1【考点】概率的意义.【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1;必然事件概率为1;不可能事件概率为0.【解答】解:A、是随机事件,概率大于0并且小于1;B、是必然事件,概率=1;C、是不可能事件,概率=0;D、是随机事件,概率大于0并且小于1;故选:C.5.若整式x+3与x﹣a的乘积为x2+bx﹣6,则b的值是()A.1 B.﹣1 C.2 D.﹣2【考点】多项式乘多项式.【分析】根据题意列出等式,利用多项式乘多项式法则变形即可确定出b的值.【解答】解:根据题意得:(x+3)(x﹣a)=x2+(3﹣a)x﹣3a=x2+bx﹣6,可得3﹣a=b,﹣3a=﹣6,解得:a=2,b=1.故选A.6.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)【考点】全等三角形的判定.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:A.7.为配合地铁五号线建设,市政部分现对雁翔路某段进行雨、污水管道改造施工,施工单位在工作了一段时间后,因天气原因被迫停工几天,随后施工单位加快了施工进度,按时完成了管道施工任务,下面能反映该工程尚未改造的管道长度y(米)与时间x(天)的关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】分析施工过程的进度,由先慢、停工几天后快即可找出合适的函数图象,此题得解.【解答】解:∵开始几天施工速度较慢,中间停工几天,后面加快进度,∴函数的大致图象为D选项中图象.故选D.8.如图,在△ABC中,BD平分∠ABC,DE⊥AB交AB于点E,DF⊥BC交BC于点F,若AB=12cm,BC=18cm,S△ABC=90cm2,则DF长为()A.3cm B.6cm C.9cm D.12cm【考点】角平分线的性质.【分析】根据角平分线的性质得到DE=DF,然后根据三角形的面积列方程即可得到结论.【解答】解:∵BD是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,∴DE=DF,∵S△ABC =S△ABD+S△BDC=AB•DE+BC•DF=90cm2,∴DF=6cm,故选B.9.如图,在△ABC中,直线ED是线段BC的垂直平分线,直线ED分别交BC、AB于点D、点E,已知BD=4,△ABC的周长为20,则△AEC的周长为()A.24 B.20 C.16 D.12【考点】线段垂直平分线的性质.【分析】由BC的垂直平分线交AB于点E,可得BE=CE,又由△ABC的周长为10,BC=4,易求得△ACE的周长是△ABC的周长﹣BC,继而求得答案.【解答】解:∵BC的垂直平分线交AB于点E,∴BE=CE,∵△ABC的周长为20,BC=2BD=8,∴△ACE的周长是:AE+CE+AC=AE+BE+AC=AB+AC=AB+AC+BC﹣BC=20﹣8=12.故选D.10.如图,G是△ABC的重心,直线L过A点与BC平行.若直线CG分别与AB,L交于D,E两点,直线BG与AC交于F点,则△AED的面积:四边形ADGF的面积=()A.1:2 B.2:1 C.2:3 D.3:2【考点】三角形的重心.【分析】根据重心的概念得出D,F分别是三角形的中点.若设△ABC的面积是2,则△BCD的面积和△BCF的面积都是1.又因为BG:GF=CG:GD,可求得△CGF的面积.则四边形ADGF的面积也可求出.根据ASA可以证明△ADE≌△BDC,则△ADE的面积是1.则△AED的面积:四边形ADGF的面积可求.【解答】解:设三角形ABC的面积是2∴三角形BCD的面积和三角形BCF的面积都是1∵BG:GF=CG:GD=2∴三角形CGF的面积是∴四边形ADGF的面积是2﹣1﹣=∵△ADE≌△BDC(ASA)∴△ADE的面积是1∴△AED的面积:四边形ADGF的面积=1: =3:2.故选D.二、填空题11.用科学记数法表示:0.00000108= 1.08×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000108=1.08×10﹣6.故答案为:1.08×10﹣6.12.一个不透明袋中放入7枚只有颜色不同的围棋棋子,其中4枚黑色,3枚白色,任意摸出一枚,摸到棋子是黑色的概率为.【考点】概率公式.【分析】根据概率公式用黑色棋子的个数除以总棋子的个数即可.【解答】解:∵共有7枚棋子,其中4枚黑色,3枚白色,∴摸到棋子是黑色的概率为;故答案为:.13.若3x=2,9y=6,则3x﹣2y= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:32y=(32)y=9y=6,3x﹣2y=3x÷32y=2÷6=,故答案为:.14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千1 1.52 2.53 3.54克烤制时间/分6080100120140160180设鸭的质量为x千克,烤制时间为t,估计当x=2.9千克时,t的值为136 .【考点】函数关系式.【分析】观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=2.9千克代入即可求出烤制时间.【解答】解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得,所以t=40x+20.当x=2.9千克时,t=40×2.9+20=136.故答案为:136.15.已知,则代数式的值为11 .【考点】完全平方公式.【分析】把两边平方,再根据完全平方公式展开,即可得问题答案.【解答】解:∵,∴(x﹣)2=9,∴x2﹣2+=9,∴x2+=11,故答案为:11.16.如图,已知△ABC中,AC=BC,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在B'处,DB'、EB'分别交AC于点F、G,若∠ADF=66°,则∠EGC的度数为66°.【考点】翻折变换(折叠问题);等腰三角形的性质.【分析】由翻折变换的性质和等腰三角形的性质得出∠B′=∠B=∠A,再由三角形内角和定理以及对顶角相等得出∠B′GF=∠ADF即可.【解答】解:由翻折变换的性质得:∠B′=∠B,∵AC=BC,∴∠A=∠B,∴∠A=∠B′,∵∠A+∠ADF+∠AFD=180°,∠B′+∠B′GF+∠B′FG=180°,∠AFD=∠B′FG,∴∠B′GF=∠ADF=66°,∴∠EGC=∠B′GF=66°.故答案为:66°.17.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是 2.4 .【考点】轴对称﹣最短路线问题.【分析】如图作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC此时PC+PQ最短,利用面积法求出CQ′即可解决问题.【解答】解:如图,作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC此时PC+PQ最短.∵PQ⊥AC,PQ′⊥AB,AD平分∠CAB,∴PQ=PQ′,∴PQ+CP=PC+PQ′=CQ′∴此时PC+PQ最短(垂线段最短).在RT△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵•AC•BC=•AB•CQ′,∴CQ′===2.4.∴PC+PQ的最小值为2.4.故答案为2.4.三、解答题18.计算(1)﹣(3x+y)(x﹣y)(2)(4a3b﹣6a2b2+12ab3)÷2ab(3)[4365×(﹣0.25)366﹣2﹣3]×(3.14﹣π)0(4)20152﹣2016×2014.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用多项式乘以多项式法则计算即可得到结果;(2)原式利用多项式除以单项式法则计算即可得到结果;(3)原式利用积的乘方运算法则变形,再利用零指数幂、负整数指数幂法则计算即可得到结果;(4)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=﹣3x2+2xy+y2;(2)原式=2a2﹣3ab+6b2;(3)原式=[(﹣4×0.25)365×(﹣0.25)﹣]×1=;(4)原式=20152﹣×=20152﹣20152+1=1.19.作图题(要求尺规作图,保留作图痕迹,不写作法)已知:线段a,∠β.求作:△ABC,使BC=a,∠ABC=∠β,∠ACB=2∠β.【考点】作图—复杂作图.【分析】先作线段BC=a,再作∠MBC=α,∠ACB=2α,BM和NC相交于点A,则△ABC满足条件.【解答】解:如图,△ABC为所作.20.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知)∴AC∥DF (内错角相等,两直线平行)∴∠C=∠CEF(两直线平行,内错角相等).∵∠C=∠D(已知),∴∠D =∠CEF(等量代换)∴BD∥CE(同位角相等,两直线平行)【考点】平行线的判定与性质.【分析】根据平行线的判定得出AC∥DF,根据平行线的性质得出∠C=∠CEF,求出∠D=∠CEF,根据平行线的判定得出即可.【解答】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行),故答案为:DF,两直线平行,内错角相等,∠D,同位角相等,两直线平行.21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划,某日小明从省体育场出发沿长安路慢跑,已知他离省体育场的距离s( km)与时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)小明离开省体育场的最远距离是 4 千米,他在120分钟内共跑了8 千米;(2)小明在这次慢跑过程中,停留所用的时间为20 分钟;(3)小明在这段时间内慢跑的最快速度是每小时8 千米.【考点】一次函数的应用.【分析】(1)观察函数图象即可得出结论;(2)观察函数图象二者做差即可得出结论;(3)根据速度=路程÷时间,即可小明在这段时间内慢跑的最快速度,此题得解.【解答】解:(1)由图象知,小明离开省体育场的最远距离是4千米,他在120分钟内共跑了8千米;(2)小明在这次慢跑过程中,停留所用的时间为:60﹣40=20分钟;(3)小明在这段时间内慢跑的最快速度是4÷=8千米/小时.故答案为:4,8,20,8.22.如图,△ABC是等边三角形,延长BA至点D,延长CB至点E,使得BE=AD,连结CD,AE.求证:AE=CD.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】只要证明△ABE≌△ACD,即可推出AE=CD.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠CAB=∠ABC=60°,∴∠DAC=∠ABE=120°,在△ABE和△ACD中,,∴△ABE≌△ACD,∴AE=CD.23.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即:a2±2ab+b2=(a±b)2.根据阅读材料解决下面问题:(1)m2+4m+4=(m+2 )2(2)无论n取何值,9n2﹣6n+1 ≥0(填“<”,“>”,“≤”,“≥”或“=”)(3)已知m,n是△ABC的两条边,且满足10m2+4n2+4=12mn+4m,若该三角形的第三边k的长是奇数,求k的长.【考点】配方法的应用;完全平方式;三角形三边关系.【分析】(1)根据完全平方式得出结论;(2)9n2﹣6n+1=(3n﹣1)2≥0;(3)将已知等式配方后,利用非负性得结论:,求出m和n的值,再根据三角形的三边关系得出k的值.【解答】解:(1)原式=(m+2)2;故答案为:m+2;(2)9n2﹣6n+1=(3n﹣1)2≥0;∴无论n取何值,9n2﹣6n+1≥0,故答案为:≥;(3)10m2+4n2+4=12mn+4m,已知等式整理得:9m2﹣12mn+4n2+m2﹣4m+4=0,(3m﹣2n)2+(m﹣2)2=0,,∴,∵m,n是△ABC的两条边,∴3﹣2<k<3+2,1<k<5,∵第三边k的长是奇数,∴k=3.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C 开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t (t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= 3t cm,CE= t cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.【考点】三角形综合题.【分析】(1)根据路程=速度×时间,即可得出结果;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值即可;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【解答】解:(1)根据题意得:CD=3tcm,CE=tcm;故答案为:3t,t;=BD•AH=12,AH=4,(2)∵S△ABD∴AH×BD=24,∴BD=6.若D在B点右侧,则CD=BC﹣BD=2,t=;若D在B点左侧,则CD=BC+BD=14,t=;综上所述:当t为s或s时,△ABD的面积为12 cm2;(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动4秒时,△ABD≌△ACE.理由如下:如图所示①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=8﹣3t∴t=8﹣3t,∴t=2,∵在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=3t﹣8,∴t=3t﹣8,∴t=4,∵在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).2017年4月13日。
陕西省西安市雁塔区西安高新第一中学2021-2022学年七年级下学期期末数学试题
陕西省西安市雁塔区西安高新第一中学2021-2022学年七年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________A.B.C.D.π22A.20°B.30°C.40°D.70°7.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B C''为8m,则BB'的长为()A.1m B.2m C.3m D.4m8.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是()A.20°B.35°C.40°D.70°9.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直,若BP=5,CP=12,则AD的长为()三、解答题(1)快车的速度为km/h,慢车的速度为km/h;(2)经过多久两车第一次相遇?(3)当快车到达目的地时,慢车距离目的地多远?22.2022年4月23日是第27个世界读书日.为了营造多读书、读好书的氛围,推动校园文化的发展,我校七年级积极响应号召,举行了第十三届校园读书节.在班级组织的“读书分享会”活动中,小明和小华都想当主持人,但只有一个名额.小华建议,用游戏的方法来选人.游戏规则是:利用如图所示被平均分成6份的转盘,随意转动转盘,若指针指到偶数,则小明去;反之,则小华去.你认为这个游戏公平吗?说说你的理由.23.如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=12°.(1)求∠EFB的度数.(2)若BD=3,BE=4,△BFC的面积为6,求△BEF的面积.24.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB 由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?25.(1)【提出问题】在一次思维训练营上老师给同学们出了这样一个问题:如图①在ABC V 中,AD 为BC 边上的中线,延长AD 与AC 的平行线BE 交于点E .如果5AD =,那么AE 长为多少?小凯同学立刻利用全等三角形解决了老师的问题.请你直接写出AE 的长.解:∵AD 是BC 边上的中线,∴BD CD =,又∵//AC BE ,∴CAD E ∠=∠在ADC △和EDB △中CAD E ADC EDB BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADC EDB V V ≌(AAS )∴AD DE =又∵5AD =∴AE =______(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB ,AD ,DC 之间的数量关系,并证明你的猜想. (3)【拓展延伸】如图③,已知某学校内有一块梯形空地,//AB CD ,生物小组把它改造成了花圃,内部正好有两条小路BC ,AE ,经过测量发现50AB BC ==米,16CD =米,ABE V 和ACE △正好面积相等,分别种上了玫瑰和郁金香,在BCD △内种了向日葵.现在准备在地下建一条水管DF ,且已知30DFE BAE ∠=∠=︒,但由于不便于测量DF 的长,请你用所学几何知识求出DF 的长,并说明理由.。
陕西省西安市西安高新第一中学2020-2021学年七年级下学期期末数学试题
老师每天的答题个数所组成的这组数据中,中位数是_____.
14.已知 与(x+y﹣4)2互为相反数,则y﹣x=_____.
15.如图,已知点C在点A的北偏东19°,在点B的北偏西71°,若CB=9,AC=12,则AB=_____.
16.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片_____张,B类卡片_____张,C类卡片_____张.
陕西省西安市西安高新第一中学2020-2021学年七年级下学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在下列各数中,无理数是( )
A.0B.3πC. D.
2.2021年是大家公认的 商用元年.移动通讯行业人员想了解 手机的使用情况,在某高校随机对500位大学生进行了问卷调查.下列说法正确的是( )
A.该调查方式是普查
B.该调查中的个体是每一位大学生
C.该调查中的样本是被随机调查的500位大学生 手机的使用情况
D.该调查中的样本容量是500位大学生
3.如图所示,下列推理不正确的是()
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
4.如图,用三角板作 的边 上的高线,下列三角板的摆放位置正确的是()
17.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点P为AC边上的动点,过点P作PD⊥AB于点D,则PB+PD的最小值为_____.
三、解答题
18.计算
(1) ×(2﹣ )0﹣( )﹣1;
(2) ÷ ﹣ .
19.计算:(2a﹣b)2+(a+b)(a﹣b)+2a•3b.
西安市高新第一中学七年级下册数学期末试卷(含答案)
西安市高新第一中学七年级下册数学期末试卷(含答案)一、选择题1.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a =2.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE 3.已知,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .04.下列图形可由平移得到的是( )A .B .C .D .5.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 126.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 8.下列式子是完全平方式的是( ) A .a 2+2ab ﹣b 2B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣1 9.下列运算正确的是( ) A .236x x x ⋅= B .224(2)4x x -=- C .326()x x =D .55x x x ÷= 10.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( ) A .23m ≤ B .23m < C .23m ≥ D .23m > 二、填空题11.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.12.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.13.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.14.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =7的一个解,则m =_____. 15.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.16.233、418、810的大小关系是(用>号连接)_____.17.若等式0(2)1x -=成立,则x 的取值范围是_________. 18.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.19.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.20.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____.三、解答题21.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.22.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-223.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.24.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).25.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).26.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.27.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y的方程组3x y qx y q ⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.28.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:2|2|m --【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.2.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB ∥CE .【详解】解:∵∠A =∠ACE ,∴AB ∥CE (内错角相等,两直线平行).故选:B .【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.3.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 4.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A5.A解析:A【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A 、a 4÷a 3=a ,故本选项正确;B 、a 4和a 3不能合并,故本选项错误;C 、 (-a 3)2=a 6,故本选项错误;D 、a 4⋅a 3=a 7,故本选项错误.故选:A .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.6.D解析:D【详解】解:A 、能通过其中一个四边形平移得到,不符合题意;B 、能通过其中一个四边形平移得到,不符合题意;C 、能通过其中一个四边形平移得到,不符合题意;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意. 故选D .7.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 8.B解析:B【分析】利用完全平方公式的结构特征判断即可.【详解】解:下列式子是完全平方式的是a 2+2a+1=(a+1)2,故选B .【点睛】此题考查了完全平方式:(a+b)²=a²+2ab+b²,熟练掌握完全平方公式是解本题的关键.9.C解析:C【解析】解:A .x 2⋅ x 3= x 5,故A 错误;B .(-2x 2)2 = 4 x 4,故B 错误;C .( x 3 )2= x 6,正确;D .x 5÷ x = x 4,故D 错误.故选C .10.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m的取值范围.【详解】解:202x mx m-<⎧⎨+>⎩①②解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题11.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.12.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,解析:3 2【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,∴4m-6=0,解得m=32.故答案为3 2 .【点睛】此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.13.10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,解析:10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.14.9【分析】根据题意直接将代入方程mx﹣y=7得到关于m的方程,解之可得答案.【详解】解:将代入方程mx﹣y=7,得:m﹣2=7,解得m=9,故答案为:9.【点睛】本题主要考查二元解析:9【分析】根据题意直接将12xy=⎧⎨=⎩代入方程mx﹣y=7得到关于m的方程,解之可得答案.【详解】解:将12xy=⎧⎨=⎩代入方程mx﹣y=7,得:m﹣2=7,解得m=9,故答案为:9.【点睛】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.15.14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.16.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.17.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.18.4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.a 的值可能有4种,故答案为:4.【点睛】本题运解析:4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴14ab=⎧⎨=⎩,33ab=⎧⎨=⎩,52ab=⎧⎨=⎩,71ab=⎧⎨=⎩.a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.19.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.20.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题21.2021 514【分析】根据题目信息,设S=1+5+52+53+…+52020,求出5S,然后相减计算即可得解.【详解】解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.22.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】 ()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.23.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2 ∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y =5,x•y =94 ∴52-(x-y)2=4×94∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.24.(1)20°;(2)11 22 n m【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.26.(1)∠BDC =∠A+∠B+∠C ,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD 并延长至点F ,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF ;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC ,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX 的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB ,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB 的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB )+∠A ,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD 并延长至点F ,由外角定理可得∠BDF =∠BAD+∠B ,∠CDF =∠C+∠CAD ;∵∠BDC =∠BDF+∠CDF ,∴∠BDC =∠BAD+∠B+∠C+∠CAD.∵∠BAC =∠BAD+∠CAD ;∴∠BDC =∠BAC +∠B+∠C ;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A =∠BXC ,又因为∠A =50°,∠BXC =90°,所以∠ABX+∠ACX =90°﹣50°=40°;②由(1)的结论易得∠DBE =∠DAE +∠ADB+∠AEB ,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB =80°;∴∠DCE =12(ADB+∠AEB)+A=40°+50°=90°; ③由②知,∠BG 1C =110(ABD+∠ACD)+A , ∵∠BG 1C =77°,∴设∠A 为x°, ∵∠ABD+∠ACD =140°﹣x°, ∴110(40﹣x)x =77, ∴14﹣110x+x =77, ∴x =70,∴∠A 为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C 是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.27.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A(5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.28.(1)21 3m-<<(2)m-【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021西安市高新第一中学初一数学下期末试卷(及答案)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=3.已知关于x 的不等式组 的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤54.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( ) A .1600名学生的体重是总体 B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本5.计算2535-+-的值是( ) A .-1B .1C .525-D .255-6.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多7.在实数0,-π,3,-4中,最小的数是( ) A .0 B .-πC .3D .-48.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -=B .321a b +=C .491b a -=-D .941a b +=9.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)10.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-111.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一B .二C .三D .四12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2B .2和3C .3和4D .4和5二、填空题13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…14.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥ ( ) ∴∠BAE= ( 两直线平行,内错角相等 ) 又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE= ∴ ∥NE ( ) ∴∠M=∠N ( )15.若3的整数部分是a ,小数部分是b ,则3a b -=______. 16.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________17.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________.18.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.19.比较大小:2313 20.5______.三、解答题21.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A ,B 两种笔记本作为奖品,已知A ,B 两种每本分别为12元和20元,设购入A 种x 本,B 种y 本. (1)求y 关于x 的函数表达式.(2)若购进A 种的数量不少于B 种的数量. ①求至少购进A 种多少本?②根据①的购买,发现B 种太多,在费用不变的情况下把一部分B 种调换成另一种C ,调换后C 种的数量多于B 种的数量,已知C 种每本8元,则调换后C 种至少有______本(直接写出答案)22.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足2(8)c 40a ++=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动. (1)直接写出点B 的坐标,AO 和BC 位置关系是;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S ∆∆=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.23.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?24.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.25.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.3.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.B解析:B 【解析】 【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 【详解】解:23+-(23231-+=-+=, 故选B . 【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.6.C解析:C 【解析】 【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.7.D解析:D 【解析】 【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【详解】∵正数大于0和一切负数, ∴只需比较-π和-4的大小, ∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.8.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.D解析:D【解析】【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.11.B解析:B 【解析】 【分析】由点P 在x 轴上求出a 的值,从而得出点Q 的坐标,继而得出答案. 【详解】∵点P (a ,a-1)在x 轴上, ∴a-1=0,即a=1, 则点Q 坐标为(-1,2), ∴点Q 在第二象限, 故选:B . 【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.C解析:C 【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4, 故选C .二、填空题13.h =03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2 【解析】 【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式. 【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩,∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2. 故答案为:h =0.3n+2. 【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.见解析【解析】【分析】由已知易得AB∥CD 则∠BAE=∠AEC 又∠1=∠2所以∠MAE=∠AEN 则AM∥EN 故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析 【解析】 【分析】由已知易得AB ∥CD ,则∠BAE=∠AEC ,又∠1=∠2,所以∠MAE=∠AEN ,则AM ∥EN ,故∠M=∠N . 【详解】∵∠BAE +∠AED =180°(已知) ∴AB ∥CD (同旁内角互补,两直线平行) ∠BAE =∠AEC (两直线平行,内错角相等) 又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 15.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】若3的整数部分为a,小数部分为b,-,∴a=1,b=31--=1.∴3a-b=3(31)故答案为1.16.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a<【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.17.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.18.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x轴上的点P到y轴的距离为3,则3x=,∴x=±3.故P的坐标为(±3,0).故答案为:(±3,0).19.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c>y∴c>300235c x--∴c>30037x-,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥300235c x--∴c≥150﹣4x∴c >30037x -, 且x ,y ,c 为正整数,∴C 种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.22.(1)(-4,-4) ,BC ∥AO ;(2)P (−4,0);(3)∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【解析】【分析】(1)由2(8)40a c +++=解出c ,得到B 点,易知BC ∥AO ;(2)过B 点作BE ⊥AO 于E ,设时间经过t 秒,AP =2t ,OQ =t ,CQ =4-t ;用t 表示出PAB S ∆与QBC S ∆,根据2PAB QBC S S ∆∆=列出方程解出t 即可;(3)要分情况进行讨论,①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图1所示,利用平行线的性质可得到∠PQB =∠OPQ +30°;②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图2所示,同样利用平行线的性质可得到,∠BQP +∠OPQ =150°【详解】(1)由2(8)40a c +++=得到c+4=0,得到c=-4(-4,-4) ,BC ∥AO(2)过B 点作BE ⊥AO 于E设时间经过t 秒,则AP =2t ,OQ =t ,CQ =4-t∵BE =4,BC =4,∴APB 1AP 2S =·1BE 2442t t =⨯⨯= ()BCQ 11 S CQ?BC 448222t t ==⨯-⨯=- ∵APB BCQ 2S S =∴()4282t t =-解得t =2∴AP =2t =4∴P (−4,0)(3) ①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图一所示,∴∠OPQ=∠PQH .又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ=30°. ∴∠OPQ +∠BCQ =∠PQH +∠BQH .∴即∠PQB =∠OPQ +∠CBQ.即∠PQB =∠OPQ +30°②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图二所示,∴∠OPQ =∠PQJ.又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ =30°. ∴∠HQB +∠BQP +∠PQJ =180°,∴30°+∠BQP +∠OPQ =180°即∠BQP +∠OPQ =150°综上所述∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【点睛】本题重点考察非负项的性质、三角形面积的计算、平行线的性质等知识点,综合程度比较高,第三问对Q 点进行分情况讨论,作出辅助线是解题关键23.小型车有38辆,中型车有12辆【解析】【分析】设小型车有x 辆,中型车有y 辆,根据“小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元”,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设小型车有x 辆,中型车有y 辆,根据题意得:501015560x y x y +=⎧⎨+=⎩, 解得:3812x y =⎧⎨=⎩, 答:小型车有38辆,中型车有12辆.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.24.(1)B (﹣8,﹣8),D (2,4),120;(2)∠MPO=∠AMP+∠PON ;∠MPO=∠AMP-∠PON ;(3)存在,P 点坐标为(﹣8,﹣6).【解析】【分析】(1)利用点A 、C 的坐标和长方形的性质易得B (﹣8,﹣8),D (2,4),然后根据长方形的面积公式即可计算长方形ABCD 的面积;(2)分点P 在线段AN 上和点P 在线段NB 上两种情况进行讨论即可得;(3)由于AM=8,AP=12t ,根据三角形面积公式可得S △AMP =t ,再利用三角形AMP 的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P 的坐标.【详解】(1)∵点A 、C 坐标分别为(﹣8,4)、(2,﹣8),∴B (﹣8,﹣8),D (2,4),长方形ABCD 的面积=(2+8)×(4+8)=120;(2)当点P 在线段AN 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM+∠QPO=∠AMP+∠PON ,即∠MPO=∠AMP+∠PON ;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).【点睛】 本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.25.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】【分析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。