【配套K12】高考数学深化复习+命题热点提分专题11数列求和及数列的简单应用理

合集下载

【2019最新】高考数学深化复习+命题热点提分专题11数列求和及数列的简单应用理

【2019最新】高考数学深化复习+命题热点提分专题11数列求和及数列的简单应用理
解析:(1)由已知得,
解得.
∴数列{an}的通项公式为an=1+2(n-1)=2n-1.
(2)由(1)得bn=(2n-1)·2n,
则Tn=1×2+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,①
2Tn=1×22+3×23+5×24+…+(2n-3)×2n+(2n-1)×2n+1,②
解析:(1)设等比数列{an}的公比,解得q=1或q=2.
当q=1时,不合题意,舍去;
当q=2时,代入②得a1=2,所以an=2·2n-1=2n.
故所求数列{an}的通项公式an=2n(n∈N*).
故数列{an}的通项为an=2n-1.
(2)由于bn=n·2n-1,n=1,2,…,
则Tn=1+2×2+3×22+…+n×2n-1,
所以2Tn=2+2×22+…+(n-1)×2n-1+n×2n,
两式相减得-Tn=1+2+22+23+…+2n-1-n×2n
=2n-n×2n-1,
即Tn=(n-1)2n+1.
当n≥2时,Sn=2an-,Sn-1=2an-1-,
两式相减得:an=Sn-Sn-1=2an-2an-1,
∴=2,所以数列{an}是首项为,公比为2的等比数列,
即an=×2n-1=2n-2.
(2)∵bn=(log2a2n+1)×(log2a2n+3)=(log222n+1-2)×(log222n+3-2)=(2n-1)(2n+1),
∴=×=,
∴数列的前n项和Tn=+++…+

==.
19.已知数列{an}的前n项和为Sn,且Sn=an-1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2log3+1,求++…+.
解析:(1)当n=1时,a1=a1-1,∴a1=2,

2024年高考数学专项复习数列求和与递推综合归类 (解析版)

2024年高考数学专项复习数列求和与递推综合归类 (解析版)

数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n 项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n 中,已知a 1=2,a n +1-a n =2n ,则a 50等于()A.2451B.2452C.2449D.24502.(等比累加法)已知数列a n 满足a 1=2,a n +1-a n =2n ,则a 9=()A.510B.512C.1022D.10242024年高考数学专项复习数列求和与递推综合归类 (解析版)【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +12.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【变式演练】1.数列{a n}中,a1=1,a2=3,a n+1=a n-a n-1(n≥2,n∈N*),那么a2019=()A.1B.2C.3D.-32.数列a n的首项a1=3,且a n=2-2a n-1n≥2,则a2021=()A.3B.43C.12D.-2题型四【二阶等比数列型递推【典例分析】1.已知数列a n满足a1=2,且a n=2a n-1-1(n≥2,n∈N+),则a n=______________【变式演练】1.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为() A.3n-1 B.3n+1-2 C.3n-2 D.3n2.已知数列{a n}满足:a n+1=2a n-n+1(n∈N*),a1=3.(1)证明数列b n=a n-n(n∈N*)是等比数列,并求数列{a n}的通项;(2)设c n=a n+1-a na n a n+1,数列{c n}的前n项和为{S n},求证:S n<1.【典例分析】1.在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N*),则22019是这个数列的第________________项.【变式演练】1.已知数列a n满足a1=1,a n+1=2a na n+2.记C n=2na n,则数列Cn的前n项和C1+C2+...+Cn=.2.数列a n满足:a1=13,且na n=2a n-1+n-1a n-1(n∈N*,n≥2),则数列a n的通项公式是a n=.题型六前n项积型递推【典例分析】1.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a7a8>1,a7-1a8-1<0.则下列结论正确的是(多选题)A.0<q<1B.a7a9<1C.T n的最大值为T7D.S n的最大值为S7【技法指引】类比前n项和求通项过程来求数列前n项积:1.n=1,得a12.n≥2时,a n=T n T n-1所以a n=T1,(n=1) T nT n-1,(n≥2)【变式演练】1.若数列a n满足a n+2=2⋅a n+1a n(n∈N*),且a1=1,a2=2,则数列a n的前2016项之积为()A.22014B.22015C.22016D.220172.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,且a2020a2021> 1,a2020-1a2021-1<0,下列结论正确的是(多选题)A.S2020<S2021B.a2020a2022-1<0C.数列T n无最大值 D.T2020是数列T n中的最大值题型七“和”定值型递推【典例分析】1.若数列a n满足a n+2a n+1+a n+1a n=k(k为常数),则称数列a n为等比和数列,k称为公比和,已知数列a n是以3为公比和的等比和数列,其中a1=1,a2=2,则a2019=______.【变式演练】1.已知数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为()A.5B.72C.92D.1322.知数列{a n}满足:a n+1+a n=4n-3(n∈N*),且a1=2,则a n=.题型八分段型等差等比求和【典例分析】1.已知数列a n满足a1=2,a n+1=32a n,n为奇数2a n,n为偶数 .(1)记b n=a2n,写出b1,b2,并求数列b n的通项公式;(2)求a n的前12项和.【变式演练】1.已知数列a n满足a1=1,a n+1=a n+1,n=2k-1, a n,n=2k.(1)求a2,a5的值;(2)求a n的前50项和S50.题型九函数中心型倒序求和【典例分析】1.已知A x 1,y 1 ,B x 2,y 2 是函数f (x )=2x 1-2x,x ≠12-1,x =12的图象上的任意两点(可以重合),点M为AB 的中点,且M 在直线x =12上.(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n,求S n ;(3)若在(2)的条件下,存在n 使得对任意的x ,不等式S n >-x 2+2x +t 成立,求t 的范围.【变式演练】2.已知a n 为等比数列,且a 1a 2021=1,若f x =21+x2,求f a 1 +f a 2 +f a 3 +⋯+f a 2021 的值.题型十分组求和型【典例分析】1.已知等比数列a n 的公比大于1,a 2=6,a 1+a 3=20.(1)求a n 的通项公式;(2)若b n =a n +1log 3a n +12log 3a n +22,求b n 的前n 项和T n .【技法指引】对于a n +b n 结构,利用分组求和法【变式演练】1.设S n 为数列a n 的前n 项和,已知a n >0,a 2n +2a n =4S n +3n ∈N *,若数列b n 满足b 1=2,b 2=4,b 2n +1=b n b n +2n ∈N *(1)求数列a n 和b n 的通项公式;(2)设c n =1S n,n =2k -1,k ∈N * b n,n =2k ,k ∈N *求数列c n 的前n 项的和T n .【典例分析】1.已知数列a n 满足a 1=2,且a n +1-3 ⋅a n +1 +4=0,n ∈N *.(1)求证:数列1a n -1是等差数列;(2)若数列b n 满足b n =2n +1a n -1,求b n 的前n 项和.【技法指引】对于a n b n 结构,其中a n 是等差数列,b n 是等比数列,用错位相减法求和;思维结构结构图示如下【变式演练】1.已知等比数列a n 的首项a 1=1,公比为q ,b n 是公差为d d >0 的等差数列,b 1=a 1,b 3=a 3,b 2是b 1与b 7的等比中项.(1)求数列a n 的通项公式;(2)设b n 的前n 项和为S n ,数列c n 满足nc n =a 2n S n ,求数列c n 的前n 项和T n .【典例分析】1.已知数列a n各项均为正数,且a1=2,a n+12-2a n+1=a n2+2a n.(1)求a n的通项公式(2)设b n=-1n a n,求b1+b2+b1+⋯+b20.【变式演练】1.设等差数列a n的前n项和为S n,已知a3+a5=8,S3+S5=10. (1)求a n的通项公式;(2)令b n=(-1)n a n,求数列b n的前n项和T n.题型十三无理根式型裂项相消求和【典例分析】1.设数列a n的前n项和为S n,且满足2S n=3a n-3.(1)求数列a n的通项公式:(2)若b n=a n3,n为奇数1log3a n+log3a n+2,n为偶数,求数列和b n 的前10项的和.【变式演练】1.设数列a n的前n项和S n满足2S n=na n+n,n∈N+,a2=2,(1)证明:数列a n是等差数列,并求其通项公式﹔(2)设b n=1a n a n+1+a n+1a n,求证:T n=b1+b2+⋯+b n<1.题型十四指数型裂项相消【典例分析】1.已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n ;(2)设b n =a n a n +1-1 ⋅a n +2-1 ,求数列b n 的前n 项和T n .【变式演练】1.数列a n 满足:a 1+2a 2+3a 3+⋅⋅⋅+n -1 a n -1=2+n -2 ⋅2n n ≥2 .(1)求数列a n 的通项公式;(2)设b n =a n a n -1 a n +1-1,T n 为数列b n 的前n 项和,若T n <m 2-3m +3恒成立,求实数m 的取值范围.题型十五等差指数混合型裂项【典例分析】1.已知数列a n 满足S n =n a 1+a n 2,其中S n 是a n 的前n 项和.(1)求证:a n 是等差数列;(2)若a 1=1,a 2=2,求b n =2n 1-a n a n a n +1的前n 项和T n .【变式演练】2.已知等比数列a n 的各项均为正数,2a 5,a 4,4a 6成等差数列,且满足a 4=4a 23,数列S n 的前n 项之积为b n ,且1S n +2b n=1.(1)求数列a n 和b n 的通项公式;(2)设d n =b n +2⋅a n b n ⋅b n +1,若数列d n 的前n 项和M n ,证明:730≤M n <13.【典例分析】1.已知数列a n 的满足a 1=1,a m +n =a m +a n m ,n ∈N * .(1)求a n 的通项公式;(2)记b n =(-1)n ⋅2n +1a n a n +1,数列b n 的前2n 项和为T 2n ,证明:-1<T 2n ≤-23.【技法指引】正负相间型裂和,裂项公式思维供参考:-1 n ⋅pn +q kn +b k (n +1)+b=-1 n ⋅t 1kn +b +1k (n +1)+b【变式演练】1.记正项数列a n 的前n 项积为T n ,且1a n =1-2T n .(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅4n +4T n T n +1,求数列b n 的前2n 项和S 2n .【典例分析】1.已知等差数列a n 的前n 项和为S n ,若S 8=4a 4+20,且a 5+a 6=11.(1)求a n 的通项公式;(2)设b n =n 2+n +1a n a n +1,求b n 的前n 项和T n .【变式演练】1.已知等差数列a n 的通项公式为a n =2n -c c <2 ,记数列a n 的前n 项和为S n n ∈N * ,且数列S n 为等差数列.(1)求数列a n 的通项公式;(2)设数列4S n a n a n +1的前n 项和为T n n ∈N * ,求T n 的通项公式.好题演练好题演练1.(山东省泰安市2023届高三二模数学试题)已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.2.(2023·全国·模拟预测)已知正项数列a n 满足a 1=1,a n +1a n =1+1n.(1)求证:数列a 2n 为等差数列;(2)设b n =1a 2n a n +1+a n a 2n +1,求数列b n 的前n 项和T n .3.(2023·全国·学军中学校联考二模)设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.4.(2023·全国·长郡中学校联考二模)已知正项数列a n 的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *且n ≥2).(1)求数列a n 的通项公式;(2)设数列a n +22n a n a n +1 的前n 项和为T n ,求证:T n <1.5.(2023·四川攀枝花·统考三模)已知等差数列a n的公差为d d≠0,前n项和为S n,现给出下列三个条件:①S1,S2,S4成等比数列;②S4=32;③S6=3a6+2.请你从这三个条件中任选两个解答下列问题.(1)求数列a n的通项公式;(2)若b n-b n-1=2a n n≥2,且b1=3,设数列1b n的前n项和为Tn,求证:13≤T n<12.6.(2023春·江西抚州·高二金溪一中校联考期中)已知数列a n满足a1=2,a n+1= 2a n+2,n为奇数,1 2a n+1,n为偶数.(1)记b n=a2n,证明:数列b n为等差数列;(2)若把满足a m=a k的项a m,a k称为数列a n中的重复项,求数列a n的前100项中所有重复项的和.7.(河北省2023届高三下学期大数据应用调研联合测评(Ⅲ)数学试题)已知数列a n 满足:a 1=12,3a n +1a n =1+a n +11+a n.(1)求证:1a n +1 是等比数列,并求出数列a n 的通项公式;(2)设b n =3n ⋅a n a n +1,求数列b n 的前n 项和S n .8.(2023·全国·模拟预测)已知数列a n 的前n 项和S n 满足S n =n 2-1+a n .(1)求a 1及a n ;(2)令b n =4S n a n a n +1,求数列b n 的前n 项和T n .数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练 29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n中,已知a1=2,a n+1-a n=2n,则a50等于()A.2451B.2452C.2449D.2450【答案】B【详解】由a n+1-a n=2n得:a n-a n-1=2n-1,a n-1-a n-2=2n-2,⋯⋯,a3-a2=2×2,a2-a1=2×1,各式相加可得:a n-a1=2×1+2+⋅⋅⋅+n-1=2×n n-12=n n-1,又a1=2,∴a n=2+n n-1=n2-n+2,∴a50=2500-50+2=2452.故选:B.2.(等比累加法)已知数列a n满足a1=2,a n+1-a n=2n,则a9=()A.510B.512C.1022D.1024【答案】B【详解】由a1=2,a n+1-a n=2n得a2-a1=2,a3-a2=22,a4-a3=23,⋮a n -a n -1=2n -1,以上各式相加得,a n -a 1=2+22+⋯+2n -1=21-2n -11-2=2n -2,所以a n =2n -2+a 1=2n ,所以a 9=29=512.故选:B .【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +1【答案】A【分析】根据题意设a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,所以1,1+3d ,1+24d 构成等比数列,即1+3d 2=1×1+24d ,求出d 即可求解.【详解】设等差数列a n 的公差为d d >0 ,所以a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,又a 1、数列a 2n 的第2项、数列a n 2的第5项恰好构成等比数列,即1,1+3d ,1+24d 构成等比数列,所以1+3d 2=1×1+24d ,解得d =2,d =0(舍去),所以a n =2n -1.故选:A .2.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.【答案】a n =n n +12【分析】由S n =n +23a n ,变形可得则S n -1=n +13a n -1,两式相减变形可得a n a n -1=n +1n -1,又由a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a2a 1×a 1,计算可得a n =n (n +1)2,验证a 1即可得答案.【详解】根据题意,数列{a n }中,a 1=1,S n =n +23a n (n ∈N *),S n =n +23a n ①,S n -1=n +13a n -1②,①-②可得:a n =(n +2)a n 3-(n +1)a n -13,变形可得:a n a n -1=n +1n -1,则a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a 2a 1×a 1=n +1n -1 ×n n -2 ×⋯⋯×31 ×1=n (n +1)2;n =1时,a 1=1符合a n =n (n +1)2;故答案为:a n =n (n +1)2.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【答案】C【详解】令b n =na n ,则b n +1-b n =2n +1,又a 1=13,所以b 1=13,b 2-b 1=3,b 3-b 2=5,⋯,b n -b n -1=2n -1,所以累加得b n =13+n -1 3+2n -1 2=n 2+12,所以a n =b n n =n 2+12n =n +12n,所以a n +1-a n =n +1 +12n +1-n +12n =n -3 n +4 n n +1,所以当n <3时,a n +1<a n ,当n =3时,a n +1=a n ,即a 3=a 4,当n >3时,a n +1>a n ,即a 1>a 2>a 3=a 4<a 5<⋯<a n ,所以数列a n 的最小项为a 3和a 4,故选:C .【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n【答案】D【详解】由题意得,a n +1n +1=a n n +ln n +1n ,则a n n =a n -1n -1+ln n n -1,a n -1n -1=a n -2n -2+lnn -1n -2⋯,a 22=a 11+ln 21,由累加法得,a n n =a 11+ln n n -1+ln n -1n -2⋯+ln 21,即a n n =a 1+ln n n -1⋅n -1n -2⋅⋯⋅21,则an n=2+ln n ,所以a n =2n +n ln n ,故选:D2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n 2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【答案】(1)a n =n +n2n ;(2)1,2,3,4 .【详解】(1)因为a n =n n -1a n -1-n 2n ,所以a n n -a n -1n -1=-12n .因为a 22-a 11=-122,a33-a 22=-123,⋯,a n n -a n -1n -1=-12n ,所以a n n -a 11=-122+123+⋯+12n=-1221-12 n -11-12=12n-12,于是a n=n+n 2n .当n=1时,a1=1+12=32,所以a n=n+n2n.(2)因为S n-S n-1=a n=n+n2n >0,所以S n是递增数列.因为a1=1+12=32,a2=2+24=52,a3=3+323=278,a4=4+424=174,a5=5+525=16532,所以S1=32,S2=4,S3=598,S4=938<12,S5=53732>12,于是所有正整数n的取值集合为1,2,3,4.题型三周期数列型递推【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【答案】-6【解析】由已知有a2=1+a11-a1=-3,a3=1-31+3=-12,a4=1-121+12=13,a5=1+131-13=2,所以a5=a1=2,所以数列a n是周期数列,且周期为4,a1a2a3a4=a5a6a7a8=⋯=a2005a2006a2007a2008=1,而a2009a2010= a1a2=2×(-3)=-6,所以a1a2a3⋯a2010=-6。

高考备考课件 数学 第7章 第4讲 数列求和、数列的综合应用

高考备考课件 数学 第7章 第4讲 数列求和、数列的综合应用

11--31134=4207.
栏目索引
第七章 数 列
高考备考指南
数学 系统复习用书
5.(2020年安阳月考 )已知正项等比数列 {an}满足a2=4,a4 +a6=80.记bn = log2an,则数列{bn}的前50项和为________.
【答案】1 275
【解析】设首项为a1,公比为q的正项等比数列{an}满足a,an-an-1是首项为1,公比为3的等比数列,则数列{an}
的通项公式是an=3n-2 1.(
)
【答案】(1)√ (2)√ (3)√ (4)× (5)√
栏目索引
第七章 数 列
高考备考指南
数学 系统复习用书
2
第七章 数 列
重难突破 能力提升
栏目索引
高考备考指南
公式法求和
数学 系统复习用书
∈N*.
(2019年哈尔滨模拟)数列{an}满足a1=1,nan+1=(n+1)an+3n(n+1),n
(1)证明:数列ann是等差数列,并求数列{an}的通项公式;
(2)令bn=ann-4n,求数列{bn}的前n项和Sn.
栏目索引
第七章 数 列
高考备考指南
数学 系统复习用书
【解析】(1)证明:数列{an}满足a1=1,nan+1=(n+1)an+3n(n+1),n∈N*,
na1+an 2

为合理.( )
(2)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=a11--aqn+1.(
)
(3)当n≥2时,n2-1 1=12n-1 1-n+1 1.(
)
栏目索引
第七章 数 列
高考备考指南
数学 系统复习用书

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,

13Sn=312+333+…+2n3-n 3+23nn-+11.

两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.

年高考数学(理)总复习:数列的求和及综合应用(解析版)

年高考数学(理)总复习:数列的求和及综合应用(解析版)

所以
fn

(2=)
1+
2
×2+


(n-
n
1)2
-2+
n·2n
-1
,①
则 2fn′ (2=) 2+2×22+ … + (n- 1)2n-1+ n·2n,② 由①-②得,- fn′ (2=) 1+ 2+ 22+ … +2n-1- n·2n
n
= 1- 2 - n·2n=(1 -n)2n- 1, 1- 2
n
22
1
(2)[ 证明 ]
因为 fn(0) =- 1< 0,fn 2 3
3

1
3 2
n
2
- 1= 1-2× 2
2
≥1- 2×

3
3
3
2 0,所以 fn(x) 在 0, 内至少存在一个零点,又
3
f′n (x)= 1+ 2x+… + nxn-1> 0,所以 fn(x)在
0, 2 内单调递增,因此 f n(x)在 0, 2 内有且仅有一个零点
【解析】
n, n为偶数, (1) ∵数列 { bn} 的通项公式 bn=
(n∈N * ),∴ b5= 6, b4= 4,
n+ 1,n为奇数
设各项为正数的等比数列 { an} 的公比为 q,q>0 , ∵ S3= b5+ 1=7,∴ a1+ a1q+a1q2=7,① ∵ b4 是 a2 和 a4 的等比中项,
an= f(n+ 1)- f(n)的形式,然
后通过累加抵消中间若干项的求和方法.
形如 c (其中 { an} 是各项均不为 0 的等差数列, anan 1
c 为常数 )的数列等.
(3)错位相减法:形如 { an·bn}( 其中 { an} 为等差数列, { bn} 为等比数列 )的数列求和,一般 分三步:①巧拆分;②构差式;③求和.

高考数学(考点解读命题热点突破)专题11数列求和及数列的简单应用理

高考数学(考点解读命题热点突破)专题11数列求和及数列的简单应用理

专题11 数列求和及数列的简单应用【考向解读】数列求和是数列部分高考考查的两大重点之一,主要考查等差、等比数列的前n 项和公式以及其他求和方法,尤其是错位相减法、裂项相消法是高考的热点内容,常与通项公式相结合考查,有时也与函数、方程、不等式等知识交汇,综合命题. 从全国卷来看,由于三角和数列问题在解答题中轮换命题,若考查数列解答题,则以数列的通项与求和为核心地位来考查,题目难度不大. 【命题热点突破一】分组转化法求和例1、(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解:(1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n , ∴数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1. 当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n , 则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n-n 2-5n +112,∴T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112,n ≥2,n ∈N *. 【变式探究】等比数列{a n }中,a 1,a 2,a 3分别是下表第一,二,三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前n 项和S n . 解 (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意. 因此a 1=2,a 2=6,a 3=18, 所以公比q =3. 故a n =2·3n -1(n ∈N *).(2)因为b n =a n +(-1)nln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n[ln 2+(n -1)ln 3]=2·3n -1+(-1)n(ln 2-ln 3)+(-1)nn ln 3,所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3. 当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.【方法技巧】在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行讨论,最后再验证是否可以合并为一个公式.【命题热点突破二】 裂项相消法求和例2、设数列{a n }的前n 项和为S n ,对任意正整数n 都有6S n =1-2a n .求数列{a n }的通项公式;【变式探究】【2016年高考四川理数】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析.【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q +q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由53q =解得43q =. 因为2(1)2(1)1+k k q q -->1*k q k -?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-, 故1231433n nn e e e --++鬃?>. 【方法技巧】裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(n -1)(n +1)(n ≥2)或1n (n +2).【命题热点突破三】 错位相减法求和例3、已知数列{a n }的前n 项和为S n ,且S n =a n +1+n -2,n ∈N *,a 1=2. (1)证明:数列{a n -1}是等比数列,并求数列{a n }的通项公式; (2)设b n =3n S n -n +1(n ∈N *)的前n 项和为T n ,证明:T n <6.(2)解 由S n =a n +1+n -2,得S n -n +2=a n +1=2n +1,故S n -n +1=2n.所以b n =3n2n .所以T n =b 1+b 2+…+b n -1+b n =32+62+ (3)2,①2×①,得2T n =3+62+3×322+ (3)2n -1,②②-①,得T n =3+32+322+…+32n -1-3n 2n =⎝ ⎛⎭⎪⎫1+12+122+…+12n -1-3n 2n =3×1-⎝ ⎛⎭⎪⎫12n1-12-3n2n =6-3n +62n .因为3n +62n >0, 所以T n =6-3n +62n <6.【方法技巧】近年高考对错位相减法求和提到了特别重要的位置上,常在解答题中出现,也是考纲对数列前n 项和的基本要求,错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列;所谓“错位”,就是要找“同类项”相减.要注意的是相减后得到部分等比数列的和,此时一定要查清其项数.【命题热点突破四】 利用数列单调性解决数列不等式问题 例4、首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *.(1)证明:若a 1为奇数,则对一切n ≥2,a n 都是奇数; (2)若对一切n ∈N *都有a n +1>a n ,求a 1的取值范围.(1)证明 已知a 1是奇数,假设a k =2m -1是奇数,其中m 为正整数,则由递推关系得a k +1=a 2k +34=m (m -1)+1是奇数.根据数学归纳法,对任意n ∈N *,a n 都是奇数.(2)解 法一 由a n +1-a n =14(a n -1)·(a n -3)知,a n +1>a n 当且仅当a n <1或a n >3.另一方面,若0<a k <1,则0<a k +1<1+34=1;若a k >3,则a k +1>32+34=3.根据数学归纳法,0<a 1<1⇔0<a n <1,∀n ∈N *,a 1>3⇔a n >3,∀n ∈N *.综合所述,对一切n ∈N *都有a n +1>a n 的充要条件是0<a 1<1或a 1>3. 法二 由a 2=a 21+34>a 1,得a 21-4a 1+3>0,于是0<a 1<1或a 1>3.a n +1-a n >a 2n +34-a 2n -1+34=(a n +a n -1)(a n -a n -1)4,因为a 1>0,a n +1=a 2n +34,所以所有的a n 均大于0,因此a n +1-a n 与a n -a n -1同号.根据数学归纳法,∀n ∈N *,a n +1-a n 与a 2-a 1同号.因此,对一切n ∈N *都有a n +1>a n 的充要条件是0<a 1<1或a 1>3.【方法技巧】涉及到数列不等式,比较大小或恒成立问题,经常用到作差法.法一用了作差法和数学归纳法;法二将a n +1-a n 的符号问题转化为a 2-a 1的符号问题,再由a 2,a 1的递推关系,求出a 1的范围. 【命题热点突破五】 放缩法解决与数列和有关的不等式例5、已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.(2)证明 ∵1a 2n =14n 2>14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =1a 21+1a 22+…+1a 2n >14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝⎛⎭⎪⎫1-1n +1=n4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =1a 21+1a 22+…+1a 2n <12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1<12.即得n 4n +4<T n <12. 【方法技巧】数列与不等式的证明主要有两种题型:(1)利用对通项放缩证明不等式;(2)作差法证明不等式.【高考真题解读】1.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】(Ⅰ)证明:由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(Ⅱ)证明:()()()2222221234212n n n T b b b b b b -=-++-+++-+()()()24222222221,n n d a a a n a a d d n n =++++=⋅=+所以()222211111111111112121212nn n k k k k T d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 2.【2016高考新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ. 【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 【解析】(Ⅰ)由题意得1111a S a λ+==,故1≠λ,λ-=111a ,01≠a . 由n n a S λ+=1,111+++=n n a S λ得n n n a a a λλ-=++11,即n n a a λλ=-+)1(1. 由01≠a ,0≠λ得0≠n a ,所以11-=+λλn n a a .因此}{n a 是首项为λ-11,公比为1-λλ的等比数列,于是1)1(11---=n n a λλλ. (Ⅱ)由(Ⅰ)得n n S )1(1--=λλ,由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321,解得1λ=-.3.【2016高考浙江理数】设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a-≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析. 【解析】(I )由112n n a a +-≤得1112n n a a +-≤,故111222n n n n na a ++-≤,n *∈N , 所以11223111223122222222nn n n n n a a a a a a a a --⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121111222n -≤++⋅⋅⋅+ 1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,1121112122222222n mn n n n m m nm n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m nn n m a a -⎛⎫<+⋅ ⎪⎝⎭11132222mn n m-⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.由m 的任意性得2n a ≤. ①否则,存在0n *∈N ,有02n a >,取正整数000342log 2n n a m ->且00m n >,则0034002log 23322244n n a m m n n a -⎛⎫⎛⎫⋅<⋅=- ⎪ ⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n *∈N ,均有2n a ≤. 4.【2016年高考北京理数】(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合. (1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析. 【解析】(Ⅰ))(A G 的元素为2和5.(Ⅱ)因为存在n a 使得1a a n >,所以{}12,i i i N a a *∈≤≤>≠∅N .记{}1min 2,i m i i N a a *=∈≤≤>N ,则2≥m ,且对任意正整数m k a a a m k <≤<1,. 因此)(A G m ∈,从而∅≠)(A G . (Ⅲ)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(.记10=n . 则p n n n n a a a a <⋅⋅⋅<<<210.对p i ,,1,0⋅⋅⋅=,记{},i i i k n G k n k N a a *=∈<≤>N .如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1. 从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意p n k N ≤≤,p n k a a ≤,特别地,p n N a a ≤. 对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a . 所以p a aa a a a i ip n pi n n N ≤-=-≤--∑=)(1111.因此)(A G 的元素个数p 不小于1N a a -. 5.【2016年高考四川理数】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221ny x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析.(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由53q =解得43q =. 因为2(1)2(1)1+k k q q -->1*k q k -?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-, 故1231433n nn e e e --++鬃?>. 6.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析.【解析】(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =. (2){}n b 的公差为20,{}n c 的公比为13, 所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193n n n n a b c n -=+=-+. 1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P . (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N ,使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠. 设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.7.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893.8.【2016高考山东理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T . 【解析】(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n , 当1=n 时,1111==S a , 所以56+=n a n .设数列{}n b 的公差为d , 由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b db 321721111,可解得3,41==d b ,所以13+=n b n .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T9.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析 【解析】(1)由已知得1*13,n n a a n -=⋅∈N .于是当{2,4}T =时,2411132730r S a a a a a =+=+=. 又30r S =,故13030a =,即11a =. 所以数列{}n a 的通项公式为1*3,n n a n -=∈N . (2)因为{1,2,,}T k ⊆,1*30,n n a n -=>∈N ,所以1121133(31)32k kk r k S a a a -≤+++=+++=-<. 因此,1r k S a +<.(3)下面分三种情况证明. ①若D 是C 的子集,则2C C DC D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令U E CD =ð,U F D C =ð则E ≠∅,F ≠∅,EF =∅.于是C E C D S S S =+,D F CD S S S =+,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤. 又k l ≠,故1l k ≤-, 从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤,故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.10.【2016高考山东理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T.(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T1.(2015·新课标全国Ⅱ,16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________. 解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S n S n S n +1=1,即1S n +1-1S n =-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n ,所以S n =-1n.答案 -1n2.(2015·福建,8)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A .6 B .7 C .8 D .9解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2解之得:⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4. ∴p =5,q =4,∴p +q =9,故选D. 答案 D3.(2015·浙江,3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0 D .a 1d <0,dS 4>0解析 ∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),整理得a 1=-53d ,∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d 3,∴dS 4=-2d23<0,故选B.答案 B4.(2015·广东,21)数列{a n }满足:a 1+2a 2+…+na n =4-n +22n -1,n ∈N *.(1)求a 3的值;(2)求数列{a n }前n 项和T n ; (3)令b 1=a 1,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n (n ≥2),证明:数列{b n }的前n 项和S n 满足S n <2+2ln n .(1)解 a 1=1,a 1+2a 2=2,a 2=12,a 1+2a 2+3a 3=4-54,a 3=14.(2)解 n ≥2时,a 1+2a 2+…+(n -1)a n -1=4-n +12n -2,与原式相减,得na n =n 2n -1,a n =12n -1,n =1也符合,T n =1-12n1-12=2-12n -1.(3)证明 n ≥2时,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n =a 1+a 2+…+a n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n故S n =∑i =1nb i =a 1+a 12+⎝ ⎛⎭⎪⎫1+12a 2+a 1+a 23+⎝ ⎛⎭⎪⎫1+12+13a 3+…+a 1+a 2+…+a n -1n +⎝ ⎛⎭⎪⎫1+12+…+1n a n=⎝ ⎛⎭⎪⎪⎫∑i =1n 1i a 1+⎝ ⎛⎭⎪⎪⎫∑i =1n 1i a 2+⎝ ⎛⎭⎪⎪⎫∑i =1n 1i a 3+…+⎝ ⎛⎭⎪⎪⎫∑i =1n 1i a n =⎝ ⎛⎭⎪⎪⎫∑i =1n 1i T n =⎝ ⎛⎭⎪⎫1+12+…+1n ⎝ ⎛⎭⎪⎫2-12<2⎝ ⎛⎭⎪⎫1+12+…+1n ,只需证明2⎝ ⎛⎭⎪⎫1+12+…+1n <2+2ln n ,n ∈N *.对于任意自然数k ∈N ,令x =-1k +1∈(-1,0)时,ln ⎝ ⎛⎭⎪⎫-1k +1+1+1k +1<0, 即1k +1<ln(k +1)-ln k . ∴k =1时,12<ln 2-ln 1,k =2时,13<ln 3<ln 2.…k =n -1时,1n<ln 2-ln(n -1).∴1+12+13+…+1n <1+(ln 2-ln 1)+(ln 3-ln 2)+…+[ln n -ln(n -1)],即1+12+13+…+1n<1+ln n ,所以n ≥2时,2⎝ ⎛⎭⎪⎫1+12+13+…+1n <2+2ln n ,综上n ∈N +时,S n <2+2ln n .5.(2015·浙江,20)已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *).(1) 证明:1≤a n a n +1≤2(n ∈N *);(2)设数列{a 2n }的前n 项和为S n ,证明:12(n +2)≤S n n ≤12(n +1)(n ∈N *).证明 (1)由题意得a n +1-a n =-a 2n ≤0, 即a n +1≤a n ,故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0.由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n∈[1,2], 即1≤a na n +1≤2 (2`)由题意得a 2n =a n -a n +1,所以S n =a 1-a n +1①由1a n +1-1a n =a n a n +1和1≤a na n +1≤2得1≤1a n +1-1a n≤2,所以n ≤1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1≤1n +2(n ∈N *).②由①②得12(n +2)≤S n n ≤12(n +1)(n ∈N *).6.(2015·山东,18)设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解 (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n >1时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n >1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n -1)×31-n),所以3T n =1+(1×30+2×3-1+…+(n -1)×32-n),两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n ,所以T n =1312-6n +34×3n , 经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n .7.(2015·天津,18)已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.解 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4), 即a 4-a 2=a 5-a 3,所以a 2(q -1)=a 3(q -1),又因为q ≠1, 故a 3=a 2=2,由a 3=a 1q ,得q =2. 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12;当n =2k (k ∈N *)时,a n =a 2k =2k=2n2.所以,{a n }的通项公式为a n =1222,2,n nn n -⎧⎪⎨⎪⎩为奇数为偶数(2)由(1)得b n =log 2a 2n a 2n -1=n2n -1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n -1)×12n -2+n ×12n -1,12S n =1×121+2×122+3×123+…+(n -1)×12n -1+n ×12n .上述两式相减得:12S n =1+12+122+…+12n -1-n 2n =1-12n 1-12-n2n=2-22n -n 2n ,整理得,S n =4-n +22n -1,n ∈N *.所以,数列{b n }的前n 项和为4-n +22n -1,n ∈N *.8.(2014·山东,19)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1.当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n+22n +1.所以T n =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n 2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +19.(2013·天津,19)已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3.于是q 2=a 5a 3=14. 又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .。

高中数学经典解题技巧和方法(数列求和及综合应用)

高中数学经典解题技巧和方法(数列求和及综合应用)

高中数学经典的解题技巧和方法(数列求和及综合应用)【编者按】数列求和及综合应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。

因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。

好了,下面就请同学们跟我们一起来探讨下数列求和及综合应用的经典解题技巧。

首先,解答数列求和及综合应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.了解数列求和的基本方法。

2.能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。

3.了解等差数列与一次函数、等比数列与指数函数的关系。

好了,搞清楚了数列求和及综合应用的上述内容之后,下面我们就看下针对这两个内容的具体的解题技巧。

一、可转化为等差、等比数列的求和问题考情聚焦:1.可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。

2.该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识交汇点处命题。

3.多以解答题的形式出现,属于中、高档题目。

解题技巧:某些递推数列可转化为等差、等比数列解决,其转化途径有:1.凑配、消项变换——如将递推公式(q、d为常数,q≠0,≠1)。

通过凑配变成;或消常数转化为2.倒数变换—如将递推公式(c、d为非零常数)取倒数得3.对数变换——如将递推公式取对数得4.换元变换——如将递推公式(q、d为非零常数,q≠1,d≠1)变换成,令,则转化为的形式。

例1:(2010·福建高考文科·T17)数列{n a } 中a =13,前n 项和n S 满足1n S +-n S =113n +⎛⎫⎪⎝⎭(n ∈*N ).( I ) 求数列{n a }的通项公式n a 以及前n 项和n S ;(II )若S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列,求实数t 的值。

2021届高考数学总复习模块三数列第11讲数列求和及数列的简单应用学案理

2021届高考数学总复习模块三数列第11讲数列求和及数列的简单应用学案理

第11讲数列求和及数列的简单应用1.[2021·全国卷Ⅱ]记S n为等差数列{a n}的前n项和,a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.[试做]2.[2021·全国卷Ⅱ]S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1000项和.[试做]3.[2021·全国卷Ⅰ]数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ.(2)是否存在λ,使得{a n}为等差数列?并说明理由.[试做]命题角度解决数列大题的有关策略1.解决某几个根本量求等差、等比数列的通项公式和前n项和问题:关键一:通过列方程(组)求关键量a 1和d (或q ); 关键二:利用通项公式和前n 项和公式求解. 2.解决数列的递推问题: 关键一:利用a n ={S S ,S =1,S S -S S -1,S ≥2得出关于a n 与a n+1(或a n-1)的递推式;关键二:观察递推式的形式,采用不同方法求a n . 3.解决数列求和问题:关键一:利用等差数列、等比数列的前n 项和公式求解;关键二:利用数列求和方法(倒序相加法、分组求和法、并项求和法、错位相减法、裂项相消法)求解.4.(1)等差数列的判断方法:定义法、等差中项法、利用通项公式判断、利用前n 项和判断. (2)等比数列的判断方法:①定义法:假设S S +1S S=q (q 是常数),那么数列{a n }是等比数列;②等比中项法:假设S S +12=a n a n+2(n ∈N *),那么数列{a n }是等比数列;③通项公式法:假设a n =Aq n-1(A ,q 为常数),那么数列{a n }是等比数列.5.解决关于数列的不等式证明问题常用放缩法,解决最值问题常用根本不等式法.解答1等差、等比数列根本量的计算1 公差不为0的等差数列{a n }的前n 项和为S n ,S 1+1,S 3,S 4成等差数列,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)假设S 4,S 6,S n 成等比数列,求n 及此等比数列的公比. [听课笔记]【考场点拨】解决由等差数列、等比数列组成的综合问题,要立足于两数列的概念,设出相应根本量,充分利用通项公式、求和公式、数列的性质确定根本量.解决综合问题的关键在于审清题目,弄懂来龙去脉,提醒问题的内在联系和隐含条件,形成解题策略.【自我检测】数列{a n}的前n项和为S n,且S n=a1(2n-1),a4=16,n∈N*.(1)求a1及数列{a n}的通项公式;(2)设b n=S2,求数列{b n}的最大项.S S解答2数列的证明问题2 正项数列{a n}的前n项和为S n(n∈N*),其中√S S=λa n+μ.(1)假设a1=2,a2=6,求数列{a n}的通项公式;(2)假设a1+a3=2a2,求证:{a n}是等差数列.[听课笔记]【考场点拨】判断数列是否为等差或等比数列的策略:(1)将所给的关系式进展变形、转化,以便利用等差数列和等比数列的定义进展判断;(2)假设要判断一个数列不是等差(等比)数列,那么只需说明某连续三项(如前三项)不是等差(等比)数列即可.【自我检测】S n为数列{a n}的前n项和,且满足S n-2a n=n-4.(1)证明:{S n-n+2}为等比数列;(2)求数列{S n}的前n项和T n.解答3数列的求和问题3 等差数列{a n }的前n 项和为S n ,公差d ≠0,S 7=35,且a 2,a 5,a 11成等比数列. (1)求数列{a n }的通项公式; (2)假设T n 为数列{1S S S S +1}的前n 项和,且存在n ∈N *,使得T n -λa n+1≥0成立,求实数λ的取值范围. [听课笔记]【考场点拨】裂项相消法就是把数列的每一项分解成一正一负的两项,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项消,有的是间隔项消.常见的裂项方式有:1S (S +1)=1S -1S +1;1S (S +S )=1S (1S -1S +S );1S 2-1=12(1S -1-1S +1);14S 2-1=12(12S -1-12S +1). 4 数列{a n }的前n 项和为S n ,且S n =n 2-n ,在正项等比数列{b n }中,b 2=a 2,b 4=a 5. (1)求{a n }和{b n }的通项公式;(2)设c n =a n ·b n ,求数列{c n }的前n 项和T n . [听课笔记]【考场点拨】如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用错位相减法求和时,应注意:①等比数列的公比为负数的情形;②在写出“S n 〞和“qS n 〞的表达式时应特别注意将两式“错项对齐〞,以便准确写出“S n -qS n 〞的表达式. 【自我检测】1.等比数列{a n }的各项均为正数,a 4=81,且a 2,a 3的等差中项为18. (1)求数列{a n }的通项公式; (2)假设b n =log 3a n ,c n =14S S 2-1,数列{c n }的前n 项和为T n ,证明:T n <12.2.正项数列{S S 3S}是公差为2的等差数列,且a 1,9,a 2成等比数列.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .第11讲 数列求和及数列的简单应用典型真题研析1.解:(1)设{a n }的公差为d ,由题意得3a 1+3d=-15, 所以由a 1=-7得d=2,所以{a n }的通项公式为a n =2n-9. (2)由(1)得S n =n 2-8n=(n-4)2-16.所以当n=4时,S n 取得最小值,最小值为-16.2.解:(1)设{a n }的公差为d ,据有7+21d=28,解得d=1, 所以{a n }的通项公式为a n =n.故b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. (2)因为b n ={0,1≤S <10,1,10≤S <100,2,100≤S <1000,3,S =1000,所以数列{b n }的前1000项和为1×90+2×900+3×1=1893.3.解:(1)证明:由题设,a n a n+1=λS n -1,a n+1a n+2=λS n+1-1, 两式相减得a n+1(a n+2-a n )=λa n+1. 因为a n+1≠0,所以a n+2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.假设{a n }为等差数列,那么2a 2=a 1+a 3,解得λ=4,故a n+2-a n =4. 由此可得{a 2n-1}是首项为1,公差为4的等差数列,a 2n-1=4n-3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n-1. 所以a n =2n-1,a n+1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 考点考法探究解答1例1 解:(1)设数列{a n }的公差为d ,由题意可知{2S 3=S 1+1+S 4,S 22=S 1S 5,S ≠0,整理得{S 1=1,S =2,∴a n =2n-1.(2)由(1)知a n =2n-1,∴S n =n 2,∴S 4=16,S 6=36, 又S 4S n =S 62,∴n 2=36216=81,∴n=9,此等比数列的公比q=S 6S 4=94.【自我检测】解:(1)由题得a 4=S 4-S 3=8a 1=16,解得a 1=2, 故S n =2n+1-2,那么当n ≥2时,a n =S n -S n-1=2n.因为当n=1时,a 1=2满足上式, 所以数列{a n }的通项公式为a n =2n. (2)由(1)知b n =S 22S ,那么b n+1-b n =(S +1)22S +1-S 22S =-S 2+2S +12S +1.当1≤n ≤2时,-n 2+2n+1>0,那么b n+1>b n ; 当n ≥3时,-n 2+2n+1<0,那么b n+1<b n .故数列{b n }的前3项依次递增,从第3项开场依次递减, 所以数列{b n }的最大项为b 3=98.解答2例2 解:(1)根据题意,有{√2=2S +S ,2√2=6S +S ,解得{S =√24,S =√22, 故S n =18(a n +2)2,当n ≥2且n ∈N *时,有S n-1=18(a n-1+2)2, 两式相减,得(a n +a n-1)(a n -a n-1)=4(a n +a n-1), 又a n >0恒成立,那么a n -a n-1=4,所以数列{a n }是首项为2,公差为4的等差数列,故a n =4n-2.(2)证明:根据题意,有{ S 1=(SS 1+S )2①,S 1+S 2=(SS 2+S )2②,S 1+S 2+S 3=(SS 3+S )2③,因为a 1+a 3=2a 2,所以可设a 3-a 2=a 2-a 1=d ,②-①得a 2=(λa 1+λa 2+2μ)·λd④, ③-②得a 3=(λa 2+λa 3+2μ)·λd⑤,⑤-④得d=2λ2d 2,当d=0时,a 2=0,不符合题意,故舍去,那么有λ2=12S ,代入④式得4λμ=1,代入①式得a 1=S2,所以S n =λ2S S 2+2λμa n +μ2=12S S S 2+12a n +S8.当n ≥2且n ∈N *时,有S n-1=12SS S -12+12a n-1+S8, 两式相减得a n =12S(S S 2-S S -12)+12(a n -a n-1),整理得(a n +a n-1)(a n -a n-1-d )=0.因为a n >0恒成立,所以a n -a n-1=d ,所以{a n }是等差数列. 【自我检测】解:(1)证明:原式可转化为S n -2(S n -S n-1)=n-4(n ≥2),即S n =2S n-1-n+4,所以S n -n+2=2[S n-1-(n-1)+2].由S 1-2a 1=1-4,得S 1=3,所以S 1-1+2=4,所以{S n -n+2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n+2=2n+1, 所以S n =2n+1+n-2,所以T n =(22+23+…+2n+1)+(1+2+…+n )-2n=4(1−2S )1−2+S (S +1)2-2n=2S +3+S 2-3S -82.解答3例3 解:(1)由题意可得{7S 1+7×62S =35,(S 1+4S )2=(S 1+S )(S 1+10S ),即{S 1+3S =5,2S 2=S 1S ,又因为d ≠0,所以{S 1=2,S =1,所以a n =n+1.(2)因为1S S S S +1=1(S +1)(S +2)=1S +1-1S +2,所以T n =(12-13)+(13-14)+…+(1S +1-1S +2)=12-1S +2=S2(S +2).因为存在n ∈N *,使得T n -λa n+1≥0成立,所以存在n ∈N *,使得S2(S +2)-λ(n+2)≥0成立,即存在n ∈N *,使得λ≤S2(S +2)2成立.又S2(S +2)2=12(S +4S+4)≤116(当且仅当n=2时取等号),所以λ≤116,即实数λ的取值范围是(-∞,116].例4 解:(1)∵S n =n 2-n ,∴a n =S n -S n-1=2(n-1)(n ≥2),当n=1时,a 1=0,满足上式,∴a n =2(n-1).设数列{b n }的公比为q.∵数列{b n }为等比数列,且b 2=a 2=2,b 4=a 5=8,∴S4S 2=q 2=4,又b n >0,∴q=2,∴b n =2n-1.(2)由(1)得c n =(n-1)·2n,∴T n =0+(2-1)×22+(3-1)×23+…+(n-1)×2n =1×22+2×23+…+(n-1)×2n , ∴2T n =1×23+2×24+…+(n-2)×2n +(n-1)×2n+1,两式相减,得-T n =22+23+24+…+2n -(n-1)·2n+1=22(1-2S -1)1−2-(n-1)·2n+1=2n+1-(n-1)·2n+1-4,∴T n =(n-2)·2n+1+4.【自我检测】1.解:(1)设等比数列{a n }的公比为q (q>0).由题意得{S 4=81,S 2+S 32=18,即{S 1S 3=81,S 1S (1+S )=36,两式相除,得4q 2-9q-9=0,解得q=3或q=-34.∵q>0,∴q=3,∴a 1=3,∴a n =a 1q n-1=3n .(2)证明:由(1)得b n =log 33n=n ,∴c n =14S 2-1=12(12S -1-12S +1),∴T n =12(1−13)+(13-15)+…+(12S -1-12S +1)=12(1−12S +1)=12-14S +2, ∴T n <12.2.解:(1)因为数列{SS3S }是公差为2的等差数列,所以S 232-S 13=2,那么a 2=3a 1+18,又a 1,9,a 2成等比数列,所以a 1a 2=a 1(3a 1+18)=92,解得a 1=3或a 1=-9.因为数列{SS 3S }为正项数列,所以a 1=3,所以S S 3S =33+2(n-1)=2n-1,故a n =(2n-1)·3n.(2)由(1)得S n =1×3+3×32+…+(2n-1)·3n, 所以3S n =1×32+3×33+…+(2n-1)·3n+1, 所以S n -3S n =3+2×[32+33+…+3n ]-(2n-1)·3n+1, 即-2S n =3+2×32-3S ×31−3-(2n-1)·3n+1=3n+1-6+(1-2n )·3n+1=(2-2n )·3n+1-6,故S n =(n-1)·3n+1+3.[备选理由] 例1以a n 与S n 的关系为背景,需要探究得出数列{a n }为等比数列,从而考察等比数列的前n 项和与通项公式的有关计算;例2是等差数列与等比数列结合的问题,重在考察裂项相消法求和和数列不等式的证明;例3考察分组求和法,这也是数列求和的常用方法,是对裂项相消法与错位相减法的补充.例1 [配例1使用] 数列{a n }的前n 项和S n 满足S n =2a n -1(n ∈N *). (1)求a 1,a 2,a 3的值;(2)假设数列{b n }满足b 1=2,b n+1=a n +b n ,求数列{b n }的通项公式. 解:(1)由题知S 1=a 1=2a 1-1,得a 1=1,S 2=2a 2-1=a 1+a 2,得a 2=a 1+1=2, S 3=2a 3-1=a 1+a 2+a 3,得a 3=a 1+a 2+1=4.(2)当n ≥2时,S n-1=2a n-1-1, 所以a n =S n -S n-1=2a n -1-(2a n-1-1), 得a n =2a n -2a n-1,即a n =2a n-1,所以{a n }是以1为首项,2为公比的等比数列,那么a n =2n-1. 当n ≥2时,b n =b 1+(b 2-b 1)+…+(b n -b n-1)=2+a 1+a 2+…+a n-1 =2+S 1(1-2S -1)1−2=2n-1+1,经历证,b 1=2=21-1+1,满足上式, 故b n =2n-1+1.例2 [配例2使用] 等差数列{a n }的公差d ≠0,a 1=0,其前n 项和为S n ,且a 2+2,S 3,S 4成等比数列.(1)求数列{a n }的通项公式; (2)假设b n =(2S +1)2S S +1,数列{b n }的前n 项和为T n ,求证:T n -2n<12.解:(1)由a 1=0得a n =(n-1)d ,S n =S (S -1)S2.因为a 2+2,S 3,S 4成等比数列,所以S 32=(a 2+2)S 4, 即(3d )2=(d+2)·6d ,.下载后可自行编辑修改,页脚下载后可删除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题11 数列求和及数列的简单应用1.已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 017=( ) A .1 B .0 C .-1D .2解析:∵a n +1=(a n -1)2,又a 1=1,∴a 2=0,a 3=1,a 4=0,…,∴数列{a n }的奇数项为1,∴a 2 017=1,故选A. 答案:A2.已知正项数列{a n }的前n 项的乘积T n =⎝ ⎛⎭⎪⎫1426n n -(n ∈N *),b n =log 2a n ,则数列{b n }的前n 项和S n中的最大值是( ) A .S 6 B .S 5 C .S 4D .S 3解析:S n =b 1+b 2+…+b n =log 2a 1+log 2a 2+…+log 2a n =log 2(a 1a 2…a n )=log 2⎝ ⎛⎭⎪⎫1426n n -=log 222122n n -=-2n 2+12n =-2(n -3)2+18.∴当n =3时,S n 最大,即S 3最大.故选D. 答案:D3.已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x 、y ∈R,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f -2-a n(n ∈N *),则a 2 017的值为( )A .4 033B .4 029C .4 249D .4 209解析:根据题意,不妨设f (x )=⎝ ⎛⎭⎪⎫12x,则a 1=f (0)=1,∵f (a n +1)=1f -2-a n,∴a n +1=a n +2,∴数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1,∴a 2 017=4 033. 答案:A4.等差数列{a n }中的a 4,a 2 016是函数f (x )=x 3-6x 2+4x -1的极值点,则log 14a 1 010=( )A.12 B .2 C .-2D .-12解析:因为f ′(x )=3x 2-12x +4,而a 4和a 2 016为函数f (x )=x 3-6x 2+4x -1的极值点,所以a 4和a 2 016为f ′(x )=3x 2-12x +4=0的根,所以a 4+a 2 016=4,又a 4,a 1 010,a 2 016成等差数列,所以2a 1 010=a 4+a 2 016,即a 1 010=2,所以log 14a 1 010=-12,故选D.答案:D5.已知数列{a n }满足ln a 12·ln a 25·ln a 38·…·ln a n 3n -1=3n +22(n ∈N *),则a 10=( )A .e 26B .e 29C .e 32D .e 35答案:C6.设等差数列{a n }的前n 项和为S n 且满足S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的项为( ) A.S 6a 6 B.S 7a 7 C.S 9a 9D.S 8a 8解析:由S 15=a 1+a 152=15a 8>0,得a 8>0.由S 16=a 1+a 162=a 9+a 82<0,得a 9+a 8<0,所以a 9<0,且d <0.所以数列{a n }为递减数列.所以a 1,…,a 8为正,a 9,…,a n 为负,且S 1,…,S 15为正.所以S 9a 9<0,S 10a 10<0,…,S 15a 15<0.又0<S 1<S 2<…<S 8,a 1>a 2>…>a 8>0,所以0<S 1a 1<S 2a 2<…<S 8a 8.所以最大的项为S 8a 8,故选D. 答案:D7.数列{a n }满足:a 1 =1,且对任意的m ,n ∈N *都有:a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 008=( )A.2 0072 008 B.2 0071 004 C.2 0082 009 D.4 0162 009解析 法一 因为a n +m =a n +a m +mn ,则可得a 1=1,a 2=3,a 3=6,a 4=10,则可猜得数列的通项a n =n (n +1)2,∴1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴1a 1+1a 2+1a 3+…+1a 2 008=2⎝ ⎛⎭⎪⎫1-12+12-13+…+12 008-12 009=2⎝⎛⎭⎪⎫1-12 009=4 0162 009.故选D. 法二 令m =1,得a n +1=a 1+a n +n =1+a n +n ,∴a n +1-a n =n +1, 用叠加法:a n =a 1+(a 2-a 1)+…+(a n -a n -1)=1+2+…+n =n (n +1)2,所以1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.于是1a 1+1a 2+…+1a 2 008=2⎝ ⎛⎭⎪⎫1-12+2⎝ ⎛⎭⎪⎫12-13+…+2⎝ ⎛⎭⎪⎫12 008-12 009=2⎝ ⎛⎭⎪⎫1-12 009=4 0162 009,故选D. 答案 D8.设a 1,a 2,…,a 50是以-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有( ) A .11个 B .12个 C .15个 D .25个解析 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11(个),故选A.答案 A9.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N +),则S 100=( ) A .1 300 B .2 600 C .0 D .2 602解析 原问题可转化为当n 为奇数时,a n +2-a n =0;当n 为偶数时,a n +2-a n =2.进而转化为当n 为奇数时,为常数列{1};当n 为偶数时,为首项为2,公差为2的等差数列.所以S 100=S 奇+S 偶=50×1+(50×2+50×492×2)=2 600. 答案 B10.设f (x )是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f (x )f (y )=f (x +y ),若a 1=12,a n=f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫12,2 B.⎣⎢⎡⎦⎥⎤12,2 C.⎣⎢⎡⎭⎪⎫12,1 D.⎣⎢⎡⎦⎥⎤12,1 解析 f (x )是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f (x )f (y )=f (x +y ),a 1=12,a n =f (n )(n ∈N *),a n +1=f (n +1)=f (1)f (n )=12a n ,∴S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n .则数列{a n }的前n 项和的取值范围是⎣⎢⎡⎭⎪⎫12,1.答案 C11.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则a n =( ) A.n2n -1B.n +12n -1+1C.2n -12n-1 D.n +12n +1 解析 设b n =nS n +(n +2)a n ,有b 1=4,b 2=8,则b n =4n , 即b n =nS n +(n +2)a n =4n ,当n ≥2时,S n -S n -1+⎝ ⎛⎭⎪⎫1+2n a n -⎝ ⎛⎭⎪⎫1+2n -1a n -1=0, 所以2(n +1)n a n =n +1n -1a n -1,即2·a n n =a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是以12为公比,1为首项的等比数列,所以a n n =⎝ ⎛⎭⎪⎫12n -1,a n =n2n -1.故选A.答案 A12.已知定义在R 上的函数f (x )、g (x )满足f (x )g (x )=a x ,且f ′(x )g (x )<f (x )g ′(x ),f (1)g (1)+f (-1)g (-1)=52,若有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )(n ∈N *)的前n 项和等于3132,则n =( ) A .5 B .6 C .7 D .8答案 A13.设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.解析 (1)当n =1时,S 1=(-1)a 1-12,得a 1=-14.当n ≥2时,S n =(-1)n(S n -S n -1)-12n .当n 为偶数时,S n -1=-12,当n 为奇数时,S n =12S n -1-12,从而S 1=-14,S 3=-116,又由S 3=12S 2-12=-116,得S 2=0,则S 3=S 2+a 3=a 3=-116.(2)由(1)得S 1+S 3+S 5+…+S 99=-122-124-126-…-12100,S 101=-12102,又S 2+S 4+S 6+…+S 100=2S 3+123+2S 5+125+2S 7+127+…+2S 101+12101=0,故S 1+S 2+…+S 100=13⎝ ⎛⎭⎪⎫12100-1.答案 (1)-116 (2)13⎝ ⎛⎭⎪⎫12100-114.已知向量a =(2,-n ),b =(S n ,n +1),n ∈N *,其中S n 是数列{a n }的前n 项和,若a⊥b ,则数列⎩⎨⎧⎭⎬⎫a n a n +1a n +4的最大项的值为 .解析 依题意得a·b =0,即2S n =n (n +1),S n =n (n +1)2.当n ≥2时,a n =S n -S n -1=n (n +1)2-n (n -1)2=n ;又a 1=1,因此a n =n ,a n a n +1a n +4=n (n +1)(n +4)=nn 2+5n +4=1n +4n+5≤19,当且仅当n =4n ,n ∈N *,即n =2时取等号,因此数列⎩⎨⎧⎭⎬⎫a n a n +1a n +4的最大项的值是19.答案 1915.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式.(2)令b n =na n ,n =1,2,…,求数列{b n }的前n 项和T n . 解 (1)由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,解得a 2=2. 设数列{a n }的公比为q ,由a 2=2,可得a 1=2q,a 3=2q .又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0,解得q =2或12.由题意得q >1,所以q =2.则a 1=1.故数列{a n }的通项为a n =2n -1.(2)由于b n =n ·2n -1,n =1,2,…,则T n =1+2×2+3×22+…+n ×2n -1,所以2T n =2+2×22+…+(n -1)×2n -1+n ×2n, 两式相减得-T n =1+2+22+23+…+2n -1-n ×2n=2n-n ×2n-1, 即T n =(n -1)2n+1.16.已知{a n }是单调递增的等差数列,首项a 1=3,前n 项和为S n ,数列{b n }是等比数列,首项b 1=1,且a 2b 2=12,S 3+b 2=20.(1)求{a n }和{b n }的通项公式;(2)令c n =S n cos(a n π)(n ∈N *),求{c n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,则a 2b 2=(3+d )q =12,S 3+b 2=3a 2+b 2=3(3+d )+q =9+3d +q =20,3d +q =11,q =11-3d ,则(3+d )(11-3d )=33+2d -3d 2=12, 即3d 2-2d -21=0, (3d +7)(d -3)=0.∵{a n }是单调递增的等差数列,∴d >0, ∴d =3,q =2,a n =3+(n -1)×3=3n ,b n =2n -1.(2)由(1)知c n =S n cos 3n π =⎩⎪⎨⎪⎧S n=32n 2+32n ,n 是偶数,-S n=-32n 2-32n ,n 是奇数.①当n 是偶数时,T n =c 1+c 2+c 3+…+c n =-S 1+S 2-S 3+S 4-…-S n -1+S n =a 2+a 4+a 6+…+a n =6+12+18+…+3n =3n (n +2)4. ②当n 是奇数时,T n =T n -1-S n=3(n -1)(n +1)4-32n 2-32n=-34(n +1)2.综上可得,T n=⎩⎪⎨⎪⎧3n (n +2)4,n 是偶数,-34(n +1)2,n 是奇数.17.设数列{a n }的前n 项和为S n ,a 1=10,a n +1=9S n +10. (1)求证:{lg a n }是等差数列;(2)设T n 是数列⎩⎨⎧⎭⎬⎫3(lg a n )(lg a n +1)的前n 项和,求T n ; (3)求使T n >14(m 2-5m )对所有的n ∈N *恒成立的整数m 的取值集合.(2)解 由(1)知,T n = 3⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n (n +1) =3⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=3-3n +1. (3)解 ∵T n =3-3n +1, ∴当n =1时,T n 取最小值32.依题意有32>14(m 2-5m ),解得-1<m <6,故所求整数m 的取值集合为{0,1,2,3,4,5}.18.已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.解 (1)∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得:a n =S n -S n -1=2a n -2a n -1, ∴a n a n -1=2,所以数列{a n }是首项为12,公比为2的等比数列, 即a n =12×2n -1=2n -2.(2)∵b n =(log 2a 2n +1)×(log 2a 2n +3)=(log 222n +1-2)×(log 222n +3-2)=(2n -1)(2n +1),∴1b n =12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n =1b 1+1b 2+1b 3+…+1b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 19.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①S n -1=32a n -1-1(n ≥2),②①-②得:a n =⎝ ⎛⎭⎪⎫32a n -1-⎝ ⎛⎭⎪⎫32a n -1-1,即a n =3a n -1, ∴数列{a n }是首项为2,公比为3的等比数列,∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -n -=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -3-12n -1=n -12n -1. 20.设等差数列{a n }的公差为d ,前n 项和为S n ,已知a 3=5,S 8=64. (1)求数列{a n }的通项公式;(2)令b n =a n ·2n,求数列{b n }的前n 项和T n .解析:(1)由已知得⎩⎪⎨⎪⎧a 1+2d =58a 1+8×72d =64,解得⎩⎪⎨⎪⎧a 1=1d =2.∴数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)由(1)得b n =(2n -1)·2n,则T n =1×2+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,①2T n =1×22+3×23+5×24+…+(2n -3)×2n+(2n -1)×2n +1,②①-②得-T n =2+2×(22+23+…+2n )-(2n -1)×2n +1=2+2×-2n -11-2-(2n -1)×2n +1=-6-(2n -3)×2n +1, ∴T n =6+(2n -3)×2n +1.21.已知等比数列{a n }满足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的n 的最小值.解析:(1)设等比数列{a n }的公比为q ,依题意,有⎩⎪⎨⎪⎧2a 1+a 3=3a 2a 2+a 4=a 3+,即⎩⎪⎨⎪⎧a 12+q2=3a 1q ①a 1q +q 3=2a 1q 2+4 ②,由①得q 2-3q +2=0,解得q =1或q =2.当q =1时,不合题意,舍去;当q =2时,代入②得a 1=2,所以a n =2·2n -1=2n.故所求数列{a n }的通项公式a n =2n(n ∈N *). (2)因为b n =a n +log 21a n =2n +log 212n =2n-n ,所以S n =2-1+22-2+23-3+ (2)-n =(2+22+23+ (2))-(1+2+3+…+n ) =-2n 1-2-n 1+n2=2n +1-2-12n -12n 2.因为S n -2n +1+47<0,所以2n +1-2-12n -12n 2-2n +1+47<0,即n 2+n -90>0,解得n >9或n <-10. 因为n ∈N *,所以使S n -2n +1+47<0成立的正整数n 的最小值为10.。

相关文档
最新文档