【高考一轮复习】2018年大一轮数学(文)(人教)课时规范训练:《第十三章 不等式选讲》13-1 Word版含解析
2018版高考数学(理)一轮复习文档:选修系列第十三章13.2含解析
1.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:错误!―→错误!―→错误!―→…―→错误!(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:错误!―→错误!―→错误!―→…―→错误!(其中Q表示要证明的结论).③思维过程:执果索因.2.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( ×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ×)(3)用反证法证明结论“a>b”时,应假设“a<b".(×)(4)反证法是指将结论和条件同时否定,推出矛盾.(×)(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.(√)(6)证明不等式错误!+错误!<错误!+错误!最合适的方法是分析法.(√)1.若a,b,c为实数,且a<b〈0,则下列命题正确的是( )A.ac2<bc2B.a2>ab>b2C.错误!<错误!D。
错误!〉错误!答案B解析a2-ab=a(a-b),∵a〈b〈0,∴a-b<0,∴a2-ab>0,∴a2〉ab.①又ab-b2=b(a-b)>0,∴ab>b2,②由①②得a2>ab〉b2.2.(2016·北京)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多答案B解析取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1。
2018高考数学文人教新课标大一轮复习配套文档:第十章
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015·武汉质检)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件 解:显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给乙、丙两人,综上,这两个事件为互斥但不对立事件.故选C .2.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )A.14B.12C.18D.13解:记三件正品为a ,b ,c ,一件次品为d ,从中随机取出两件的基本事件为(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共6个,其中取出的产品全是正品的基本事件有3个,故所求概率P =36=12,故选B .3.在区间上随机取一个数x ,则事件“sin x ≥12”发生的概率为( )A.14B.13C.12D.23解:sin x ≥12,又x ∈,所以π6≤x ≤56π.所以所求概率P =5π6-π6π-0=23.故选D .4.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A.15B.25C.35D.45解:记其中被污损数字为x ,则甲的五次综合测评的平均成绩是15(80×2+90×3+8+9+2+1+0)=90,乙的五次综合测评的平均成绩是15(80×3+90×2+3+3+7+x +9)=15(442+x ).令90>15(442+x ),由此解得x <8,即x 取0,1,2,…,7时符合要求,因此所求概率为810=45.故选D .5.在棱长为a 的正方体ABCD A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离不大于a 的概率为( )A.22B.22πC.16D.π6解:满足条件的点在以A 为球心,半径为a 的18球内(含球面),所以所求概率为P =18×43πa 3a 3=π6.故选D .6.点A 是半径为1的圆上的定点,P 是圆周上任一点,则弦长PA >1的概率是( )A.13B.23C.16 D.12B.1-D.1-又a ∈,b ∈,画出满足不等式组的平面区域,如图阴影部分所示,设长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率4h )(2h +1)=14,解得h =3,故长方体的体积1×1×3=3.故填3..已知平面区域D 1={(x ,y )| ⎩⎪⎨⎪⎧|x |<2,|y |<2kx -y +2<0}.在区域D 1内随机选取一点恰好取自区域D 2的概率为p ,且0<p ≤18的取值范围是__________.解:如图所示,平面区域D 1是边长等于4形内部的点,其面积为16,直线kx -y +2=0恒过定点由于原点必在区域D 2外,而图中每个阴影三角形的面积与大正方形面积之比均为18,故当ky|≤22,即-1≤x+区域如图中阴影部分所示,其面积S2=,b的值;若按成绩的优秀与非优秀分层抽样,从这4人的成绩进行分析,在抽取的4中,随机抽取2名学生参加分析座谈会,求恰有所以所分成的三条线段可以构成.。
2018高三大一轮复习数学(文)教师用书:第十一章+概率+
§11.1随机事件的概率1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件.(3)必然事件与不可能事件统称为相对于条件S的确定事件.(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F )=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).②若事件A与事件A互为对立事件,则P(A)=1-P(A).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( ) (2)随机事件和随机试验是一回事.( )(3)在大量重复试验中,概率是频率的稳定值.( ) (4)两个事件的和事件是指两个事件都得发生.( )(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( ) (6)两互斥事件的概率和为1.( )答案:(1)× (2)× (3)√ (4)× (5)√ (6)×1.(2016·高考天津卷)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56 B .25 C.16D .13解析:选A.甲不输,则甲胜或平, ∴P =12+13=56.2.为了估计某水池中鱼的尾数,先从水池中捕出2 000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为( )A .10 000B .20 000C .25 000D .30 000 解析:选C.由题意可得有记号的鱼所占的比例大约为40500=225,设水池中鱼的尾数是x ,则有225=2 000x,解得x =25 000.3.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y =5下方的概率为( )A.16 B .14 C.112D .19解析:选A.试验是连续掷两次骰子,故共包含6×6=36个基本事件.事件点P 在x +y =5下方,共包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个基本事件,故P =636=16.4.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.解析:①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.答案:05.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.解析:①是互斥不对立的事件,②是对立事件,③④不是互斥事件. 答案:②类型一 事件关系的判断(1)(2017·湖北十市联考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“都是红球”C .“至少有一个黑球”与“至少有一个红球”D .“恰有一个黑球”与“恰有两个黑球”解析 A 中的两个事件是包含关系,不是互斥事件;B 中的两个事件是对立事件;C 中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对立的关系.答案 D(2)在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是( )A.A∪B与C是互斥事件,也是对立事件B.B∪C与D是互斥事件,也是对立事件C.A∪C与B∪D是互斥事件,但不是对立事件D.A与B∪C∪D是互斥事件,也是对立事件解析由于A,B,C,D彼此互斥,且A∪B∪C∪D是一个必然事件,故其事件的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.答案 D1.判断下列各对事件是不是互斥事件或对立事件:某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是女生.解:(1)是互斥事件,不是对立事件.“恰有1名男生”实质选出的是“1名男生和1名女生”,与“恰有2名男生”不可能同时发生,所以是互斥事件,不是对立事件.(2)不是互斥事件,也不是对立事件.“至少有1名男生”包括“1名男生和1名女生”与“2名都是男生”两种结果,“至少有1名女生”包括“1名女生和1名男生”与“2名都是女生”两种结果,它们可能同时发生.(3)是互斥事件且是对立事件.“至少有1名男生”,即“选出的2人不全是女生”,它与“全是女生”不可能同时发生,且其和事件是必然事件,所以两个事件互斥且对立.类型二随机事件的频率与概率(2015·高考北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.2.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率. 解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.类型三 互斥事件、对立事件的概率题点1 互斥事件的概率(2017·安徽阜阳模拟)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球与黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 (方法一)从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B +C )=P (B )+P (C )=512,P (C +D )=P (C )+P (D )=512,P (B +C +D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14.(方法二)设红球有n 个,则n 12=13,所以n =4,即红球有4个.又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个).因此得到黑球、黄球、绿球的概率分别是312=14,212=16,312=14.题点2 对立事件的概率某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A +B +C .∵A 、B 、C 两两互斥,∴P (M )=P (A +B +C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件.∴P (N )=1-P (A +B )=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.3.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C ,所以P (G )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56.(2)(方法一)记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.(方法二)记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.用正难则反思想求互斥事件的概率(二十一)典例 (12分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 思维点拨 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.(1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.(1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义. (2)正确判定事件间的关系,善于将A 转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.易错提示 (1)对统计表的信息不理解,错求x ,y ,难以用样本平均数估计总体. (2)不能正确地把事件A 转化为几个互斥事件的和或对立事件,导致计算错误.思想方法 感悟提高1.对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.课时规范训练(时间:40分钟)1.某天下课以后,教室里还剩下2位男同学和2位女同学.如果他们依次走出教室,则第2位走出的是男同学的概率为( )A.12 B .13 C.14D .15解析:选A.已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P =36=12.2.从1,2,…,9中任取两数,给出下列事件:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.其中是对立事件的是( ) A .① B .②④ C .③D .①③解析:选C.根据题意,从1,2,…,9中任取两数,其中可能的情况有“两个奇数”“两个偶数”“一个奇数与一个偶数”三种情况.依次分析所给的4个事件可得:①恰有一个偶数和恰有一个奇数都是“一个奇数与一个偶数”这种情况,不是对立事件;②至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,与“两个数都是奇数”不是对立事件;③至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,和“两个数都是偶数”是对立事件;④至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,至少有一个偶数包括“两个偶数”与“一个奇数与一个偶数”两种情况,不是对立事件.3.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A.34 B .58 C.12D .14解析:选C.分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5),4种取法,符合题意的取法有2种,故所求概率P =12.4.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45解析:选D.设区间,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.(1)求第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180 cm 以上(含180 cm)的人数; (3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x ,y ,事件E ={|x -y |≤5},事件F ={|x -y |>15},求P (E +F ).解:(1)第六组的频率为450=0.08,所以第七组的频率为1-0.08-5×(0.008×2+0.016+0.04×2+0.06)=0.06.(2)身高在第一组的人数为2,设为A ,B ,则从中选两名男生有ab ,ac ,ad ,bc ,bd ,cd ,aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB ,AB ,共15种情况.因事件E ={|x -y |≤5}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为ab ,ac ,ad ,bc ,bd ,cd ,AB 共7种情况,故P (E )=715.由于|x -y |max =195-180=15,所以事件F ={|x -y |>15}是不可能事件,P (F )=0. 由于事件E 和事件F 是互斥事件, 所以P (E +F )=P (E )+P (F )=715.(时间:30分钟)10. 某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )A.13B .23C.14 D .34解析:选B.由题意知,此人从小区A 前往小区H 的所有最短路径为:A →B →C →E →H ,A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,A →D →F →G →H ,共6条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件为:A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,共4个,所以P (M )=46=23,即他经过市中心O 的概率为23.11.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的8个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A.132 B .164 C.332D .364解析:选D.从8个球中有放回的每次取一个球,取2次共有64种取法.两个球的编号和不小于15,则两球号码可以为7,8;8,7;8,8三种可能,其概率为P =364.12.从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),则抽出的书是同一学科的概率等于________.解析:从2本不同的数学书和2本不同的语文书中任意抽出2本书共有6种不同的取法,其中抽出的书是同一学科的取法共有2种,因此所求的概率等于26=13.答案:1313. 如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的概率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),故用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为121212择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2),∴甲应选择L1;同理,P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B1)<P(B2),∴乙应选择L2.14.2016年某省实施通过竞选选拔高校校长,省委组织部拟选拔4位校长,相关单位通过组织提名、领导干部个人提名、群众联合提名、自荐提名四种方式,确定初步人选为4位男竞选者和2位女竞选者,每位竞选者当选校长的机会是相同的.(1)求选拔的4位校长中恰有1位女竞选者的概率;(2)求选拔的4位校长中至少有3位男竞选者的概率.解:(1)将4位男竞选者和2位女竞选者分别编号为1,2,3,4,5,6(其中1,2,3,4是男竞选者,5,6是女竞选者),从6位竞选者中选拔4位的情况有(1,2,3,4),(1,2,3,5),(1,2,3,6),(1,2,4,5),(1,2,4,6),(1,2,5,6),(1,3,4,5),(1,3,4,6),(1,3,5,6),(1,4,5,6),(2,3,4,5),(2,3,4,6),(2,3,5,6),(2,4,5,6),(3,4,5,6),共15种.选拔的4位校长中恰有1位女竞选者的情况有(1,2,3,5),(1,2,4,5),(1,3,4,5),(1,2,3,6),(1,2,4,6),(1,3,4,6),(2,3,4,5),(2,3,4,6),共8种.故选拔的4位校长中恰有1位女竞选者的概率为8 15 .(2)选拔的4位校长中至少有3位男竞选者包括3位男竞选者、1位女竞选者,4位男竞选者两种情况,选拔的4位校长都是男竞选者的情况只有(1,2,3,4),则其概率为115,由(1)知选拔的4位校长中恰有1位女竞选者的概率为815,故选拔的4位校长中至少有3位男竞选者的概率P=815+115=915=35. §11.2 古典概型1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典的概率模型,简称古典概型. (1)试验的所有可能结果只有有限个,每次试验中出现其中的一个结果; (2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n.4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( )(4)(教材改编)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( )(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为nm.( )答案:(1)× (2)× (3)× (4)√ (5)√ (6)√1.(2017·江西上饶模拟)在平面直角坐标系中,从下列五个点:A (0,0),B (2,0),C (1,1),D (0,2),E (2,2)中任取三个,这三点能构成三角形的概率是( )A.25 B .45 C.15D .34解析:选B.从5个点中取3个点,列举得ABC ,ABD ,ABE ,ACD ,ACE ,ADE ,BCD ,BCE ,BDE ,CDE 共有10个基本事件,而其中ACE ,BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为810=45.2.(2016·高考全国丙卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815 B .18 C.115D .130解析:选C.根据古典概型的概率公式求解.∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P =115.3.(教材改编)同时掷两个骰子,向上点数不相同的概率为________.解析:掷两个骰子一次,向上的点数共6×6=36种可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P =1-66×6=56.答案:564.(2016·高考四川卷)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________.解析:由题意得,a ,b 有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法.若满足log a b 为整数,则仅有a =2,b =8和a =3,b =9两种情况,∴log a b 为整数的概率为212=16.答案:16类型一 基本事件与古典概型的判断袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法. 又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等.所以以颜色为划分基本事件的依据的概率模型不是古典概型.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.1.下列试验中,是古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率; ②向正方形ABCD 内,任意抛掷一点P ,点P 恰与点C 重合; ③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率; ④在线段上任取一点,求此点小于2的概率. A .0B .1C .2D .3解析:选B.①中,硬币质地不均匀,不是等可能事件, 所以不是古典概型.②④的基本事件都不是有限个,不是古典概型. ③符合古典概型的特点,是古典概型问题.类型二 古典概型的求法(1)(2015·高考全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310 B .15 C.110D .120解析 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C. 答案 C(2)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求: ①所取的2道题都是甲类题的概率; ②所取的2道题不是同一类题的概率.解 ①将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.②基本事件同①.用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.1.在本例(1)的条件下,取出的3个数能构成钝角三角形的概率是多少?解:能构成钝角三角形的有{2,3,4}和{2,4,5}两种情况,故能构成钝角三角形的概率为P =210=15.2.本例(2)中条件不变,求“所取的两道题都是乙类题的概率”.解:用C 表示“都是乙类题”这一事件,则C 包含的基本事件为{5,6},共1个,所以P (C )=115.求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.2.(1)(2016·高考全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13 B .12 C.23D .56解析:选C.先列出基本事件,再利用古典概型概率公式求解.从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.(2)(2015·高考山东卷)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)②在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:①由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.②从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有: {A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,。
精编2018版高考复习一轮人教版数学历高考真题与模拟题汇编 D单元 数列(文科2013)和答案
D 单元 数列D1 数列的概念与简单表示法15.D1,D5 对于E ={a 1,a 2,...,a 100}的子集X ={ai 1,ai 2,...,ai k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中xi 1=xi 2=...=xi k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________;(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i≤99;E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j≤98,则P∩Q 的元素个数为________.15.2 17 (1)由特征数列的定义可知,子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0…,0,故可知前三项和为2.(2)根据“E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i≤99”可知子集P 的“特征数列”为1,0,1,0,…,1,0.即奇数项为1,偶数项为0.根据“E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j+1+q j +2=1,1≤j≤98”可知子集Q 的“特征数列为1,0,0,1,0,0, 01.即项数除以3后的余数为1的项为1,其余项为0,则P∩Q 的元素为项数除以6余数为1的项,可知有a 1,a 7,a 13,…,a 97,共17项.4.D1 下面是关于公差d>0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列a nn是递增数列;p 4:数列{a n +3nd}是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 44.D 因为数列{a n }为d>0的数列,所以{a n }是递增数列,则p 1为真命题.而数列{a n +3nd}也是递增数列,所以p 4为真命题,故选D.D2 等差数列及等有效期数列前n 项和19.D2,D4 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n∈N *,函数f(x)=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f′⎝ ⎛⎭⎪⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎪⎫a n +12a n ,求数列{b n }的前n 项和S n .19.解:(1)由题设可得,f ′(x)=a n -a n +1+a n +2-a n +1sin x -a n +2cos x. 对任意n∈N *,f′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n-1)=n +1.(2)由b n =2a n +12a n =2⎝ ⎛⎭⎪⎫n +1+12n +1=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n 1-12=n 2+3n +1-12n . 7.D2 设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .27.A 设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.20.M2,D2,D3,D5 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1, d i =A i -B i =a i -a i +1=a 1(1-q)q i -1.因此d i ≠0且d i +1d i =q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i≤n-2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i=A i .又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列.17.D2、D4 等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式; (2)设b n =1na n,求数列{b n }的前n 项和S n .17.解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d.因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ),解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12.(2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =21-22+22-23+…+2n -2n +1=2n n +1. 17.D2,D3 已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围. 17.解:(1)因为数列{a n }的公差d =1, 且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2), 即a 21-a 1-2=0,解得a 1=-1或a 1=2. (2)因为数列{a n }的公差d =1,且S 5>a 1a 9, 所以5a 1+10>a 21+8a 1,即a 21+3a 1-10<0,解得-5<a 1<2.17.D2,D3 已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.17.解:(1)设{a n }的公差为d.由题意,a 211=a 1a 13, 即(a 1+10d)2=a 1(a 1+12d),于是d(2a 1+25d)=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =n2(a 1+a 3n -2)=n2(-6n +56) =-3n 2+28n.20.D2 设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n∈N *,求{b n }的前n 项和T n .20.解:(1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1. 解得a 1=1,d =2. 因此a n =2n -1,n∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n∈N *,当n =1时,b 1a 1=12;当n≥2时,b n a n =1-12n -⎝ ⎛⎭⎪⎫1-12n -1=12n .所以b n a n =12n ,n∈N *.由(1)知a n =2n -1,n∈N *,所以b n =2n -12n ,n∈N *.又T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1, 两式相减得12T n =12+⎝ ⎛⎭⎪⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1, 所以T n =3-2n +32n .17.D2 设S n 表示数列{}a n 的前n 项和. (1)若{}a n 是等差数列,推导S n 的计算公式;(2)若a 1=1,q≠0,且对所有正整数n ,有S n =1-q n1-q .判断{}a n 是否为等比数列,并证明你的结论.17.解: (1)方法一:设{}a n 的公差为d ,则 S n =a 1+a 2+…+a n =a 1+(a 1+d)+…+,又S n =a n +(a n -d)+…+, ∴2S n =n(a 1+a n ), ∴S n =n (a 1+a n )2. 方法二:设{}a n 的公差为d ,则 S n =a 1+a 2+…+a n =a 1+(a 1+d)+…+, 又S n =a n +a n -1+…+a 1 =++…+a 1, ∴2S n =++…+ =2na 1+n(n -1)d , ∴S n =na 1+n (n -1)2 d.(2){}a n 是等比数列.证明如下: ∵S n =1-q n1-q ,∴a n +1=S n +1-S n=1-q n +11-q -1-q n 1-q =q n (1-q )1-q=q n .∵a 1=1,q≠0,∴当n≥1时,有 a n +1a n =q n q n -1=q.因此,{a n }是首项为1且公比为q 的等比数列.16.D2,D3 在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.16.解:设该数列的公比为q ,由已知,可得a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1. 由于a 1(q -1)=2,因此q =1不合题意,应舍去. 故公比q =3,首项a 1=1. 所以,数列的前n 项和S n =3n -12.17.D2、D4 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和. 17.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2 d.由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5, 解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝ ⎛⎭⎪⎫12n -3-12n -1,数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n 1-2n .19.D2 在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |. 19.解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0.故d =-1或d =4.所以a n =-n +11,n∈N *或 a n =4n +6,n∈N *.(2)设数列{a n }的前n 项和为S n ,因为d<0,由(1)得d =-1,a n =-n +11,则 当n≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n.当n≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧-12n 2+212n ,n≤11,12n 2-212n +110,n≥12.16.D2和D3 设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20. 16.解:(1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1, S n =1-3n 1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d ,所以公差d =5,故T 20=20×3+20×192×5=1 010.12.D2 若2,a ,b ,c ,9成等差数列,则c -a =________. 12.72 设公差为d ,则d =9-25-1=74,所以c -a =2d =72.D3 等比数列及等比数列前n 项和20.M2,D2,D3,D5 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1, d i =A i -B i =a i -a i +1=a 1(1-q)q i -1.因此d i ≠0且d i +1d i =q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i≤n-2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i=A i .又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列.11.D3 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.11.2 2n +1-2 ∵a 3+a 5=q(a 2+a 4),∴40=20q ,∴q=2,∴a 1(q +q 3)=20,∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.22.H6、H8、D3 已知双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB|,|BF 2|成等比数列.22.解:(1)由题设知c a =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,并求得x =±a 2+12.由题设知,2 a 2+12=6,解得a 2=1.所以a =1,b =22.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1), |BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199. 由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1, |BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|,|AB|,|BF 2|成等比数列.7.D3 已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310)C .3(1-3-10)D .3(1+3-10)7.C 由3a n +1+a n =0,得a n ≠0(否则a 2=0)且a n +1a n =-13,所以数列{a n }是公比为-13的等比数列,代入a 2可得a 1=4,故S 10=4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101+13=3×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1310=3(1-3-10).17.D2,D3 已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围. 17.解:(1)因为数列{a n }的公差d =1, 且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2), 即a 21-a 1-2=0,解得a 1=-1或a 1=2. (2)因为数列{a n }的公差d =1,且S 5>a 1a 9, 所以5a 1+10>a 21+8a 1,即a 21+3a 1-10<0,解得-5<a 1<2.11.D3 设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.11.15 方法一:易求得a 2=-2,a 3=4,a 4=-8,∴a 1+|a 2|+a 3+|a 4|=15.方法二:相当于求首项为1,公比为2的等比数列的前4项和,S 4=1-241-2=15.14.D3 在正项等比数列{a n }中,a 5=12,a 6+a 7=3. 则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.14.12 设{a n }的公比为q.由a 5=12及a 5(q +q 2)=3得q =2,所以a 1=132,所以a 6=1,a 1a 2…a 11=a 116=1,此时a 1+a 2+…+a 11>1.又a 1+a 2+…+a 12=27-132,a 1a 2…a 12=26<27-132,所以a 1a 2…a 12>a 1a 2…a 12,但a 1+a 2+…+a 13=28-132,a 1a 2…a 13=26·27=25·28>28-132,所以a 1+a 2+…+a 13<a 1a 2…a 13,故最大正整数n 的值为12.12.D3 某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N *)等于________.12.6 S n =2(1-2n )1-2=2n +1-2≥100,得n≥6.14.D3 已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.14.63 由题意可知a 1+a 3=5,a 1·a 3=4.又因为{a n }为递增的等比数列,所以a 1=1,a 3=4,则公比q =2,所以S 6=1×(1-26)1-2=63.17.D2,D3 已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.17.解:(1)设{a n }的公差为d.由题意,a 211=a 1a 13,即(a 1+10d)2=a 1(a 1+12d), 于是d(2a 1+25d)=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =n2(a 1+a 3n -2)=n2(-6n +56) =-3n 2+28n.16.D2,D3 在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.16.解:设该数列的公比为q ,由已知,可得 a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1. 由于a 1(q -1)=2,因此q =1不合题意,应舍去. 故公比q =3,首项a 1=1. 所以,数列的前n 项和S n =3n -12.6.D3 设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n 6.D a n =⎝ ⎛⎭⎪⎫23n -1,S n =1-23n 1-23=31-23a n =3-2a n . 16.D2和D3 设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20. 16.解:(1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1, S n =1-3n 1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d ,所以公差d =5,故T 20=20×3+20×192×5=1 010.D4 数列求和19.D2,D4 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n∈N *,函数f(x)=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f′⎝ ⎛⎭⎪⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎪⎫a n +12a n ,求数列{b n }的前n 项和S n .19.解:(1)由题设可得,f ′(x)=a n -a n +1+a n +2-a n +1sin x -a n +2cos x.对任意n∈N *,f′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n-1)=n +1.(2)由b n =2a n +12a n =2⎝ ⎛⎭⎪⎫n +1+12n +1=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n 1-12=n 2+3n +1-12n . 17.D2、D4 等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式;(2)设b n =1na n ,求数列{b n }的前n 项和S n .17.解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d.因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ),解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12.(2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =21-22+22-23+…+2n -2n +1=2n n +1. 16.D4 正项数列{a n }满足:a 2n -(2n -1)a n -2n =0. (1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .16.解:(1)由a 2n -(2n -1)a n -2n =0,得(a n -2n)(a n +1)=0. 由于{a n }是正项数列,所以a n =2n.(2)由a n =2n ,b n =1(n +1)a n ,则b n =12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,T n =12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n +1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n2(n +1). 17.D2、D4 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和. 17.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2 d.由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5, 解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝ ⎛⎭⎪⎫12n -3-12n -1,数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n 1-2n .D5 单元综合20.M2,D2,D3,D5 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1, d i =A i -B i =a i -a i +1=a 1(1-q)q i -1.因此d i ≠0且d i +1d i =q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i≤n-2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i =A i .又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1).又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1.因此a n =B 1.所以B 1=B 2=…=B n -1=a n .所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d ,即a 1,a 2,…,a n -1是等差数列.19.D5,E9 设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12. 19.解:19.D5 已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.19.解:(1)设数列{a n }的公比为q ,则a 1≠0,q≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18, 即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2, 故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n . 若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n|n =2k +1,k∈N ,k≥5}.15.D1,D5 对于E ={a 1,a 2,...,a 100}的子集X ={ai 1,ai 2,...,ai k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中xi 1=xi 2=...=xi k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________;(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i≤99;E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j≤98,则P∩Q 的元素个数为________.15.2 17 (1)由特征数列的定义可知,子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0…,0,故可知前三项和为2.(2)根据“E 的子集P 的“特征数列”p 1,p 2,...,p 100满足p 1=1,p i +p i +1=1,1≤i≤99”可知子集P 的“特征数列”为1,0,1,0,...,1,0.即奇数项为1,偶数项为0.根据“E 的子集Q 的“特征数列”q 1,q 2,...,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j≤98”可知子集Q 的“特征数列为1,0,0,1,0,0, 01.即项数除以3后的余数为1的项为1,其余项为0,则P∩Q 的元素为项数除以6余数为1的项,可知有a 1,a 7,a 13,…,a 97,共17项.19.D5 设{a n }是首项为a ,公差为d 的等差数列(d≠0),S n 是其前n 项的和.记b n =nS n n 2+c,n∈N *,其中c 为实数. (1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n∈N *);(2)若{b n }是等差数列,证明:c =0.19.解:由题设,S n =na +n (n -1)2d. (1)由c =0,得b n =S n n =a +n -12d.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4, 即⎝ ⎛⎭⎪⎫a +d 2=a ⎝ ⎛⎭⎪⎫a +3d , 化简得d 2-2ad =0.因为d≠0,所以d =2a.因此,对于所有的m∈N *,有S m =m 2a.从而对于所有的k ,n∈N *,有S nk =(nk)2a =n 2k 2a =n 2S k .(2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1,即nS n n 2+c=b 1+(n -1)d 1,n∈N *, 代入S n 的表达式,整理得,对于所有的n∈N *,有⎝ ⎛⎭⎪⎫d 1-12d n 3+⎝⎛⎭⎪⎫b 1-d 1-a +12d n 2+cd 1n =c(d 1-b 1). 令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c(d 1-b 1),则对于所有的n∈N *,有 An 3+Bn 2+cd 1n =D(*).在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1, 从而有⎩⎪⎨⎪⎧7A +3B +cd 1=0,①19A +5B +cd 1=0,②21A +5B +cd 1=0,③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.即d 1-12d =0,b 1-d 1-a +12d =0,cd 1=0. 若d 1=0,则由d 1-12d =0得d =0,与题设矛盾,所以d 1≠0. 又因为cd 1=0,所以c =0.19.D5 已知首项为32的等比数列{a n }的前n 项和为S n (n∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式;(2)证明S n +1S n ≤136(n∈N *). 19.解:(1)设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×-12n -1=(-1)n -1·32n . (2)证明:S n =1--12n ,S n +1S n =1--12n +11--12n =⎩⎨⎧2+12n (2n +1),n 为奇数,2+12n (2n -1),n 为偶数.当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136. 当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512. 故对于n∈N *,有S n +1S n ≤136.。
大一轮数学(文)高考复习(人教)课件:《第一章 集合与常用逻辑用语》1-3
第1页
返回导航
数学
数学
第3课时 简单的逻辑联结词、全称 量词与存在量词
第2页
返回导航
1.命题 p∧q,p∨q,綈 p 的真假判断
数学
第3页
返回导航
数学
p q p∧q p∨q 綈 p
真真 真 真假 假 假真 假
假假 假
真假 真假 真真 假真
第4页
x,有 p(x)成立
存在 M 中的一个
特称命题 x0,使 p(x0)成立
∃x0∈M,p(x0)
第6页
返回导航
数学
4.含有一个量词的命题的否定 命题
命题的否定
∀x∈M,p(x) ∃x0∈M,綈 p(x0)
∃x0∈M,p(x0) ∀x∈M,綈 p(x)
第7页
返回导航
数学
5.判断下列结论的正误(正确的打“√”错误的打“×”) (1)命题 p∧q 为假命题,则命题 p、q 都是假命题.(×)
命 特称命题的真假
题 2.应用命题真假求
点 参数
第29页
返回导航
[例 3] (1)下列命题中的假命题是( ) A.∀x∈R,2x-1>0 B.∀x∈N*,(x-1)2>0 C.∃x0∈R,ln x0<1 D.∃x0∈R,tan x0=2
第30页
返回导航
数学
数学
解析:因为 2x-1>0,对∀x∈R 恒成立,所以 A 是真命题;当 x =1 时,(x-1)2=0,所以 B 是假命题;存在 0<x0<e,使得 ln x0 <1,所以 C 是真命题;因为正切函数 y=tan x 的值域是 R,所以 D 是真命题. 答案:B
第48页
2018版高考数学(理)一轮复习文档:选修系列第十三章13.5含解析
1.复数的有关概念(1)定义:形如a+b i(a,b∈R)的数叫做复数,其中a叫做复数z的实部,b叫做复数z的虚部.(i为虚数单位)(2)分类:满足条件(a,b为实数)复数的分类a+b i为实数⇔b=0 a+b i为虚数⇔b≠0 a+b i为纯虚数⇔a=0且b≠0(3)复数相等:a+b i=c+d i⇔a=c且b=d(a,b,c,d∈R).(4)共轭复数:a+b i与c+d i共轭⇔a=c,b=-d(a,b,c,d∈R).(5)模:向量错误!的模叫做复数z=a+b i的模,记作|a+b i|或|z|,即|z|=|a+b i|=错误!(a,b∈R).2.复数的几何意义复数z=a+b i与复平面内的点Z(a,b)及平面向量错误!=(a,b)(a,b∈R)是一一对应关系.3.复数的运算(1)运算法则:设z1=a+b i,z2=c+d i,a,b,c,d∈R(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加减法的几何意义,即错误!=错误!+错误!,错误!=错误!-错误!。
【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)方程x2+x+1=0没有解.( ×)(2)复数z=a+b i(a,b∈R)中,虚部为b i。
(×)(3)复数中有相等复数的概念,因此复数可以比较大小.(×)(4)原点是实轴与虚轴的交点.(√)(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(√)1.(2016·全国乙卷)设(1+2i)(a+i)的实部与虚部相等,其中a 为实数,则a等于()A.-3 B.-2 C.2 D.3答案A解析∵(1+2i)(a+i)=a-2+(2a+1)i,∴a-2=2a+1,解得a=-3,故选A。
2.(2015·课标全国Ⅰ)已知复数z满足(z-1)i=1+i,则z等于( )A.-2-i B.-2+i C.2-i D.2+i答案C解析由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i。
2018版高考数学(理)一轮复习文档:选修系列第十三章13.3含解析
数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n =k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n 都成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n=1时结论成立.(×)(2)所有与正整数有关的数学命题都必须用数学归纳法证明.(×)(3)用数学归纳法证明问题时,归纳假设可以不用.( ×)(4)不论是等式还是不等式,用数学归纳法证明时,由n=k到n =k+1时,项数都增加了一项.( ×)(5)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23。
(√)(6)用数学归纳法证明凸n边形的内角和公式时,n0=3.(√)1.用数学归纳法证明1+a+a2+…+a n+1=错误!(a≠1,n∈N*),在验证n=1时,等式左边的项是( )A.1 B.1+aC.1+a+a2D.1+a+a2+a3答案C解析当n=1时,n+1=2,∴左边=1+a1+a2=1+a+a2。
2.(2016·黄山模拟)已知n为正偶数,用数学归纳法证明1-错误!+错误!-错误!+…-错误!=2(错误!+错误!+…+错误!)时,若已假设n=k(k≥2且k为偶数)时命题为真,则还需要用归纳假设再证( )A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立答案B解析因为n为正偶数,n=k时等式成立,即n为第k个偶数时命题成立,所以需假设n为下一个偶数,即n=k+2时等式成立.3.在应用数学归纳法证明凸n边形的对角线为错误!n(n-3)条时,第一步检验n等于()A.1 B.2C.3 D.0答案C解析凸n边形边数最小时是三角形,故第一步检验n=3.4.用数学归纳法证明1+2+3+…+n2=n4+n22,则当n=k+1时左端应在n=k的基础上加上()A.k2+1B.(k+1)2C.错误!D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案D解析等式左边是从1开始的连续自然数的和,直到n2.故n=k+1时,最后一项是(k+1)2,而n=k时,最后一项是k2,应加上(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.5.(教材改编)已知{a n}满足a n+1=a错误!-na n+1,n∈N*,且a1=2,则a2=________,a3=________,a4=________,猜想a n=________.答案 3 4 5 n+1题型一用数学归纳法证明等式例1 设f(n)=1+12+错误!+…+错误!(n∈N*).求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).证明①当n=2时,左边=f(1)=1,右边=2(1+错误!-1)=1,左边=右边,等式成立.②假设n=k(k≥2,k∈N*)时,结论成立,即f(1)+f(2)+…+f(k-1)=k[f(k)-1],那么,当n=k+1时,f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k)=(k+1)f(k)-k=(k+1)[f(k+1)-错误!]-k=(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1],∴当n=k+1时结论成立.由①②可知当n∈N*时,f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).思维升华用数学归纳法证明恒等式应注意(1)明确初始值n0的取值并验证n=n0时等式成立.(2)由n=k证明n=k+1时,弄清左边增加的项,且明确变形目标.(3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.用数学归纳法证明:错误!+错误!+…+错误!=错误!(n∈N*).证明①当n=1时,左边=错误!=错误!,右边=错误!=错误!,左边=右边,等式成立.②假设n=k(k≥1,k∈N*)时,等式成立.即错误!+错误!+…+错误!=错误!,当n=k+1时,左边=错误!+错误!+…+错误!+错误!=错误!+错误!=k k+12k+3+2k+12 22k+12k+3=k+12k2+5k+2 22k+12k+3=错误!,右边=错误!=错误!,左边=右边,等式成立.即对所有n∈N*,原式都成立.题型二用数学归纳法证明不等式例2 (2016·烟台模拟)等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n)均在函数y=b x+r(b>0且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=2(log2a n+1)(n∈N*),证明:对任意的n∈N*,不等式错误!·错误!·…·错误!〉错误!成立.(1)解由题意,S n=b n+r,当n≥2时,S n-1=b n-1+r.所以a n=S n-S n-1=b n-1(b-1).由于b〉0且b≠1,所以n≥2时,{a n}是以b为公比的等比数列.又a1=b+r,a2=b(b-1),所以错误!=b,即错误!=b,解得r=-1。
2018年大一轮数学文高考复习人教课件:第十三章 不等
2.几个常用基本不等式 (1)柯西不等式 ①柯西不等式的代数形式:设 a,b,c,d 都是实数,则(a2+b2)(c2
2 ( ac + bd ) +d )≥
2
(当且仅当 ad=bc 时,等号成立).
②柯西不等式的向量形式:设 α,β 是两个向量,则|α||β|≥|α·β|, 当且仅当 β 是零向量,或存在实数 k,使 α=kβ 时,等号成立.
基础知识导航
考点典例领航 智能提升返航 课时规范训练
第2课时
不等式证明
1.不等式证明的方法 (1)比较法 ①作差比较法: 知道 a>b⇔a-b>0, a<b⇔a-b<0, 因此要证明 a>b 只要证明
a-b>0
即可,这种方法称为作差比较法.
②作商比较法: a 由 a>b>0⇔b>1 且 a>0,b>0,因此当 a>0,b>0 时,要证明 a a>b,只要证明 >1 即可,这种方法称为作商比较法. b
+anbn)2,当且仅当 bi=0(i=1,2,…,n)或存在一个数 k,使得 ai =kbi(i=1,2,…,n)时,等号成立.
(2)算术—几何平均不等式 a1+a2+…+an n 若 a1,a2,…,an 为正数,则 ≥ a1a2…an . n 当且仅当 a1=a2=…=an 时,等号成立.
考点一 命题点
证明:①法一:综合法 因为( a+ b)2=a+b+2 ab, ( c+ d)2=c+d+2 cd, 由题设 a+b=c+d,ab>cd, 得( a+ b)2>( c+ d)2. ∴ a+ b> c+ d.
法二:分析法:要证: a+ b> c+ d. 只需证:( a+ b)2>( c+ d)2 即证:a+b+2 ab>c+d+2 cd(因为 a+b=c+d) 只需证: ab> cd. 只需证:ab>cd(已知) ∴原不等式成立.
2018届高考(新课标)数学(文)大一轮复习课件:第十三章 系列4选讲 13-1-2
(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.
将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的
取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.
跟踪训练 1 (1)(2016· 江苏)在平面直角坐标系 xOy 中, 已知直
线 l 的参数方程为 3 yFra bibliotek= 2t(2)直线 l 的普通方程为 x-y-a=0, x2 y2 椭圆 C 的普通方程为 9 + 4 =1, ∴椭圆 C 的右顶点坐标为(3,0),若直线 l 过(3,0),则 3- a=0,∴a=3.
题型二
参数方程的应用 (2017· 扬州二模)已知直线 l 的参数方程为
x=4cos 的参数方程为 y=4sin
为参数)过椭
φ , φ
(φ 为参数)的右顶点,求常数 a 的值.
y2 【解析】 (1)椭圆 C 的普通方程为 x + 4 =1.
2
将直线 l 的参数方程 3 y = 2t
1 x=1+2t,
y2 代入 x + 4 =1,得
2
3 2 t 2 2 1 2 1+ t + = 1 ,即 7 t +16t=0, 2 4 16 解得 t1=0,t2=- 7 . 16 所以 AB=|t1-t2|= 7 .
【例 2】
x=a-2t, (t y=-4t
为参数),圆 C
θ , θ
(θ 为参
数). (1)求直线 l 和圆 C 的普通方程; (2)若直线 l 与圆 C 有公共点,求实数 a 的取值范围.
【解析】 (1)直线 l 的普通方程为 2x-y-2a=0, 圆 C 的普通方程为 x2+y2=16. (2)因为直线 l 与圆 C 有公共点, |-2a| 故圆 C 的圆心到直线 l 的距离 d= ≤4, 5 解得-2 5≤a≤2 5.
2018版高考数学文人教大一轮复习讲义 教师版文档第十
第2课时 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程1.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =2-3t (t 为参数),求直线l 的斜率.解 将直线l 的参数方程化为普通方程为 y -2=-3(x -1),因此直线l 的斜率为-3.2.已知直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数)垂直,求k 的值.解 直线l 1的方程为y =-k 2x +4+k 2,斜率为-k2;直线l 2的方程为y =-2x +1,斜率为-2. ∵l 1与l 2垂直,∴(-k2)×(-2)=-1⇒k =-1.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,求|PF |的值.解 将抛物线的参数方程化为普通方程为y 2=4x ,则焦点F (1,0),准线方程为x =-1,又P (3,m )在抛物线上,由抛物线的定义知|PF |=3-(-1)=4.4.(2016·北京东城区模拟)已知曲线C 的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+4t ,y =3t (t 为参数),求直线l 与曲线C 相交所截的弦长. 解 曲线C 的直角坐标方程为x 2+y 2=1, 直线l 的普通方程为3x -4y +3=0. 圆心到直线的距离d =|3×0-4×0+3|32+42=35.∴直线l 与曲线C 相交所截的弦长为21-(35)2=85.题型一 参数方程与普通方程的互化例1 (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.(2)在平面直角坐标系中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A ,B 两点,求|AB |的长. 解 (1)圆的半径为12,记圆心为C (12,0),连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2)直线l 的普通方程为x +y =2,曲线C 的普通方程为y =(x -2)2(y ≥0),联立两方程得x 2-3x +2=0,求得两交点坐标为(1,1),(2,0),所以|AB |= 2. 思维升华 消去参数的方法一般有三种:(1)利用解方程的技巧求出参数的表示式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.(1)求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数. (2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.解 (1)将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点. (2)直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,∴椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则3-a =0,∴a =3. 题型二 参数方程的应用例2 已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解 (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.思维升华 已知圆、圆锥曲线的参数方程解决有关问题时,一般是把参数方程化为普通方程,通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝⎛⎭⎫θ为参数,0≤θ≤π2和⎩⎨⎧x =1-22t ,y =-22t (t 为参数),求曲线C 1与C 2的交点坐标.解 曲线C 1的普通方程为x 2+y 2=5(x ≥0,y ≥0). 曲线C 2的普通方程为x -y -1=0.解方程组⎩⎪⎨⎪⎧ x -y -1=0,x 2+y 2=5(x ≥0,y ≥0),得⎩⎪⎨⎪⎧x =2,y =1.∴曲线C 1与C 2的交点坐标为(2,1). 题型三 极坐标方程和参数方程的综合应用例3 (2015·课标全国Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解 (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以使问题得到简捷的解答.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos(θ+π4),直线l 的参数方程为⎩⎨⎧x =t ,y =-1+22t(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点. (1)求圆心的极坐标; (2)求△P AB 面积的最大值. 解 (1)由圆C 的极坐标方程为 ρ=22cos(θ+π4),得ρ2=22(22ρcos θ-22ρsin θ), 把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可得圆C 的直角坐标方程为x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2. ∴圆心坐标为(1,-1),∴圆心的极坐标为(2,7π4). (2)由题意,得直线l 的直角坐标方程为22x -y -1=0. ∴圆心(1,-1)到直线l 的距离d =|22+1-1|(22)2+(-1)2=223,∴|AB |=2r 2-d 2=22-89=2103. 点P 到直线l 的距离的最大值为r +d =2+223=523, ∴S max =12×2103×523=1059.1.求直线⎩⎨⎧x =1-12t ,y =32t(t 为参数)被曲线⎩⎨⎧x =cos θ,y =3sin θ(θ为参数)所截得的弦长.解 直线方程可化为3x +y -3=0, 曲线方程可化为x 2+y 23=1.由⎩⎪⎨⎪⎧y =-3x +3,x 2+y 23=1,得x 2-x =0, ∴x =0或x =1.可得交点为A (0,3),B (1,0). ∴|AB |=1+3=2.∴所截得的弦长为2.2.直线⎩⎪⎨⎪⎧x =4+at ,y =bt (t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,求切线的倾斜角.解 直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,直线与圆相切,则圆心(2,0)到直线的距离为3,从而有3=|2b -a ·0-4b |a 2+b 2,即3a 2+3b 2=4b 2,∴b =±3a ,而直线的倾斜角的正切值为tan α=b a ,∴tan α=±3,因此切线的倾斜角为π3或2π3.3.已知直角坐标系xOy 中,直线l 的参数方程:⎩⎨⎧x =22t -2,y =22t(t 为参数),以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,求以极点为圆心且与直线l 相切的圆的极坐标方程.解 ∵直线l 的直角坐标方程为x -y +2=0. ∴原点到直线的距离r =22=1. ∴以极点为圆心且与直线l 相切的圆的极坐标方程为ρ=1.4.(2015·湖北)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎨⎧x =t -1t,y =t +1t(t 为参数),l与C 相交于A ,B 两点,求|AB |的长.解 直线l 的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x -y =0,曲线C 的参数方程⎩⎨⎧x =t -1t,y =t +1t两式经过平方相减,化为普通方程为y 2-x 2=4,联立⎩⎪⎨⎪⎧3x -y =0,y 2-x 2=4解得⎩⎨⎧x =-22,y =-322或⎩⎨⎧x =22,y =322.所以A ⎝⎛⎭⎫-22,-322,B ⎝⎛⎭⎫22,322. 所以|AB |=⎝⎛⎭⎫-22-222+⎝⎛⎭⎫-322-3222=2 5.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2(t 为参数),在以O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为ρsin(θ+π4)=22,求曲线C 1与曲线C 2的交点个数.解 曲线C 1,C 2化为普通方程和直角坐标方程分别为x 2=2y ,x +y -4=0,联立⎩⎪⎨⎪⎧x 2=2y ,x +y -4=0,消去y 得x 2+2x -8=0,因为判别式Δ>0,所以方程有两个实数解.故曲线C 1与曲线C 2的交点个数为2.6.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 7.(2015·陕西)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解 (1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y , 所以x 2+(y -3)2=3.(2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC |=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,PC 取得最小值, 此时,P 点的直角坐标为(3,0).8.(2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1. a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.9.(2016·江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段|AB |的长.解 直线l 的方程化为普通方程为3x -y -3=0, 椭圆C 的方程化为普通方程为x 2+y 24=1,联立方程组得⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧x 1=1y 1=0或⎩⎨⎧x 2=-17,y 2=-837,∴A (1,0),B ⎝⎛⎭⎫-17,-837.故|AB |=⎝⎛⎭⎫1+172+⎝⎛⎭⎫0+8372=167.10.(2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2.(1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12.。
2018版高考数学文人教大一轮复习讲义 教师版文档第十
第1课时绝对值不等式1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集:(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c;(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.1.(2015·山东改编)解不等式|x -1|-|x -5|<2的解集. 解 ①当x ≤1时,原不等式可化为1-x -(5-x )<2, ∴-4<2,不等式恒成立,∴x ≤1.②当1<x <5时,原不等式可化为x -1-(5-x )<2, ∴x <4,∴1<x <4,③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4).2.若存在实数x 使|x -a |+|x -1|≤3成立,求实数a 的取值范围. 解 ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.3.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,求实数a 的取值范围.解 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,5≥y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2. 解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].题型一 绝对值不等式的解法例1 (2015·课标全国Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a+1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 思维升华 解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式.(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式.(3)利用绝对值的几何意义,数形结合求解.(1)解不等式|x -1|+|x +2|≥5的解集.(2)若关于x 的不等式|ax -2|<3的解集为{x |-53<x <13},求a 的值.解 (1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}.(2)∵|ax -2|<3,∴-1<ax <5.当a >0时,-1a <x <5a ,与已知条件不符;当a =0时,x ∈R ,与已知条件不符; 当a <0时,5a <x <-1a,又不等式的解集为{x |-53<x <13},故a =-3.题型二 利用绝对值不等式求最值例2 (1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值. (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值. 解 (1)∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1, |y -1|+|y +1|≥|(y -1)-(y +1)|=2, ∴|x -1|+|x |+|y -1|+|y +1|≥1+2=3. ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.(2)|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.思维升华 求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |;(3)利用零点分区间法.(1)(2016·深圳模拟)若关于x 的不等式|2 014-x |+|2 015-x |≤d 有解,求d 的取值范围.(2)不等式|x +1x |≥|a -2|+sin y 对一切非零实数x ,y 均成立,求实数a 的取值范围.解 (1)∵|2 014-x |+|2 015-x |≥|2 014-x -2 015+x |=1, ∴关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d ≥1. (2)∵x +1x ∈(-∞,-2]∪[2,+∞),∴|x +1x |∈[2,+∞),其最小值为2.又∵sin y 的最大值为1,故不等式|x +1x |≥|a -2|+sin y 恒成立时,有|a -2|≤1,解得a ∈[1,3].题型三 绝对值不等式的综合应用例3 (2017·石家庄调研)设函数f (x )=|x -3|-|x +1|,x ∈R . (1)解不等式f (x )<-1;(2)设函数g (x )=|x +a |-4,且g (x )≤f (x )在x ∈[-2,2]上恒成立,求实数a 的取值范围. 解 (1)∵函数f (x )=|x -3|-|x +1| =⎩⎪⎨⎪⎧4,x <-1,2-2x ,-1≤x ≤3,-4,x >3,故由不等式f (x )<-1可得x >3或⎩⎪⎨⎪⎧2-2x <-1,-1≤x ≤3.解得x >32.(2)函数g (x )≤f (x )在x ∈[-2,2]上恒成立,即|x +a |-4≤|x -3|-|x +1|在x ∈[-2,2]上恒成立,在同一个坐标系中画出函数f (x )和g (x )的图象,如图所示.故当x ∈[-2,2]时,若0≤-a ≤4时,则函数g (x )在函数f (x )的图象的下方,g (x )≤f (x )在x ∈[-2,2]上恒成立,求得-4≤a ≤0,故所求的实数a 的取值范围为[-4,0].思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集; (2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4. 所以f (x )≥3的解集为{x |x ≤1或x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0].1.在实数范围内,求不等式||x -2|-1|≤1的解集. 解 由||x -2|-1|≤1得-1≤|x -2|-1≤1,解⎩⎪⎨⎪⎧|x -2|≥0,|x -2|≤2得0≤x ≤4. ∴不等式的解集为[0,4].2.不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,求实数a 的取值范围.解 由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.3.对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.解 因为|a -b |≤1,|2a -1|≤1, 所以|3a -3b |≤3,|a -12|≤12,所以|4a -3b +2|=|(3a -3b )+(a -12)+52|≤|3a -3b |+|a -12|+52≤3+12+52=6,即|4a -3b +2|的最大值为6, 所以m ≥|4a -3b +2|max =6.4.已知f (x )=|x -3|,g (x )=-|x -7|+m ,若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值范围.解 由题意,可得不等式|x -3|+|x -7|-m >0恒成立,即(|x -3|+|x -7|)min >m ,由于x 轴上的点到点(3,0)和点(7,0)的距离之和的最小值为4,所以要使不等式恒成立,则m <4. 5.(2016·江苏)设a >0,||x -1<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 由a >0,|x -1|<a 3可得|2x -2|<2a3,又|y -2|<a3,∴|2x +y -4|=|(2x -2)+(y -2)|≤|2x -2|+|y -2|<2a 3+a3=a . 即|2x +y -4|<a .6.已知关于x 的不等式|2x -m |≤1的整数解有且仅有一个值为2,求关于x 的不等式|x -1|+|x -3|≥m 的解集.解 由不等式|2x -m |≤1,可得m -12≤x ≤m +12,∵不等式的整数解为2, ∴m -12≤2≤m +12,解得3≤m ≤5. 再由不等式仅有一个整数解2,∴m =4. 本题即解不等式|x -1|+|x -3|≥4, 当x <1时,不等式等价于1-x +3-x ≥4, 解得x ≤0,不等式解集为{x |x ≤0}.当1≤x ≤3时,不等式等价于x -1+3-x ≥4, 解得x ∈∅,不等式解集为∅.当x >3时,不等式等价于x -1+x -3≥4, 解得x ≥4,不等式解集为{x |x ≥4}.综上,原不等式解集为(-∞,0]∪[4,+∞). 7.已知函数f (x )=|x +1|-|2x -3|. (1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.解 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x|x <13或x >5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x|x <13或1<x <3或x >5.8.已知函数f (x )=|x +3|-|x -2|. (1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值范围. 解 (1)f (x )=|x +3|-|x -2|≥3,当x ≥2时,有x +3-(x -2)≥3,解得x ≥2; 当x ≤-3时,-x -3+(x -2)≥3,解得x ∈∅; 当-3<x <2时,有2x +1≥3,解得1≤x <2. 综上,f (x )≥3的解集为{x |x ≥1}. (2)由绝对值不等式的性质可得, ||x +3|-|x -2||≤|(x +3)-(x -2)|=5, 则有-5≤|x +3|-|x -2|≤5. 若f (x )≥|a -4|有解,则|a -4|≤5,解得-1≤a ≤9.所以a 的取值范围是[-1,9]. 9.(2016·全国丙卷)已知函数f (x )=|2x -a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞).10.已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3, 则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,∴原不等式的解集是{x |0<x <2}.(2)∵a >-1,则-a 2<12,∴f (x )=|2x -1|+|2x +a |=⎩⎪⎨⎪⎧-4x +1-a , x <-a2,a +1, -a 2≤x <12,4x +a -1, x ≥12.当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=a +1, 即a +1≤x +3在x ∈⎣⎡⎭⎫-a 2,12上恒成立. ∴a +1≤-a 2+3,即a ≤43,∴a 的取值范围为⎝⎛⎦⎤-1,43.。
2018版高考数学理一轮复习文档:选修系列 第十三章 13
1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × ) (4)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N *).( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76 C .123 D .199答案 C解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a 10+b 10=123. 2.下面几种推理过程是演绎推理的是( )A .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳数列{a n }的通项公式B .由平面三角形的性质,推测空间四面体性质C .两直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线与第三条直线形成的同旁内角,则∠A +∠B =180°D .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人 答案 C解析 A 、D 是归纳推理,B 是类比推理,C 符合三段论模式,故选C.3.(2017·济南调研)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________. 答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 4.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________.答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *) 解析 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n ,可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *). 5.(2017·西安质检)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,1+2+…+n +…+2+1=________. 答案 n 2解析 ∵1=12,1+2+1=22,1+2+3+2+1=32, 1+2+3+4+3+2+1=42,…, ∴归纳可得1+2+…+n +…+2+1=n 2.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2016·山东)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2 (2016·山西四校联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N *),则a =________.答案 n n解析 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n . 命题点3 与数列有关的推理例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n . … …可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.命题点4 与图形变化有关的推理例4 (2017·大连调研)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55 答案 D解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D. 思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(1)(2015·陕西)观察下列等式:1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, … 据此规律,第n个等式可为_________________________________________________________ _______________.(2)(2016·抚顺模拟)观察下图,可推断出“x ”处应该填的数字是________.答案 (1)1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)(2)183解析 (1)等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .(2)由前两个图形发现:中间数等于四周四个数的平方和,∴“x ”处应填的数字是32+52+72+102=183. 题型二 类比推理例5 (1)(2017·西安月考)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________. (2)求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x =1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为________.答案 (1)V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 (2)1+32解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O-BCD·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0.(2)令1+12+1…=x ,则有1+12+1x =x , 解得x =1+32(负值已舍去).思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.题型三 演绎推理例6 设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列. (1)证明:a 2=4a 1+5; (2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.(1)证明 当n =1时,4a 1=a 22-5,a 22=4a 1+5,又a n >0,∴a 2=4a 1+5.(2)解 当n ≥2时,4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列,∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24), 解得a 2=3. 由(1)知a 1=1, 又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1. (3)证明 1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1(2n -1)(2n +1)=12[(1-13)+(13-15)+…+(12n -1-12n +1)] =12(1-12n +1)<12. 思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为( ) A .大前提错误 B .小前提错误 C .推理形式错误D .非以上错误(2)(2016·洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是( ) A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数 答案 (1)C (2)B解析 (1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.(2)A 中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A 错误;C 、D 都不是由一般性命题到特殊性命题的推理,所以C 、D 都不正确,只有B 正确,故选B.10.高考中的合情推理问题考点分析 合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档.解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题. 典例 (1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:①b 2 014是数列{a n }的第________项; ②b 2k -1=________.(用k 表示)(2)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(i)T ={f (x )|x ∈S };(ii)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________. ①A =N *,B =N ;②A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}; ③A ={x |0<x <1},B =R ; ④A =Z ,B =Q .解析 (1)①a n =1+2+…+n =n (n +1)2,b 1=4×52=a 4,b 2=5×62=a 5,b 3=9×(2×5)2=a 9,b 4=(2×5)×112=a 10,b 5=14×(3×5)2=a 14,b 6=(3×5)×162=a 15,…b 2 014=⎝⎛⎭⎫2 0142×5⎝⎛⎭⎫2 0142×5+12=a 5 035.②由①知b 2k -1=⎝⎛⎭⎫2k -1+12×5-1⎝⎛⎭⎫2k -1+12×52=5k (5k -1)2.(2)对于①,取f (x )=x -1,x ∈N *,所以A =N *,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②; 对于③,取f (x )=tan(πx -π2)(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③.④不符合,故填④.答案 (1)①5 035 ②5k (5k -1)2(2)④1.(2016·重庆检测)演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =12log x是对数函数,所以y =12log x 是增函数”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误答案 A解析 因为当a >1时,y =log a x 在定义域内单调递增,当0<a <1时,y =log a x 在定义域内单调递减,所以大前提错误. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.3.(2016·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )A .22项B .23项C .24项D .25项 答案 C解析 两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以为第24项. 4.(2016·泉州模拟)正偶数列有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2 016所在等式的序号为( ) A .29 B .30 C .31 D .32 答案 C解析 由题意知,每个等式正偶数的个数组成等差数列3,5,7,…,2n +1,…,其前n 项和S n =n [3+(2n +1)]2=n (n +2)且S 31=1 023,即第31个等式中最后一个偶数是1 023×2=2046,且第31个等式中含有63个偶数,故2 016在第31个等式中. 5.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a nn)也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n1+c n 2+…+c n nnD .d n =nc 1·c 2·…·c n答案 D解析 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d 2,即{b n }为等差数列; 若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c 1·()12n n q - ,∴d n =n c 1·c 2·…·c n =c 1·12n q -,即{d n }为等比数列,故选D.6.把正整数按一定的规则排成如图所示的三角形数表,设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下第i 行,从左往右数第j 个数,如a 42=8,若a ij =2 009,则i 与j 的和为________.答案 107解析 由题可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i =63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j -1),所以j =44,所以i +j =107.7.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________.答案 x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1.8.如图,我们知道,圆环也可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r )×2π×R +r 2.所以,圆环的面积等于以线段AB =R -r 为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长2π×R +r 2为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M ={(x ,y )|(x -d )2+y 2≤r 2}(其中0<r <d )绕y 轴旋转一周,则所形成的旋转体的体积是________.答案 2π2r 2d解析 平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体为实心的车轮内胎,旋转体的体积等于以圆(面积为πr 2)为底,以O 为圆心、d 为半径的圆的周长2πd 为高的圆柱的体积,所以旋转体的体积V =πr 2×2πd =2π2r 2d .9.设f (x )=13x+3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解 f (0)+f (1)=130+3+131+3 =11+3+13(1+3) =33(1+3)+13(1+3)=33, 同理可得f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33. 证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x=13x +3+3x3(3+3x )=3+3x 3(3+3x )=33. 10.(2016·泉州模拟)先阅读下列不等式的证法,再解决后面的问题:已知a 1,a 2∈R ,a 1+a 2=1,求证a 21+a 22≥12. 证明:构造函数f (x )=(x -a 1)2+(x -a 2)2,即f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2x +a 21+a 22.因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-8(a 21+a 22)≤0,从而得a 21+a 22≥12. (1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,请写出上述结论的推广式;(2)参考上述证法,对你推广的结论加以证明.(1)解 若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,则a 21+a 22+…+a 2n ≥1n. (2)证明 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2.即f (x )=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n=nx 2-2x +a 21+a 22+…+a 2n ,因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-4n (a 21+a 22+…+a 2n )≤0,从而得a 21+a 22+…+a 2n ≥1n. *11.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )的对称中心;(2)计算f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017). 解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1). (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2, 即f (x )+f (1-x )=2.故f (12 017)+f (2 0162 017)=2, f (22 017)+f (2 0152 017)=2, f (32 017)+f (2 0142 017)=2, …,f (2 0162 017)+f (12 017)=2. 所以f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017)=12×2×2 016=2 016.。
2018版高考数学理一轮复习文档:选修系列 第十三章 13
1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构3.算法语句(1)输入语句、输出语句、赋值语句的格式与功能(2)条件语句①程序框图中的条件结构与条件语句相对应.②条件语句的格式a.IF—THEN格式b.IF—THEN—ELSE格式(3)循环语句①程序框图中的循环结构与循环语句相对应.②循环语句的格式a.UNTIL语句b.WHILE语句【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.(×)(2)程序框图中的图形符号可以由个人来确定.(×)(3)输入框只能紧接开始框,输出框只能紧接结束框.(×)(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的.(√)(5)5=x是赋值语句.(×)(6)输入语句可以同时给多个变量赋值.(√)1.已知一个算法:(1)m=a.(2)如果b<m,则m=b,输出m;否则执行第(3)步.(3)如果c<m,则m=c,输出m.否则执行第(4)步.(4)输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是()A.3 B.6C.2 D.m答案 C解析当a=3,b=6,c=2时,依据算法设计,本算法是求a、b、c三个数的最小值,故输出m的值为2,故选C.2.(2016·全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s等于()A.7 B.12 C.17 D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k =2,不满足条件;a =5,s =12+5=17,k =3,满足条件,输出s =17,故选C. 3.(2017·广州调研)下列赋值能使y 的值为4的是( ) A .y -2=6 B .2*3-2=y C .4=y D .y =2*3-2答案 D解析 赋值时把“=”右边的值赋给左边的变量.4.(2017·太原月考)如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6?B .k ≤7?C .k ≤8?D .k ≤9?答案 B解析 第一次执行循环,得到S =10,k =9;第二次执行循环,得到S =90,k =8;第三次执行循环,得到S =720,k =7,此时满足条件.5.若执行如图所示的程序框图,输入N =13,则输出S 的值为________.答案1213解析 由题意可知,S =(1-12)+(12-13)+…+(112-113)=1213.题型一顺序结构与条件结构命题点1顺序结构例1如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)最大值=4,所以要想使输出的值最大,输入的x的值应为2.命题点2条件结构例2执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s属于()A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]答案 A解析 根据程序框图可以得到分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1,进而在函数的定义域[-1,3]内分段求出函数的值域.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上可知,函数的值域为[-3,4],即输出的s 属于[-3,4]. 引申探究若将本例中判断框的条件改为“t ≥1”,则输出的s 的范围是什么?解 根据程序框图可以得到,当-1≤t <1时,s =4t -t 2=-(t -2)2+4,此时-5≤s <3;当1≤t ≤3时,s =3t ∈[3,9].综上可知,函数的值域为[-5,9],即输出的s 属于[-5,9]. 思维升华 应用顺序结构与条件结构的注意点 (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的. (2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.(高考改编)执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.答案 2解析 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1;当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分(含边界),由图可知当直线S =2x+y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2. 题型二 循环结构命题点1 由程序框图求输出结果例3 (2016·全国乙卷)执行右面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x 答案 C解析 执行题中的程序框图,知 第一次进入循环体:x =0+1-12=0,y =1×1=1,x 2+y 2<36; 第二次执行循环体:n =1+1=2,x =0+2-12=12,y =2×1=2,x 2+y 2<36;第三次执行循环体:n =2+1=3,x =12+3-12=32,y =3×2=6,x 2+y 2>36,满足x 2+y 2≥36,故退出循环,输出x =32,y =6,满足y =4x ,故选C.命题点2 完善程序框图例4 (2017·保定质检)如图给出的是计算12+14+16+…+120的值的一个框图,其中菱形判断框内应填入的条件是( )A .i >10?B .i <10?C .i >11?D .i <11?答案 A解析 经过第一次循环得到s =12,i =2,此时的i 不满足判断框中的条件;经过第二次循环得到s =12+14,i =3,此时的i 不满足判断框中的条件;经过第三次循环得到s =12+14+16,i =4,此时的i 不满足判断框中的条件;…;经过第十次循环得到s =12+14+16+…+120,i =11,此时的i 满足判断框中的条件,执行输出,故判断框中的条件是“i >10?”.命题点3 辨析程序框图的功能例5 如果执行如图的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 答案 C解析 不妨令N =3,a 1<a 2<a 3, 则有k =1,x =a 1,A =a 1,B =a 1; k =2,x =a 2,A =a 2; k =3,x =a 3,A =a 3, 故输出A =a 3,B =a 1,故选C.思维升华 与循环结构有关问题的常见类型及解题策略(1)已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果. (2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.(2016·四川)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.9 B.18 C.20 D.35答案 B解析初始值n=3,x=2,程序运行过程如下:v=1i=2v=1×2+2=4i=1v=4×2+1=9i=0v=9×2+0=18i=-1跳出循环,输出v=18,故选B.题型三基本算法语句例6阅读下面两个算法语句:图1图2执行图1中语句的结果是输出________;执行图2中语句的结果是输出________.答案i=4i=2解析执行图1中语句,得到(i,i·(i+1))的结果依次为(1,2),(2,6),(3,12),(4,20),故输出i=4.执行图2中语句的情况如下:i=1,i=i+1=2,i·(i+1)=6<20(是),结束循环,输出i=2.思维升华解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.(2015·江苏改编)根据如图所示的语句,可知输出的结果S=________.答案7解析I=1,S=1;S=1+2=3,I=1+3=4<8;S=3+2=5,I=4+3=7<8;S=5+2=7,I=7+3=10>8.退出循环,故输出S=7.19.程序框图中变量的取值典例执行如图所示的程序框图所表示的程序,则输出的A等于()A.2 047 B.2 049C.1 023 D.1 025错解展示解析将每次运算的A值用数列{a n}表示,将开始的A=1看作a0,则a1=2a0+1=1,a2=2a1+1=3,…∴a10=2a9+1=210-1=1 023.答案 C现场纠错解析本题计算的是递推数列a0=1,a n+1=2a n+1(n=0,1,2,…)的第11项,{a n+1}是首项为2,公比为2的等比数列,故a10+1=211,故a10=2 047.答案 A纠错心得程序框图对计数变量及求和变量取值时,要注意两个变量的先后顺序.()A .3B .4C .5D .6 答案 B解析 第一次循环a =6-4=2,b =6-2=4,a =4+2=6,s =6,n =1; 第二次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =10,n =2; 第三次循环a =6-4=2,b =6-2=4,a =4+2=6,s =16,n =3;第四次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =20,n =4,满足题意,结束循环.2.(2016·北京)执行如图所示的程序框图,输出的S 值为( )A .8B .9C .27D .36 答案 B解析 ①S =0+03=0,k =0+1=1,满足k ≤2; ②S =0+13=1,k =1+1=2,满足k ≤2;③S =1+23=9,k =2+1=3,不满足k ≤2,输出S =9.3.如图,若依次输入的x 分别为5π6、π6,相应输出的y 分别为y 1、y 2,则y 1、y 2的大小关系是( )A .y 1=y 2B .y 1>y 2C .y 1<y 2D .无法确定答案 C解析 由程序框图可知,当输入的x 为5π6时,sin 5π6>cos 5π6成立,所以输出的y 1=sin 5π6=12;当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=32,所以y 1<y 2.4.阅读程序框图,运行相应的程序,则程序运行后输出的结果为( )A .7B .9C .10D .11 答案 B解析 i =1,S =0,第一次循环:S =0+lg 13=-lg 3>-1;第二次循环:i =3,S =lg 13+lg 35=lg 15=-lg 5>-1;第三次循环:i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;第四次循环:i =7,S =lg 17+lg 79=lg 19=-lg 9>-1;第五次循环:i =9,S =lg 19+lg 911=lg 111=-lg 11<-1.故输出i =9.5.(2017·成都调研)定义某种运算,ab 的运算原理如图所示.设S =1x ,x ∈[-2,2],则输出的S 的最大值与最小值的差为( )A .2B .-1C .4D .3 答案 A解析 由题意可得,S (x )=⎩⎪⎨⎪⎧|x |,-2≤x ≤1,1,1<x ≤2,∴S (x )max =2,S (x )min =0, ∴S (x )max -S (x )min =2.6.(2015·课标全国Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的a 等于( )A .0B .2C .4D .14答案 B解析 由题知,若输入a =14,b =18,则 第一次执行循环结构时,由a <b 知, a =14,b =b -a =18-14=4; 第二次执行循环结构时,由a >b 知, a =a -b =14-4=10,b =4; 第三次执行循环结构时,由a >b 知, a =a -b =10-4=6,b =4; 第四次执行循环结构时,由a >b 知, a =a -b =6-4=2,b =4;第五次执行循环结构时,由a <b 知, a =2,b =b -a =4-2=2;第六次执行循环结构时,由a =b 知,输出a =2,结束. 故选B.7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为________.(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)答案 24解析 n =6,S =12×6×sin 60°=332≈2.598<3.1,不满足条件,进入循环;n =12,S =12×12×sin 30°=3<3.1,不满足条件,继续循环;n =24,S =12×24×sin 15°≈12×0.258 8=3.105 6>3.1,满足条件,退出循环,输出n 的值为24.8.以下给出了一个程序,根据该程序回答:(1)若输入4,则输出的结果是________;(2)该程序的功能所表达的函数解析式为________. 答案 (1)15 (2)y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3解析 (1)x =4不满足x <3,∴y =x 2-1=42-1=15.输出15. (2)当x <3时,y =2x ,当x >3时,y =x 2-1;否则, 即x =3,y =2.∴y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3.9.对一个作直线运动的质点的运动过程观测了8次,第i 次观测得到的数据为a i ,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的程序框图(其中a 是这8个数据的平均数),则输出的S 的值是________.答案 7解析 本题计算的是这8个数的方差,因为 a =40+41+43+43+44+46+47+488=44,所以S =(-4)2+(-3)2+(-1)2+(-1)2+02+22+32+428=7.10.如图(1)(2)所示,它们都表示的是输出所有立方小于1 000的正整数的程序框图,那么应分别补充的条件为:(1)____________; (2)______________.答案(1)n3<1 000(2)n3≥1 000解析第一个图中,n不能取10,否则会把立方等于1 000的正整数也输出了,所以应该填写n3<1 000;第二个图中,当n≥10时,循环应该结束,所以填写n3≥1 000.11.(2017·武汉质检)设a是一个各位数字都不是0且没有重复数字的三位数.将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=________.答案495解析取a1=815⇒b1=851-158=693≠815⇒a2=693;由a2=693⇒b2=963-369=594≠693⇒a3=594;由a3=594⇒b3=954-459=495≠594⇒a4=495;由a4=495⇒b4=954-459=495=a4⇒b=495.12.(2016·抚州质检)某框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是________.答案k>8?解析由题意可知输出结果为S=20,第1次循环,S=11,k=9,第2次循环,S=20,k =8,此时S满足输出结果,退出循环,所以判断框中的条件为“k>8?”.13.(2016·长沙模拟)运行如图所示的程序框图,若输出的y值的范围是[0,10],则输入的x 值的范围是________.答案 [-7,9]解析 该程序的功能是计算分段函数的值, y =⎩⎪⎨⎪⎧3-x ,x <-1,x 2,-1≤x ≤1,x +1,x >1.当x <-1时,由0≤3-x ≤10可得-7≤x <-1; 当-1≤x ≤1时,0≤x 2≤10恒成立; 当x >1时,由0≤x +1≤10可得1<x ≤9. 综上,输入的x 值的范围是[-7,9].*14.(2016·宣城模拟)已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f ′(x ).程序框图如图所示,若输出的结果S >2 0152 016,则判断框中可以填入的关于n 的判断条件是________.(填序号)①n ≤2 015? ②n ≤2 016? ③n >2 015? ④n >2 016?答案 ②解析 由题意得f ′(x )=3ax 2+x ,由f ′(-1)=0, 得a =13,∴f ′(x )=x 2+x ,即g (x )=1x 2+x =1x (x +1)=1x -1x +1.由程序框图可知S =0+g (1)+g (2)+…+g (n ) =0+1-12+12-13+…+1n -1n +1=1-1n +1,由1-1n +1>2 0152 016,得n >2 015. 故可填入②.。
2018版高考数学文北师大版大一轮复习讲义教师版文档
第1课时 坐标系1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,叫作极点,从O 点引一条射线Ox ,叫作极轴,选定一个单位长度和角的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称为极坐标系. 对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角度,ρ叫作点M 的极径,θ叫作点M 的极角,有序实数对(ρ,θ)叫做点Μ的极坐标,记作M (ρ,θ).当点M 在极点时,它的极径ρ=0,极角θ可以取任意值.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立: ⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程1.(2016·北京西城区模拟)求在极坐标系中,过点(2,π2)且与极轴平行的直线方程.解 点(2,π2)在直角坐标系下的坐标为(2cos π2,2sin π2),即(0,2).∴过点(0,2)且与x 轴平行的直线方程为y =2. 即为ρsin θ=2.2.在极坐标系中,已知两点A 、B 的极坐标分别为(3,π3)、(4,π6),求△AOB (其中O 为极点)的面积.解 由题意知A 、B 的极坐标分别为(3,π3)、(4,π6),则△AOB 的面积S △AOB =12OA ·OB ·sin ∠AOB=12×3×4×sin π6=3. 3.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.当△AOB 是等边三角形时,求a 的值.解 由ρ=4sin θ可得x 2+y 2=4y ,即x 2+(y -2)2=4. 由ρsin θ=a 可得y =a .设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示. 由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =33a ,∴B 点的坐标为(33a ,a ). 又∵B 在x 2+y 2-4y =0上,∴(33a )2+a 2-4a =0, 即43a 2-4a =0,解得a =0(舍去)或a =3.题型一 极坐标与直角坐标的互化例1 (1)以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,求曲线C 1和C 2交点的直角坐标.解 (1)∵⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴y =1-x 化成极坐标方程为ρcos θ+ρsin θ=1, 即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点), ∴0≤θ≤π2.(2)因为x =ρcos θ,y =ρsin θ,由ρsin 2θ=cos θ,得ρ2sin 2θ=ρcos θ,所以曲线C 1的直角坐标方程为y 2=x .由ρsin θ=1,得曲线C 2的直角坐标方程为y =1.由⎩⎪⎨⎪⎧ y 2=x ,y =1得⎩⎪⎨⎪⎧x =1,y =1,故曲线C 1与曲线C 2交点的直角坐标为(1,1).思维升华 (1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.(1)曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程.(2)求在极坐标系中,圆ρ=2cos θ垂直于极轴的两条切线方程.解 (1)将x 2+y 2=ρ2,x =ρcos θ代入x 2+y 2-2x =0,得ρ2-2ρcos θ=0,整理得ρ=2cos θ. (2)由ρ=2cos θ,得ρ2=2ρcos θ,化为直角坐标方程为x 2+y 2-2x =0,即(x -1)2+y 2=1,其垂直于x 轴的两条切线方程为x =0和x =2,相应的极坐标方程为θ=π2(ρ∈R )和ρcos θ=2.题型二 求曲线的极坐标方程例2 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出曲线C 的方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+(y 2)2=1,即曲线C 的方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0,或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为(12,1),所求直线斜率为k =12,于是所求直线方程为y -1=12(x -12),化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.思维升华 求曲线的极坐标方程的步骤:(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式; (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.在极坐标系中,已知圆C 经过点P (2,π4),圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解 在ρsin ⎝⎛⎭⎫θ-π3=-32中, 令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 如图所示,因为圆C 经过点 P ⎝⎛⎭⎫2,π4, 所以圆C 的半径 |PC |=(2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ. 题型三 极坐标方程的应用例3 (2015·课标全国Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即MN = 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.思维升华 (1)已知极坐标系方程讨论位置关系时,可以先化为直角坐标方程; (2)在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性.(2016·广州调研)在极坐标系中,求直线ρsin(θ+π4)=2被圆ρ=4截得的弦长.解 由ρsin(θ+π4)=2,得22(ρsin θ+ρcos θ)=2可化为x +y -22=0.圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式得:2r 2-d 2=242-(222)2=4 3.故所求弦长为4 3.1.(2015·广东)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离.解 依题可知直线l :2ρsin ⎝⎛⎭⎫θ-π4=2和点A ⎝⎛⎭⎫22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522.2.在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ(cos θ+sin θ)=1与ρ(sin θ-cos θ)=1的交点的极坐标.解 曲线ρ(cos θ+sin θ)=1化为直角坐标方程为x +y =1,ρ(sin θ-cos θ)=1化为直角坐标方程为y -x =1.联立方程组⎩⎪⎨⎪⎧ x +y =1,y -x =1,得⎩⎪⎨⎪⎧x =0,y =1,则交点为(0,1),对应的极坐标为⎝⎛⎭⎫1,π2. 3.在极坐标系中,已知圆ρ=3cos θ与直线2ρcos θ+4ρsin θ+a =0相切,求实数a 的值. 解 圆ρ=3cos θ的直角坐标方程为x 2+y 2=3x , 即⎝⎛⎭⎫x -322+y 2=94, 直线2ρcos θ+4ρsin θ+a =0的直角坐标方程为2x +4y +a =0.因为圆与直线相切,所以|2×32+4×0+a |22+42=32,解得a =-3±3 5.4.在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程.解 以极点为坐标原点,极轴为x 轴建立直角坐标系, 则曲线ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1, 且圆心为(1,0).直线θ=π4的直角坐标方程为y =x ,因为圆心(1,0)关于y =x 的对称点为(0,1),所以圆(x -1)2+y 2=1关于y =x 的对称曲线为x 2+(y -1)2=1.所以曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程为ρ=2sin θ.5.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos(θ-π6)上的动点,求|PQ |的最大值.解 对曲线C 1的极坐标方程进行转化:∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0, 即x 2+(y -6)2=36.对曲线C 2的极坐标方程进行转化: ∵ρ=12cos(θ-π6),∴ρ2=12ρ(cos θcos π6+sin θsin π6),∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36, ∴|PQ |max =6+6+(33)2+32=18.6.在极坐标系中,O 是极点,设A (4,π3),B (5,-5π6),求△AOB 的面积.解 如图所示,∠AOB =2π-π3-5π6=5π6,OA =4,OB =5,故S △AOB =12×4×5×sin 5π6=5.7.已知P (5,2π3),O 为极点,求使△POP ′为正三角形的点P ′的坐标.解 设P ′点的极坐标为(ρ,θ). ∵△POP ′为正三角形,如图所示, ∴∠POP ′=π3.∴θ=2π3-π3=π3或θ=2π3+π3=π.又ρ=5,∴P ′点的极坐标为(5,π3)或(5,π).8.在极坐标系中,判断直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系.解 直线ρcos θ-ρsin θ+1=0可化成x -y +1=0,圆ρ=2sin θ可化为x 2+y 2=2y ,即x 2+(y -1)2=1.圆心(0,1)到直线x -y +1=0的距离d =|0-1+1|2=0<1.故直线与圆相交.9.在极坐标系中,已知三点M ⎝⎛⎭⎫2,-π3、N (2,0)、P ⎝⎛⎭⎫23,π6. (1)将M 、N 、P 三点的极坐标化为直角坐标; (2)判断M 、N 、P 三点是否在一条直线上.解 (1)由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得M 的直角坐标为(1,-3);N 的直角坐标为(2,0);P 的直角坐标为(3,3). (2)∵k MN =32-1=3,k NP =3-03-2= 3.∴k MN =k NP ,∴M 、N 、P 三点在一条直线上.10.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴、y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.解 (1)由ρcos(θ-π3)=1得ρ(12cos θ+32sin θ)=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N (233,π2).(2)M 点的直角坐标为(2,0). N 点的直角坐标为(0,233).所以P 点的直角坐标为(1,33). 则P 点的极坐标为(233,π6),所以直线OP 的极坐标方程为θ=π6(ρ∈R ).。
2018高考数学文人教新课标大一轮复习配套文档:第十三
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线⎩⎪⎨⎪⎧x =2+cos θ,y =-1+sin θ (θ为参数)的对称中心( )A .在直线y =12x 上B .在直线y =-12x 上C .在直线y =x -1上D .在直线y =x +1上解:由已知消参得(x -2)2+(y +1)2=1,所以其对称中心为(2,-1).显然该点在直线y =-12x 上.故选B .2.(2016·山西校级期中)极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是( )A .2B. 2C .1D.22解:ρ=cos θ化为普通方程得x 2+y 2=x ,圆心坐标A ⎝ ⎛⎭⎪⎫12,0,ρ=sin θ化为普通方程得x 2+y 2=y ,圆心坐标B ⎝ ⎛⎭⎪⎫0,12,|AB |=⎝ ⎛⎭⎪⎫12-02+⎝ ⎛⎭⎪⎫0-122=22.故选D .3.(2016·甘谷县校级期中)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为( )A.⎝⎛⎭⎪⎫-2,3π4 B.⎝⎛⎭⎪⎫2,3π4 C.⎝⎛⎭⎪⎫-2,7π4D.⎝⎛⎭⎪⎫2,7π4 解:ρcos θ=-1可化为直角坐标方程x =-1.ρ=2sin θ可化为x 2+y 2=2y ,把x =-1代入x 2+y 2=2y ,得y =1,所以直线与圆的交点坐标为(-1,1),化为极坐标为⎝⎛⎭⎪⎫2,3π4.故选B . 4.已知曲线M 与曲线N :ρ=53cos θ-5sin θ关于极轴对称,则曲线M 的方程为( )A .ρ=-10cos ⎝ ⎛⎭⎪⎫θ-π6B .ρ=10cos ⎝⎛⎭⎪⎫θ-π6C .ρ=-10cos ⎝ ⎛⎭⎪⎫θ+π6D .ρ=10cos ⎝⎛⎭⎪⎫θ+π6解:曲线N 的直角坐标方程为x 2+y 2=53x -5y ,即⎝ ⎛⎭⎪⎫x -5322+⎝ ⎛⎭⎪⎫y +522=25,其圆心为⎝ ⎛⎭⎪⎫532,-52,半径为5.又因为曲线M 与曲线N 关于极轴对称,所以曲线M 仍表示圆且圆心为⎝⎛⎭⎪⎫532,52,半径为5,所以曲线M 的方程为⎝ ⎛⎭⎪⎫x -5322+⎝ ⎛⎭⎪⎫y -522=25,即x 2+y 2=53x +5y ,化为极坐标方程为ρ=53cos θ+5sin θ,即ρ=10cos ⎝⎛⎭⎪⎫θ-π6.故选B .5.直线⎩⎪⎨⎪⎧x =-1+2t ,y =-1-t(t 为参数)被曲线⎩⎪⎨⎪⎧x =1+3cos θ,y =1+3sin θ(θ为参数,θ∈R )所截得的弦长是( )A.355B.655C.322D .6 2解:因为⎩⎪⎨⎪⎧x =-1+2t ,y =-1-t ,所以x +2y +3=0.因为⎩⎪⎨⎪⎧x =1+3cos θ,y =1+3sin θ,所以(x -1)2+(y -1)2=9,(-1)=2,即m =2. +c2+b 2=2.∈(0,+∞),所以a 2+b22+b 2+c22=a 2+2的最大值为2.2016·全国Ⅱ)已知函数为不等式f (x )<2的解集.,b ∈M 时,|a +b |<⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.。
2018高考数学(文)(人教新课标)大一轮复习配套文档第十三章 选考内容 单元测试卷 Word版含答案
一、选择题:本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的..曲线(θ为参数)的对称中心( ).在直线=上.在直线=上.在直线=上.在直线=+上解:由已知消参得()+(+)=,所以其对称中心为(,).显然该点在直线=上.故选..()极坐标方程分别是ρ=θ和ρ=θ的两个圆的圆心距是( )..解:ρ=θ化为普通方程得+=,圆心坐标,ρ=θ化为普通方程得+=,圆心坐标,==.故选..()在极坐标系(ρ,θ)(≤θ<π)中,曲线ρ=θ与ρθ=的交点的极坐标为( )解:ρθ=可化为直角坐标方程=.ρ=θ可化为+=,把=代入+=,得=,所以直线与圆的交点坐标为(,),化为极坐标为.故选..已知曲线与曲线:ρ=θθ关于极轴对称,则曲线的方程为( ).ρ=.ρ=.ρ=.ρ=解:曲线的直角坐标方程为+=,即+=,其圆心为,半径为.又因为曲线与曲线关于极轴对称,所以曲线仍表示圆且圆心为,半径为,所以曲线的方程为+=,即+=+,化为极坐标方程为ρ=θ+θ,即ρ=.故选..直线(为参数)被曲线(θ为参数,θ∈)所截得的弦长是( ).解:因为所以++=.因为所以()+()=,所以圆心(,)到直线++=的距离==,弦长为=.故选..已知不等式>的解集与不等式++>的解集相同,则,的值为( ).=,=.=,=.=,=.=,=解:解不等式>,得<或>,所以++=的两个根为和,由根与系数的关系知=,=.故选..()已知,∈,则使不等式+<+一定成立的条件是( ).+> .+<.> .<解:>时,+=+;<时,+<+.故选..设<<,且()=,则下列结论中正确的是( ) .()<<().<()<().()<<().()<<()解:因为<<,所以>>>,因为()=,定义域为{≥且≠},所以′()=<,所以()在(,+∞)上为减函数,所以()<<()<().故选..已知命题:∀∈,++≥,命题:∃∈,++=,那么,“命题为真命题”是“命题为真命题”的( ).充要条件.必要不充分条件.充分不必要条件.既不充分也不必要条件解:由绝对值不等式的几何性质可知,∀∈,++≥(+)()=,故若命题为真命题,则≤;当命题为真命题时,方程++=有实根,则Δ=()(+)=≥,解得≤;所以“命题为真命题”是“命题为真命题”的充要条件.故选..已知函数()=(<<+),若关于的不等式()<的解集中的整数恰有个,则实数的取值范围为( ) .<< .<<.<< .<<解:不等式()<的解集中的整数恰有个,即<(<<+)的解集中的整数恰有个.<可化为()()<,即·<,由于不等式解集中整数恰有个,所以>,>,不等式的解为<< <,从而解集中的个整数为,,,≤<,即<≤,<≤,结合<<+,得<+,<,即<<.故选.二、填空题:本大题共小题,每小题分,共分..()在平面直角坐标系中,倾斜角为的直线与曲线:(α为参数)交于,两点,且=,以坐标原点为极点,轴正半轴为极轴建立极坐标系,则直线的极坐标方程是.解:曲线的普通方程为()+()=,圆心(,),半径=,又弦长=,故为圆的直径,即直线过圆心(,),又直线的斜率=,所以直线的方程为=,极坐标方程为ρ(θθ)=.故填ρ(θθ)=..已知圆的极坐标方程为ρ=,若点在圆上运动,点为极点,点在的延长线上,且∶=∶,则动点的轨迹方程为.解:设点的极坐标为(ρ,θ).因为点在的延长线上,且∶=∶,所以点的极坐标为,由于点在圆上,所以ρ=,故点的轨迹方程为ρ=.故填ρ=..已知函数()=++(>),若不等式()≥的解集为(∞,]∪[,+∞),则的值为.解:由已知有解得=.故填..设()=,若不等式()≥对任意实数≠恒成立,则的取值集合是.解:=≤=,所以右式最大值为,从而≥,解得≤或≥.故的取值集合为{≤或≥}.故填{≤或≥}.三、解答题:解答应写出文字说明、证明过程或演算步骤..(分)在极坐标系中,已知圆经过点,圆心为直线ρ=与极轴的交点,求圆的极坐标方程.解:因为圆的圆心为直线ρ=与极轴的交点,所以在ρ=中令θ=,得ρ=.所以圆的圆心坐标为(,).因为圆经过点,所以圆的半径为==.所以圆经过极点.所以圆的极坐标方程为ρ=θ..(分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,直线的极坐标方程为ρ=,曲线的参数方程为(α为参数).()写出直线的直角坐标方程;()求曲线上的点到直线的距离的最大值.解:()因为ρ=,所以ρ=,所以=,即直线的直角坐标方程为+=.()解法一:由已知可得,曲线上的点的坐标为(+α,α),所以曲线上的点到直线的距离==≤.故曲线上的点到直线的距离的最大值为.解法二:曲线的直角坐标方程为()+=,所以曲线是以(,)为圆心,为半径的圆.圆心到直线的距离为=,所以曲线上的点到直线的距离的最大值为+=..(分)()在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线的极坐标方程为ρ=θ,直线的参数方程为(为参数,α为直线的倾斜角).。
2018年大一轮数学高考复习(人教)课件:
WEND
第八页,编辑于星期六:二十二点 十二分。
数学
3.判断下列结论的正误(正确的打“√”错误的打“×”) (1)算法只能解决一个问题,不能重复使用.(×) (2)程序框图中的图形符号可以由个人来确定.(×) (3)输入框只能紧接开始框,输出框只能紧接结束框.(×) (4)条件结构的出口有两个,但在执行时,只有一个出口是有效 的.(√) (5)5=x 是赋值语句.(×) (6)输入语句可以同时给多个变量赋值.(√)
第29页
返回导航
数学
第二十九页,编辑于星期六:二十二点 十二分。
解析:依题意及程序框图可得
-2<x<2, 1≤2x≤3
或 |1x≤|≥x2+,1≤3,
解得 0≤x≤log23 或 x=2,选 C.
答案:C
第30页
返回导航
数学
第三十页,编辑于星期六:二十二点 十二分。
(4)(2017·豫东、豫北十所名校联考)
第9页
返回导航
第九页,编辑于星期六:二十二点 十二分。
数学
(7)算法的每一步都有确定的意义,且可以无限地运算.(×) (8)一个程序框图一定包含顺序结构,也包含条件结构(选择结构) 和循环结构.(×) (9)一个循环结构一定包含条件结构.(√) (10)当型循环是给定条件不成立时,执行循环体,反复进行,直到 条件成立为止.(×)
条件是( )
A.s>12?
B.s>35?
C.s>170?
D.s>45?
第40页
返回导航
数学
第四十页,编辑于星期六:二十二点 十二分。
数学
解析:选 C.程序框图的执行过程如下:s=1,k=9;s=190,k=8; s=190×89=180,k=7;s=180×78=170,k=6,循环结束.故可填入 的条件为 s>170?
2018年大一轮数学高考复习(人教)课件:13-1
-3x-1+2a,x≤a 时,f(x)=x-1-2a,a<x≤-1 ,
3x+1-2a,x>-1
f(x)min=f(a)=-3a-1+2a=5,解得 a=-6;
当 a>-1 时,f(x)=--x3+x-1+1+2a2,a,-x≤1<-x≤1 a , 3x+1-2a,x>a
f(x)min=f(a)=-a+1+2a=5,解得 a=4.
第20页
返回导航
第二十页,编辑于星期六:二十二点 十二分。
数学
考点二 利用绝对值不等式求最值 1.利用绝对值性质求有关绝对值函数的最值 命题点 2.利用绝对值函数的最值求参数
第21页
返回导航
第二十一页,编辑于星期六:二十二点 十二分。
数学
[例2] (1)对任意x,y∈R,求|x-1|+|x|+|y-1|+|y+1|的最小值.
第22页
返回导航
第二十二页,编辑于星期六:二十二点 十二分。
解:∵x,y∈R, ∴|x-1|+|x|≥|(x-1)-x|=1, |y-1|+|y+1|≥|(y-1)-(y+1)|=2, ∴|x-1|+|x|+|y-1|+|y+1|≥1+2=3. ∴|x-1|+|x|+|y-1|+|y+1|的最小值为 3.
第30页
返回导航
第三十页,编辑于星期六:二十二点 十二分。
数学
[高考真题体验] 1.(2015·高考课标全国卷Ⅰ)已知函数 f(x)=|x+1|-2|x-a|,a>0. (1)当 a=1 时,求不等式 f(x)>1 的解集; (2)若 f(x)的图象与 x 轴围成的三角形面积大于 6,求 a 的取值范围.
第12页
返回导航
第十二页,编辑于星期六:二十二点 十二分。
数学
[方法引航] 解绝对值不等式的基本方法有: 1利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的 普通不等式; 2当不等式两端均为正号时,可通过两边平方的方法,转化为解 不含绝对值符号的普通不等式; 3利用绝对值的几何意义,数形结合求解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范训练
1.设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .
(1)求a 的值;
(2)求函数f (x )=|x +a |+|x -2|的最小值.
解:(1)∵32∈A ,12∉A ,
∴⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪
⎪⎪12-2≥a ,因此12<a ≤32, 又a ∈N *,从而a =1.
(2)由(1)知,f (x )=|x +1|+|x -2|,
又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,
当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时等号成立. 故f (x )的最小值为3.
2.设函数f (x )=|x -a |+3x ,其中a >0.
(1)当a =1时,求不等式f (x )≥3x +2的解集;
(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )≥3x +2化为|x -1|≥2, ∴x ≥3或x ≤-1. 所以f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}.
(2)∵f (x )≤0⇔|x -a |+3x ≤0.(*)
不等式(*)化为⎩⎨⎧ x ≥a ,x -a +3x ≤0或⎩⎨⎧ x <a ,a -x +3x ≤0.
由于a >0,∴不等式组的解集为⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪ x ≤-a 2. 依题意,得-a 2=-1,故a =2.
3.已知函数f (x )=|x -3|-2,g (x )=-|x +1|+4.
(1)若函数f (x )的值不大于1,求x 的取值范围;
(2)若不等式f (x )-g (x )≥m +1对任意x ∈R 恒成立,求实数m 的最大值.
解:(1)依题意,f (x )≤1,即|x -3|≤3.
∴-3≤x -3≤3,∴0≤x ≤6,
因此实数x 的取值范围是[0,6].
(2)f (x )-g (x )=|x -3|+|x +1|-6≥|(x -3)-(x +1)|-6=-2, ∴f (x )-g (x )的最小值为-2,
要使f (x )-g (x )≥m +1的解集为R .
应有m +1≤-2,∴m ≤-3,故实数m 的最大值是-3.
4.已知函数f (x )=|2x -1|+|x -a |,a ∈R . (1)当a =3时,解不等式f (x )≤4;
(2)若f (x )=|x -1+a |,求x 的取值范围.
解:(1)当a =3时,
f (x )=|2x -1|+|x -3|=⎩⎪⎨⎪⎧ 3x -4,x ≥3,x +2,12<x <3,4-3x ,x ≤12,
其图象如图所示,与直线y =4相交于点A (0,4)和B (2,4), ∴不等式f (x )≤4的解集为
{x |0≤x ≤2}.
(2)∵f (x )=|2x -1|+|x -a |≥|(2x -1)-(x -a )|=|x -1+a |, ∴f (x )=|x -1+a |⇔(2x -1)(x -a )≤0,
①当a <12时,x 的取值范围是⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪
a ≤x ≤12; ②当a =12时,x 的取值范围是⎩⎨⎧⎭⎬⎫12;
③当a >12时,x 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪
12≤x ≤a .。