2020年山东省青岛二十六中中考数学(4月份)模拟试卷 (解析版)
青岛版2020年中考数学模拟题(附答案)
青岛版2020年中考数学模拟题(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题方体的个数是 ( )A.7个B.8个C.9个D.10个2.如图,边长为2的正方形ABCD 的顶点A 在y轴上,顶点D 在反比例函数y =kx (x>0)的图像上,已知点B 的坐标是(56,511),则k 的值为( )A .10B .8C .6D .43.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( ) A.有最大值4m B..有最大值4m -C.有最小值4m D.有最小值4m -4.分式方程112x x =+的解是( ) A .1x = B .1x =- C .2x = D .2x =- 5.下列运算正确的是( )A 、(x 3)4=x 7B 、(-x )2•x 3=x 5C 、(-x )4÷x=-x 3D 、x+x 2=x 36.在Rt △ABC 中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为( ) A. 15 B. 12 C. 13 D. 147.下列运算正确的是A .(a+b )2=a 2+b 2B .x 3+x 3=x 6C .(a 3)2=a 5D .(2x 2)(﹣3x 3)=﹣6x 58.在3,-1,0,-2这四个数中,最大的数是【 】 A .0 B .6 C .-2 D .39. A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时.已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9696944x x +=+- B .4848944x x +=+- C .4849x+= D .4848944x x +=+- 10.若关于,x y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34 B .43 C .34- D .43- 11.如图,两个反比例函数y = 1x k 和y = 2xk在第一象限内的图象依次是C 1和C 2,设点P在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为( )A .k 1+k 2B .k 1-k 2C .k 1·k 2 D. 12k k 12.如图,数轴上的点P 表示的数可能是( )A .5B .5-C . -3.8D .10- 评卷人 得分二、填空题13.在Rt △ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______14.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________15.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm16.分解因式:a 2﹣4= .17.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=5,AC=2,则DF 的长为_________.18.若a ,b 分别是方程x 2+2x -2017=0的两个实数根,则a 2+3a +b =_________.19.如图,直线122y x=-与x轴、y 轴分别交于点A 和点B ,点C在直线AB上,且点C的纵坐标为一1 ,点D 在反比例函数y=kx的图象上,CD平行于y轴,△OCD的面积S=72,则k的值为_____.20.点A(a,b)是一次函数y=x﹣1与反比例函数y=4x的交点,则a2b﹣ab2=_____.评卷人得分三、解答题∥CD,∠BCD=90o,AB=AD=10cm,BC=8cm,点P从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动. 已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.22.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=2ax2+ax-32经过点B.(1)写出点B的坐标;(2)求抛物线的解析式;(3)若三角板ABC从点C开始以每秒1个单位长度的速度向x轴正方向平移,求点A落在抛物线上时所用的时间,并求三角板在平移过程扫过的面积;(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.23.如图,AB是⊙O的直径,CD为⊙O 的弦,过点B作⊙O的切线,交AD的延长线于点E,连接AC并延长,过点E作EG⊥AC的延长线于点G,并且∠GCD= ∠GAB.(1)求证: AC BD =u u u r u u u r;(2)若AB =10,sin ∠ADC =35,求AG 的长.24.化简求值:a−b a+2b ÷a 2−b 2a 2+4ab+4b 2−1,其中a =3+√5,b =3−√5.答案1.C2.B .3.B4.A5.B .6.B7.D8.D 。
山东省青岛二十六中2020年九年级中考数学模拟试卷
题号一二三总分得分一、选择题(本大题共8小题,共24分)1.2019年3月4日,中国电影股份有限公司发布关于电影《流浪地球》票房进展公告称:截至3月3日24时,在中国大陆地区上映27天累计票房收入约为人民币4540000000元,数据4540000000科学记数法表示应为()A. 45.4×108B. 4.54×109C. 4.54×1010D. 0.454×10102.如图,直线a//b,∠1=30°,∠2=40°,且AD=AC,则∠3的度数是()A. 70°B. 40°C. 45°D. 35°3.在四个实数−√3、3、√2、−1.4中,大小在−1和2之间的数是()A. −√3B. 3C. √2D. −1.44.如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A. 14B. 20C. 22D. 285.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=1 2∠A,tan∠CBF=13,则CF的长为A. 125B. 52C. 12√3D. √56.如图,在平面直角坐标系中将△ABC绕点C(0,−1)旋转180°得到△A1B1C1,设点A1的坐标为(m,n),则点A的坐标为()A. (−m,−n)B. (−m,−n−2)C. (−m,−n−1)D. (−m,−n+1)7.若反比例函数y=kx,当x<0时,y随x的增大而增大,则k的取值范围是()A. k<0B. k>0C. k≤0D. k≥08.已知一次函数by x ca=+的图象如图,则二次函数2y ax bx c=++在平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共7小题,共21分)8.因式分解:3ax2+6ax+3a=________.9.关于x的方程(a−1)x2−2x+1=0有两个不相等的实数根,则a的取值范围是___________.10.如图,在矩形ABCD中,点E在边BC上,BE=EC=2,且AE=AD,以A为圆心,AB长为半径作圆弧AE于点F,则扇形ABF的面积是______ (结果保留π).11.已知在平面直角坐标系中,点A(−3,−1)、B(−2,−4)、C(−6,−5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为______.12.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的点A,沿圆柱表面爬到与A相对的上底面点B,则蚂蚁爬的最短路线长约为________(π取3).13.如图,正方形A1ABC的边长为1,正方形A2A1B1C1边长为2,正方形A3A2B2C2边长为4,…依此规律继续做正方形A n+1A n B n C n,其中点A,A1,A2,A3,…在同一条直线上,连接AC1交A1B1于点D1,连接A1C2交A2B2于点D2,…,若记△AA1D1的面积为S1,△A1A2D2的面积为S2,…,△A n−1A n D n的面积为S n,则S2019=________.14.如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:∠以点A为圆心,小于AC的长为半径画弧,分EF的长为半径画弧,两别交AB、AC于点E、F;∠分别以点E、F为圆心,大于12弧相交于点G;∠作射线AG交BC边于点D.则∠ADC的度数为______.三、作图题:本大题满分4分.15. 已知:如图,ABC∠,射线BC上一点D.求作:等腰PBD∆的底边,点P在ABC∆,使线段BD为等腰PBD∠内部,且点P到ABC∠两边的距离相等.四、解答题(本大题共9小题,共75分)16(1)解方程:x2+2x−3=0;(2)解不等式组:{2x>3−x4x−2<x+417某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛其预赛成绩如图:(1)根据上图填写下表平均数中位数众数方差甲班8.58.5______ ______乙班8.5______ 10 1.6(2)根据上表中的方差你认为哪班的成绩较好?并说明你的理由18为了安全,请勿超速。
2020年山东省青岛市第二十六中学高三数学理模拟试题含解析
2020年山东省青岛市第二十六中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知x,y满足约束条件,则z=2x+y的最大值为()A.2 B.C.4 D.参考答案:D考点:基本不等式.专题:不等式的解法及应用.分析:根据约束条件画图,判断当直线与圆相切时,取最大值,运用直线与圆的位置关系,注意圆心,半径的运用得出≤2.解答:解:∵x,y满足约束条件,∴根据阴影部分可得出当直线与圆相切时,取最大值,y=﹣2x+k,≤2,即k所以最大值为2,故选:D点评:本题考查了运用线性规划问题,数形结合的思想求解二元式子的最值问题,关键是确定目标函数,画图.2. 设是双曲线的右焦点,双曲线两条渐近线分别为,过作直线的垂线,分别交于、两点,且向量与同向.若成等差数列,则双曲线离心率的大小为A. B. C.D 2参考答案:A设=m?d,=m,=m+d,由勾股定理,得 (m?d)2+m2=(m+d)2.解得m=4d.设∠AOF=,则cos2=.cos=,所以,离心率e=.选A3. 设函数是定义在R上的偶函数,为其导函数.当时,,且,则不等式的解集为()A. B.C. D.参考答案:B4. 若,且,则()A.B. C. D.参考答案:B5. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()A.B.C.D.参考答案:C6. 若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是A. (x-3)2+()2=1B. (x-2)2+(y-1)2=1C. (x-1)2+(y-3)2=1D. ()2+(y-1)2=1参考答案:B略7. 当时,不等式恒成立,则实数a的取值范围为() A. B. C. D.参考答案:C略8. 设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【解答】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,比较基础.9. 已知全集U={x I x < 5},集合,则(A) (B) (C) (D)参考答案:C10. 在平面直角坐标系:xOy中,设A、B、C是圆上相异三点,若存在正实数,,使得,则的取值范围是()A.(,1) B.(,1) C.(1,2) D.(2,)参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 将直角三角形ABC沿斜边上的高AD折成120°的二面角,已知直角边,那么下面说法正确的是.(1)平面ABC⊥平面ACD(2)四面体D-ABC的体积是(3)二面角的正切值是(4)BC与平面ACD所成角的正弦值是参考答案:(3)(4)12. 已知函数f(x)的定义域为,部分对应值如下表.下列关于f(x)的命题:①函数f(x)是周期函数;②函数f(x)在是减函数;③如果当x∈时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是.参考答案:②⑤考点:利用导数求闭区间上函数的最值;函数的周期性;函数的零点;利用导数研究函数的单调性.专题:阅读型.分析:先由导函数的图象和原函数的关系画出原函数的大致图象,再借助与图象和导函数的图象,对五个命题,一一进行验证,对于假命题采用举反例的方法进行排除即可得到答案.解答:解:由导函数的图象和原函数的关系得,原函数的大致图象可由以下两种代表形式,如图:由图得:①为假命题.函数f(x)不能断定为是周期函数.②为真命题,因为在上导函数为负,故原函数递减;③为假命题,当t=5时,也满足x∈时,f(x)的最大值是2;④为假命题,当a离1非常接近时,对于第二个图,y=f(x)﹣a有2个零点,也可以是3个零点.⑤为真命题,动直线y=a与y=f(x)图象交点个数可以为0、1、2、3、4个,故函数y=f (x)﹣a的零点个数可能为0、1、2、3、4个.综上得:真命题只有②⑤.故答案为:②⑤点评:本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.13. 已知函数为偶函数,则实数的值为参考答案:由题意知对于恒成立,则由,,即,于是由,得.14. 若f(x)=2x+a?2﹣x为奇函数,则a= .参考答案:-1【考点】函数奇偶性的性质.【专题】计算题.【分析】根据题意,由f(x)为奇函数,可得f(﹣x)=﹣f(x)恒成立,对其变形可得(a+1)(2x+2﹣x)=0恒成立,分析可得必有a+1=0,即可得答案.【解答】解:对于f(x)=2x+a?2﹣x,易得其定义域为R,关于原点对称,若f(x)=2x+a?2﹣x为奇函数,则必有f(﹣x)=﹣f(x)恒成立,即2﹣x+a?2x=﹣(2x+a?2﹣x)恒成立,变形可得(a+1)(2x+2﹣x)=0恒成立,则必有a+1=0,即a=﹣1,故答案为﹣1.【点评】本题考查函数奇偶性的性质,注意奇偶性针对定义域中任意的变量,即f(﹣x)=﹣f(x)或f(﹣x)=f(x)在定义域中恒成立.15. 在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则=____________.参考答案:4略16. 设函数f(x)是定义在R上的周期为2的函数,且当x∈[-1,1)时,f(x)=,则f(5)=.参考答案:【知识点】函数的值。
精品解析2020年山东省青岛市中考数学模拟试卷(解析版)
中考数学试卷(样题)一、选择题(本题满分24分,共有8道小题,每小题3分,)1.-5的绝对值是( )A. -B. -5C. 5D. 55【答案】C【解析】【分析】数轴上表示数a的点与原点的距离,叫做数a的绝对值.【详解】﹣5的绝对值是|﹣5|=5故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义.2.某种计算机完成一次基本运算的时间约为0.000 000 001 s,把0.000 000 001 s用科学记数法可表示为( )A. 0.1×10-8 sB. 0.1×10-9 sC. 1×10-8 sD. 1×10-9 s【答案】D【解析】试题解析:0.000000001=1×10-9,故选D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A选项:不是轴对称图形.是中心对称图形,故此选项不符合题意;B 选项:是轴对称图形,又是中心对称图形,故此选项符合题意;C 选项:是轴对称图形,不是中心对称图形,故此选项不符合题意;D 选项:不是轴对称图形,不是中心对称图形,故此选项不符合题意. 故选B .【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.计算a ·a 5-(2a 3)2的结果为( ) A. a 6-2a 5 B. -a 6C. a 6-4a 5D. -3a 6【答案】D 【解析】试题解析:原式66643.a a a =-=- 故选D.点睛:同底数幂相乘,底数不变指数相加.5.如图,线段AB 经过平移得到线段A B '',其中点A ,B 的对应点分别为点A ',B ',这四个点都在格点上.若线段AB 上有一个点(),P a b ,则点P 在A B ''上的对应点P '的坐标为( )A. ()2,3a b -+B. ()2,3a b ++C. ()2,3a b --D. ()2,3a b +-【答案】A【解析】【分析】先利用点A它的对应点A′的坐标特征可得到线段AB先向左平移2个单位,再向上平移3和单位得到线段A′B′,然后利用点平移的坐标规律写出点P(a,b)平移后的对应点P′的坐标.【详解】∵点A(1,−1)先向左平移2个单位,再向上平移3和单位得到点A′(−1,2),∴线段AB先向左平移2个单位,再向上平移3和单位得到线段A′B′,∴点P(a,b)平移后的对应点P′的坐标为(a−2,b+3).故选A【点睛】本题考查坐标与平移,熟练掌握坐标平移的性质是解题关键.6.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为A. 1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-【答案】A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来平均车速为x km/h,则根据题意可列方程为:180x﹣180150%x+()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.7.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD 为15cm,若纸扇两面贴纸,则贴纸的面积为()A. 175πcm 2B. 350πcm 2C.8003πcm 2 D. 150πcm 2【答案】B 【解析】 【分析】贴纸部分的面积等于大扇形的面积减去小扇形ADE 的面积,由此即可解答. 【详解】∵AB=25,BD=15, ∴AD=10,∴S 贴纸=2212025120102360360ππ⎛⎫⋅⨯⋅⨯-⨯ ⎪⎝⎭=175π×2=350cm 2,故选B .【点睛】本题主要考查扇形面积的计算的应用,解答本题的关键是熟练掌握扇形面积计算公式. 8.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A. x <-2或x >2B. x <-2或0<x <2C. -2<x <0或0<x <2D. -2<x <0或x >2【答案】D 【解析】 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为2,∴点B 的横坐标为-2,∵由函数图象可知,当-2<x <0或x >2时函数y 1=k 1x 的图象在22k y x=的上方, ∴当y 1>y 2时,x 的取值范围是-2<x <0或x >2. 故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x的取值范围是解答此题的关键.二、填空题(本题满分18分,共有6道小题,每小题3分,)9.计算:3282=_____.【答案】2【解析】【分析】先把二次根式化为最简二次根式,然后把括号内合并后再进行二次根式的除法运算即可得出答案.【详解】原式=(42﹣22)÷2=22÷2=2.故答案为2.【点睛】本题考查了二次根式的混合运算.把二次根式化为最简二次根式,再根据混合运算顺序进行计算是解题的关键.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有________名.【答案】2400【解析】【详解】解:估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为240011.如图AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=________.【答案】62°【解析】试题分析:连接AD,根据AB是直径,可知∠ADB=90°,然后根据同弧所对的圆周角可得∠BAD=∠DCB=28°,然后根据直角三角形的两锐角互补可得∠ABD=62°.故答案为:62.点睛:此题主要考查了圆周角定理,解题时先利用直径所对的圆周角为直角,得到直角三角形,然后根据同弧所对的圆周角相等即可求解.12.把一个长、宽、高分别为3cm、2cm、1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________.【答案】6 h【解析】试题分析:根据题意可得铜块的体积=3×2×1=6,则圆柱体的体积=Sh=6,则S=.考点:反比例函数的应用13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5CE=,F为DE的中点.若CEF∆的周长为18,则OF的长为________.【答案】7 2【解析】【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【详解】解:∵四边形ABCD是正方形,∴BO DO =,BC CD =,90BCD ︒∠=. 在Rt DCE ∆中,F 为DE 的中点, ∴12CF DE EF DF ===. ∵CEF ∆的周长为18,5CE =, ∴18513CF EF +=-=, ∴13DE DF EF =+=.在Rt DCE ∆中,根据勾股定理,得2213512DC =-=, ∴12BC =, ∴1257BE =-=.在BDE ∆中,∵BO DO =,F 为DE 的中点, 又∵OF 为BDE ∆的中位线,∴1722OF BE ==. 故答案为72.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中. 14.如图,以边长为20cm 的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中 虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为________cm 3 .【答案】144 【解析】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD =AK =BE =BF =CG =CH =4cm ,∴∠A =∠B =∠C =60°,AB =BC =AC ,∠POQ =60°,∴∠ADO =∠AKO =90°. 连结AO ,作QM ⊥OP 于M .在Rt △AOD 中,∠OAD =∠OAK =30°,∴OD =33AD =33cm .∵PQ =OP =DE =20﹣2×4=12(cm ),∴QM =OP •sin60°=12×3 2=63(cm),∴无盖柱形盒子的容积=143126323⨯⨯⨯=144(cm3);故答案为144.三、解答题(共1小题,满分4分)15.已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【答案】作图见解析【解析】试题分析:根据基本作图作出一个角等于已知角,然后作出这个角的角平分线,然后截取线段OC的长,作垂线,再垂线段的长为半径,以O点作圆即可.试题解析:如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题,)16.计算(1)化简:2211()n nnn n+-+÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【答案】(1)11nn+-;(2)m>﹣98.【解析】试题分析:(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;(2)根据方程有两个不相等的实数根,得到根的判别式大于0,求出m的范围即可.试题解析:解:(1)原式=221n nn++•21nn-=21nn+()•11nn n+-()()=11nn+-;(2)∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣98.点睛:本题考查了分式的混合运算,以及根的判别式,熟练掌握运算法则是解答本题的关键.17.小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜.这个游戏对双方公平吗?请说明理由.【答案】不公平;理由见解析【解析】试题分析:根据题意画出树状图,再分别求出两次数字之和大于5和两次数字之和不大于5的概率,如果概率相等,则游戏公平,如果不概率相等,则游戏不公平;试题解析:根据题意,画树状图如下:∴P(两次数字之和大于5)=63168=,P(两次数字之和不大于5)=105168=,∵38≠58,∴游戏不公平;18.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)【参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70】【答案】热气球离地面的高度约为233米. 【解析】 【分析】作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,表示出DB 和DC ,根据正切的概念求出x 的值即可. 【详解】解:作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,由题意得,∠ABD=45°,∠ACD=35°, 在Rt △ADB 中,∠ABD=45°, ∴DB=x ,在Rt △ADC 中,∠ACD=35°, ∴tan ∠ACD= AD CD, ∴100x x = 710, 解得,x≈233.答:热气球离地面的高度约为233米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.19.甲、乙两名队员10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表: 平均成绩/环中位数/环 众数/环 方差 甲 a77 1.2乙 7b8c(1)求a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【答案】(1)a=7,b=7.5,c=4.2;(2)见解析. 【解析】 【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可; (2)结合平均数和中位数、众数、方差三方面的特点进行分析. 【详解】(1)甲的平均成绩a=516274829112421⨯+⨯+⨯+⨯+⨯++++=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b=7+82=7.5(环), 其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2] =110×(16+9+1+3+4+9) =4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.20. 某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.【答案】甲盒用0.6米材料;制作每个乙盒用0.5米材料;l=0.1n+1500,1700.【解析】试题分析:首先设制作每个乙盒用米材料,则制作甲盒用(1+20%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n的取值范围,然后根据l与n的关系列出函数解析式,根据一次函数的增减性求出最小值.试题解析:(1)设制作每个乙盒用米材料,则制作甲盒用(1+20%)米材料由题可得:解得(米)经检验是原方程的解,所以答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料(2)由题∴∵,∴,∴当时,考点:分式方程的应用,一次函数的性质.21.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【答案】(1)证明见解析;(2)四边形BEDF是菱形;理由见解析.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,∠BAE=∠DCF,由SAS证明△ABE≌△CDF即可;(2)由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,得出四边形BEDF是平行四边形,得出OB=OD,再由等腰三角形的三线合一性质得出EF⊥BD,即可得出四边形BEDF是菱形.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,{AB CDBAE DCF AE CF=∠=∠=,∴△ABE≌△CDF(SAS);(2)四边形BEDF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=16-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3m . 【解析】【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值. 试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x-=答:两排灯的水平距离最小是43考点:二次函数的实际应用.23.问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形所以,当n=4时,m=0用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形所以,当n=5时,m=1用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=6时,m=1综上所述,可得表①探究二:用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k-1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒.(只填结果)【答案】n=7,m=2;503个;672.【解析】【分析】(1)、根据给出的解题方法得出答案;(2)、根据题意将表格填写完整;应用:(1)、根据题意得出k的值,从而得出三角形的个数;根据三角形的性质得出答案.【详解】试题解析:探究二(1)若分成1根木棒、1根木棒和5根木棒,则不能搭成三角形若分为2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形若分为3根木棒、3根木棒和1根木棒,则能搭成一种等腰三角形(2)所以,当n=7时,m=2问题应用:(1)∵2016=4×504 所以k=504,则可以搭成k-1=503个不同的等腰三角形;(2) 672考点:规律题24.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;:S△ACD=9:16?若存在,求出t的值;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)258或5;(2)213=1232S t t-++;(3)92;(4)2.88.【解析】试题分析:(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质表示出EH,根据相似三角形的性质表示出QM,FQ,根据图形的面积即可得到结论;(3)根据题意列方程得到t的值,于是得到结论;(4)由角平分线的性质得到DM的长,根据勾股定理得到ON的长,由三角形的面积公式表示出OP,根据勾股定理列方程即可得到结论.试题解析:(1)∵矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=12AO=52,∵∠PMA=∠ADC=90°,∠P AM=∠CAD,∴△APM∽△ADC,∴AP AM AC AD=,∴AP=t=25 8,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,∵∠P AO=∠ECO,AO=OC,∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴EH CE AB AC=,∴EH=35 t,∵DN =AD CD AC⋅=245, ∵QM ∥DN , ∴△CQM ∽△CDN ,∴QM CQ DN CD=,即62465QM t-=, ∴QM =2445t -,∴DG =2424455t --=45t , ∵FQ ∥AC , ∴△DFQ ∽△DOC ,∴FQ DGOC DN=, ∴FQ =56t ,∴S 五边形OECQF =S △OEC +S 四边形OCQF =13152445(5)25265t t t -⨯⨯++⋅=2131232t t -++, ∴S 与t 的函数关系式为2131232S t t =-++;(3)存在, ∵S △ACD =12×6×8=24, ∴S 五边形OECQF :S △ACD =(2131232t t -++):24=9:16,解得t =92,t =0,(不合题意,舍去), ∴t =92时,S 五边形S 五边形OECQF :S △ACD =9:16; (4)如图3,过D 作DM ⊥AC 于M ,DN ⊥AC 于N , ∵∠POD =∠COD , ∴DM =DN =245, ∴ON =OM75,∵OP •DM =3PD , ∴OP =558t -, ∴PM =18558t -, ∵222PD PM DM =+,∴22218524(8)()()585t t -=-+,解得:t ≈15(不合题意,舍去),t ≈2.88, ∴当t =2.88时,OD 平分∠COP .。
2020—2021年山东省青岛市中考数学模拟试题(解析版)(下载后可直接打印).doc
山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km 用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5 5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC =BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c 个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC =8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km 用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC =BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC =180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1 .【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5 环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54 °.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC =∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x 方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 4 个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=7 ,n= 1 ,a=17.5% ,b=45% ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 3 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?。
〖精选4套试卷〗青岛市2020年中考数学四模考试卷
2019-2020学年数学中考模拟试卷一、选择题1.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n°后能与原来的图案重合,那么n的值可能是()A.45B.60C.90D.1202.剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.如图,是小明作线段AB的垂直平分线的作法及作图痕迹,则四边形ADBC一定是()A.矩形B.菱形C.正方形D.无法确定4.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A. B. C. D.5.下列计算正确的是( ) A .236a a a ⨯=B .236a a a +=C .()326a a = D .33a a a ÷=6.如图,是由一个长方体和一个圆锥体组成,则该几何体的左视图是( )A. B. C. D.7.O 为等边△ABC 所在平面内一点,若△OAB 、△OBC 、△OAC 都为等腰三角形,则这样的点O 一共有( ) A .4B .5C .6D .108.若关于x 、y 的二元一次方程组3234x y ax y a +=+⎧⎨+=-⎩的解满足x +y >2,则a 的取值范围为( )A .a <−2B .a >−2C .a <2D .a >29.如图所示,E 是边长为的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值是( )A .2B .12C .3 D .2310.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D ,若点C ,D 都在双曲线y =kx上(k >0,x >0),则k 的值为( )A .3B .3C .9D .311.如图,矩形ABCD 中,AB =7,BC =4,按以下步骤作图:以点B 为圆心,适当长为半径画弧,交AB ,BC 于点E ,F ;再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠ABC 内部相交于点H ,作射线BH ,交DC 于点G ,则DG 的长为( )A .2B .3C .4D .512.在同一直角坐标平面内,如果直线y =k 1x 与双曲线2k y x没有交点,那么k 1和k 2的关系一定是( ) A.k 1+k 2=0 B.k 1•k 2<0C.k 1•k 2>0D.k 1=k 2二、填空题13.如图,在正方形ABCD 中,E 是对角线BD 上一点,DE =4BE ,连接CE ,过点E 作EF ⊥CE 交AB 的延长线于点F ,若AF =8,则正方形ABCD 的边长为_____.14.如图,将边长为3的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH ,点B 的对应点为M ,点A 的对应点为N ,那么折痕GH 的长为_____.15.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=10,CD=8,则BE=_____.16.某市去年约有65700人参加中考,这个数据用科学记数法可表示为 . 17.一元二次方程根的判别式的值等于______.18.如图,点A 的坐标(﹣1,2),点A 关于y 轴的对称点的坐标为__________.三、解答题19.如图,认真观察下面这些算式,并结合你发现的规律,完成下列问题:①32﹣12=(3+1)(3﹣1)=8=8×1,②52﹣32=(5+3)(5﹣3)=16=8×2,③72﹣52=(7+5)(7﹣5)=24=8×3,④92﹣72=(9+7)(9﹣7)=32=8×4.…(1)请写出:算式⑤;算式⑥;(2)上述算式的规律可以用文字概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n﹣1和2m+1(n为整数),请说明这个规律是成立的;(3)你认为“两个连续偶数的平方差能被8整除”这个说法是否也成立呢?请说明理由.20.已知:在△ABC中,点D、E分别在AC、AB上,且满足∠ABD=∠ACE,求证:AD•CE=AE•BD.21.(问题背景)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.(探索延伸)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.22.我市某高科技公司生产一种矩形新型材料板,其长宽之比为 3∶2,每张材料板的成本 c 与它的面积成正比例。
青岛市2020年中考数学模拟试题及答案
注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.5的相反数是( )A .55B .﹣5C .﹣55 D .52.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约亿千克,这个数用科学记数法应表示为( ) A .×1011 B .×1010C .×1011D .×10103.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分. A .85B .86C .87D .884. 若以A ,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限5. 图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )A. 主视图B. 俯视图C. 左视图D. 主视图、俯视图和左视图都改变 6.如图,已知∠ABC =∠DCB ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠A =∠DB .∠ACB =∠DBC C .AC =DBD .AB =DC7. 若反比例函数y =(k ≠0)的图象经过点P (2,﹣3),则该函数的图象不经过的点是( ) A .(3,﹣2)B .(1,﹣6)C .(﹣1,6)D .(﹣1,﹣6)8.若圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( ) A .30πcm2B .60πcm2C .48πcm2D .80πcm29.将1.2.3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y=x 图象上的概率是( )A.0.3B.0.5C.31 D.3210.如图1,点P 从矩形ABCD 的顶点A 出发沿A →B →C 以2cm /s 的速度匀速运动到点C ,图2是点P 运动时,△APD 的面积y (cm 2)随运动时间x (s )变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .48C .32D .2411.如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( ) A .2 B .2C .23 D .2512. 函数y=4x-1和y=x-1在第一象限内的图象如图,点P 是y=4x-1的图象上一动点,PC ⊥x 轴于点C ,交y=x-1的图象于点A ,PD ⊥y 轴于D ,交y=x-1的图象于点B ,给出如下4个结论:①△ ODB 与△OCA 的面积相等; ②线段PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化; ④3CA=AP .其中正确的结论是( )A.①②③B.①②④C.②③④D.①③④二、填空题(本题共6小题,满分18分。
山东省青岛市2019-2020学年中考数学四月模拟试卷含解析
山东省青岛市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.23B.16C.13D.122.下列二次根式中,与a是同类二次根式的是()A.2a B.2a C.4a D.4a3.7的相反数是( )A.7 B.-7 C.17D.-174.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b ﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()A.①③B.②③C.③④D.②④5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+58.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.69.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.910.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-11.在平面直角坐标系中,点(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.14.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.15.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____16.如果关于x的方程2x2x m0-+=(m为常数)有两个相等实数根,那么m=______.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.18.关于x的一元二次方程ax2﹣x﹣14=0有实数根,则a的取值范围为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.20.(6分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:△ADC≌△FDB;(2)求证:1CE BF2=;(3)判断△ECG的形状,并证明你的结论.21.(6分)解不等式组:2(2)3{3122x xx +>-≥-,并将它的解集在数轴上表示出来. 22.(8分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD=3m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC=2m ,点A 到地面的距离AE=1.8m ;当他从A 处摆动到A′处时,有A'B ⊥AB .(1)求A′到BD 的距离;(2)求A′到地面的距离.23.(8分)计算:203182sin 60(1)2-︒⎛⎫-+-+ ⎪⎝⎭解不等式组3(1)45513x x x x --⎧⎪-⎨->⎪⎩…,并写出它的所有整数解. 24.(10分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段CD ,点A 、B 、C 、D 均在小正方形的顶点上.(1)在方格纸中画出以AB 为斜边的等腰直角三角形ABE ,点E 在小正方形的顶点上;(2)在方格纸中画出以CD 为对角线的矩形CMDN (顶点字母按逆时针顺序),且面积为10,点M 、N 均在小正方形的顶点上;(3)连接ME ,并直接写出EM 的长.25.(10分)如图,点C 、E 、B 、F 在同一直线上,AC ∥DF ,AC =DF ,BC =EF ,求证:AB=DE26.(12分)如图①,在正方形ABCD 中,点E 与点F 分别在线段AC 、BC 上,且四边形DEFG 是正方形.(1)试探究线段AE 与CG 的关系,并说明理由.(2)如图②若将条件中的四边形ABCD 与四边形DEFG 由正方形改为矩形,AB=3,BC=1. ①线段AE 、CG 在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE 为等腰三角形时,求CG 的长.27.(12分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=31 62 =.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.2.C【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【详解】A=|a|B不是同类二次根式;C=是同类二次根式;D不是同类二次根式.故选C.【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.3.B【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】7的相反数是−7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.4.D【分析】①错误.由题意a >1.b >1,c <1,abc <1;②正确.因为y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确;③错误.抛物线与x 轴的另一个交点是(1,1);④正确.抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a >1,∵抛物线交y 轴于负半轴,∴c <1,∵对称轴在y 轴左边,∴-2b a<1, ∴b >1,∴abc <1,故①错误.∵y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确,抛物线与x 轴的另一个交点是(1,1),故③错误,∵抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,∴方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.故选:D .【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.5.D【解析】 试题分析:,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.6.D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.7.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.8.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.9.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x ﹣2y )=3﹣2×3=﹣3;故选A .10.B【解析】【分析】首先设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为1.2x 元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x 元,可得:12000120001001.2x x =+ 故选B .【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 11.A【解析】【分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A【点睛】考核知识点:点的坐标与象限的关系.12.C【解析】【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据抛物线与x 轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y 轴的负半轴,∴c<1;0ac <故①正确; ②对称轴12b x a =-=,2,b a ∴=- ∴02b a<, ∴b<1;20,a b a a a +===-<故②正确;③根据图示知,二次函数与x 轴有两个交点,所以240b ac =->V ,即24b ac >,故③错误④42440,a b c a a c c ++=-+=<故本选项正确.正确的有3项故选C .【点睛】本题考查二次函数的图象与系数的关系.二次项系数a 决定了开口方向,一次项系数b 和二次项系数a 共同决定了对称轴的位置,常数项c 决定了与y 轴的交点位置.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD⨯= , 解得:AB=1205060⨯ =1(米). 故答案为1.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.14.55°【解析】【分析】由翻折性质得,∠BOG =∠B′OG ,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG =∠B′OG ,∵∠AOB′+∠BOG+∠B′OG =180°,∴∠B′OG =12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.15.﹣6 或8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 16.1【解析】析:本题需先根据已知条件列出关于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为117.213【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC==.故答案是:【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.18.a≥﹣1且a≠1【解析】【分析】利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣14)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得a≠1且△=(﹣1)2﹣4a•(﹣14)≥1,解得:a≥﹣1且a≠1.故答案为a≥﹣1且a≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.现在平均每天清雪量为1立方米.【解析】分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x立方米,由题意,得40003000300 x x=-解得x=1.经检验x=1是原方程的解,并符合题意.答:现在平均每天清雪量为1立方米.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验. 20.(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;(2)由△ADC ≌△FDB 得到AC=BF ,结合CE=AE ,即可证明出结论;(3)由点H 是BC 边的中点,得到GH 垂直平分BC ,即GC=GB ,由∠DBF=∠GBC=∠GCB=∠ECF ,得∠ECO=45°,结合BE ⊥AC ,即可判断出△ECG 的形状.【详解】解:(1)∵AB=BC ,BE 平分∠ABC∴BE ⊥AC∵CD ⊥AB∴∠ACD=∠ABE (同角的余角相等)又∵CD=BD∴△ADC ≌△FDB(2)∵AB=BC ,BE 平分∠ABC∴AE=CE则CE=12AC 由(1)知:△ADC ≌△FDB∴AC=BF∴CE=12BF (3)△ECG 为等腰直角三角形,理由如下:由点H 是BC 的中点,得GH 垂直平分BC ,从而有CG=BG ,则∠EGC=2∠CBG=∠ABC=45°,又∵BE ⊥AC ,故△ECG 为等腰直角三角形.【点睛】本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.21.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:22.(1)A'到BD的距离是1.2m;(2)A'到地面的距离是1m.【解析】【分析】(1)如图2,作A'F⊥BD,垂足为F.根据同角的余角相等证得∠2=∠3;再利用AAS证明△ACB≌△BFA',根据全等三角形的性质即可得A'F=BC,根据BC=BD﹣CD求得BC的长,即可得A'F的长,从而求得A'到BD的距离;(2)作A'H⊥DE,垂足为H,可证得A'H=FD,根据A'H=BD﹣BF求得A'H的长,从而求得A'到地面的距离.【详解】(1)如图2,作A'F⊥BD,垂足为F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距离是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足为H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.【点睛】本题考查了全等三角形的判定与性质的应用,作出辅助线,证明△ACB≌△BFA'是解决问题的关键.23.(1)7-(1)0,1,1.【解析】【分析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式=1﹣,=7(1)()3145{513x xxx-≥---①>②,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集是:﹣1<x≤1.故不等式组的整数解是:0,1,1.【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键24.(1)画图见解析;(2)画图见解析;(3【解析】【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得EM=5. 【点睛】 本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理. 25.证明见解析.【解析】证明:∵AC//DF ∴在和中 ∴△ABC ≌△DEF (SAS )26.(1)AE=CG ,AE ⊥CG ,理由见解析;(2)①位置关系保持不变,数量关系变为34CG AE =; 理由见解析;②当△CDE 为等腰三角形时,CG 的长为32或2120或158. 【解析】试题分析:()1AE CG AE CG =⊥,,证明ADE V ≌CDG V ,即可得出结论. ()2①位置关系保持不变,数量关系变为3.4CG AE =证明ADE CDG V V ∽,根据相似的性质即可得出. ()3分成三种情况讨论即可.试题解析:(1)AE CG AE CG =⊥,,理由是:如图1,∵四边形EFGD 是正方形,∴90DE DG EDC CDG =∠+∠=︒,,∵四边形ABCD 是正方形,∴90AB CD ADE EDC ,,=∠+∠=︒∴ADE CDG ∠=∠,∴ADE V ≌CDG V ,∴45AE CG DCG DAE =∠=∠=︒,,∵45ACD ∠=︒,∴90ACG ,∠=︒∴CG AC ,⊥ 即AE CG ⊥;(2)①位置关系保持不变,数量关系变为3.4CG AE = 理由是:如图2,连接EG 、DF 交于点O ,连接OC ,∵四边形EFGD 是矩形,∴OE OF OG OD ===,Rt DGF △中,OG=OF ,Rt DCF V 中,OC OF ,=∴OE OF OG OD OC ====,∴D 、E 、F 、C 、G 在以点O 为圆心的圆上,∵90DGF ∠=︒,∴DF 为O e 的直径,∵DF EG =,∴EG 也是O e 的直径,∴∠ECG=90°,即AE CG ⊥,∴90DCG ECD ,∠+∠=︒∵90DAC ECD ∠+∠=︒,∴DAC DCG ∠=∠, ∵ADE CDG ∠=∠,∴ADE CDG V V ∽,∴3.4CG DC AE AD == ②由①知:3.4CG AE = ∴设34CG x AE x ==,,分三种情况:(i )当ED EC =时,如图3,过E 作EH CD ⊥于H ,则EH ∥AD ,∴DH CH =,∴4AE EC x ,== 由勾股定理得:5AC =,∴85x =, 5.8x = 1538CG x ∴==; (ii )当3DE DC ==时,如图1,过D 作DH AC ⊥于H ,EH CH ∴=,∵90CDH CAD CHD CDA ∠=∠∠=∠=︒,,∴CDH CAD V V ∽,∴,CD CH CA CD= 3,53CH ∴= ∴95CH =, ∴97425255AE x AC CH ==-=-⨯=, 720x =, ∴21320CG x ,==(iii )当3CD CE ==时,如图5,∴4532AE x ==-=,12x =, ∴332CG x ==, 综上所述,当CDE △为等腰三角形时,CG 的长为32或2120或158. 点睛:两组角对应,两三角形相似.27.(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式; (2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点, 得103b c c --+=⎧⎨=⎩, 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=.解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.当1x 3-<<时,y 0>.【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.。
山东青岛2020年中考数学模拟试卷 四(含答案)
山东青岛2020年中考数学模拟试卷四一、选择题1.已知a2=1,b是2的相反数,则a+b的值为( )A.﹣3B.﹣1C.﹣1或﹣3D.1或﹣32.如图,不是中心对称图形的是()A. B. C. D.3.第二届山西文博会刚刚落下帷幕,本届文博会共推出招商项目356个,涉及金额688亿元.数据688亿元用科学记数法表示正确的是( )A.6.88×108元 B.68.8×108元 C.6.88×1010元 D.0.688×1011元4.下列运算正确的是()A.(a2)3=a5B.a3•a=a4C.(3ab)2=6a2b2D.a6÷a3=a25.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<56.在平面直角坐标系中,点P(m-3,4-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD 与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°8.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()二、填空题9.计算﹣3+= .10.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是 .11.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,6,7,x,10,9,已知这组数据的平均数是8,则这组数据的中位数是.12.同一个圆的内接正方形和正三角形的边心距的比为 .13.如图,在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF= .14.如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n 的坐标为 .(n为正整数)15.已知△ABC,按如下步骤作图:①以A为圆心,AC长为半径画弧;②以B为圆心,BC长为半径画弧,与前一条弧相交于点D,连接CD.若AC=5,BC=CD=8,则AB的长为.三、计算题16.化简:.17.解不等式组:,并把解集在如图数轴上表示出来.四、解答题18.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上的有 人;(2)表中m的值为 ;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.20.钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)21.为提高学校的机房条件,学校决定新购进一批电脑,经了解某电脑公司有甲、乙两种型号的电脑销售,已知甲电脑的售价比乙电脑高1000元,如果购买相同数量的甲、乙两种型号的电脑,甲所需费用为10万元,乙所需费用为8万元.(1)问甲、乙两种型号的电脑每台售价各多少元?(2)学校决定购买甲、乙两种型号的电脑共100台,且购买乙型号电脑的台数超过甲型号电脑的台数,但不多于甲型号电脑台数的4倍,则当购买甲、乙两种型号的电脑各多少台时,学校需要的总费用最少?并求出最少的费用.22.△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点.求证:四边形MNEF是平行四边形.23.某公司经销一种商品,每件商品的成本为50元,经市场的调查,在一段时间内,销售量w (件)随销售单价x(元/件)的变化而变化,具体关系式为w=-2x+240.设这种商品在这段时间内的销售利润为y(元),解答如下问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种商品的销售单价不得高于80元/件,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?五、综合题24.如图,已知⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为,过点C作⊙A的切线交x轴于点B(﹣4,0).(1)求切线BC的解析式;(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.25.如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠PAD的值.参考答案1.答案为:C.2.D.3.答案为:C4.B5.B6.答案为:A.7.B8.B9.答案为:3.10.答案为:m>0.25.11.答案为:8.12.答案为::1.13.答案为:4.8.14.答案为:(n ,).15.答案为:3+4.16.原式=17.答案为:2<x <318.解:P (两次摸出的小球的标号之和为“8”或“6”)=41.19.解:(1)在这次测试中,七年级在80分以上的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).20.21.解:22.【解答】证明:∵BE,CF是△ABC的中线,∴EF∥BC且EF=0.5BC,∵M是BO的中点,N是CO的中点,∴MN∥BC且MN=0.5BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.23.一、综合题24.解:(1)如图1所示,连接AC,则AC=,在Rt△AOC中,AC=,OA=1,则OC=2,∴点C的坐标为(0,2);设切线BC的解析式为y=kx+b,它过点C(0,2),B(﹣4,0),则有,解之得;∴.如图1所示,设点G的坐标为(a,c),过点G作GH⊥x轴,垂足为H点,则OH=a,GH=c=a+2,连接AP,AG;因为AC=AP,AG=AG,所以Rt△ACG≌Rt△APG(HL),所以∠AGC=×120°=60°,在Rt△ACG中,∠AGC=60°,AC=,∴sin60°=,∴AG=;在Rt△AGH中,AH=OH﹣OA=a﹣1,GH=a+2,∵AH2+GH2=AG2,∴(a﹣1)2+=,解之得:a1=,a2=﹣(舍去);∴点G的坐标为(, +2).如图2所示,在移动过程中,存在点A,使△AEF为直角三角形.要使△AEF为直角三角形,∵AE=AF,∴∠AEF=∠AFE≠90°,∴只能是∠EAF=90°;当圆心A在点B的右侧时,过点A作AM⊥BC,垂足为点M,在Rt△AEF中,AE=AF=,则EF=,AM=EF=;在Rt△OBC中,OC=2,OB=4,则BC=2,∵∠BOC=∠BMA=90°,∠OBC=∠OBM,∴△BOC∽△BMA,∴=,∴AB=,∴OA=OB﹣AB=4﹣,∴点A的坐标为(﹣4+,0);当圆心A在点B的左侧时,设圆心为A′,过点A′作A′M′⊥BC于点M′,可得:△A′M′B≌△AMB,A′B=AB=,∴OA′=OB+A′B=4+,∴点A′的坐标为(﹣4﹣,0);综上所述,点A的坐标为(﹣4+,0)或(﹣4﹣,0).25.解:(1)当x=0时,y=4,则点A的坐标为(0,4),当y=0时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°,∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0),设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=﹣x+4;(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),∴PN=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+t,∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°,作PH⊥AD于点H,则∠PHN=90°,∴PH==(﹣t2+t)=t=﹣(t﹣6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是;②当点P到直线AD的距离为时,如右图②所示,则t=,解得,t1=2,t2=10,则P1的坐标为(2,),P2的坐标为(10,﹣),当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;当P2的坐标为(10,﹣),则P2A==,∴sin∠P2AD==;由上可得,sin∠PAD的值是或.。
山东省青岛市2019-2020学年中考数学四模试卷含解析
山东省青岛市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°2.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )A .B .C .D .3.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A .0.15B .0.2C .0.25D .0.34.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.如图,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是(2,3)-,先把ABC ∆向右平移3个单位长度得到111A B C ∆,再把111A B C ∆绕点1C 顺时针旋转90︒得到221A B C ∆,则点A 的对应点2A 的坐标是( )A .(2,2)-B .(6,0)-C .(0,0)D .(4,2)6.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是157.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r=5,AC=5 ,则∠B的度数是( )A .30°B .45°C .50°D .60°8.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( ) A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯9.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( ) A .﹣3B .0C .6D .910.tan45º的值为( ) A .12B .1C .22D 211.下列图案中,既是中心对称图形,又是轴对称图形的是( )A.B.C.D.12.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_____m.14.分解因式2x2+4x+2=__________.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数等级餐厅五星四星三星二星一星合计甲538 210 96 129 27 1000乙460 187 154 169 30 1000丙486 388 81 13 32 1000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,那么AODO等于()A.253;B.13;C.23;D.12.17.在平面直角坐标系中,已知,A(2,0),C(0,﹣1),若P为线段OA上一动点,则CP+13 AP的最小值为_____.18.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 直径,C 为⊙O 上一点,点D 是»BC的中点,DE ⊥AC 于E ,DF ⊥AB 于F . (1)判断DE 与⊙O 的位置关系,并证明你的结论; (2)若OF=4,求AC 的长度.20.(6分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数2(0)y x bx c b =-+>的图象与x轴交于(1,0)A -、B 两点,与y 轴交于点C ; (1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ED ⊥于N ,连接MN ,且180QMN QMP ∠+∠=︒,当:15:16QN DH =时,连接PC ,求tan PCF ∠的值.21.(6分)甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9 乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8 8 0.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).22.(8分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.23.(8分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y与x的函数关系式为:_(02)_(24)xyx--≤≤⎧=⎨--<≤⎩,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:x 0 121321523724y 0 189815878(3)观察所画的图象,写出该函数的两条性质:.24.(10分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.25.(10分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.26.(12分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.27.(12分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表). 统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.2.A【解析】【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)= = .故此题选A.【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键.3.B【解析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是20100=0.2,故选B.4.C【解析】【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形5.D【解析】【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.6.C【解析】【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.7.D【解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.在直角三角形ACD中求出∠D.则sinD=∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.8.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将360000000用科学记数法表示为:3.6×1.故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.10.B【解析】【分析】【详解】解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.11.B【解析】【分析】根据轴对称图形与中心对称图形的概念解答.【详解】A.不是轴对称图形,是中心对称图形;B.是轴对称图形,是中心对称图形;C.不是轴对称图形,也不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.A【解析】【分析】根据方差、算术平均数、中位数、众数的概念进行分析. 【详解】数据由小到大排列为1,2,6,6,10,它的平均数为15(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=15[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1×10﹣1【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:10nm用科学记数法可表示为1×10-1m,故答案为1×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.2(x+1)2。
2024年山东省青岛市第二十六中学中考一模数学试题
2024年山东省青岛市第二十六中学中考一模数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.在如图所示标志中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D .2.微纳制造技术是“科学绣花针”,可制造与处理那些大小处于微米到纳米级别物体的高新技术.利用该技术制造的某零件直径为0.0000000007米,将0.0000000007用科学记数法表示为( )A .10710-⨯B .90.710-⨯C .9710⨯D .100.710⨯ 3.如图所示的几何体的左视图为( )A .B .C .D . 4.一个口袋中有红球、白球共20个,这些球除颜色外都相同,将口袋中的球搅匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了600次球,发现有240次摸到红球,则这个口袋中红球的个数约为( )A .8个B .10个C .12个D .14个 5.某射击爱好者的10次射击成绩(单位:环)依次为:7,9,10,8,9,8,10,10,9,10,则下列结论正确的是( )A .平均数是9.5B .中位数是9.5C .众数是9D .方差是1 6.如图,已知()3,3A ,()1,2B ,()4,0C ,将ABC V 先向左平移5个单位,再绕原点O顺时针旋转180︒得到A B C '''V ,则点A 的对应点A '的坐标是( )A .()2,3-B .()2,3--C .()2,3-D .()3,2- 7.如图,AB 是O e 的直径,CD 是O e 的切线,切点为D ,CD 与AB 的延长线交于点C ,若305A AD ∠=︒=,,则BC 的长度为( )A .52BC .53D 8.如图,将矩形纸片ABCD 沿对角线AC 所在直线折叠,点D 落在点D ¢处.过AC 的中点O 作OE BC ∥交A D ¢于点E .若8AB =cm ,6BC =cm ,则OE 的长为( )A .103B .4C .256D .59.如图所示,每个小立方体的棱长为1,图1中共有1个立方体,其中1个看得见,0个看不见;图2中共有8个小立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;……;则第10个图形中,其中看得见的小立方体个数是( )A .270B .271C .272D .27310.二次函数()20y ax bx c a =++≠的图象的一部分如图所示,已知图象经过点()1,0-,其对称轴为直线1x =.则下列结论正确是( )①0abc <; ②240b ac -<; ③80a c +<;④若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为3,5-.A .①②③④B .②③④C .①③④D .①②④二、填空题11.相反数等于它本身的数是.12.计算:212-⎛⎫ ⎪⎝⎭13.关于x 的一元二次方程()21230k x x --+=有两个实数根,则k 的取值范围是. 14.甲、乙两个救援队向相距50千米某地震灾区送救援物资,已知甲救援队的平均速度是乙救援队平均速度的2倍,乙救援队出发40分钟后,甲救援队才出发,结果甲救援队比乙救援队早到20分钟.若设乙救援队的平均速度为x 千米/小时,则方程可列为. 15.如图,在Rt ABC △中,90ACB ∠=︒,1AC =,60A ∠=︒,将Rt ABC △绕点C 顺时针旋转90︒后得到Rt DCE V ,点B 经过的路径为»BE ,将线段AB 绕点A 顺时针旋转60︒后,点B 恰好落在CE 上的点F 处,点B 经过的路径为»BF ,则图中阴影部分的面积是.(结果保留π)16.如图,矩形ABCD 中,4,2AB AD ==,连接,AC ACD ∠的平分线交AD 于点E ,过点D 做DF CE ⊥于点G ,分别交AC AB 、于点H F 、,点P 是线段GC 上的任意一点,且PQ AC ⊥于点Q ,连接PH ,则下列结论正确的有.(填写序号)①2DH DG =; ②点G F B C 、、、在同一个圆上;③:3:1CDE DAF S S =△△; ④PH PQ +三、解答题17.如图,已知AOB ∠及边OB 上一点P ,求作M e ,使M e 与边OA OB 、相切,且其中一个切点为点P .18.(1)计算:224211693x x x x x +-⎛⎫÷- ⎪-+-⎝⎭; (2)解不等式组()1223325x x x x ⎧+>-⎪⎪⎨+⎪>⎪⎩ 19.青岛市第二十六中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量并补全条形统计图;(2)“15岁”在扇形统计图中对应的圆心角度数为____________;(3)直接写出样本容量的平均数,众数,中位数;(4)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.20.4张相同的卡片上分别写有数字0、1、2-、3,将卡片的背面朝上,洗匀后从中任意抽取1张.将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为______;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜:否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由).21.为了响应国家“双减”政策,适当改变作业的方式,某校内数学兴趣小组组织了一次测量探究活动.如图,大楼的顶部竖有一块广告牌CD ,同学们在山坡的坡脚A 处测得广告牌底部D 的仰角为53︒,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45︒,已知山坡AB 的坡度i =10AB =米,24AE =米,求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1 1.41≈ 1.73,sin 5345︒≈,cos5335︒≈,tan 5343︒≈)22.【问题探究】如图①,是一张直角三角形纸片,90B ??,小明想从中剪出一个以B ∠为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE EF 、剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为____________;【问题解决】如图②,在ABC V 中,,BC a BC =边上的高AD h =,矩形PQMN 的顶点P N 、分别在边AB AC 、上,顶点Q M 、在边BC 上,则矩形PQMN 面积的最大值为____________;(用含,a h 的代数式表示)【拓展延伸】如图③有一块“缺角矩形”,32,40,20,16ABCDE AB BC AE CD ====,小明从中剪出了一个面积最大的矩形(B ∠为所剪出矩形的内角),则矩形的面积为____________. 23.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.24.已知:如图,在四边形ABCD 中,90ABC AD BC DE AC ∠=︒⊥P ,,于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.(1)求证:ABC AFE V V ≌;(2)若30ACB ∠=︒,连接AG ,判断四边形AGCD 是什么特殊的四边形?并证明你的结论.25.如图,用一段长30m 的篱笆围成一个一边AD 靠墙(无需篱笆)的矩形ABCD 菜园,并且中间也用篱笆EF 隔开,EF AB ∥,墙长12m .(1)设m AB x =,矩形ABCD 的面积为y 2m ,则y 关于x 的函数关系式为______,x 的取值范围为______.(2)求矩形ABCD 面积的最大值,并求出此时BC 的长;(3)在(2)的情况下,若将矩形ABFE 和矩形EFCD 分别种植甲,乙两种农作物.甲种农作物的年收入1W (单位:元)和种植面积S (单位:2m )的函数关系式为160W S =;乙种农作物的年收入2W (单位:元)和种植面积S (单位:2m )的函数关系式为22120W S S =-+,若两种农作物的年收入之和不少于5184元,求BF 的取值范围. 26.如图,在矩形ABCD 中,12cm,9cm AB BC ==,对角线AC BD 、相交于点O ,点M 从点D 出发沿DA 方向向点A 匀速运动,速度为4cm /s ,点P 同时从D 出发,沿DC 方向向点C 匀速运动,速度为3cm /s .过点M 作MN BD ∥交AC 边于点E ,交AB 边于点N ,连接PO 并延长,交AB 于Q ,连接PM MQ 、.设运动时间为()9s 04t t ⎛⎫<< ⎪⎝⎭.△是等腰三角形时,求t的值;(1)当MNQS,求S与t之间的函数关系式;(2)设四边形MNQP的面积为()2cm△沿MQ折叠时,使得点P落在直线AD上?若存在,(3)是否存在某一时刻t,将MQP求出此时t的值,若不存在,说明理由.。
2020年山东青岛中考数学试卷(解析版)
2020年山东青岛中考数学试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分)1.的绝对值是( ).A. B. C. D.2.下列四个图形中,中心对称图形是( ).A. B. C. D.3.年月日,中国第颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.纳米米,将用科学记数法表示为( ).A.B.C.D.4.如图所示的几何体,其俯视图是( ).A.B.C.D.5.如图,将先向上平移个单位,再绕点按逆时针方向旋转,得到,则点的对应点的坐标是( ).A.B.C.D.6.如图,是⊙的直径,点,在⊙上,,交于点.若,则的度数为( ).A.B.C.D.7.如图,将矩形折叠,使点和点重合,折痕为,与交于点.若,,则的长为( ).A.B.C.D.8.已知在同一直角坐标系中,二次函数和反比例函数的图象如图所示,则一次函数的图象可能是( ).xyOA.xyOB.xyOC.xyOD.xyO二、填空题(本大题共6小题,每小题3分,共18分)9.计算:.10.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按的比例确定两人的最终得分,并以此为依据确定录用者,那么 将被录用 (填甲或乙).应聘者项目甲乙学历经验工作态度11.如图,点是反比例函数图象上的一点,垂直于轴,垂足为,的面积为,若点也在此函数的图象上,则 .xyO12.抛物线(为常数)与轴交点的个数是 .13.如图,在正方形中,对角线与交于点,点在的延长线上,连接,点是的中点,连接交于点.若,,则点到的距离为 .14.如图,在中,为边上的一点,以为圆心的半圆分别与,相切于点,.已知,,的长为,则图中阴影部分的面积为 .三、作图题(本大题共1小题,共4分)15.请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:.求作:⊙,使它经过点和点,并且圆心在的平分线上.四、解答题(本大题共9小题,共74分)(1)(2)16.请解答下列问题.计算:.解不等式组:.17.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:,是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.红蓝盘蓝蓝红盘18.如图,在东西方向的海岸上有两个相距海里的码头,,某海岛上的观测塔距离海岸海里,在处测得位于南偏西方向.一艘渔船从出发,沿正北方向航行至处,此时在处测得位于南偏东方向.求此时观测塔与渔船之间的距离(结果精确到海里).(参考数据:,,,,,).(1)(2)19.某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取名学生进行测试,测试成绩进行整理后分成五组,并绘制成如下的频数直方图和扇形统计图.人数频数成绩分测试成绩频数直方图测试成绩扇形统计图含表示大于等于分同时小于分,以此类推请根据图中信息解答下列问题:补全频数直方图.在扇形统计图中,“”这组的百分比.(3)(4)已知“”这组的数据如下:,,,,,,,,,,,.抽取的名学生测试成绩的中位数是 分.若成绩达到分以上(含分)为优秀,请你估计全校名学生对海洋科普知识了解情况为优秀的学生人数.(1)(2)20.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量与注水时间之间满足一次函数关系,其图象如图所示.根据图象求游泳池的蓄水量与注水时间之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度.现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?(1)(2)21.如图,在平行四边形中,对角线与相交于点,点,分别在和的延长线上,且.连接,.求证:≌.连接,.当平分时,四边形是什么特殊四边形?请说明理由.(1)22.某公司生产型活动板房成本是每个元,图①表示型活动板房的一面墙,它由长方形和抛物线构成,长方形的长,宽,抛物线的最高点到的距离为.(2)(3)按如图①所示的直角坐标系,抛物线可以用表示,求该抛物线的函数表达式.现将型活动板房改造为型活动板房,如图②,在抛物线与之间的区域内加装一扇长方形窗户,点,在上,点,在抛物线上,窗户的成本为元/.已知,求每个型活动板房的成本是多少?(每个型活动板房的成本每个型活动板房的成本一扇窗户的成本).根据市场调查,以单价元销售()中的型活动板房,每月能售出个,而单价每降低元,每月能多售出个.公司每月最多能生产个型活动板房.不考虑其他因素,公司将销售单价(元)定为多少时,每月销售型活动板房所获利润(元)最大?最大利润是多少?23.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从张面值分别为元、元、元、、元的奖券中(面值为整数),一次任意抽取张、张、张、等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从,,,,为整数,且这个整数中任取个整数,这个整数之和共有多少种不同的结果?12(1)12(2)(3)(4)(5)(6)模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:()从,,这个整数中任取个整数,这个整数之和共有多少种不同的结果?所取的个整数,,,个整数之和如表①,所取的个整数之和可以为,,,也就是从到的连续整数,其中最小是,最大是,所以共有种不同的结果.()从,,,这个整数中任取个整数,这个整数之和共有多少种不同的结果?所取的个整数,,,,,,个整数之和如表②,所取的个整数之和可以为,,,,,也就是从到的连续整数,其中最小是,最大是,所以共有种不同的结果.从,,,,这个整数中任取个整数,这个整数之和共有 种不同的结果.从,,,,为整数,且这个整数中任取个整数,这个整数之和共有 种不同的结果.探究二:从,,,这个整数中任取个整数,这个整数之和共有 种不同的结果.从,,,,为整数,且这个整数中任取个整数,这个整数之和共有 种不同的结果.探究三:从,,,,为整数,且这个整数中任取个整数,这个整数之和共有 种不同的结果.归纳结论:从,,,,为整数,且这个整数中任取个整数,这个整数之和共有 种不同的结果.问题解决:从张面值分别为元、元、元、、元的奖券中(面值为整数),一次任意抽取张奖券,共有 种不同的优惠金额.拓展延伸:【答案】解析:12从,,,,这个整数中任取多少个整数,使得取出的这些整数之和共有种不同的结果?(写出解答过程)从,,,,为整数,且这个整数中任取个整数,这个整数之和共有 种不同的结果.(1)(2)(3)(4)24.已知:如图,在四边形和中,,,点在上,,,,延长交于点.点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为.过点作于点.交于点.设运动时间为.解答下列问题:当为何值时,点在线段的垂直平分线上?连接,作于点,当四边形为矩形时,求的值.连接,,设四边形的面积为,求与的函数关系式.点在运动过程中,是否存在某一时刻,使点在的平分线上?若存在,求出的值;若不存在,请说明理由.A 1.∵复数的绝对值为其相反数,,∴的绝对值是.故选.解析:考察科学记数法.解析:看得到的部分用实线,看不到的部分用虚线.故选.解析:故选.解析:∵为直径,∴,∵,∴,D2.B3.A4.D5.B6.∵,∴,∴.故选.解析:由折叠可知,,,则,,∵四边形为矩形,∴,∴,∴,∵,∴≌,∴,,在中,,在中,,∴.故选.解析:根据图象分析:双曲线位于第一、三象限,∴,抛物线开口向下,∴,抛物线对称轴位于轴右侧,左同右异,∴,∴,结合上述条件,中,,,∴一次函数图象为下降并经过轴负半轴的直线.解析:C7.B8.9..解析:将学历、经验和工作态度按照确定得分,所以甲的得分为,乙的得分为,乙的得分高于甲,所以选乙.解析:∵垂直于轴,垂足为,∴的面积,即,而,∴,∴反比例函数为,∵点也在此函数的图象上,∴,解得.故答案为.解析:,,.,∴有个交点.乙10.11.个12.13.解析:过作交延长线于,∵四边形是正方形,∴,,,∴是中点,∵是中点,∴是的中位线,∴,∴,∵,∴,∴,∵,∴,在中,是中点,∴,∴,∴,∴,∴,∴,即,∴,即到距离为.解析:方法一:如图,连接、,∵半圆分别与,相切于点,.∴,,∵,∴,∴,∵的长为,∴,∴,∴,连接,在中,,,∴,∴,∴,∴.故答案为:.方法二:,14.阴影扇形扇形(1)(2)∴.∵,∴是的角平分线.∴,∴.解析:∴⊙即为所求.解析:..由①得,.阴扇扇画图见解析.15.(1).(2).16.①②由②得,.综上.解析:根据题意得蓝红蓝蓝红(蓝、蓝)(蓝、蓝)(蓝、红)(红、蓝)(红、蓝)(红、红)配成紫色即(红、蓝)共次,,∴,,,∴游戏公平.解析:过点作,过点作,在中,,海里,∵海里,∴海里,∵四边形是矩形,公平.证明见解析.17.紫小颖胜小亮胜海里.18.(1)(2)(3)(4)(1)∴海里,在中,,海里.答:此时观测塔与渔船之间的距离是海里.解析:如图.人数频数成绩分测试成绩频数直方图(人).解析:设游泳池的蓄水量与注水时间之间的函数关系式,将点、代入得,解得,所以函数关系式为,则同时打开甲、乙两个进水口的注水速度为.故答案为:;.(1)画图见解析.(2)(3)(4)人.19.(1),同时打开甲乙进水口的速度为.(2)单独打开甲口需小时.20.(2)(1)(2)设单独打开乙进水口注满游泳池所用时间为,则单独打开甲进水口注满游泳池所用时间为,根据题意得:,解得:,经检验是原方程的解.所以单独打开甲进水口注满游泳池所用时间为.故答案为:.解析:∵四边形是平行四边形,∴,∴,∵,,∴,∵在和中,∴≌.∵平分,∴,∵,∴,∴,∵四边形是平行四边形,∴平行四边形是菱形,∴,,,∵,∴,∵,∴四边形是平行四边形,∵,(1)证明见解析.(2)菱形.证明见解析.21.(1)(2)(3)∴平行四边形是 菱形.解析:当时,,即,,∴元,∴成本为元.答:每个型活动板的成本为元.由题意得:,,,∵,对称轴,∴当时,随的增加而减小,∵,∴当时有最大值元.解析:(1).(2)元.(3)当时有最大值元.22.矩形12(1)12(2)(3)(4)(5)12(6)或.23.12(1)12(2)(3)(4)(5)12(6)根据下表可查出种.所取的个整数,,,,,,,,,,个整数之和出现结果为,,,,,,,共种结果.由以上取两个整数最小值为,最大值为,在最小值和最大值之间的数值都有可能,所以为.所出现情况的和的最小值为,最大值为,则共可以出现情况为种.所出现情况的和的最小值为,最大值为,则共可以出现情况为种.所出现情况的和的最小值为,最大值为,则共可以出现情况为种.所出现情况的和的最小值为,最大值为,则共有情况为.所出现情况的和的最小值为,最大值为,则共可以出现情况为.设任取个整数的和为,则所有取值的和的最小值为,最大值为,则,则,.所有取值中的和的最小值为,最大值为,则共可以出现情况共有种.(1)(2)(3)(4)解析:,.,,,,.连接,作于,,,.,(1).(2).(3).(4)存在,.24.,,,,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学模拟试卷(4月份)一、选择题(共8个小题)1.据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()A.7.68×109元B.7.68×1010元C.76.8×108元D.0.768×1010元2.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°3.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C4.如图,在菱形ABCD中,∠A=60°,AD=8.P是AB边上的一点,E,F分别是DP,BP的中点,则线段EF的长为()A.8B.2C.4D.25.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2B.C.D.6.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b+2)7.已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3B.2C.1D.08.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.二、填空题(3分×8=24分)9.因式分解:a2b﹣b=.10.关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.11.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为.12.△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4).以原点O为位似中心,将△ABC缩小得到△DEF,其中点D与A对应,点E与B对应,△DEF与△ABC 对应边的比为1:2,这时点F的坐标是.13.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为.14.将2019个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3…A2019和点M,M1,M2…M2018是正方形的顶点,连接AM1,AM2,AM3…AM2018分别交正方形的边A1M,A2M1,A3M2…A2018M2017于点N1,N2,N3…N2018,四边形M1N1A1A2的面积是S1,四边形M2N2A2A3的面积是S2,…,则S2018为.作图题(保留作图痕迹)15.已知△ABC,在△ABC中作一半圆满足以下要求:①圆心在边BC上;②该半圆面积最大.四、解答题(共9小题,满分76分)16.(16分)计算化简题(1)解不等式组:;(2)解一元二次方程:x(x﹣2)=6x﹣3x2;(3)用配方法求二次函数y=2x2﹣2x﹣1的顶点坐标;(4)先化简,再求值:,其中x=﹣1.17.近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:平均月收入/千元中位数/千元众数/千元方差/千元2“美团”①66 1.2“滴滴”6②4③(1)完成表格填空;(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.18.据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l的距离为0.1千米的P处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒(注:3秒=小时),并测得∠APO=59°,∠BPO=45°.试计算AB并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643)19.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.20.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?21.如图,已知一次函数y=﹣x+4与反比例函数的图象相交于点C与点A(﹣2,a).(1)求反比例函数的表达式及C点坐标.(2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.(3)求三角形AOC的面积.22.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售所获利润最大,并求出此时的利润率.23.观察下列等式:,,,将以上三个等式两边分别相加得:=1﹣.(1)观察发现=;+……+=.(2)初步应用利用(1)的结论,解决下列问题:①把拆成两个分子为1的正的真分数之差,即=;②把拆成两个分子为1的正的真分数之和,即=.(3)深入探究定义“◆”是一种新的运算,若◆2=,◆3=,◆4=,则◆9计算的结果是.(4)拓展延伸第一次用一条直径将圆周分成两个半圆(如图),在每个分点标上质数k,记2个数的和为a1,第二次将两个半圆都分成圆,在新产生的分点标相邻的已标的两个数的和的,记4个数的和为a2;第三次将四个圆分成圆,在新产生的分点标相邻的已标的两个数的和的,记8个数的和为a3;第四次将八个圆分成圆,在新产生的分点标相邻的已标的两个数的和的,记16个数的和为a4;……如此进行了n次.①a n=(用含k、n的代数式表示);②a n=4420,求+……+的值.24.如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm 的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?参考答案一、选择题(3分×8=24分)1.据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()A.7.68×109元B.7.68×1010元C.76.8×108元D.0.768×1010元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:76.8亿元=7680000000元=7.68×109元.故选:A.2.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,3.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【分析】确定出8的范围,利用算术平方根求出的范围,即可得到结果.解:∵6.25<8<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选:A.4.如图,在菱形ABCD中,∠A=60°,AD=8.P是AB边上的一点,E,F分别是DP,BP的中点,则线段EF的长为()A.8B.2C.4D.2【分析】如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.解:如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵∠A=60°,∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴EF=BD=4.5.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2B.C.D.【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵过点A作⊙O的切线交OC的延长线于点P,∴∠OAP=90°,∵OA=OC=1,∴AP=OA tan60°=1×=,故选:B.6.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b+2)【分析】设点A′的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.解:根据题意,点A、A′关于点C对称,设点A′的坐标是(x,y),则=0,=1,解得x=﹣a,y=﹣b+2,∴点A′的坐标是(﹣a,﹣b+2).故选:D.7.已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3B.2C.1D.0【分析】根据反比例函数的性质,可得答案.解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.8.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.二、填空题(3分×8=24分)9.因式分解:a2b﹣b=b(a+1)(a﹣1).【分析】先提取公因式b,再对余下的多项式利用平方差公式继续分解.解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).10.关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.11.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为π﹣2.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得∠AED=30°,然后求出DE,再根据阴影部分的面积=S扇形AEF﹣S△ADE列式计算即可得解.解:∵AB=2DA,AB=AE(扇形的半径),∴AE=2DA=2×2=4,∴∠DAE=90°﹣30°=60°,DE===2,∴阴影部分的面积=S扇形AEF﹣S△ADE,=﹣×2×2,=π﹣2.故答案为:π﹣2.12.△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4).以原点O为位似中心,将△ABC缩小得到△DEF,其中点D与A对应,点E与B对应,△DEF与△ABC 对应边的比为1:2,这时点F的坐标是(3,2)或(﹣3,﹣2).【分析】根据以原点O为位似中心的位似变换的性质计算,得到答案.解:∵以原点O为位似中心,将△ABC缩小得到△DEF,△DEF与△ABC对应边的比为1:2,∴△DEF与△ABC的相似比为1:2,∵C(6,4).∴点C的对应点F的坐标为(6×,4×)或(﹣6×,﹣4×).即(3,2)或(﹣3,﹣2),故答案为:(3,2)或(﹣3,﹣2).13.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为3.【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE.线段AC与BB'的交点为F,线段BF是最短路程.解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.∵=4π,∴n=120即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,∴BF=AB•sin∠BAF=6×,∴最短路线长为3.故答案为:14.将2019个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3…A2019和点M,M1,M2…M2018是正方形的顶点,连接AM1,AM2,AM3…AM2018分别交正方形的边A1M,A2M1,A3M2…A2018M2017于点N1,N2,N3…N2018,四边形M1N1A1A2的面积是S1,四边形M2N2A2A3的面积是S2,…,则S2018为.【分析】设左边第一个正方形左上角的顶点为O,先判定△M1MN1∽△M1OA,利用相似三角形的性质求出MN1的长,进而得出S1,同理得出S2,按照规律得出S n,最后n 取2018,计算即可得出答案.解:如图所示,设左边第一个正方形左上角的顶点为O∵将2019个边长为1的正方形按如图所示的方式排列∴OA∥MA1∥M1A2∥M2A3∥…∥M2018A2019∴△M1MN1∽△M1OA∴==∴MN1=∴四边形M1N1A1A2的面积是S1=1﹣×1×=;同理可得:==∴四边形M2N2A2A3的面积S2=1﹣×1×=;…∴四边形M n N n A n A n+1的面积S n=1﹣=∴S2018=故答案为:.作图题(保留作图痕迹)15.已知△ABC,在△ABC中作一半圆满足以下要求:①圆心在边BC上;②该半圆面积最大.【分析】根据角平分线上的点到角的两边距离相等即可画出满足要求的半圆.解:根据题意作图,如图,圆O在三角形ABC内部的半圆即为所求.四、解答题(共9小题,满分76分)16.(16分)计算化简题(1)解不等式组:;(2)解一元二次方程:x(x﹣2)=6x﹣3x2;(3)用配方法求二次函数y=2x2﹣2x﹣1的顶点坐标;(4)先化简,再求值:,其中x=﹣1.【分析】(1)分别解两个不等式后取公共部分即可确定不等式组的解集;(2)用因式分解法解一元二次方程即可;(3)先配方成顶点式,然后求其顶点坐标即可;(4)先化简,再代入求值即可.解:(1)分别求得两个不等式的解集为:,所以不等式组的解集为:﹣1<x≤3;(2)移项后因式分解得:2x(x﹣2)=0,∴x=0或x﹣2=0,∴方程的解为:x1=0,x2=2;(3)原函数可以变形为:所以顶点坐标;(4)原式×=,当x=﹣1时,原式=﹣1.17.近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:平均月收入/千元中位数/千元众数/千元方差/千元2“美团”①666 1.2“滴滴”6② 4.54③7.6(1)完成表格填空;(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.【分析】(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;(2)根据平均数一样,中位数及众数的大小和方差的大小进行选择即可.解:(1)①美团平均月收入:1.4+0.8+0.4+1+2.4=6千元;②滴滴中位数为4.5千元;③方差:[5×(6﹣4)2+2×1+2×9+36]=7.6千元2;故答案为:6,4.5,7.6;(2)选美团,因为平均数一样,中位数、众数美团大于滴滴,且美团方差小,更稳定.18.据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l的距离为0.1千米的P处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒(注:3秒=小时),并测得∠APO=59°,∠BPO=45°.试计算AB并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643)【分析】在直角△OAP中,直角△OBP中,利用三角函数即可求得OA,OB,求得AB 的长,即可求解.解:设该轿车的速度为每小时x千米.∵AB=AO﹣BO,∠BPO=45°,∴BO=PO=0.1千米.又AO=OP×tan59°=0.1×1.6643=0.16643(千米),∴AB=AO﹣BO=0.16643﹣0.1=0.1×0.6643=0.06643(千米),(1分)即AB≈0.066千米.(1分)3秒=小时,∴x=0.06643×1200≈79.716千米/时.∵79.716<80,∴该轿车没有超速.(1分)19.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DCA,得出CD=AD =AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.20.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?【分析】首先设甲客车从青岛到济南速度是x千米/小时,由题意得等量关系:甲客车行驶400千米所用时间=乙客车行驶320千米所用时间,根据等量关系列出方程,解出x 的值,然后利用路程除以速度可得时间.解:设甲客车从青岛到济南速度是x千米/小时,由题意得:=,解得:x=100,经检验:x=100是分式方程的解,则x﹣20=100﹣20=80,400÷100=4(千米/小时),答:两辆客车从青岛到济南所用的时间是4小时.21.如图,已知一次函数y=﹣x+4与反比例函数的图象相交于点C与点A(﹣2,a).(1)求反比例函数的表达式及C点坐标.(2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.(3)求三角形AOC的面积.【分析】(1)把A点坐标代入一次函数可求得a的值,再代入反比例函数解析式可求得k的值,联立两函数解析式可求得C点的坐标;(2)当一次函数图象在反比例函数图象的上方时满足条件,根据图象可得出x的范围;(3)求出一次函数与x轴的交点坐标,根据S△AOC=S△AOB+S△BOC,利用三角形的面积公式即可求出△AOC的面积.解:(1)∵A点在一次函数图象上,∴a=2+4=6,可得A点坐标为(﹣2,6),又∵A点在反比例函数图象上,∴k=﹣2×6=﹣12,∴反比例函数解析式为y=﹣;联立两函数解析式可得,解得,或,∴C点坐标为(6,﹣2);(2)根据图象可知,当x<﹣2或0<x<6时,一次函数的值大于反比例函数的值;(3)设直线AB与x轴的交点为B,由直线AB的解析式为y=﹣x+4可知,B(4,0),∴S△AOC=S△AOB+S△BOC=×4×6+×4×2=12+4=16.22.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售所获利润最大,并求出此时的利润率.【分析】(1)根据“销售单价每提高1元日销量将会减少10件”可写出函数表达式y =200﹣10(x﹣8),化简即可;(2)利润=(单价﹣定价)×日销售量,通过这个公式可得出日销售利润的函数表达式,将w=720代入表达式,即可求出销售单价的值;(3)根据第二问即可写出日销售利润w(元)与销售单价x(元)的函数关系式,根据二次函数的性质,即可得出答案.解:(1)根据题意得,y=200﹣10(x﹣8)=﹣10x+280,故y与x的函数关系式为y=﹣10x+280;(2)根据题意得,(x﹣6)(﹣10x+280)=720,解得;x1=10,x2=24(不合题意舍去).答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,w=(x﹣6)(﹣10x+280)=﹣10(x﹣17)2+1210,∵﹣10<0,∴当x<17时,w随x的增大而增大,∴当x=12时,w所获利润最大,为960元,答:当x为12时,日销售利润最大,最大利润960元,利润率为100%.23.观察下列等式:,,,将以上三个等式两边分别相加得:=1﹣.(1)观察发现=﹣;+……+=.(2)初步应用利用(1)的结论,解决下列问题:①把拆成两个分子为1的正的真分数之差,即=;②把拆成两个分子为1的正的真分数之和,即=+.(3)深入探究定义“◆”是一种新的运算,若◆2=,◆3=,◆4=,则◆9计算的结果是.(4)拓展延伸第一次用一条直径将圆周分成两个半圆(如图),在每个分点标上质数k,记2个数的和为a1,第二次将两个半圆都分成圆,在新产生的分点标相邻的已标的两个数的和的,记4个数的和为a2;第三次将四个圆分成圆,在新产生的分点标相邻的已标的两个数的和的,记8个数的和为a3;第四次将八个圆分成圆,在新产生的分点标相邻的已标的两个数的和的,记16个数的和为a4;……如此进行了n次.①a n=k(用含k、n的代数式表示);②a n=4420,求+……+的值.【分析】(1)观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;(2)利用=﹣求解可得;(3)根据◆9=++…+计算可得;(4)①由a1=2k=k,a2=4k=k,a3=k,a4=10k=k可得a n=k;②由k=2×2×5×13×17知k(n+1)(n+2)=2×2×3×5×13×17=5×51×52,据此可得k=5,n=50,再进一步求解可得.解:(1)观察发现:﹣;+……+=1﹣++…+﹣=;故答案为:﹣,.(2)初步应用①==;②由=﹣,得=+,即=+;故答案为:,+.(3)◆9=++…+=﹣=,故答案为:;(4)①∵a1=2k=k,a2=4k=k,a3=k,a4=10k=k,……∴a n=k,故答案为:k.②∵k=4420,且k为质数,对4420分解质因数可知4420=2×2×5×13×17,∴k=2×2×5×13×17,∴k(n+1)(n+2)=2×2×3×5×13×17=5×51×52,∴k=5,n=50,∴a n=(n+1)(n+2),=•,∴+……+=×(++……+)=×(﹣)=.24.如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm 的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?【分析】(1)由矩形的性质和勾股定理可求BD的长,由三角形的面积公式可求CN的长;(2)由勾股定理可求DN的长,通过证明△DMN∽△DAB,可得,可得DM的值,即可求t的值;(3)分两种情况讨论,利用三角形面积公式列出△PMN的面积与t的关系式,可求△PMN的面积的最大值.解:(1)∵四边形ABCD是矩形∴BC=AD=4cm,∠BCD=90°=∠A,∴BD==5cm,∵S△BCD=BC×CD=×BD×CN∴CN=故答案为:(2)在Rt△CDN中,DN==∵四边形MPQN为平行四边形时∴PQ∥MN,且PQ⊥BC,AD∥BC∴MN⊥AD∴MN∥AB∴△DMN∽△DAB∴即∴DM=cm∴t=s(3)∵BD=5,DN=∴BN=如图,过点M作MH⊥BD于点H,∵sin∠MDH=sin∠BDA=∴∴MH=t当0<t<∵BQ=t,∴BP=t,∴PN=BD﹣BP﹣DN=5﹣﹣t=﹣t∴S△PMN=×PN×MH=×t×(﹣t)=﹣t2+t∴当t=s时,S△PMN有最大值,且最大值为,当t=s时,点P与点N重合,点P,点N,点M不构成三角形;当<t≤4时,如图,∴PN=BP﹣BN=t﹣∴S△PMN=×PN×MH=×t×(t﹣)=t2﹣t当<t≤4时,S△PMN随t的增大而增大,∴当t=4时,S△PMN最大值为,∵>∴综上所述:t=4时,△PMN的面积取得最大值,最大值为.。