高数期末试卷(8学分A)

合集下载

数学高数期末试题及答案

数学高数期末试题及答案

数学高数期末试题及答案第一部分:选择题1. 设函数 $f(x) = e^x + \ln x$,则 $f'(1) =$ ( )A. $e$B. $e+1$C. $1$D. $0$2. 设二元函数 $z=f(x,y)$ 在点 $(1,2)$ 处可微,则 $\frac{\partialz}{\partial x}$ 在该点的值为 ( )A. $f_x(1,2)$B. $f_y(1,2)$C. $0$D. $f(1,2)$3. 设平面$2x+y+z=2$,直线$L$ 过点$(1,1,1)$,且与该平面平行,则直线 $L$ 的方程为 ( )A. $x=y=z$B. $2x+y+z=4$C. $x=y=z=1$D. $x+y+z=3$第二部分: 简答题1. 解释什么是极限?极限是一个函数在某一点或者无穷远处的值或趋近于的值。

对于一个给定的函数,当自变量趋近某一特定值时,函数的值也会趋近于某个特定的值。

2. 什么是导数?导数是函数在某一点的切线斜率。

在数学中,导数表示函数在给定点的变化率。

第三部分: 解答题1. 计算函数 $f(x) = \sin(x) - \cos(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值和最小值。

首先,我们求解导数 $f'(x)$,然后令其等于零,解得$x=\frac{\pi}{4}$。

此时,我们可以计算得到 $f(\frac{\pi}{4}) =\sqrt{2}-1$。

另外,我们可以计算 $f(0) = 1$ 和 $f(\frac{\pi}{4}) = \sqrt{2}-1$。

所以,函数 $f(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值为 $1$,最小值为 $\sqrt{2}-1$。

2. 计算二重积分 $\iint_D x^2 y \,dA$,其中 $D$ 是由直线 $x=0$,$y=0$ 和 $x+y=1$ 所围成的区域。

高等数学期末试题(含答案)

高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。

选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。

3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。

4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。

5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。

二。

填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。

2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。

3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。

4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。

上海交通大学《高等数学》2020-2021学年第二学期期末试卷A卷

上海交通大学《高等数学》2020-2021学年第二学期期末试卷A卷

2020-2021级高等数学第二学期期末试卷(A 类)一、单项选择题(每小题3分,共15分)1. 空间立体Ω++≤≥x y z z :1(0)222上的三重积分⎰⎰⎰++=Ωx y z V ()d 222( )(A) π;(B)π21; (C) π54; (D) π52。

2. 若函数f x y (,)在点P x y (,)000沿任何方向的方向导数都存在,则 ( )(A) f x y f x y x y (,),(,)0000存在; (B) f x y (,)在P 0点处连续; (C) f x y (,)在P 0点处可微; (D) 以上选项都不成立。

3.=f x y z xyz (,,)在约束条件++=x y z 223222下的最大值为: ( )(A)2;(B) 4; (C)21; (D) 1。

4. 平面曲线-+-=C x y :(1)(2)122上的曲线积分⎰+=x y s C ()d ( )(A) π8;(B) π6;(C) π4;(D) π2。

5. 下列命题中,正确命题的个数为 ( )① 若极限→∞+a ann n lim 1不存在,则非负项级数∑=∞a n n 1发散;② 级数∑=∞a n n ||1收敛的充分必要条件是:级数∑+=∞a a n n n 1||||1收敛;③ 若级数∑=∞a n n 1发散,则级数∑=∞na n n 1也发散.(A)0; (B)1; (C)2; (D)3。

二、填空题(每小题3分,共15分) 6. 二次积分⎰⎰=yx y yx d d sin 011_________________。

7. 设平面曲线C 是椭圆+=a bx y 12222的逆时针方向,则曲线积分⎰+++=y ey x x e y y C xx (sin )d (3cos )d _________________。

8. 向量场=+-F x y z x yi xy j k xyz (,,)e 23在点(1,1,0)处的散度=divF (1,1,0)_____。

上海交通大学第一学期高数a类期末考试题及答案解析

上海交通大学第一学期高数a类期末考试题及答案解析

上海交通大学第一学期高数a类期末考试题及答案解析一、单项选择题(每小题3分,共15分)1. 已知 x=0 是 f\left( x \right) =\frac{x+b\ln\left( 1+x \right)}{ax-\sin x} 的可去间断点,则 a,b 的取值范围是()解:2. 下列反常积分中,收敛的是()解:3. 设函数 f(x) 在区间 [-a,a] 上二阶可导,且 f\left( x \right) >0,f'\left( x \right) >0,f''\left( x \right) <0 ,下列函数中,在区间 [-a,a] 上恒正、单调递减且为下凸函数的是()解:4. 积分 \int_0^{\pi}{|\sin \left( 4x+1 \right)|\mathrm{d}x}= ()解:5. 设函数 f(x) 在 R 上连续, g\left( x \right)=\int_0^{x^2}{\mathrm{e}^{-t^2}\mathrm{d}t} .对于两个命题:①若 f(x) 为偶函数,则 F\left( x \right)=\int_0^x{f\left( t \right) g\left( t \right)\mathrm{d}t} 为奇函数;②若 f(x) 为单调递增函数,则 G\left( x \right)=\int_0^x{\left( f\left( x \right) -f\left( t \right) \right) g\left( t \right) \mathrm{d}t} 存在极小值.下列选项正确的是()解:二、填空题(每小题3分,共15分)6. 设 f\left( x \right) =x\mathrm{e}^x, 则曲线 y=f(x) 的拐点是_____________.解:7. 直线 L_1:\frac{x-1}{-1}=\frac{y}{-4}=\frac{z+3}{1} 和 L_2:\frac{x}{2}=\frac{y+2}{-2}=\frac{z}{-1} 的夹角为_____________.解:8. 设函数 f\left( x \right) =\mathrm{arctan} x ,常数a>0 ,若 f\left( a \right) -f\left( 0 \right)=f'\left( \xi \right) a\,\,, 则 \underset{a\rightarrow 0^+}{\lim}\frac{\xi ^2}{a^2}= _____________.解:9. 极坐标曲线 r=2cos3\theta 上对应于\theta=\frac{5}{6}\pi 的点处的切线方程为_____________.解:10. 一阶常微分方程 y'\left( x \right) =\frac{y}{x+y^2} 的通解为_____________.解:视为关于 x 的一阶线性微分方程,然后利用公式直接求解即可:\frac{\mathrm{d}x}{\mathrm{d}y}=\frac{x}{y}+y\Rightarr ow x=y^2+Cy三、(本大题共8分)11. 设 y=y(x) 是由方程 y^3-2x\int_0^y{\sin^2t\mathrm{d}t=x+\pi ^3} 所确定的可导函数,求\frac{\mathrm{d}y}{\mathrm{d}x}\mid_{x=0}^{} .解:。

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。

2020-2021学年高等数学期末考试题(含答案)

2020-2021学年高等数学期末考试题(含答案)

2020-2021学年高等数学期末考试(含答案)一、填空题 (本大题分6小题, 每小题3分, 共18分)1. 已知f (x ) =x-11, 则f [f (x )] = .2. 设f (1+Δx ) - f (1) = 2Δx + (Δx )2, 则)1(f '= .3. f (x ) = x + cos x 的单调递增区间为 .4. 不定积分⎰=+xdx x 22tan )tan 1( . 5.⎰-=++113)1cos 3(dx x x x .6. 点M (-1, 2, 3)关于坐标面x o y 的对称点为 . 二、单项选择题 (本大题分6小题, 每小题3分, 共18分)1. 设函数f (x ) =⎪⎩⎪⎨⎧≥+<0,,0,2sin x x a x x x 在x = 0处连续, 则常数a =( )A . 0;B . 1;C . 2;D . 3. 2. 已知一个函数的导数为x y 2=', 且x = 1时y = 2, 则这个函数是( )A . 12+=x y ;B . 23212+=x y ; C . C x y +=2;D . y = x + 1. 3. 下列函数中在[-1, 1]上满足拉格朗日中值定理条件的是( )A . ||x y =;B . )1ln(2x y +=;C . )1ln(x y +=;D . x y 1=. 4. 设f (x ) =⎰x tdt 0sin , 则f (f (2π))等于( )A . -1;B . 1;C . -cos1;D . 1-cos1.5. 下列反常积分收敛的是( )A . ⎰∞+e dx xx ln ;B . ⎰∞+e xx dxln ;C .⎰∞+ex x dx2)(ln ;D . ⎰∞+e x x dx ln .6. 同时垂直于向量a = (2, 1, 1)和b = (0, 1, 1)的单位向量是( )A . )21,21,0(; B . )21,21,0(-;C . )31,31,31(-; D . )31,31,31(.三、计算题 (本大题分5小题, 每小题8分, 共40分)1. 求极限: ⎪⎭⎫⎝⎛-+∞→x x x arctan 2lim π.2. 求曲线922=-xy y 在点(0, 3)处的切线方程和法线方程.3. 设函数f (x )的一个原函数为xxsin , 求⎰'.)(dx x f x4. 计算I =⎰++70311x dx.5. 计算I =⎰-1.|)12(|dx x x四、应用题(本大题分2小题, 每小题9分, 共18分)1. 已知函数f (x ) =dt t kt t x )2sin (1⎰-在x =6π处有极值, 求常数k 的值, 并讨论是极大值还是极小值.2. 求曲线y = e x , y = e -x 和直线x = 1所围成平面图形的面积A 以及其绕x 轴旋转而成的旋转体的体积V x .五、证明题(本大题6分) 证明: 当x > 0时, 有ln(1+x ) >xx+1.一、填空题 (本大题分6小题, 每小题3分, 共18分)1. x 11-;2. 2;3. (-∞, +∞);4.C x +3tan 31; 5. 2;6. (-1, 2, -3).二、单项选择题 (本大题分6小题, 每小题3分, 共18分) 1. C ; 2.A ; 3. B ; 4.D ; 5. C ; 6. B .三、计算下列各题 (本大题分5小题, 每小题8分, 共40分)1. 解: ⎪⎭⎫ ⎝⎛-+∞→x x x arctan 2lim π=x x x 1arctan 2lim -+∞→π (2分) =22111lim xx x -+-+∞→ (2分)=221lim x x x ++∞→ (2分)=1. (2分) 2. 解: 0222='--'⋅y x y y y , (2分)xy yy -=', (1分)10='=x y . (1分) 因此,所求切线方程为y - x = 3; (2分) 法线方程为y + x = 3. (2分)3. 解: 因为2sin cos )(xxx x x f -=, (2分)所以, ⎰'dx x f x )(=⎰)(x xdf (2分) = ⎰-dx x f x xf )()((2分) =2sin cos xx x x x -⋅C x x +-sin (1分) =C x x x +-sin 2cos .(1分) 4. 解: 设t x =+31, (1分)则13-=t x , dt t dx 23=. 当x = 0时, t =1; 当x = 7时, t = 2. (1分)因此⎰++70311x dx =⎰+21213tdtt =(1分)⎰++-2121113tdtt =⎰++-21)111(3dt tt (2分) =))1ln(21(32121212t t t ++- (2分)=)2ln 3ln 123(3-+-=23ln 23+. (1分)5. 解: ⎰-10|)12(|dx x x =⎰-210)21(dx x x +⎰-121)12(dx x x (4分)=210221032132x x+-121212132132x x -+(2分)=81211213281121+--++-=41. (2分) 四、应用题(本大题分2小题, 每小题9分, 共18分)1. 解: )(x f '=x k x 2sin 2-, (2分)若f (x )在x =6π处有极值, 则0)6(='πf , (2分)即得k = 1. (1分)又)(x f ''=221sin 2cos 2x x x x +-, (2分)从而0)6(>''πf ,(1分)所以f (6π)为f (x )的极小值. (1分) 2. 画图, (1分)所求面积为⎰--=10)(dx e e A x x (2分)=110x xe e -+=21-+-e e . (2分)所求体积为V x =⎰--1022)(dx eexxπ(2分)=)2121(10212x xe e -+π=)2(2122-+-e e π.(2分)五、证明题(本大题6分)证明: 设x x x x f -++=)1ln()1()(, (1分)则)1ln()(x x f +=', (1分)当x > 0时, 有0)(>'x f , (1分)即f (x )在[0, +∞)上单调增加, (1分)所以, 当x > 0时, 有f (x ) > f (0) = 0, (1分)因此, 当x > 0时, 有ln(1+x ) >xx+1.(1分)。

2005-2006高数下(8学分)期末试题A及解答

2005-2006高数下(8学分)期末试题A及解答

华东理工大学2005-2006学年高等数学下(8学分)期末考试试卷A 2006.6一. 填空题(每小题4分, 共36分) 1.一阶微分方程0)21(22=-+'y x y x 的通解是y =____________.2.微分方程052=+'+''y y y 满足初始条件3)0(,1)0(='=y y 的特解为y =___________.3.已知ABC ∆的三个顶点为)2,3,4(),4,3,2(),1,1,1(C B A =, 则ABC ∆的面积S =_______.4.已知)0,2,2(),1,,0(-=ππB A , 则函数)sin(2yz e u x =在点A 处沿方向B A方向 导数A lu |∂∂=_______.5.空间曲线)(),(z g y y f x ==(其中g f ,是可微函数)上对应于0z z =点的切线方程是_____________________6.设函数)(⋅f 具有二阶连续导数, ),(⋅⋅g 具有二阶连续偏导数, ),()(z xyz g z xy f u ++=,则zx u ∂∂∂2=_____________.7.二次积分dy e dx xy ⎰⎰-2222的值等于______________.8.某公司生产产品A , 当生产到第x 个单位的边际成本是34)(+='x x c (万元/单位), 其固定成本是100万元, 则生产量为10单位时的平均成本等于_______(万元/单位). 9.设22224|),,{(y x z y x z y x --≤≤+=Ω, 则Ω的体积V =________. 10.函数)1ln(),,(2z x ye z y x f z ++=在点)0,1,1(P 处的梯度)(P gradf ________.二. 选择题(每小题4分, 共32分)1. 微分方程1+=-''x e y y 的一个特解应具有形式(式中b a ,为常数), ( ) (A)b ae x +; (B)b axe x +; (C)bx ae x +; (D)bx axe x +.2.函数),(y x f y =在点),(00y x 处具有偏导数),(00y x f x , ),(00y x f y 是该函数在点),(00y x 可微的()(A)充要条件; (B)必要条件; (C)充分条件; (D)既非充分条件也非必要条件.3.已知非零向量b a,满足||||b a b a +=-,则必成立的是 ( )(A)b a b a +=-; (B)b a =; (C)0=⨯b a ; (D)0=⋅b a.4.下列广义积分中收敛的是( ) (A)dx xx e⎰1ln 1; (B)dx xx e⎰+∞ln 1; (C)dxxx e⎰+∞ln 1; (D)dxxx e⎰12ln 1.5*.二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在)0,0(点处( )(A)连续且偏导数存在; (B)连续, 偏导数不存在;(C)不连续, 偏导数存在; (D)不连续, 偏导数不存在三. (本题8分) 设函数yz e x u =, 而)(x z z =与)(y z z =分别是由方程1=-xz e z 与2sin =-y z e z所确定,计算yux u ∂∂∂∂,. 四. (本题6分)曲线过点)1,1(, 其上任一点与原点的距离平方等于该点横坐标与该点的法线在x 轴上截距的乘积的两倍, 求曲线方程.五. (本题6分) 计算数列极限2)1tan511(lim 2nn nn-+∞→.六. (本题8分)在曲面1:=++∑z y x 上作一切平面, 使它与三个坐标面所围成的四面体体积最大, 求切平面方程.七、(本题8分)设1D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域,2D 是由抛物线22x y =和直线a x y ==,0所围成的平面区域, 其中20<<a .(1)求1D 绕x 轴旋转而生成的旋转体体积)(1a V , 求2D 绕x 轴旋转而生成的旋转体体积)(1a V ; (2)当a 取何值时, )()(21a V a V +取得最大值? 并求此最大值. 八、设函数)(x f 在]1,0[上连续, 2)(1=⎰dx x f , 证明:3)(1)(11)(≥⋅⎰⎰dx x f dx ex f x f .华东理工大学2005-2006学年第二学期《高等数学(下)》课程期终考试试卷参考答案与评分标准一.填空题(每小题4分,共40分)1.cx x +-2||ln 1 2.)2si n (cos x x e y x +=- 3. 62 4.32π+5.1)()()()]([)]([000000z z z g z g y z g z g f z g f x -='-='⋅'- 6. 22321221g zx g zy g zf y -+-''7. 41--e 8. 33 9.二.选择题(每小题4分,共32分):5.C;A ; 4.D; 3.;B 2.;1.B三.xz xyeexu yzyz∂∂+=∂∂,yz xyexze yu yzyz∂∂+=∂∂而xe z xz z-=∂∂,ye z z yz zsin cos -=∂∂, ------------------------------------------------(2分xe xyzeex z zyzyz-+=∂∂, ------------------------------------------------(2分)ye xyzexzeyz zyzyzsin -+=∂∂, -----------------------------------------(2分)四.曲线在点),(y x 处的法线方程为: )(1x X y y Y -'-=-,令0=Y , 得曲线在x 轴上截距为: y y x X '+=,根据题意得: )(222y y x x y x '+=+或 x y xy y -=-'212, 1)1(=y , -------------( 2分)令2y z =,x z xdxdz -=-1 ------------(3分))())(()1()1(2c x x c dx ex ez y dxxdxx+-=+-==⎰⎰-⎰--, -------------------------------------(3分)由1)1(=y , 得2=c ,所求曲线为)2(2x x y -=或.222x y x =+ ----------------------------(1分)六.(本题8分)曲面∑在点),,(000z y x 处的切平面方程为:0)(1)(1)(1000000=-+-+-z z z y y y x x x , -------------------------------(2分),100=++z z y y x x ,截距分别为000,,z y x ,问题为求xyz V 61=在条件1000=++z y x 下的最大值, ---------(2分)令 )1(6100-+++=z y x xyz L λ,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==+==+==+=010212102121,02121z y x L zzxy L yy xz L xx yz L zy yxλλλ, 解得: 91===z y x ,-----------------------------------------(3分)因为问题的最大值存在,故91===z y x 就是最大值点,此时截距为31000===z y x ,所求切平面为: 31=++z y x . --------------------------(1分)七、)32(54)2()(52221a dx x a V a-==⎰ππ, -------------------------(2分)422222)(a dx x x a V aππ=⋅=⎰, -------------------------(2分)设)()()(21a V a V a V +=, 令 0)1(4)(3=-='a a a V π, 得唯一驻点: 1=a , ----(2分)当10<<a 时, 0)(>'a V ; 当21<<a 时, 0)(<'a V ;故当1=a 时, )()()(21a V a V a V +=取到最大值π5129)1(=V . --------------------(2分) 八、dx x f dx e x f x f ⎰⎰⋅110)()(1)(dy y f dx ex f x f ⎰⎰⋅=11)()(1)(⎰⎰=Dx f dxdy ey f x f )()()(,其中}10,10|),{(≤≤≤≤=y x y x D , --------------------(2)又dx x f dy ey f y f ⎰⎰⋅=11)()(1)(⎰⎰=Dy f dxdy ex f y f )()()(,所以dx x f dx ex f x f ⎰⎰⋅11)()(1)(⎰⎰+=Dy f x f dxdy ex f y f ey f x f ])()()()([21)()(⎰⎰+≥Dy f x f dxdye)]()([21--------------------(2)⎰⎰++≥Ddxdy y f x f ]2)()(1[3)(21)(2111111=++≥⎰⎰⎰⎰dy y f dx dy dx x f . ----------(2)填空题解答:1. 0)21(22=-+'y x y x , 是可分离变量微分方程,分离变量得: dx xx dy y )12(2-=, 积分得: c x x y--=-||ln 12,化简为:cx x +-2||ln 1.2. 特征方程: 0522=++λλ, 解得: i 212542222,1±-=⨯-±-=λ,故通解为: )2si n (co s x x e y x +=-. 3.|}1,2,3{}3,2,1{|21||21⨯=⨯=AB AC S 6216641621|}4,8,4{|21=++=--=.4.}1,2,2{--=B A , 32cos =α,32cos -=β, 31cos -=γ ,0|)sin(2|2==∂∂A xA exy x xu ,1|)cos(|2-==∂∂A xA eyz z yu ,π-==∂∂A xeyz y zu |)cos(2,γβαcos |cos |cos |A A A zu yu xu lu ∂∂+∂∂+∂∂=∂∂=323132)1(320ππ+=-⨯+-⨯-+⨯.。

第二学期高数(下)期末考试试卷及答案

第二学期高数(下)期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1 一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰D LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C.()-+1e dx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定. 5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3x ae ;B. ()+3x ax b e ;C.()+3x x ax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430A B(),,∴=-142AB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922n ∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590xy z四.(8分)设(),=yzf xy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y.解:令=uxy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200x y R x y 2L :()=≤≤00x y R3L : ()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx 七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613f x x x x x , 而()∞=⋅=-+∑01111212n n n x x , (),-11()∞=-⋅=+∑01116313nn n n x x , (),-33()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263P Qxy y y x, ∴原方程为:通解为:++-=532231332x y x y y x C 九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞ 于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12xx xxx Sx eC e e dx Cee 由()=01S ,得:=12C ;故:()()-=+12x x S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。

《高等数学(二)》期末考试卷A(含答案)

《高等数学(二)》期末考试卷A(含答案)

《高等数学(二)》期末考试试卷考试形式:闭卷考试 考试时间:120分钟一、选择题(单选题,每题4分,共28分)1、0lim =∞→n n u 是∑∞=1n n u 收敛的( B )A .充分而非必要条件 B. 必要而非充分条件C.充要条件D. 既非充分也非必要条件2、若级数∑∞=1n n u 收敛,则下列命题( B )正确(其中∑==ni i n u s 1)A .0lim =∞→s n n B. s n n lim ∞→存在C. s n n lim ∞→ 可能不存在 D. {}为单调数列s n 3、设∑∞=1n n u 与∑∞=1n n v 都是正项级数,且n n v u ≤ ,2,1(=n )则下列命题正确的是( C )A .若∑∞=1n n u 收敛,则∑∞=1n n v 收敛 B. 若∑∞=1n n u 收敛,则∑∞=1n n v 发散C.若∑∞=1n n v 发散,则∑∞=1n n u 发散D.若∑∞=1n n v 收敛,则∑∞=1n n u 收敛4、下列级数中条件收敛的是( B )A .1)1(1+-∑∞=n n n nB. n n n 1)1(1∑∞=-C. 211)1(n n n ∑∞=-D. n n n ∑∞=-1)1( 5、幂级数∑∞=-12)2(n nn x 的收敛区间为( B ) A.(1,3) B.[]3,1 C.[)3,1 D.(]3,16、幂级数∑∞=1!n nn x 的收敛半径为( C )A. 0B. 1C. +∞D. 37、点A (-3,1,2)与B (1,-2,4)间的距离是( A ) A. 29 B. 23 C. 29 D. 23二、填空题(每题4分,共16分)1、球心在点(1,-2,3),半径为3的球面方程为 9)3()2()1(222=-+++-z y x2、方程0222222=-+-++z x z y x 表示的图形是圆心在(1,0,-1),半径为2的球面. .3、二元函数229y x z --=的定义域是{}9:),(22≤+y x y x4、y x y x y x F --=22),(,则)3,1(F = 5 . 5、幂级数1nn x n∞=∑的收敛半径为是 1 .三、计算题1、求函数的一阶偏导数(1))ln(222y x x z += (2)xy e u =223222)ln(2y x x y x x x z +++=∂∂ xy ye xu =∂∂ 2222y x y x y z +=∂∂ xy xe yu =∂∂2、求函数32y x z =,当01.0,02.0,1,2-=∆=∆-==y x y x 的全微分32xy xz =∂∂ 223y x y z =∂∂ 2.0)1,2()1,2(-=∆-+∆-=y f x f dy y x3,y x z 2)31(+=,求x z ∂∂,yz ∂∂ 216(13)y z y x x-∂=+∂)31ln()31(22x x yz y ++=∂∂4、设方程0sin 2=-+xy e y x 确定的一个隐函数,求dxdy 0).2(.cos 2='+-+'y xy y e y y x 22cos x e y y xy y-'=-5、求函数22)(4),(y x y x y x f ---=的极值(1)x f x 24-= y f y 24--=(2)令0,0==y x f f 得:2,2-==y x(3)2,0,2-==-=yy xy xx f f f 故2,0,2-==-=C B A 0,02<<-A AC B 有极大值.8)2,2(f =-=极大y6、计算积分⎰⎰Dxydxdy ,其中D 由3,x y x y ==在第一象限内所围成.161103==⎰⎰⎰⎰D x x ydy xdx xydxdy四、应用题1、建造容积为V 的开顶长方形水池,长、宽、高各应为多少时,才能使表面积最小?(10分) 长为32v x = 宽32v y = 高3221v z =2、把正数a 分成三个正数之和,使它们的乘积为最大,求这三个数.(7分) 3a z y x ===。

2005-2006第一学期工商学院高数期末试卷A(8学分)答案

2005-2006第一学期工商学院高数期末试卷A(8学分)答案
x
2 x 1 2
](1
2 2 ) e 2x 1
1
(cot x) ln x . 2.求极限 lim
x 0 1 ln x
(cot x) 解: lim
x 0
e = lim
x 0
1 ln cot x ln x
e 1
1 ( csc 2 x) ln cot x x cot x 其中 lim lim lim ( ) 1 . x 0 x 0 x 0 1 ln x sin x cos x x
Q
50 Q 10Q 200 2
1 Q 2 15Q 200 2
L(Q) Q 15 ,所以,当 Q 15 时, L(Q) 0 .
当 Q 15 时,工厂日总利润 L 最大.
6


九、(7分)某工厂生产某产品,日总成本为 C 元, 其中固定成本为 200 元, 每多生产一单位产品, 成本增加 10 元. 该商品的需求函数为 Q 50 2 P ,求 Q 为多少时工厂日总利润 L 最大?
得分
解: L(Q) R(Q) C (Q)
Q P (10Q 200)
1 1 ( , ) ,下凸区间为 ( ,1), (1, ) ,极小值为 f (0) 1 . 2 2
x 2 , x 1 七、 (5分)确定常数 a 、 b 的值,使函数 f ( x) 在其定义域内可导. ax b , x 1
得分
解:显然函数 f ( x) 在 x 1 及 x 1 时是可导的, x 1 处,
得分
五、证明题(每题5分,共 10分)
得分
1.函数 f ( x) 和 g ( x) 都在 [0, 1] 上连续,在 (0, 1) 内可导, f (1) g (1) ,且对所有 x (0, 1) 有

高等数学8套期末考试题AB卷带答案 模拟测试题

高等数学8套期末考试题AB卷带答案 模拟测试题

期 末 试 卷1.填空(每空2分,共10分) (1) f(x)=sinx x1sin⋅的间断点是 ,是第 类间断点. (2)函数xe x y 2=在=x 处取得极小值,在=x 处取得极大值.(3)曲线 2x y =上点 处的切线平行于直线x y =.(4)若(0,1)是曲线c bx x y ++=23的拐点,则=b ,=c .(5)比较大小dx x ⎰12 dx x ⎰14.2.选择题(每题2分,共10分)(1)如果函数)(x f y =在0x 处不可导,则曲线在点))(,(00x f x 处( ).A .切线不存在 B. 切线垂直于x 轴 C. 切线不存在或切线垂直于x 轴 (2)如果函数)(x f y =在0x 处不可导,则曲线在点))(,(00x f x 处( ).A .切线不存在 B. 切线垂直于x 轴 C. 切线不存在或切线垂直于x 轴 D.切线平行于x轴(3)若函数d cx bx ax y +++=23)0(>a 满足条件 032<-ac b ,那么这函数( ).A .有极值B .有极大值C .有极小值D .没有极值(4)若点(1,3)为曲线23bx ax y +=的拐点,则a 、b 的值分别为( ).A .23-=a ,29=b B .3-=a ,6=b C .23=a ,29-=b D .3=a ,6-=b(5)下列等式中错误的是( ).A .⎰⎰=+ba a bdx x f dx x f 0)()( B .⎰⎰=b abadt t f dx x f )()(C .⎰-=aadx x f 0)( D .⎰=aadx x f 0)(3.计算题(每题6分,共54分) (1)132lim1--+→x x x (2))1(2)1sin(lim 1++-→x x x (3) x y x 1tan 221tan += ,求y '.(4)x x y 1010+=,求y '.(5)xy y 62= ,求x y '. (6)⎰-332xdx(7)⎰xdx x 210sec tan(8)⎰xdx xarctan 2(9)dx xx ⎰-21214.由力学知,矩形横梁的强度与它的 断面高的平方与宽的积成正比.要将直径为d 的圆木锯成强度最大的横梁,断面的宽和高应为多少?(见图1)(9分)5.求微分方程的通解:0ln =-'y y y x .(8分)6.计算由曲线0,42=-=y x y 围成的图形的面积.(9分)图1高等数学(少学时)试题1参考答案1. 填空(每题2分,共10分)(1) x=0,一 (2)0,-2 (3)(41,21) (4)0,1 (5)>2.选择题(每题2分,共10分)(1)C (2)C (3)D (4)A (5)C 3.计算题(每题6分,共54分) (1)132lim1--+→x x x型00 原式=633211221lim1==+→x x(2))1(2)1sin(lim1++-→x x x 型0原式=212)1cos(lim 1=+-→x x )1tan 222(ln 1sec )1tan 222(ln 1cos 11)1(1tan 21cos 1)1(1cos 12ln 2)3(1tan221tan2222221tan'x x x xx xx x xxxy x xx+⋅-=+⋅⋅-=-⋅⋅+-⋅⋅=x x y 1010ln 10)4(9'⋅+=)62(66)62(662)5(''''x y y y yy x y xy y yy x -==-+=cx cu c u du u du u xu x d xdx x +--=+-=+⋅-=-=-=-=---=-⎰⎰⎰⎰3232323133332212123313113132)32(32131321)6()(原式原式设 c x c t dt t t x x xd xdx x +⋅=+====⎰⎰⎰11111010210tan 111111tan )(tan tan sec tan )7(原式设cx x x x c x x c t t dt t t u u d u du u u x u dx x x dx x x xd x x d x x x xdx xdx x +++-=++-+=+-=-==+++-=++-+==+=+=-⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰)1ln(6161arctan 31))1ln(1(21)ln (21)11(211)1(1112111112112111arctan )arctan (arctan 31arctan 31arctan )8(2232222222333332原式设设分部积分法33)6cot 2(cot )62[(cot sin cos cos sin 1111111)9(2622622121222112212212-=-+--==--===---=-==-=-⎰⎰⎰⎰⎰⎰πππππθθθθθθθθππππd d d dt t dt t t tdt t xdxxdx x x 原式令原式令4.设强度为s ,则s=x h 2时强度最大,高为所以当宽为d d d h d x x d x x d s xx d s d h x 363336,3303)()(22'32'22222===-=-=-==+cxx x c e x ce ce e e e y e x y c x y dx x dy y y xdxy y dy y y dx dyx c====+=+====-⋅+⎰⎰ln ln ln ln 1ln 1ln 0ln .5两端积分得:6.曲线交点为(-2,0),(2,0)S=A+B因为是对称图形,所以A=B332316)431()40(203202==+-=+-=⎰S x x dxx A期 末 试 卷一二三四五六总分1.填空(每空2分,共10分)(2) 设f(x)=⎪⎪⎩⎪⎪⎨⎧x e x 1arcsin01 000>=<x x x , 则x=0是f(x)的第 类间断点.(2))(x f 在点0x 处可导是)(x f 在点0x 处连续的 条件,)(x f 在点0x 处连续是)(x f 在点0x 处可导的 条件. (3)的极大值点在 ,极大值为 ;极小值点在 ,极小值为 .(4)曲线xxe y =的凹区间是 ,凸区间是 ,拐点是 . (5)比较大小dx x ⎰1ln dx x ⎰12ln .2.选择题(每题2分,共10分)(1)设,2,cos 12x x =-=βα则当0→x 时,( ).A. 是同阶无穷小与βαB. 是等价无穷小与βαC. 是高阶的无穷小是较βαD. 是低阶的无穷小是较βα(2)一质点作直线运动的方程是 232010t t s -+=, 则2=t 时质点运动的加速度为( ).A . 0 B. -6 C. 6 D. 8 (3)设)(x f 在0x 点可导,且0)(0='x f ,则0x 一定是)(x f 的( ).A .极值点B .驻点C .极大值点D .极小值点 (4)若⎰+=C x F dx x f )()(,则⎰+dx b ax f )(是( ). A.C b ax F ++)( B.C b ax F a++)(1C.)(1b ax F a + D.C abx F ++)((5)设⎰=-10,1)(dx x a x 则常数=a ( ). A.38 B.31 C.34 D.32 3.计算题(每题6分,共54分)(1)x xx 5sin 2sin lim 0→ (2)()x x x 101lim -→ (3) x y arccos = ,求y '.(4)112+=x y ,求y '. (5) 022=-+yx xy ,求x y '. (6)⎰x x x dxln ln ln(7)⎰-+xx e e dx (8)⎰-12x x dx (9)⎰exdx x 1ln 4.轮船甲位于轮船乙以东75n mile (海里)处,以12 n mile / h 的速度向西航行,而轮船乙则以6 n mile/ h 的速度向北航行,问经过多少时间,两船相距最近?(9分) 5.求微分方程的通解:x e y dxdy-=+.(8分) 6.计算由曲线0,7ln ,2ln ,ln ====x y y x y 围成的图形的面积.(9分)高等数学(少学时)试题2参考答案1、填空(每题2分,共10分)(1)二 (2)充分 不充分必要 (3)0,0,1,-1 (4)(-2,+∞),(-∞,-2)(-2,-22-e )(5)> 2.选择题(每题2分,共10分) (1)A (2)D (3)B (4)B (5)A 3.计算题(每题6分,共54分) (1)xxx 5sin 2sin lim0→00型原式=15cos 2cos lim 0=→xxx (2)xx x 10)1(lim -→ ∞1型 原式=10)1ln(1lim0==-→e e x xx(3)xx xxy --=•--=1212111'(4)3232232')1(2)1(212)1(21+-=•+-=•+-=-x x x x x x y(5)x 'y +y+ln2x 2•-lny y 2'y =0(x-lny y 2)'y =-ln2x 2•'xy =xy yx-⋅⋅2ln 22ln cx ct dt t ut u u d u u du xu xx xd +=+======⋅=⎰⎰⎰⎰ln ln ln ln 1ln ln ln ln ln ln ln ln ln )6(所以原式设设原式ce cu du u e u de e dx e e e e dx x xx x x xx x +=+=+==+=+=+⎰⎰⎰⎰-arctan arctan 111)(11)()7(222原式设cxt ct dt tt tdtt tdtt dx t x x x dx+=+=====-⎰⎰⎰1arccos tan sec tan sec tan sec sec 1)8(2代入原式把原式则设 2sin 2cos 2cos )9(20200===⎰⎰πππxxdx dx x4.设底边长为x,高为h时表面积最小高为所以当边长为最小时当表表363,621621610844222s h x xx x x x s xhx s ==++=+=+=5.先求对应齐次方程y dxdy2= 分离变量得:dx ydy2= 积分得:lny=2x+c y=c x e +2=c x e 2用常数变易法求原方程的通解,设解为y=c(x) x e 2(c(x)是待定函数)代入原方程:xx x x xx x x x x e ce c e e y cex c e x c e e x c e x c e x c -=+-=+-===-+---22'222')()()()(2)(2)(所以6.曲线y=x y x 2,3=的交点为(0,0),(22,2--),(22,2)S=21A A +2141)2(1441241)2(210220243222042023201=+==-=-==⨯-=-=-=--⎰⎰A A s x x dx x x A x x dx x x A 所以围成的面积为2.期 末 试 卷一二三四五六总分1.填空(每空2分,共10分)(3) 若011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x ,则a= ,b= . (2)设,0)(=x f )0(f '存在, 则=→xx f x )(lim 0. (3)的极大值点在 ,极大值为 ;极小值点在 ,极小值为 .(4)曲线xxe y -=的凹区间是 ,凸区间是 ,拐点是 .(5)比较大小dx x ⎰212 dx x ⎰214.2.选择题(每题2分,共10分)(1)⎪⎩⎪⎨⎧-=x xx f 22)( 21110≤<=<<x x x 的连续区间为( ).A.[0,2]B.(0,2)C.[0,2]D.(0,1)⋃(1,2)(2)曲线 2sin x x y +=在点(0,0)处的切线与x 轴正向夹角为( ).A .30ο B. 45ο C. 135ο D . 150ο(3)设函数22)4(-=x y ,则在区间2(-,)0和2(,)∞+内,y 分别为( )A .单调增,单调增B .单调值,单调减C .单调减,单调增D .单调减,单调减(4)已知函数)(x f y =的导数等于2+x ,且2=x 时5=y ,则这个函数为( ).A.x x y 22+= B. x x y 222+= C. 1222-+=x x y D. 1222++=x x y (5)下列等式中错误的是( ).A.⎰⎰=+ba abdx x f dx x f 0)()( B.⎰⎰=babadt t f dx x f )()(C.⎰-=aadx x f 0)( D.⎰=aadx x f 0)(3.计算题(每题6分,共54分)(1)x x x x sin cos 1lim 0-→ (2)xx x x 21lim ⎪⎭⎫ ⎝⎛+∞→ (3) 22sin sin x x y =,求y '. (4)x x y += ,求dy .(5)yx exy += ,求x y '. (6)⎰++dx x x 122(7)⎰dx x x )cos(2(8)⎰+dx e x11 (9)dx x ⎰πcos4.要制作一个底为正方形,容积为108m 3的长方体开口容器,怎样做所用料最省?(9分) 5.求微分方程的通解:x e y dxdy=-2.(8分) 6.计算由曲线x y x y 2,3==围成的图形的面积.(9分)高等数学(少学时)试题2参考答案1、填空(每题2分,共10分)(1)1,-1 (2))0('f (3)0,0,x=e1 , x=-e1 (4))2,2(,2),2,(),,2(2-=-∞+∞e x (5)<2、选择题(每题2分,共10分)(1)D (2)B (3)A (4)C (5)C 3、计算题(每题6分,共54分) (1)cinxx xx ⋅-→cos 1lim0 00型=x x x xx cos sin sin lim 0⋅+→ 0=x x x xx sin cos 2cos lim 0-→=21 (2) xx x x 21lim ⎪⎭⎫⎝⎛+→ ∞1型=101ln2lim ==+⋅∞→e exx x x(3)22sin sin xxy = 求'y 22222'sin 2cos sin sin 2cos sin xxx x x x y ⋅⋅-⋅⋅==22222sin 2cos sin sin 2cos sin x xx x x x x ⋅⋅-⋅⋅(4) x x y +=xx x dx dy ++=2211 =xx x x ++2221 =x x x x ++2421dx xx x x dy ++=2421(5) 'x y x y e xy 求+=)1(''y e xy y y x +=++ y x y x e y y e x +++=-')(yx y x xex e y y ++-+=∴' (6) dx xx ⎰++122=dx xx x ⎰++-++1)1(2)1(32 =⎰⎰⎰-++++dx dx x dx x 2)1(13=⎰⎰⎰-++++dx dx x x d x12)1()1(113=c x x x +-++2121ln 3(7)dx x x ⎰)cos(2 =dx x )(cos 212⎰ 2x u ==⎰udu cos 21=c x +2sin 21(8)dx ex⎰+11令t e x = t x ln = 原式=dt tt ⎰+11令t u +=1 12-=u t =1)1(122--⎰du u u =du uu u⎰-)1(22=du u ⎰-1122=du u u ⎰-+)1)(1(12=du u u 1111212+--⨯⎰ =c u u +-+-11ln ln =c u u ++-11ln(9)分部积分法⎰exdx x 1ln=dx x x x e e x 2112211ln 21⋅-⋅⎰ =xdx e e ⎰--1221)0(21 =)(4121122e x e - =41412122+-e e =41412+e4.两船相距距离为S小时时距离最近。

高数考试A卷题目及答案

高数考试A卷题目及答案

2013级光学、电信、电信实验班、电气、计算机、网络工程、物联网、核电《高等数学A 》期末考试试卷(A 卷、闭卷)一、判断题(每小题2分,共10分)1、0xy =是指数函数. ( ) 2、左右导数处处存在的函数, 一定处处可导. ( ) 3、闭区间上的连续函数一定存在最大值与最小值. ( )4、1211d 0x x -=⎰. ( )5、函数x y ln =在其定义域内是凸函数. ( ) 二、填空(每小题2分,共20分)1、已知函数xxx f +=12)(,则复合函数[()]f f x = ; 2、极限01limln(1)sin()x x x→+⋅= ;3、函数()f x 在点0x 可导是函数()f x 在点0x 可微的 条件,函数()f x 在点0x 连续是函数()f x 在点0x 可导的 条件;4、设()y y x =是由方程0)ln(sin =+-y x xy 所确定的隐函数,则=dxdy;5、函数y 的拐点是 ;6、d(sec )x ⎰= ; 7、12[()()]bak f x k g x dx +=⎰;8、递推公式(1)n Γ+= ; 9、曲线sin xy x=的渐近线方程为 ; 10、1122sin d x x ππ-⎰= .三、选择题(每小题2分,共10分)1.下列命题正确的是( )(A )因为数列}{a n 有界,所以数列}{a n 有极限;(B )因为数列}{a n 单增,所以数列}{a n 无极限 (C )因为数列}{a n 单减,所以数列}{a n 有极限 (D )因为数列}{a n 单增有上界,所以数列}{a n 有极限 2.设函数x e y -=,则=)(n y ( )(A )xe (B )x n e --)1( (C )x n e ---1)1( (D )xe-3.函数x x y +=2在区间]1,0[上应用拉格朗日中值定理,则中值定理中的=ξ( )(A )21 (B )25(C )1 (D )2 4.设⎰+=,)()(C x F dx x f 则⎰=+dx b ax f )(( )(A )C b ax F ++)( (B )C b ax F a++)(1(C )C x aF +)( (D )C b ax aF ++)( 5.⎰='xadt t f )2(( )(A ))]2()2([2a f x f - (B ))2()2(a f x f -(C ))]2()2([21a f x f - (D ))]()([2a f x f - 四、计算题(共50分) 1、求下列极限:(每小题4分,共16分)(1)30tan sin lim arcsin x x x x →- (2)1lim 1xx x x →∞+⎛⎫⎪-⎝⎭(3)332132lim 1x x x x x x →-+--+ (4)()22220limxt x x t e dt e dt→∞⎰⎰2. 计算下列导数或微分:(每小题4分,共12分)(1)ye xy e +=,求(0)y ' (2)设()()()xf t y tf t f t '=⎧⎨'=-⎩,且()0f t ''≠,求22d ydx(3)22cos()xy x y =,求dy 3. 计算下列积分:(每小题4分,共16分)(1)3cos xdx ⎰ (2)221(1)(1)x dx x x ++-⎰(3)1⎰(4)32031(1)dx x -⎰4、求曲线22y x =和4y x =-所围成的图形的面积。

大学高等数学期末考试题A卷(答案)

大学高等数学期末考试题A卷(答案)

广东海洋大学2006 —— 2007 学年第 二学期《高等数学》试题答案(A 卷)一、填空题。

(每小题3分,共24分) 1.曲线2x y =与直线xy 2= 所围成的平面图形面积为A= 34;2.设向量{}2,3,1-=a,{}2,2,1-=b,则a·b= -3 ;3. 函数221yx z--=的定义域为 }1),({22≤+y x y x ;4.过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程为: 3x -7y +5z -4=0 ;5.设函数x y Z cos =,则yx Z ∂∂∂2= -sinx ;6.改变累次积分I=⎰⎰102),(xx dy y x f dx 的次序为I = ⎰⎰10),(X yy d y x f dy ;7. 设曲线方程为⎩⎨⎧=+-=++0380422222z y x z y x ,该曲线在Oxy 面上的投影方程为: ⎩⎨⎧==+0042z y x .8. 写出函数x x f sin )(=的幂级数展开式,并注明收敛域:x sin = )(,)!12()1(!5!312153R x n xxxx n n ∈+--+-+---二、选择题。

(每小题3分,共15分)1.函数z f x y =(,)在点(,)x y 00处连续是它在该点偏导数存在的( D )(A)必要而非充分条件 (B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 2.下列方程中,通解为12e e x x y C C x =+的微分方程是( A ). (A) 02=+'-''y y y (B) ''+'+=y y y 21; (C) '+=y y 0 (D) '=y y . 3. 设函数),(v x f Z=,),(y x v ϕ=,其中ϕ,f 都有一阶连续偏导数,则xZ ∂∂等于( B )班级:姓名:学号:试题共 页加白纸张密封线(A)xf ∂∂ ;(B)vf xf ∂∂+∂∂·x∂∂ϕ ; (C)xxf ∂∂+∂∂ϕ ; (D)xf ∂∂·x∂∂ϕ4.设函数),(y x f Z=在点(1,2)处有)2,1(='x f ,)2,1(='y f ,且1)2,1(="xx f ,0)2,1(="xy f ,2)2,1(="yy f ,则下列结论正确的是( D )(A ))2,1(f 不是极大值; (B ))2,1(f 不是极小值; (C ))2,1(f 是极大值; (D ))2,1(f 是极小值。

高数期末考试题及答案

高数期末考试题及答案

高数期末考试题及答案【高数期末考试题及答案】一、选择题1. 高数的完整名称是什么?A. 高等数学B. 高级数学C. 高纯度数学D. 高度数学答案:A2. 常用的微积分法则中,“乘法法则”是指什么?A. 两个函数相乘的导数等于它们的导数相加B. 两个函数相乘的导数等于它们的导数相减C. 两个函数相乘的导数等于它们的导数相乘D. 两个函数相乘的导数等于它们的导数相除答案:C3. 下面哪个是高数中常用的极限符号?A. $lim$B. $lag$C. $limt$D. $sum$答案:A4. 函数$f(x)=\frac{x}{x-1}$的定义域是什么?A. $[-\infty, 0)\cup(0, +\infty)$B. $(-\infty, 0)\cup(0, +\infty)$C. $(-\infty, 1)\cup(1, +\infty)$D. $[-\infty, 1)\cup(1, +\infty)$答案:D二、计算题1. 求函数$f(x)=3x^2-2x+1$的导函数。

解答:将函数$f(x)$按导数的定义求导,得到:$f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x) - f(x)}{\Delta x}$代入函数$f(x)$的表达式,化简得到:$f'(x)=\lim_{\Delta x \to 0}\frac{3(x+\Delta x)^2-2(x+\Delta x)+1-(3x^2-2x+1)}{\Delta x}$展开并化简得到:$f'(x)=\lim_{\Delta x \to 0}\frac{3x^2+6x \Delta x+3(\Delta x)^2-2x-2 \Delta x+1-3x^2+2x-1}{\Delta x}$合并同类项并约去,得到:$f'(x)=\lim_{\Delta x \to 0}6x+3 \Delta x-2$由于$\Delta x$趋近于0时,$3 \Delta x$和2趋近于0,所以最后的结果为:$f'(x)=6x-2$答案:$f'(x)=6x-2$2. 求函数$F(x)=\int_0^x\frac{1}{1+t^3}dt$的原函数。

大一高数(上)期末试卷(A)

大一高数(上)期末试卷(A)

浙江工商大学2010/2011学年第一学期考试试卷(A)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟 班级名称: 学号: 姓名:一、填空题(每小题3分,共15分)1. 设()1sin ,0(12),0xx axx x f x x x +⎧<⎪=⎨⎪+>⎩在0x =处极限存在,则a = 2. 设()f a '=1,则0(2)()limh f a h f a h h →+--= .3.22()(23)sin2x f x x x π=+-,则(10)(1)f = .4. 设2x e-为)(x f 的一个原函数,则()xf x dx '=⎰5. 设()f x 为[1,1]-上的偶函数,则1211((sin ))1xf x dx x -++⎰= . 二、单项选择题(每小题3分,共15分)1.当0→x 时,下列无穷小与x 不等价的是( ).)(A ln(1sin )x +)(B 11-+x )(C x x --+11)(D tan e 1x -2. 点0=x 是函数1()arctanf x x= 的( ) )(A 连续点; )(B 无穷间断点 ;)(C 可去间断点 ;)(D 跳跃间断点.3. 设0)()(00=''='x f x f ,0)(0>'''x f ,则下列选项正确的是( ))(A )(0x f '是)(x f '的极大值 )(B )(0x f 是)(x f 的极大值)(C )(0x f 是)(x f 的极小值 )(D ))(,(00x f x 是曲线)(x f y =的拐点4. 设⎰=t s dx tx f t I 0)(,则下列结论正确的是 ( ))(A I 依赖于x t s ,, ()B I 只依赖于t s , ()C I 只依赖于t ()D I 只依赖于s5.设()f x 为连续函数,且0[2()1]()1xf t dt f x -=-⎰,则(0)f '=( ))(A 2 )(B 21e - )(C 1 )(D 1e -三、计算题(每小题7分,共49分) 1.求011lim 1x x x e →⎛⎫-⎪-⎝⎭.2.已知函数)(x f y =由方程0162=-++x xy e y 确定 ,求)0(y ''.3.求曲线220t u x t y t e du -⎧=⎪⎨=+⎪⎩⎰在0t =处的切线方程.4. 求函数32)52()(x x x f -=在),(∞+-∞内的极值.5.arctan ⎰.6. 设0sin ()xtf x dt tπ=-⎰,求0()I f x dx π=⎰7.设函数)(x ϕ具有二阶连续导数,且0)0(=ϕ,并满足方程20[e 6()]d ()5()x t t t x x ϕϕϕ'-=-⎰, 求)(x ϕ.四、综合应用题(每小题8分,共16分)1. 作半径为r 的球的外切正圆锥.问此圆锥的高为何值时,其体积V 最小,并求出该最小值。

高数a上册期末试题及答案

高数a上册期末试题及答案

高数a上册期末试题及答案一、选择题(每题5分,共20题)1. 设函数 $f(x) = \sqrt{3x-2}$,则其定义域为A. $(-\infty, \frac{2}{3}]$B. $\left[ \frac{2}{3}, \infty \right)$C. $[\frac{2}{3}, \infty)$D. $(-\infty, \frac{2}{3}) \cup [\frac{2}{3}, \infty)$答案:C2. 函数 $y = \sin^2 x + \cos^2 x$ 的值域为A. $(-\infty, 1]$B. $[0, 1]$C. $[1, \infty)$D. $[\frac{1}{2}, 1]$答案:B3. 设函数 $f(x) = e^x \ln x$,则 $f'(x) = $A. $e^x \ln x$B. $e^x \left( \frac{1}{x} + \ln x \right)$C. $e^x \left( \ln x - \frac{1}{x} \right)$D. $e^x \left( \frac{1}{x} - \ln x \right)$答案:B4. 若直线 $y = 3x + b$ 与抛物线 $y = ax^2 + bx + 1$ 相切,则 $a + b = $A. 2B. 3C. 4D. 5答案:D5. 函数 $f(x) = \frac{x-1}{\sqrt{x^2 + 1}}$ 的渐近线为A. $y = x - 1$B. $y = x + 1$C. $y = -x + 1$D. $y = -x - 1$答案:A6. 函数 $f(x) = \ln(1 + e^{2x})$ 的反函数为A. $f^{-1}(x) = \ln(x) - \ln(1 - x^2)$B. $f^{-1}(x) = \ln(x^2 - 1)$C. $f^{-1}(x) = \frac{e^x - 1}{2}$D. $f^{-1}(x) = \frac{1}{2} \ln(x) + \ln(1 - x)$答案:D7. 设函数 $f(x) = \arcsin (\sin x)$,则当 $x = \frac{5\pi}{6}$ 时,$f(x) =$A. $\frac{5\pi}{6}$B. $\frac{\pi}{6}$C. $\frac{\pi}{3}$D. $\frac{2\pi}{3}$答案:C8. 函数 $f(x) = \frac{\sin x}{\cos^2 x}$ 的最大值为A. 1B. $\sqrt{3}$C. 2D. $2\sqrt{3}$答案:D9. 函数 $f(x) = x^2 + 2x + 1$ 在区间 $[-1, 1]$ 上的最大值为A. 0B. 1C. 2答案:D10. 函数 $f(x) = \frac{x^2 - 1}{x^2 + 1}$ 的图像关于直线 $x = a$ 对称,则 $a = $A. 1B. 0C. -1D. 2答案:B11. 设 $\sin \alpha = \frac{1}{4}$,$\cos \beta = \frac{4}{5}$,且$\alpha$ 和 $\beta$ 都是第二象限角,则下列四个式子中成立的是A. $\sin (\alpha - \beta) = -\frac{3}{4}$B. $\sin (\alpha + \beta) = \frac{3}{8}$C. $\cos (\alpha - \beta) = \frac{1}{5}$D. $\cos (\alpha + \beta) = \frac{2}{5}$答案:C12. 如果点 $A(1, 2)$ 在抛物线 $y = -x^2 + 3x + k$ 上,那么 $k = $A. -3B. -5D. -9答案:B13. 设函数 $f(x) = x^3 - 3x^2 - 4x + 12$,则 $f'(x)$ 的零点有A. -2, 2B. -1, 3C. -4, 3D. -1, 4答案:A14. 设点 $P(x, y)$ 满足 $y^2 = px$,其中 $p > 0$ 是常数,则焦点所在的直线方程为A. $y = -\frac{p}{2}$B. $x = -\frac{p}{2}$C. $y = \frac{p}{2}$D. $x = \frac{p}{2}$答案:B15. 函数 $f(x) = x^3 - 3x + 1$ 在区间 $[0, 2\pi]$ 上的最小值为A. -1B. 0D. 2答案:A16. 设直线 $y = 2x + 1$ 与曲线 $y = x^2 + bx + c$ 相切,则 $b + c = $A. 0B. $\frac{1}{2}$C. 1D. 2答案:C17. 设函数 $f(x) = (1 - x^2) \cos x$,则 $f''(x)$ 的一个零点在A. $(0, \frac{\pi}{2})$B. $(0, \pi)$C. $(\pi, 2\pi)$D. $(\pi, 3\pi)$答案:B18. 设函数 $f(x) = \sin^2 x - \sqrt{3} \sin x \cos x + \cos^2 x$,则$f(x)$ 的最大值为A. 2B. $2\sqrt{2}$C. 3D. $2 + \sqrt{3}$答案:C19. 设函数 $f(x) = e^x$,$g(x) = x^2$,则 $f(x) \cdot g(x) = $A. $e^{x^2}$B. $x^2 e^x$C. $x^2 e^{x^2}$D. $x^2 + e^x$答案:B20. 设 $a > 0$,则 $\lim\limits_{x \to +\infty} \frac{x^a}{e^x}$ 的值为A. 0B. $\frac{1}{e}$C. 1D. $+\infty$答案:A二、计算题(每题10分,共4题)1. 求函数 $f(x) = \frac{2x^2 - 3x + 1}{x - 1}$ 的极限 $\lim\limits_{x\to 1} f(x)$.解:使用“分子分母可约”的性质,可将函数 $f(x)$ 化简为 $f(x) = 2x - 1$,则 $\lim\limits_{x \to 1} f(x) = \lim\limits_{x \to 1} (2x - 1) = 2(1) - 1 = 1$.答案:12. 求曲线 $y = e^x$ 与直线 $y = kx$ 相交的两个点的坐标,其中 $k > 0$ 是常数.解:将曲线 $y = e^x$ 和直线 $y = kx$ 代入方程中,得到 $e^x = kx$,然后可以使用迭代法或图像法求得相交点的坐标.答案:相交点的坐标为 $(x_1, e^{x_1})$ 和 $(x_2, e^{x_2})$,其中$x_1$ 和 $x_2$ 是满足方程 $e^x = kx$ 的两个解.3. 求曲线 $y = \sin x$ 与直线 $y = x$ 相交的点的个数,并说明理由.解:将曲线 $y = \sin x$ 和直线 $y = x$ 代入方程中,得到 $\sin x = x$,然后可以通过分析函数的周期性和图像来确定相交点的个数.答案:方程 $\sin x = x$ 的解存在无穷个,但相交点的个数取决于给定的区间. 在区间 $[0, \pi]$ 上,方程有一个解;在区间 $[2\pi, 3\pi]$ 上,方程又有一个解. 因此,相交点的个数是不确定的.4. 求函数 $y = x^2 + x$ 在区间 $[-2, 2]$ 上的最大值和最小值,并求出取得最大值和最小值的点.解:首先求导数 $y' = 2x + 1$,然后令 $y' = 0$,解得 $x = -\frac{1}{2}$,将 $x = -2, -\frac{1}{2}, 2$ 代入函数 $y = x^2 + x$,得到对应的 $y$ 值. 最大值为 $y = y_{\text{max}}$ 对应的点为 $(-\frac{1}{2},y_{\text{max}})$,最小值为 $y = y_{\text{min}}$ 对应的点为 $(-2,y_{\text{min}})$ 和 $(2, y_{\text{min}})$.答案:最大值为 $y_{\text{max}} = \frac{5}{4}$,取得最大值的点为 $(-\frac{1}{2}, \frac{5}{4})$;最小值为 $y_{\text{min}} = -2$,取得最小值的点为 $(-2, -2)$ 和 $(2, -2)$.三、证明题(每题20分,共2题)1. 证明函数 $f(x) = \frac{x^3}{3} - x^2 + 2x$ 的导数 $f'(x)$ 恒大于零.证明:求导数 $f'(x) = x^2 - 2x + 2$,我们可以通过判别式来判断 $f'(x)$ 的正负性.判别式为 $\Delta = (-2)^2 - 4(1)(2) = 4 - 8 = -4$,由于 $\Delta < 0$,所以判别式小于零,即 $f'(x)$ 的二次项系数小于零,说明二次项的系数是正的,从而导数 $f'(x)$ 恒大于零.证毕.2. 证明函数 $f(x) = x^3 - 3x^2 + 3$ 的图像关于直线 $x = 1$ 对称.证明:要证明函数的图像关于直线 $x = 1$ 对称,需证明对于任意$x$ 值,函数 $f(x)$ 和 $f(2 - x)$ 的函数值相等.将 $f(x) = x^3 - 3x^2 + 3$ 代入 $f(2 - x)$,得到 $f(2 - x) = (2 - x)^3 -3(2 - x)^2 + 3$,对其进行展开和化简得到 $f(2 - x) = (2 - x)^3 - 3(2 -x)^2 + 3 = x^3 - 3x^2 + 3 = f(x)$,即 $f(x) = f(2 - x)$,证明了函数的图像关于直线 $x = 1$ 对称.证毕.四、应用题(每题50分,共1题)1. 求函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值.解:求导函数 $f'(x) = 3x^2 + 2x - 3$,令 $f'(x) = 0$,求得驻点的 $x$ 坐标,然后将其代入原函数求得对应的 $y$ 坐标.求导的一阶导数方程为 $f'(x) = 3x^2 + 2x - 3 = 0$,通过求根公式求得 $x = -1$ 和 $x = \frac{1}{3}$,将其代入原函数 $f(x)$ 得到对应的$y$ 坐标.将 $x = -1$ 代入 $f(x)$,得到 $f(-1) = (-1)^3 + (-1)^2 - 3(-1) = -1 + 1+ 3 = 3$,将 $x = \frac{1}{3}$ 代入 $f(x)$,得到 $f(\frac{1}{3}) =(\frac{1}{3})^3 + (\frac{1}{3})^2 - 3(\frac{1}{3}) = \frac{1}{27} +\frac{1}{9} - 1 = 0$.因此,函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$.答案:驻点为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$,分别对应极大值和极小值.。

山东省师范大学附属中学高二数学下学期第八次学分认定(期末)考试试题理(2021年整理)

山东省师范大学附属中学高二数学下学期第八次学分认定(期末)考试试题理(2021年整理)

(期末)考试试题理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省师范大学附属中学2017-2018学年高二数学下学期第八次学分认定(期末)考试试题理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省师范大学附属中学2017-2018学年高二数学下学期第八次学分认定(期末)考试试题理的全部内容。

定(期末)考试试题 理本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分.考试时间120分钟.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设12i1iz -=+,则z = A .1322-i B .1322i +C .1322--iD .1322-+i2.已知集合{}220=+-≤∈,A x x x x Z ,{}2B x x k k Z ==∈,,则=A B A .{}01,B .{}42--,C .{}10-,D .{}20-,3.已知函数1()3()3=-x x f x ,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数4.设,x y 满足约束条件2+330233030-≤⎧⎪-+≥⎨⎪+≥⎩,,,x y x y y 则目标函数2=+z x y 的最小值是 A .15-B .9-C .1D .95.函数()2tan 1tan x f x x=+的最小正周期为A .4πB .2πC .πD .2π6.设∈R θ,则“ππ||1212-<θ”是“1sin 2<θ”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,记下所抽取数字后放回,再随机抽取1张,则抽得的第一张卡片上的数字大于第二张卡片上的数字的概率为山东省师范大学附属中学2017-2018学年高二数学下学期第八次学分认定(期末)考试试题 理A .110B .15C .310D .258.621(1)(1)++x x展开式中2x 的系数为 A .15 B .20C .30D .359.执行下面的程序框图,为使其输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4C .3D .210.记n S 为等差数列{}n a 的前n 项和.若4524+=a a ,648=S ,则数列{}n a 的公差为A .1B .2C .4D .811.已知双曲线22221x y C a b-=:(00a b >>,)的离心率为2,则点()40,到C 的渐近线的距离为A .2B .2C .322D .2212.已知F 是抛物线C :28=y x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N 。

山东省师范大学附属中学高二数学下学期第八次学分认定(期末)考试试题文(2021年整理)

山东省师范大学附属中学高二数学下学期第八次学分认定(期末)考试试题文(2021年整理)

(期末)考试试题文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省师范大学附属中学2017-2018学年高二数学下学期第八次学分认定(期末)考试试题文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省师范大学附属中学2017-2018学年高二数学下学期第八次学分认定(期末)考试试题文的全部内容。

(期末)考试试题 文本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分为150分,考试用时120分钟。

注意事项:1.答卷前,考生务必用0。

5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔.第I 卷(客观题)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的.)1.设集合{1,2,3},{2,3,4,5}A B ==则A B = ( )A. {}123,4,5,,B. {}123,, C 。

{}23, D 。

{}1,3,42.已知集合{}|4 3 A x x =-<-≤,()(){}250 B x x x =-+<,则A B =( ) A .()5,4-B .()3,2-C .()2,4D .[)3,2-3。

设等差数列{}n a 的前n 项和为n S ,若37a =,312S =,则10a =( ) A .10B .28C .30D .1454.设x ∈R ,则“20x -≥”是“|1|1x -≤"的 A.充分而不必要条件 B.必要而不充分条件 C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东理工大学2009–2010学年第一学期
《高等数学(上)8学分(A)》期末考试试卷 2010.1
开课学院:_理学院_ ,考试形式:_闭卷_,所需时间:_ 120 分钟
考生姓名: 学号: 班级: 任课老师:
注意:试卷共3大张,7大题
一. (每小题5分,共10分): 1. 计算函数极限 )
cos 1(cos 11
lim )(sin 203
x x e x x ---→π .
2. 已知函数[]⎪⎩
⎪⎨⎧=≠-=-1 , 1 , )1cos()(2
sin 11
x a x x x f π 在点 1=x 处连续 ,
求常数a 的值 .
1. .已知函数31)(2
3
+
++=bx ax x x f 有极值3
5
)1(-=f ,求常数b a 与的值, 并求出)(x f 的所有极值和曲线)(x f y =的拐点 .
2. 计算不定积分dx x arctan ⎰
.
3. 设函数)(x f 及其反函数)(x g 都可微, 且成立等式
)8(3
2 )(3
)
( 2
-=

x dt t g x f , 求函数)(x f 的表达式
1. 雨滴(假定为球状)在下落过程中,由于水分的不断蒸发而减小,已知水分蒸发的 速率正比于表面积,求雨滴半径的变化率 .
2. 周长为L 2的等腰三角形,绕其底边旋转形成旋转体,求所得体积为最大的
那个等腰三角形的腰长和底边长 . 3. 设函数x x x f 4
4
cos sin )(-=, 求)()
(x f n .
四. (本题8分)
当+∞<≤x 0时,)(,0)(x f x f '>连续,设⎪⎪⎩⎪⎪⎨⎧=>=⎰⎰0
, 00
, )( )( )( 0 0 x x dt t f dt t f t x g x x ,
(1). 计算)0(+
'g ; (2). 证明)(x g 在),0[+∞上单调增加.
五. (本题8分)
设函数)(x f 在闭区间]1,0[上具有三阶连续导数, 且0)2
1(,2)1(,1)0(='==f f f , 证明: )1,0(∈∃ξ,使24)(='''ξf .
六.填空题(每小题4分,共24分):
请将填空题的答案写入下面表格的指定位置
1、 若直线b x y +=2是抛物线2x y =的一条法线, 则___=b .
2、 曲线x
e y 2=在0=x 对应点处的曲率半径___=r .
3、 设由参数方程⎪⎩
⎪⎨⎧==⎰⎰t
t du u u y du u x 1 42 1 2cos cos 2
确定函数)(x y y =, 则___|41422
=⎪⎭⎫ ⎝⎛
=πt dx y d .
4、 不定积分___ cos tan =⎰
dx x
x
.
5、 定积分___tan 4
='⎪⎭

⎝⎛+⎰dx x x π
π .
6、 数列极限___1cos 2
sin lim =⎪⎭⎫ ⎝⎛+∞→n
n n n
.
七. 选择题(每小题4分,共20分):
1、 设函数⎩⎨⎧>+≤=0
, 0
, )(22x x x x x x f , 则 =-)(x f ( ) .
(A). ⎩⎨⎧≤>-0 , 0
, 2
2x x x x x ; (B). ⎩⎨⎧≥<-0 ,
, 2
2x x x x x ; (C). ⎩⎨⎧≤->+-0 ,
, )(2
2x x x x x ; (D). ⎩⎨⎧≥-<+-0 ,
, )(2
2x x x x x . 2、 设函数)(x f 与)(x g 在),(+∞-∞上均可微, 且)()(x g x f <, 则必有 ( ) . (A).
dx x g dx x f x
x
)( )( 0
⎰⎰
< ; (B). )()(x g x f '<' ;
(C). )(lim )(lim ),,(0
0x g x f x x x x x →→<+∞-∞∈∀ ; (D). )()(x g x f ->- .
3、 已知⎩⎨⎧≤≤<≤=21
, 1 1
0 , )(2x x x x f ,又)20( )()( 1
≤≤=⎰x dt t f x F x ,则)(x F 是( ) .
(A). ⎪⎩⎪⎨⎧≤≤-<≤-21 , 1 1
0 , 3
1
313x x x x ; (B). ⎪⎩⎪⎨⎧≤≤<≤-21 ,
1
0 , 3
1
313x x x x ; (C). ⎪⎩⎪⎨⎧≤≤-<≤21 ,
1 1
0 , 31 3
x x x x ; (D).
⎪⎩⎪⎨⎧≤≤<≤21 ,
1
0 , 3
1 3
x x x x . 4、 设函数)(|1|)(3
x g x x f -=,其中1)(=x x g 在点处连续,则0)1(=g 是1)(=x x f 在点处可导的( ) .
(A). 必要条件但非充分条件 ; (B). 既非充分条件又非必要条件 ;
(C). 充分条件但非必要条件 ; (D). 充分必要条件 .
5、 设由参数方程⎩
⎨⎧==3
2ln t y t
x 确定函数)(x y y =,则下列表达式错误的是( ) . (A). dt t
dx 1= ; (B). dt t dy 36= ; (C). dt t dy 26= ; (D). dx t dy 3
6= .。

相关文档
最新文档