(广东)广东省广宁县其鉴纪念中学九年级数学下册 26 反比例重点

合集下载

九年级数学人教版第26章反比例函数整章知识详解

九年级数学人教版第26章反比例函数整章知识详解

有的土地面积s(单位:平方千米/人)随全市总人口
n(单位:人)的变化而变化.
1.68×104
【解析】 s=
1.68×104
n
或 s·n =
九年级数学第26章反比例函数
1.由上面的问题我们得到这样的三个函数
v=
1463 t
y=
1000 x
s=
1.68×104 n
2.上面的函数解析式形式上有什么的共同点?
都是
y=
k x
的形式,其中k是常数.
3.反比例函数的定义
一般地,形如 y= k (k为常数,k≠0) 的函数称为反比例
函数.
x
4.反比例函数的自变量x的取值范围是_不__等__于__0__的__一__切__实__数
九年级数学第26章反比例函数
等价形式:(k≠0)
y k
y=kx-1
x
xy=k
y是x的反比例函数

的图象上,∴点的坐标应满
xy=-6;满足条件的是C.
九年级数学第26章反比例函数
4.下列关系中是反比例函数的是( )
(A) y= k
x
(B) y= x
2
(C) y= 5
3x
(D)y= 5 -1
x
【解析】选C.∵B、D都不符合 y= k
x
们都
(k≠0)的形式,因而它
不是反比例函数;A不一定是反比例函数,因为k可能为零;C是
2
答案:答案不惟一,如(-2,-1)
九年级数学第26章反比例函数
5.已知反比例函数 y= 2k+4 的图象在第一、三象限,反
x
比例函数 y= k-3 在x>0时,y随x的增大而增大,则k的

九年级数学下册 第26章 反比例函数 26.1 反比例函数 26.1.2 反比例函数的图象和性质(2

九年级数学下册 第26章 反比例函数 26.1 反比例函数 26.1.2 反比例函数的图象和性质(2

一、自主复习
正比例函数和反比例函数的区别:
二、引导探究
探究一:用反比例函数解析式判定图比例函数的图象确定函数的性质.
三、尝试应用
三、尝试应用
四、补充提高
26.1.2 反比例函数的 图 象 和 性 质(2)
学习目 标
1.数学建模目标:会用待定系数法求反比例函数解析式, 进一步理解和掌握反比例函数及其图象与性质. 2.数学运算目标:经历探索反比例函数与方程、不等式 之间关系的过程,体会它们之间的内在的辩证关系.(重 点) 3.直观想象目标:结合图象理解反比例函数的增减性, 进一步认识数形结合的思想,能运用函数图象和性质解 决一些较综合的问题.(难点)

新人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)

新人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)

新人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系. (四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上. (五)充分利用数形结合的思想解决问题.第一部分:基础知识考点1:反比例函数概念(A )y =xk(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1(k ≠0)例题1、判断下列各式哪些是反比例函数? ① 1y x = ;② 12y x =- ;③2x y =- ;④113y x=- ;⑤3x y =例题2、已知函数()271126m m y m x-+=-,当m 取何值时,它是反比例函数,当堂巩固1、反比例函数()0ky k x=≠的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( ) (A )10.(B )5.(C )2.(D )0.1.2、下列关系式中,哪个等式表示y 是x 的反比例函数( )A :23y x =B : 2x y =C :12y x =+D :1y x=-3、某工厂先有原料100吨,这些原材料能用的天数y 与每天平均用的吨数x 之间的函数关系为 。

精选-九年级数学下册第二十六章反比例函数26.1反比例函数26.1.2反比例函数的图象和性质第1课时反比例函数课

精选-九年级数学下册第二十六章反比例函数26.1反比例函数26.1.2反比例函数的图象和性质第1课时反比例函数课
解:因为反比例函数 y = mxm²-5 的两个分支分别在第 一、第三象限, m2-5=-1,
所以有 m>0,
解得 m=2.
最新
精选中小学课件
22
当堂训练
1. 反比例函数 y 8 的图象在 x
( B)
A. 第一、二象限
B. 第一、三象限
C. 第二、三象限
D.第二、四象限
2. 已知反比例函数 y k 的图象过点(-2,-3),图象上
x
有两点 A (x1,y1),B (x2,y2), 且 x1 > x2 > 0,则
y1-y2 < 0.
最新
精选中小学课件
23
3.

(a-1,y1),(a+1,y2)在反比例函数
y

k x
(k>0)
的图象上,若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y 随 x 的增大而减小.
① 当这两点在图象的同一支上时,
15
仅供学习交流!!!
归纳总结:
反比例函数 y k (k<0) 的图象和性质: x
①由两条曲线组成,且分别位于第二、四象限 它们与x轴、y轴都不相交;
②在每个象限内,y随x的增大而增大.
最新
精选中小学课件
17
一般地,反比例函数 y k 的图象是双曲线,它具有以 x
下性质:
(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
26.1.2 反比例函数的图像与性质
第1课时
九年级下册
最新
精选中小学课件
1
学习目标
1.经历画反比例函数的图象、归纳得到反比例函数的 图象特征和性质的过程;

人教新版九年级数学(下)知识点

人教新版九年级数学(下)知识点

人教新版九年级数学(下)知识点第二十六章反比例函数一.知识框架二.知识概念1.反比例函数:形如y=xk(k 为常数,k≠0)的函数称为反比例函数。

反比例函数的其他形式:xy=k 、1-=kx y 、xky 1=2.图像:反比例函数的图像属于双曲线。

注意:反比例函数的图象又是中心对称图形。

有两条对称轴:直线y=x 和y=-x,对称中心是:原点。

3.性质:当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小;当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

在学习反比例函数时,教师可让学生对比之前所学习的一次函数启发学生进行对比性学习。

在做题时,培养和养成数形结合的思想。

重点:反比例函数的图像和性质。

难点:1.通过反比例函数的图像来研究反比例函数的性质。

2.理解函数是研究现实生活中数量关系和变化规律的常见的数学模型。

第二十七章相似一.知识框架二.知识概念:1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

2.相似三角形的判定方法:(1)根据定义判断:对应边成比例,对应角相等;(2)平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;(3)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;(4)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(5)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3.直角三角形相似判定定理:(1)斜边与一条直角边对应成比例的两直角三角形相似。

(2)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

4.相似三角形的性质:(1)相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

九年级下册数学第26章知识点分析:反比列函数

九年级下册数学第26章知识点分析:反比列函数

九年级下册数学第26章知识点分析:反比列函数
九年级下册数学第26章知识点分析:反比列函

学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。

下面小编为大家整理了九年级下册数学第26章知识点分析:反比列函数,欢迎大家参考阅读!
反比例函数的定义
定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x 的取值范围是不等于0的一切实数。

反比例函数的性质
函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,1.当k0时,图象分别位于第一、三象限,同一个象限内,y 随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。

3.x的取值范围是:x≠0;
y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

但随着x无限增大或是无限减少,函数值无限趋近于0,故。

九年级数学下册-第26章 反比例函数 26.1 反比例函数 26.1.2 第1课时 反比例函数的图象

九年级数学下册-第26章 反比例函数 26.1 反比例函数 26.1.2 第1课时 反比例函数的图象

15
独家教育资源为你2提供,thank you
16
独家教育资源为你2提供,thank you
17
独家教育资源为你2提供,thank you
18
独家教育资源为你2提供,thank you
19
独家教育资源为你2提供,thank you
20
独家教育资源为你2提供,thank you
21
独家教育资源为你2提供,thank you
22
独家教育资源为你2提供,thank you
23
独家教育资源为你2提供,thank you
24
独家教育资源为你2提供,thank you
25
独家教育资源为你2提供,thank you
26
8
独家教育资源为你2提供,thank you
9
独家教育资源为你2提供,thank you
10
独家教育资源为你2提供,thank you
11
独家教育资源为你2提供,thank you
12
独家教育资源为你2提供,thank you
13
独家教育资源为你2提供,thank you
14
独家教育资源为你2提供,thank you
大家好
1
独家教育资源为你2提供,thank you
2
独家教育资源为你2提供,thank you
3
独家教育资源为你2提供,thank you
4
独家教育资源为你2提供,thank you
5
独家教育资源为你2提供,thank you
6
独家教育资源为你2提供,thank you
7
独家教育资源为你2提供,thank you

新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题

新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题

新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题(一)知识结构(二)(三)(二)学习目标(四)1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.(五)2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.(六)3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.(七)4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.(八)5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(九)(三)重点难点(十)1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.(十一)2.难点是反比例函数及其图象的性质的理解和掌握.(十二)二、基础知识(十三)(一)反比例函数的概念(十四)1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;(十五)2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;(十六)3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(十七)(二)反比例函数的图象(十八)在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(十九)(三)反比例函数及其图象的性质(二十)1.函数解析式:()(二十一)2.自变量的取值范围:(二十二)3.图象:(二十三)(1)图象的形状:双曲线.(二十四)越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(二十五)(2)图象的位置和性质:(二十六)与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.(二十七)当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;(二十八)当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(二十九)(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.(三十)图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.(三十一)4.k的几何意义(三十二)如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).(三十三)如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.(三十四)(三十五)图1 图2(三十六)5.说明:(三十七)(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(三十八)(2)直线与双曲线的关系:(三十九)当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(四十)(3)反比例函数与一次函数的联系.(四十一)(四)实际问题与反比例函数(四十二)1.求函数解析式的方法:(四十三)(1)待定系数法;(2)根据实际意义列函数解析式.(四十四)2.注意学科间知识的综合,但重点放在对数学知识的研究上.(四十五)(五)充分利用数形结合的思想解决问题.(四十六)三、例题分析(四十七)1☆.反比例函数的概念(四十八)(1)下列函数中,y是x的反比例函数的是().(四十九)A.y=3x B. C.3xy=1 D.(五十)(2)下列函数中,y是x的反比例函数的是().(五十一)A.B. C.D.(五十二)答案:(1)C;(2)A.(五十三)2.图象和性质(五十四)(1)已知函数是反比例函数,(五十五)①若它的图象在第二、四象限内,那么k=___________.(五十六)②若y随x的增大而减小,那么k=___________.(五十七)(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(五十八)(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(五十九)(4)已知a·b<0,点P(a,b)在反比例函数的图象上,(六十)则直线不经过的象限是().(六十一)A.第一象限 B.第二象限 C.第三象限 D.第四象限(六十二)(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,(六十三)则一次函数y=kx+m的图象经过().(六十四)A.第一、二、三象限B.第一、二、四象限(六十五)C.第一、三、四象限D.第二、三、四象限(六十六)(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().(六十七)(六十八) A.B. C.D.(六十九)答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.(七十)3.函数的增减性(七十一)(1)在反比例函数的图象上有两点,,且,则的值为().(七十二)A.正数B.负数 C.非正数 D.非负数(七十三)(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().(七十四)A.<<B.<<C.<<D.<<(七十五)(3)下列四个函数中:①;②;③;④.(七十六) y随x的增大而减小的函数有().(七十七)A.0个 B.1个C.2个D.3个(七十八)(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).(七十九)答案:(1)A;(2)D;(3)B.(八十)注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.(八十一)4.解析式的确定(八十二)(1)若与成反比例,与成正比例,则y是z的().(八十三)A.正比例函数 B.反比例函数C.一次函数D.不能确定(八十四)(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(八十五)(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(八十六)(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).(八十七)①求x 0的值;②求一次函数和反比例函数的解析式.(八十八)(八十九)(5)☆为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:(九十)①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.(九十一)②研究表明,当空气中每立方米的含药量低于毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;(九十二)③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效为什么(九十三)答案:(1)B;(2)4,8,(,);(九十四)(3)依题意,且,解得.(九十五)(4)①依题意,解得(九十六)②一次函数解析式为,反比例函数解析式为.(九十七)(5)①,,;(九十八)②30;③消毒时间为(分钟),所以消毒有效.(九十九)5.面积计算(一○○)(1)☆如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().(一○一)A.B.C.D.(一○二)(一○三)第(1)题图第(2)题图(一○四)(2)☆如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,则().(一○五)A.S=1 B.1<S<2 C.S=2 D.S>2(一○六)(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.(一○七)(一○八)第(3)题图第(4)题图(一○九)(4)☆已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(一一○)(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.(一一一)(一一二)第(5)题图第(6)题图(一一三)(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.(一一四)①求这两个函数的解析式;(一一五)②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(一一六)(7)如图,已知正方形OABC的面积为9,点O 为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.(一一七)① 求B点坐标和k的值;(一一八)② 当时,求点P的坐标;(一一九)③ 写出S关于m的函数关系式.(一二○)答案:(1)D;(2)C;(3)6;(一二一)(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(一二二)(5)1.(一二三)(6)①双曲线为,直线为;(一二四)②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),(一二五)因此面积为4.(一二六)(7)①B(3,3),;(一二七)②时,E(6,0),;(一二八)③.(一二九)6.综合应用(一三○)(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().(一三一)A.互为倒数 B.符号相同 C.绝对值相等 D.符号相反(一三二)(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).(一三三)① 求反比例函数和一次函数的解析式;(一三四)② 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(一三五)(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.(一三六)① 求点A、B、D的坐标;(一三七)② 求一次函数和反比例函数的解析式.(一三八)(4)☆如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD (O是坐标原点).(一三九)① 利用图中条件,求反比例函数的解析式和m的值;(一四○)② 双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(一四一)(5)不解方程,判断下列方程解的个数.(一四二)①;②.(一四三)答案:(一四四)(1)D.(一四五)(2)① 反比例函数为,一次函数为;(一四六)②范围是或.(一四七)(3)①A(0,),B(0,1),D(1,0);(一四八)②一次函数为,反比例函数为.(一四九)(4)①反比例函数为,;(一五○)②存在(2,2).(一五一)(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;(一五二)②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。

第26章《反比例函数解析式》九年级下册数学知识点

第26章《反比例函数解析式》九年级下册数学知识点

第26章《反比例函数解析式》九年级下册
数学知识点
(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式y=k/x(k≠0)中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。

因此只需给出一组x、y的对应值或图象上点的坐标,代入y=k/x(k≠0)中即可求出k的值,从而确定反比例函数的关系式。

(2)用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y=k/x(k≠0);
②根据已知条件,列出含k的方程;
③解出待定系数k的值;
④把k值代入函数关系式y=k/x(k≠0)中。

以上就是为大家整理的第26章《反比例函数解析式》九年级下册数学知识点,大家还满意吗?希望对大家有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数
(时间:90分钟 满分100分) 一.选择题(每题3分,共计30分)
1.面积为4的矩形一边为x ,另一边为y ,则y 与x 的变化规律用图象大致表示为 ( )
2.下列各点中,在函数x
y 2-=的图像上的是( ) A 、(2,1) B 、(-2,1) C 、(2,-2) D 、(1,2)
3.反比例函数y =x
n 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1 4.若反比例函数y =x k
(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).
A 、(2,-1)
B 、(-21,2)
C 、(-2,-1)
D 、(2
1,2) 5.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km /h )的函数关系图象大致是( )
6.若y 与x 成正比例,x 与z
成反比例,则y 与z 之间的关系是(
).
A 、成正比例
B 、成反比例
C 、不成正比例也不成反比例
D 、无法确定
7.一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =x
k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小
C 、图象分布在第一、三象限
D 、图象分布在第二、四象限
8.已知反比例函数y =x
m 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时, y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <
21 D 、m >21
A .
B .
C . .
9.如图,关于x 的函数y=k(x-1)和y=-
k
(k
≠0), 它们在同一坐标系内的图象大致是
10.如图,一次函数与反比例函数的图象相交于A 、B 两
点,则图中使反比例函数的值小于一次函数的值的x 的取值范围
是( ).
A 、x <-1
B 、x >2
C 、-1<x <0或x >2
D 、x <-1或0<x <2
二.填空题(每题3分,共计21分)
11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .
12.已知反比例函数x
k y =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”
). 13.若反比例函数y =x
b 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标
为6,则b = .
14.反比例函数22)12(-+=k x k y 在每个象限内y 随x 的增大而增大,则k= .
15.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2
的图象经过点(1,2),(2,
12
),则8k 1+5k 2的值为________. 16. 若m <-1,则下列函数:①()0 x x m y = ;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。

17.如图,点M 是反比例函数y =x
a (a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析
式为 .
三.解答题(本题5个题,共计49分)
18.(8分)如图,P 是反比例函数图象上的一点,且点P 到x
轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.
19.(9分)已知y =y 1+y 2, y 1与x 成正比例,y 2与x 2成反比例.当x =1时,y =-12; 当x =4时,y =7.(1)求y 与x 的函数关系式和x 的取范围;(2)当x =
41时,求y 的值?
20.(12分)如图,已知反比例函数y =-x
8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的
纵坐标都是-2.
求:(1)一次函数的解析式; (2)△AOB 的面积.
21.(12分)如图,一次函数y =ax +b 的图象与反比例函数y =x
k 的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.
22.(8分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商
品的日销售单价x (元)与日销售量y (个)之间有如下关系: 3 (1)猜测并确定y 与x 之间的函数关系式;
(2)设经营此贺卡的销售利润为W元,求出W与x 之间的函数关系式.若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售。

相关文档
最新文档