(课堂设计)2014-2015高中数学 1.1.1 集合的含义与表示学案1 新人教A版必修5
2015年高中数学 1.1.1集合的含义与表示教案 新人教版必修1
(1)下面一组集合各个集合的意义是否相同?为什么?
, , ,
(2)用列举法表示集合{(x,y)|x∈{1,2},y∈{1,2,3}}
三、课堂小结,巩固反思:
本节课从实例入手,非常自然贴切地引出集合与集合的概念, 并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
例如:所有的奇数表示为:{x|x=2k+1,k Z}
5、集合的性质:
(1)确定性:集合中的元素,必须是确定的,不是含糊不清的,任何一个对象,都能明确判断它是或者不是某全集合的元素,二者必居其一。
(2)互异性:集合中任何两个元素都是不相同的,在同一个集合中,相同的对象只能算作一个元素。
例如:集合{1,1,2}只能当作只有两个元素的集合。应用写为{1,2}才为正确的。
二、师生互动,新课讲 解
1、集合的有关概念
集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
一般地,研究对象统称为元素(element),一些 元素组成的总体叫集合(set),也简称集。
课本P2:例子(1)—(8),都构成一个集合。
集合的三性:确实性,互异性,无序性。
四、布置作业:
A组:
1、(课本P11习题1.1A组NO:1)(做在课本上)
2、(课本P11习题1.1A组NO:2)(做在课本上)
3、(课本P11习题1.1A组NO:3)
4、(课本P11习题1.1A组NO:4)
5、(tb0300202):已知集合M={a,b,c}中的三个元素可构成三角形的三边长,那么 ABC一定不是(D)。
(1)小于10的所有自然数组成的集合;
1.1.1 集合的含义及其表示教案
§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。
○3无序性:集合中的元素间是无次序关系的。
(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。
(2)我国的小河流。
2.说出集合A={a,b,c}和集合B={b, a,c}的关系。
(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。
《必修一》1.1.1集合的含义与表示导学案
高一数学A 1.1集合导学案(一)1.1.1集合的含义与表示编者:刘玉明审核人:王建美使用时间:2014. 10.13学习目标:(1)学生初步理解集合的概念,知道常用数集的概念及其记法。
(2)学生初步了解元素与集合间“属于”、“不属于”关系的意义。
学习重点:集合的基本概念学习过程(一)新知预习(阅读课本21、集合的概念(1)一般地,我们把统称为元素,把一些叫做集合。
练习1 下列各组对象能否构成一个集合并说明理由(1)著名的数学家;(2)某校高一(2)班所有高个子的同学;(3)不超过10的非负数(4) 5 的近似值的全体练习2集合中元素的特征(1);(2);(3)。
2、集合的表示集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……3、元素与集合的关系(1)属于:如果a是集合A的元素,就说,记作。
(2)不属于:如果a不是集合A的元素,就说,记作。
要注意“∈”的方向,不能把a∈A颠倒过来写.练习3(1)给出下面四个关系:2∈R, 0.7∉Q, 0 ∈{0}, 0∉N,其中正确的个数有( )个A.4 B.3 C.2 D.1(2)下面有四个命题:①若-a ∈Ν,则a ∉Ν②若a∈Ν,b ∈Ν,则a+b的最小值是2③集合N中最小元素是1④x2+4=4x的解集可表示为{2,2}.其中正确命题的个数是( ) A.0 B.1 C.2 D.4、常用数集及其表示方法(1)非负整数集(自然数集):记作;(2)正整数集:记作;(3)整数集:记作;(4)有理数集:记作;(5)实数集:记作;(二)课堂小结本节课学习了以下内容:1.集合的有关概念;2.集合元素的性质;3.集合的表示4集合与元素的关系及记法5常用数集的定义及记法;。
数学教学设计_1.1.1集合的含义与表示
课题:§1.1.1 集合的含义与表示教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础:一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:1、知识与技能(1)通过实例,了解集合的含义,理解元素与集合的“属于”关系;(2)学会运用集合语言(列举法或描述法)描述不同的具体问题.2、过程与方法(1)通过经历从实例中概括出“集合”含义的过程,培养抽象概括的能力;(2)通过本节课的学习,初步培养用集合语言进行交流的能力.3、情感、态度与价值观体会集合语言的“美”,爱上集合.教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员。
试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,意思是分散的人或事物聚集到一起;使聚集。
其实“集合”也可以是一个口号,军训时便经常听到。
我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,今天,我们将学习一个新的数学概念——集合(宣布课题),即是一些研究对象的总体。
二、创设情境——————————————第 1 页(共4页)——————————————请同学们阅读课本P2的例子(1)、(2).例(1)中,把1— 20内的每一个质数作为元素,这些元素的全体就组成一个集合.例(2)中,把我国从1991年到2003年的13年内发射的每一颗人造卫星作为元素,这些元素的全体组成一个集合.请同学们继续阅读课本P2的例子(3)-- (8).回答P2的思考题.(在此处,将先在在黑板上写出一一列出例子(1)、(2)元素,强调其元素的全体组成一个集合.再请学生思考并回答问题.)三、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2015年新高一数学教学设计:1.1.1集合的含义与表示教学
1.1.1 集合的含义与表示三维目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识。
教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、创设情境,新课引入(1)请第一组的全体同学站起来?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是第一组的同学)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、师生互动,新课讲解1、集合的有关概念集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
一般地,研究对象统称为元素(element ),一些元素组成的总体叫集合(set ),也简称集。
课本P2:例子(1—(8,都构成一个集合。
2、集合的表示方法:(1)集合通常用大写的拉丁字母表示,如A ,B ,C ,P ,Q ,X ,Y ,等;集合的元素通常用小写的拉丁字母表示,如a,b,c, 等。
(2)如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A; 如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A(或a ∈A 。
3、常用的数集及其记法:全体非负整数的集合通常简称非负整数集(或自然数集),记作:N ;(注意:0.是自然...数.)所有正整数组成的集合称为正整数集,记作:N +或N *。
全体整数的集合通常简称整数集,记作:Z ;全体有理数的集合通常简称有理数集,记作:Q ;全体实数的集合通常简称实数集,记作:R 。
1高中数学必修1精品教案:1.1.1集合的含义与表示 导学案
第一章 集合与函数概念1.1集合1.1.1集合的含义与表示【学习目标】(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;【预习指导】对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.阅读教材,并思考下列问题:(1)有哪些概念?(2)有哪些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?【课堂探究】一、问题1:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.观察上面的例子,指出这些实例的共同特征是什么?(分组讨论,得出集合的概念)问题2:你还能给出一些集合的例子吗?(学生自己举例子,得出集合元素的特性)二、1、任意给定一个对象和一个集合,它们之间有什么关系?用符合如何表示?2、常用的数集(自然数集、整数集、正整数集、有理数集、实数集)的专用符号你记住了吗?3、要表示一个集合共有几种方式?4、试比较自然语言、列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?5、如何根据问题选择适当的集合表示法?【课堂练习】1. 下列说法正确的是 ( )A.{}1,2,{}2,1是两个集合B.{}(0,2)中有两个元素C.6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集 D.{}2|20x Q x x ∈++=且是空集 2.将集合{}|33x x x N -≤≤∈且用列举法表示正确的是 ( )A.{}3,2,1,0,1,2,3--- B.{}2,1,0,1,2--C.{}0,1,2,3 D.{}1,2,33.{},0.3,0,00R Q N +∉∈∈其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个4.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为____________. 5.已知集合A={}20,1,x x -则x 在实数范围内不能取哪些值___________.6.(创新题)已知集合{},,S a b c =中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形【尝试总结】1.本节课我们学习过哪些知识内容?2.选择集合的表示法时应注意些什么?【达标检测】一、选择题1.下列元素与集合的关系中正确的是( ) A.N ∈21 B.2∈{x ∈R|x ≥3} C.|-3|∉N* D.-3.2∉Q2.给出下列四个命题:(1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,23,46,21-,0.5这些数字组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R}是指第二象限或第四象限内的点的集合.以上命题中,正确命题的个数是( )A.0B.1C.2D.33.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B. M={3,2},N={(2,3)}C.M={(x ,y )|x +y =1},N={y |x +y =1}D.M={1,2},N={2,1}4.已知x ∈N ,则方程220x x +-=的解集为( )A.{x |x =-2}B. {x |x =1或x =-2}C. {x |x =1}D.∅ 5.已知集合M={m ∈N|8-m ∈N},则集合M 中元素个数是( )A.6B.7C.8D.9二、填空题6.用符号“∈”或“∉”填空:0_______N ,5______N ,16______N .7.用列举法表示A={y |y =x 2+1,-2≤x ≤2,x ∈Z}为_______________.8.用描述法表示集合“方程x 2-2x +3=0的解集”为_____________.9.集合{x |x >3}与集合{t|t >3}是否表示同一集合?________10.已知集合P={x |2<x <a ,x ∈N},已知集合P 中恰有3个元素,则整数a =_________.三、解答题11.已知集合A={0,1,2},集合B={x |x =ab ,a ∈A ,b ∈A}.(1)用列举法写出集合B ;(2)判断集合B 的元素和集合A 的关系.12.已知集合{1,a ,b }与{-1,-b ,1}是同一集合,求实数a 、b 的值.13.(探究题)下面三个集合:①{}2|2x y x =-,②{}2|2y y x =-,③{}2(,)|2x y y x =-(1)它们是不是相同的集合?(2)试用文字语言叙述各集合的含义.附: 集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔的不朽功绩前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”.因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来.数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱.因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念.但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路.他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.下面就让我们来看一下盒子打开后他释放出的是什么.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合那一章后,同学们应该对这句话不会感到陌生.但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在.这种关于无穷的观念在数学上被称为潜无限.十八世纪数学王子高斯就持这种观点.用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的.所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的.然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷.他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论.这一理论使人们真正进入了一个难以捉摸的奇特的无限世界.最能显示出他独创性的是他对无穷集元素个数问题的研究.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应――例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了代数数[注]集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成.”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已.这是何等令人震惊的结果!然而,事情并未终结.魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物.从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次.他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次.他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”.他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系,它可以无限延长下去.就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景.可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了.毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣.他们大叫大喊地反对他的理论.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的.当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧.公理化集合论的建立集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界.这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R .现在问R 是否属于R ?如果R 属于R ,则R 满足R 的定义,因此R 不应属于自身,即R 不属于R ;另一方面,如果R 不属于R ,则R 不满足R 的定义,因此R 应属于自身,即R 属于R .这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中.这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF 公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现.这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论.公理化集合论是对朴素集合论的严格处理.它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一.这个成就可能是这个时代所能夸耀的最伟大的工作.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一. 注:整系数一元n 次方程的根,叫代数数.如一切有理数是代数数.大量无理数也是代数数.如根号2.因为它是方程x 2-2=0的根.实数中不是代数数的数称为超越数.相比之下,超越数很难得到.第一个超越数是刘维尔于1844年给出的.关于π是超越数的证明在康托尔的研究后十年才问世.1.1.1集合的含义与表示【课堂练习】1.D 2. C 3.B 4. 73,22⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭ 5. x ≠ 6.D 【达标检测】选择题 1-5 BADCC填空题 6. ∈ ∉ ∈ 7. {}2,4,5 8. {}2|230x x x -+= 9.是 10. 6解答题11.}4,2,1,0{=B 集合A 中的元素都在集合B 中。
高中数学1.1.1集合的含义与表示教案新人教版必修1
1.1集合的含义与表示一、关于教学内容的思考教学任务:帮助学生理解集合及集合相等的含义,掌握集合的两种表示方法,理解集合的三个属性,熟记四个常用集合的表示记号,教学目的:引导学生初步认识和运用集合语言.教学意义:培养学生抽象概括能力,严谨的表达能力.二、教学过程1.引言学习集合是现代数学的基本语言,用它表达数学内容简洁,准确。
2.通过教材的例子等,给出集合概念的描述性说明:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(质数:也称素数,指除1和自身外不能被其他自然数整除的数)只要是构成两个集合的元素是一样的,我们称这两个集合是相等的。
3.阐述元素与集合的关系。
“属于”记为“∈”;“不属于”记为“∉”。
一般地,元素用小写字母表示;集合用大写字母.4.常用集合记法:①全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集使称为正整数集,记作*N 或N +;②全体整数组成的集合称为整数集,记作Z;③全体有理数组成的集合称为有理数集,记作Q;④全体实数组成的集合称为实数集,记作R。
5.结合教材“思考”,通过举例帮助学生明确集合的三个属性:集合中的元素确定性;互异性,无序性。
6.通过教材思考与例题介绍表示集合的方法:①列举法(用于其元素有限个,或元素个数较少时)②描述法(用于其元素无限个,或元素不宜一个个列举)三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子1.下列各组对象能否构成一个集合:①著名的数学家;×②某校高一(6)班所有高个子的同学;×③不超过10的非负数;√④方程x x =2在实数范围内的解;√2.给出下列命题的正确性进行判断:①Q ∈7.0;√②}0{0∈;√③N ∈0;√④若N a ∉-,则N a ∈;×⑤若a N ∈,则a N -∉;×⑥若,a N b N ∈∈,则a b +的最小值是2;×3.设b a ,是非零实数,那么bb a a ||||+可能取的值组成集合的元素是 .2,-2,0 4.由实数332,|,|,,x x x x x --所组成的集合,最多含几个元素?25.用恰当的表示方法表示下列集合①所有奇数;②所有偶数;③大于3的全体偶数;}1,2|{Z k k k x x ∈>=且④直角坐标系内所有第一象限的点;}0,0|),{(>>y x y x (R y R x ∈∈,此处可省略) ⑤所有被4除余1的正整数;},14|{N k k x x ∈+=6.说说这三个集合}1{},1{},1|{==y y y 的关系。
(课堂设计)2014-2015高中数学 1.1.1 集合的含义与表示学案2 新人教A版必修5
1.1.1 集合的含义与表示(二)自主学习1.掌握集合的表示方法,能在具体问题中选择适当的方法表示集合.2.通过实例和阅读自学体会用列举法和描述法表示集合的方法和特点,培养自主探究意识和自学能力.1.把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法. 2.用集合所含元素的共同特征表示集合的方法称为描述法.3.不等式x -7<3的解集为{x |x <10}.4.所有偶数的集合可表示为{x ∈Z |x =2k ,k ∈Z }。
5.方程(x +1)(x -3)=0的所有实数根组成的集合为{-1,3}对点讲练用列举法表示集合【例1】 用列举法表示下列集合:(1)已知集合M =⎩⎨⎧⎭⎬⎫x ∈N |61+x ∈Z ,求M ; (2)方程组⎩⎪⎨⎪⎧ x +y =2x -y =0的解集;(3)由|a |a +b |b |(a ,b ∈R )所确定的实数集合. 分析 解答本题可先弄清集合元素的性质特点,然后再按要求改写.解 (1)∵x ∈N ,且61+x∈Z , ∴1+x =1,2,3,6,∴x =0,1,2,5,∴M ={0,1,2,5}.(2)由⎩⎪⎨⎪⎧ x +y =2x -y =0,得⎩⎪⎨⎪⎧ x =1y =1,故方程组的解集为{(1,1)}.(3)要分a >0且b >0,a >0且b <0,a <0且b >0,a <0且b <0四种情况考虑,故用列举法表示为{-2,0,2}.规律方法 (1)列举法表示集合,元素不重复、不计次序、不遗漏,且元素与元素之间用“,”隔开.(2)列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示集合较为方便,而且一目了然.变式迁移1 用列举法表示下列集合:(1)A ={x ||x |≤2,x ∈Z }; (2)B ={x |(x -1)2(x -2)=0};(3)M ={(x ,y )|x +y =4,x ∈N *,y ∈N *}; (4)已知集合C =⎩⎨⎧⎭⎬⎫61+x ∈Z |x ∈N ,求C . 解 (1)∵|x |≤2,x ∈Z ,∴-2≤x ≤2,x ∈Z ,∴x =-2,-1,0,1,2.∴A ={-2,-1,0,1,2}.(2)∵1和2是方程(x -1)2(x -2)=0的根,∴B ={1,2}.(3)∵x +y =4,x ∈N *,y ∈N *,∴⎩⎪⎨⎪⎧ x =1,y =3,或⎩⎪⎨⎪⎧ x =2,y =2,或⎩⎪⎨⎪⎧ x =3,y =1.∴M ={(1,3),(2,2),(3,1)}.(4)结合例1(1)知,61+x=6,3,2,1, ∴C ={6,3,2,1}.用描述法表示集合【例2】 用描述法表示下列集合:(1)所有正偶数组成的集合; (2)方程x 2+2=0的解的集合;(3)不等式4x -6<5的解集; (4)函数y =2x +3的图象上的点集.解 (1)文字描述法:{x |x 是正偶数}.符号描述法:{x |x =2n ,n ∈N *}.(2){x |x 2+2=0,x ∈R }.(3){x |4x -6<5,x ∈R }.(4){(x ,y )|y =2x +3,x ∈R ,y ∈R }.规律方法 用描述法表示集合时,要注意代表元素是什么?同时要注意代表元素所具有的性质.变式迁移2 用描述法表示下列集合:(1)函数y =ax 2+bx +c (a ≠0)的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合;(3)不等式x -3>2的解集.解 (1){(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧ y =x +3y =-2x +6=⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧ x =1y =4. (3){x ∈R |x -3>2}.列举法和描述法的灵活运用【例3】 用适当的方法表示下列集合:(1)比5大3的数; (2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10图象上的所有点组成的集合.分析 对于(1),比5大3的数就是8,宜用列举法;对于(2),方程为二元二次方程,可将方程左边因式分解后求解,宜用列举法;对于(3),所给二次函数图象上的点有无数个,宜采用描述法.解 (1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧ x =2y =-3,∴方程的解集为{(2,-3)}.(3)“二次函数y =x 2-10的图象上的点”用描述法表示为{(x ,y )|y =x 2-10}.规律方法 用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.变式迁移3 用适当的方法表示下列集合:(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由所有周长等于10 cm 的三角形组成的集合;(3)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合;(4)二元二次方程组⎩⎪⎨⎪⎧ y =x y =x 2的解集.解 (1)列举法:{3,5,7}.(2)描述法:{周长为10 cm 的三角形}.(3)列举法:{1,2,3,12,13,21,31,23,32,123,132,213,231,312,321}.(4)列举法:{(0,0),(1,1)}.1.在用列举法表示集合时应注意以下四点:(1)元素间用“,”分隔;(2)元素不重复;(3)不考虑元素顺序;(4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法 但是须把元素间的规律显示清楚后方能用省略号.2.使用描述法时应注意以下四点:(1)写清楚该集合中元素的代号(字母或用字母表示的元素符号);(2)说明该集合中元素的特征;(3)不能出现未被说明的字母;(4)用于描述的语句力求简明、确切.课时作业一、选择题1.集合{1,3,5,7,9}用描述法表示应是( )A .{x |x 是不大于9的非负奇数}B .{x |x ≤9,x ∈N }C .{x |1≤x ≤9,x ∈N }D .{x |0≤x ≤9,x ∈Z }答案 A2.在直角坐标系内,坐标轴上的点的集合可表示为( )A .{(x ,y )|x =0,y ≠0}B .{(x ,y )|x ≠0,y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x =0,y =0}答案 C3.下列语句:①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)2=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示.正确的是( )A .只有①和④B .只有②和③C .只有②D .以上语句都不对 答案 C4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 65-a ∈N *,则A 为( ) A .{2,3} B .{1,2,3,4} C .{1,2,3,6} D .{-1,2,3,4} 答案 D解析 由65-a∈N *可知,5-a 为6的正因数,所以5-a 可以等于1,2,3,6,相应的a 分别等于4,3,2,-1,即A ={-1,2,3,4}.5.下列集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={1,2},N ={(1,2)} 答案 B二、填空题6.下列可以作为方程组⎩⎪⎨⎪⎧ x +y =3x -y =-1的解集的是__________(填序号).(1){x =1,y =2}; (2){1,2}; (3){(1,2)}; (4){(x ,y )|x =1或y =2};(5){(x ,y )|x =1且y =2}; (6){(x ,y )|(x -1)2+(y -2)2=0}.答案 (3)(5)(6)7.已知a ∈Z ,A ={(x ,y )|ax -y ≤3}且(2,1)∈A ,(1,-4)∉A ,则满足条件的a 的值为________.答案 0,1,2解析 ∵(2,1)∈A 且(1,-4) ∉A ,∴2a -1≤3且a +4>3,∴-1<a ≤2,又a ∈Z ,∴a 的取值为0,1,2.8.已知集合M ={x ∈N |8-x ∈N },则M 中的元素最多有________个.答案 9三、解答题9.用另一种方法表示下列集合.(1){绝对值不大于2的整数}; (2){能被3整除,且小于10的正数};(3){x |x =|x |,x <5且x ∈Z }; (4){(x ,y )|x +y =6,x ∈N *,y ∈N *};(5){-3,-1,1,3,5}.解 (1){-2,-1,0,1,2}.(2){3,6,9}.(3)∵x =|x |,∴x ≥0,又∵x ∈Z 且x <5,∴x =0或1或2或3或4.∴集合可以表示为{0,1,2,3,4}.(4){(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){x |x =2k -1,-1≤k ≤3,k ∈Z }.10.用描述法表示图中阴影部分(含边界)的点的坐标的集合.解 用描述法表示为(即用符号语言表示):⎩⎨⎧⎭⎬⎫x ,y |-1≤x ≤32,-12≤y ≤1,且xy ≥0. 【探究驿站】11.对于a ,b ∈N +,现规定:a *b =⎩⎪⎨⎪⎧ a +b a 与b 的奇偶性相同a ×b a 与b 的奇偶性不同.集合M ={(a ,b )|a *b =36,a ,b ∈N +}(1)用列举法表示a ,b 奇偶性不同时的集合M ;(2)当a 与b 的奇偶性相同时集合M 中共有多少个元素?解(1)当a,b奇偶性不同时,a*b=a×b=36,则满足条件的(a,b)有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M 可表示为:M={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.(2)当a与b的奇偶性相同时a*b=a+b=36,由于两奇数之和为偶数,两偶数之和仍为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1,所以当a,b奇偶性相同时这样的元素共有35个.。
高中数学必修1教案1.1.1集合的含义与表示
第1课时集合的含义与表示(一)教学目标1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义.理解集合相等的含义.(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2.过程与方法(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识.种.从而指出:导入课题.识:集.第一组实例(幻灯片一):数.间的距离的点.)班全体同学.成员..集合:这些对象的全体构成的集合(或集)..集合的元素(或成员):请大家讨论.的要点,然后教师肯定或补充.师总结.?第二组实例(幻灯片二):国代表团的成员构成的集合.合.合.的点的全体构成的集合.?。
《1.1.1集合的含义与表示》导学案
学生分组进行讨论、探究、总结。
反思
小结
利用补充的例题发散学生思维,培养学生知识迁移能力和总结能力
归纳整理
进行总结,达到条理化
作业
延伸
完成优化设计相关练习,并预习下节课:集合的表示方法
针对不同水平的学生,设置必做题和选做题,同时课后加强检测的力度,促进知识的巩固和提高
2bookshop的所有字母构成了一个含有8个元素的集合。
3由1、6、7、8构成的集合与由8、1、7、6构成的集合不相等
3.下列各组对象不能构成集合的是()
A.大于6的所有整数B.爱好足球的人
C.中国的富翁D.某公司的全体员工
4.下列结论中不正确的是()
A.若a∈N,则-a∈N B.若a∈Z,则(3a-1)∈Z
C.若a∈Q,则|a|∈Q D.若a是实数,则根号a是实数
学生阅读教科书中的相关内容,自己概括集合中元素的特点,并能举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由,发表自己的意见
当堂
训练
教材练习1和补充拓展题
1.在集合{3,x,x2-2x}中,写出x应满足的条件
2.含有三个实数的集合可表示为{a,a/b,1},也可表示为{a2,a+b,0}。求a2010+b2011的值
(三)集合中元素的性质
提问:你能说说集合中元素的特点吗?
引导学生明确集合元素的,______、______、______、培养抽象概括能力。
1.思考下列问题
2我们班的全体女生能构成集合吗?
3我们班的高个子男生能构成集合吗?
人教版高中数学必修一第一章:1.1.1集合的含义与表示学案1
集合的含义与表示1一.课标解读1.《普通高中数学课程标准》明确指出:“通过实例,了解集合的含义,体会元素与集合的”属于”关系;能选择自然语言.图形语言(列举法或描述法)描述不同的具体问题感受集合语言的意义和作用.”2.重点:集合的概念与表示方法.3.难点:运用集合的两种常用表示法---列举法与描述法,正确表示一些简单的集合.二.要点扫描1.集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。
集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。
2.集合元素的特征由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质: ⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。
设集合A 给定,若有一具体对象x ,则x 要么是A 的元素,要么不是A 的元素,二者必居 其一,且只居其一。
⑵互异性特征:集合中的元素必须是互不相同的。
设集合A 给定,A 的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。
3.集合与元素之间的关系集合与元素之间只有“属于)(∈”或“不属于)(∉”。
例如:a 是集合A 的元素,记作A a ∈,读作“a 属于A ”;a 不是集合A 的元素,记作A a ∉,读作“a 不属于A ”。
4.集合的分类集合按照元素个数可以分为有限集和无限集。
特殊地,不含任何元素的集合叫做空集,记作∅。
5.集合的表示方法⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。
⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。
例如:集合A 可以用它的特征性质)(x p 描述为{)(x p I x ∈},这表示在集合I 中,属于集合A 的任意一个元素x 都具有性质)(x p ,而不属于集合A 的元素都不具有性质)(x p 。
高中数学 1.1.1 集合的含义与表示学案1 新人教A版必修5
1.1.1 集合的含义与表示(一)1.体验由实例分析探究集合中元素的特性的过程,了解集合的含义以及集合中元素的特性,培养自己的抽象、概括能力.2.掌握“属于”关系的意义,知道常用数集及其记法,初步体会集合语言和符号语言表示数学内容的简洁性和准确性.1.元素与集合的概念(1)把研究对象统称为元素,通常用小写拉丁字母表示.(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母表示.2.集合中元素的特性:确定性、互异性、无序性.3.集合相等:只有构成两个集合的元素是一样的,才说这两个集合是相等的.4.元素与集合的关系(1)如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)如果a不是集合A的元素,就说a不属于集合A,记作a A.5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N+来表示.对点讲练集合的概念【例1】考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2007年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.解(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(6)不能构成集合.规律方法 判断指定的对象能不能形成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.变式迁移1 下列给出的对象中,能构成集合的是( )A .高个子的人B .很大的数C .聪明的人D .小于3的实数答案 D集合中元素的特性【例2】 已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .分析 考查元素与集合的关系,体会分类讨论思想的应用.解 ∵-3∈A ,则-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 规律方法 对于解决集合中元素含有参数的问题一定要全面思考,特别关注元素在集合中的互异性.分类讨论的思想是中学数学中的一种重要的数学思想,我们一定要在以后的学习中熟练掌握.变式迁移2 已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m的值.解 ∵2∈A ,∴m =2或m 2-3m +2=2.若m =2,则m 2-3m +2=0,不符合集合中元素的互异性,舍去.若m 2-3m +2=2,求得m =0或3. m =0不合题意,舍去.经验证m =3符合题意,∴m 只能取3.元素与集合的关系【例3】若所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.分析解答本题首先要理解∈与D/∈的含义,然后要弄清所给集合是由一些怎样的数构成的,6-22能否化成此形式,进而去判断6-22是不是集合A中的元素.解因为在3a+2b(a∈Z,b∈Z)中,令a=2,b=-2,即可得到6-22,所以6-22是集合A中的元素.规律方法判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.像此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.变式迁移3 集合A是由形如m+3n(m∈Z,n∈Z)的数构成的,判断12-3是不是集合A中的元素.解∵12-3=2+3=2+3×1,而2,1∈Z,∴2+3∈A,即12-3∈A.1.充分利用集合中元素的三大特性是解决集合问题的基础.2.两集合中的元素相同则两集合就相同,与它们元素的排列顺序无关.3.解集合问题特别是涉及求字母的值或范围,把所得结果代入原题检验是不可缺少的步骤.特别是互异性,最易被忽视,必须在学习中引起足够重视.课时作业一、选择题1.下列几组对象可以构成集合的是( )A.充分接近π的实数的全体 B.善良的人C.某校高一所有聪明的同学 D.某单位所有身高在1.7 m以上的人答案 D2.下列四个说法中正确的个数是( )①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.A .0B . 1C .2D .3答案 A3.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .2答案 C解析 验证,看每个选项是否符合元素的互异性.4.已知集合S 的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 答案 D解析 由元素的互异性知a ,b ,c 均不相等. 5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M答案 D解析 分类讨论:x 、y 、z 中三个为正,两个为正,一个为正,全为负,此时代数式的值分别为4,0,0,-4,∴4∈M .二、填空题6.用“∈”或“∉”填空(1)-3______N ;(2)3.14______Q ;(3)13______Z ;(4)-12______R ;(5)1______N *;(6)0________N .答案 (1) ∉ (2)∈ (3) ∉ (4)∈ (5)∈ (6)∈7.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________.答案 1解析 当x =1时,x -1=0∉A ,x +1=2∈A ;当x =2时,x -1=1∈A ,x +1=3∈A ;当x =3时,x -1=2∈A ,x +1=4∉A ;当x =5时,x -1=4∉A ,x +1=6∉A ;综上可知,A 中只有一个孤立元素5.8.由下列对象组成的集体属于集合的是________(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生.答案①④⑤三、解答题9.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,求x.解当3x2+3x-4=2时,即x2+x-2=0,则x=-2或x=1.经检验,x=-2,x=1均不合题意.当x2+x-4=2时,即x2+x-6=0,则x=-3或2.经检验,x=-3或x=2均合题意.∴x=-3或x=2.10.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少?解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11共8个.【探究驿站】11.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11--1=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2 .(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.。
高中数学 1.1.1 集合的含义与表示(第1课时)教案 必修1
安徽省合肥市第三十二中学2014年高中数学 1.1.1 集合的含义与表示(第1课时)
教案新人教版必修1
1.教学任务分析
(1)了解集合的含义
①通过实例,了解集合的含义,体会元素与集合的“属于”关系;
②知道常用数集及其专用记号;
③了解集合中元素的确定性、互异性、无序性;
④会用集合语言表示有关数学对象。
(2)会用适当的方法表示集合
能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.
集合作为一种基本的数学语言,学习并掌握它的最好方法是使用。
因此,教学中要多引导学生使用集合语言描述对象、进行自然语言与集合语言间的转换练习。
(3)培养学生抽象概括的能力
通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。
因此教学时,不仅要关注集合的基本知识的学习,同时还要关注学生抽象归纳能力的培养。
2.教学重点、难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择。
3.教学基本流程
5.几点说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 集合的含义与表示(一)
1.体验由实例分析探究集合中元素的特性的过程,了解集合的含义以及集合中元素的特性,培养自己的抽象、概括能力.
2.掌握“属于”关系的意义,知道常用数集及其记法,初步体会集合语言和符号语言表示数学内容的简洁性和准确性.
1.元素与集合的概念
(1)把研究对象统称为元素,通常用小写拉丁字母表示.
(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母表示.
2.集合中元素的特性:确定性、互异性、无序性.
3.集合相等:只有构成两个集合的元素是一样的,才说这两个集合是相等的.
4.元素与集合的关系
(1)如果a是集合A的元素,就说a属于集合A,记作a∈A.
(2)如果a不是集合A的元素,就说a不属于集合A,记作a A.
5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N+来表示.
对点讲练
集合的概念
【例1】考查下列每组对象能否构成一个集合:
(1)著名的数学家;(2)某校2007年在校的所有高个子同学;
(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;
(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.
解(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”
不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(6)不能
构成集合.
规律方法 判断指定的对象能不能形成集合,关键在于能否找到一个明确标准,对于任
何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、
无序性.
变式迁移1 下列给出的对象中,能构成集合的是( )
A .高个子的人
B .很大的数
C .聪明的人
D .小于3的实数
答案 D
集合中元素的特性
【例2】 已知集合A 是由a -2,2a 2
+5a,12三个元素组成的,且-3∈A ,求a .
分析 考查元素与集合的关系,体会分类讨论思想的应用.
解 ∵-3∈A ,则-3=a -2或-3=2a 2+5a ,
∴a =-1或a =-32
.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.
当a =-32时,a -2=-72
,2a 2+5a =-3, ∴a =-32
. 规律方法 对于解决集合中元素含有参数的问题一定要全面思考,特别关注元素在集合
中的互异性.分类讨论的思想是中学数学中的一种重要的数学思想,我们一定要在以后
的学习中熟练掌握.
变式迁移2 已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m
的值.
解 ∵2∈A ,∴m =2或m 2-3m +2=2.
若m =2,则m 2-3m +2=0,
不符合集合中元素的互异性,舍去.
若m 2-3m +2=2,求得m =0或3. m =0不合题意,舍去.经验证m =3符合题意,
∴m 只能取3.
元素与集合的关系
【例3】若所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.
分析解答本题首先要理解∈与D/∈的含义,然后要弄清所给集合是由一些怎样的数构成的,6-22能否化成此形式,进而去判断6-22是不是集合A中的元素.
解因为在3a+2b(a∈Z,b∈Z)中,
令a=2,b=-2,
即可得到6-22,
所以6-22是集合A中的元素.
规律方法判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.像此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.
变式迁移3 集合A是由形如m+3n(m∈Z,n∈Z)的数构成的,判断1
2-3
是不是集合A中的元素.
解∵
1
2-3
=2+3=2+3×1,而2,1∈Z,
∴2+3∈A,即1
2-3
∈A.
1.充分利用集合中元素的三大特性是解决集合问题的基础.
2.两集合中的元素相同则两集合就相同,与它们元素的排列顺序无关.
3.解集合问题特别是涉及求字母的值或范围,把所得结果代入原题检验是不可缺少的步骤.特别是互异性,最易被忽视,必须在学习中引起足够重视.
课时作业
一、选择题
1.下列几组对象可以构成集合的是( )
A.充分接近π的实数的全体 B.善良的人
C.某校高一所有聪明的同学 D.某单位所有身高在1.7 m以上的人
答案 D
2.下列四个说法中正确的个数是( )
①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;
③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.
A .0
B . 1
C .2
D .3
答案 A
3.由a 2
,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )
A .1
B .-2
C .6
D .2
答案 C
解析 验证,看每个选项是否符合元素的互异性.
4.已知集合S 的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC 一定不是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形 答案 D
解析 由元素的互异性知a ,b ,c 均不相等. 5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz
的值所组成的集合是M ,则下列判断正确的是( )
A .0∉M
B .2∈M
C .-4∉M
D .4∈M
答案 D
解析 分类讨论:x 、y 、z 中三个为正,两个为正,一个为正,全为负,此时代数式的值分别为4,0,0,-4,∴4∈M .
二、填空题
6.用“∈”或“∉”填空
(1)-3______N ;(2)3.14______Q ;(3)13______Z ;(4)-12
______R ;(5)1______N *;(6)0________N .
答案 (1) ∉ (2)∈ (3) ∉ (4)∈ (5)∈ (6)∈
7.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________.
答案 1
解析 当x =1时,x -1=0∉A ,x +1=2∈A ;
当x =2时,x -1=1∈A ,x +1=3∈A ;
当x =3时,x -1=2∈A ,x +1=4∉A ;
当x =5时,x -1=4∉A ,x +1=6∉A ;
综上可知,A 中只有一个孤立元素5.
8.由下列对象组成的集体属于集合的是________(填序号).
①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;
④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生. 答案 ①④⑤
三、解答题
9.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .
解 当3x 2+3x -4=2时,即x 2+x -2=0,
则x =-2或x =1.
经检验,x =-2,x =1均不合题意.
当x 2+x -4=2时,即x 2+x -6=0,则x =-3或2.
经检验,x =-3或x =2均合题意.
∴x =-3或x =2.
10.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少? 解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;
当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;
当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.
由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.
【探究驿站】
11.设A 为实数集,且满足条件:若a ∈A ,则11-a
∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;
(2)集合A 不可能是单元素集.
证明 (1)若a ∈A ,则11-a
∈A . 又∵2∈A ,∴11-2
=-1∈A . ∵-1∈A ,∴11- -1 =12
∈A . ∵12∈A ,∴11-12
=2∈A . ∴A 中另外两个元素为-1,12
. (2)若A 为单元素集,则a =
11-a , 即a 2-a +1=0,方程无解.
∴a ≠11-a
,∴A 不可能为单元素集.。