2018-2019学年人教版七年级数学上学期第四章几何图形初步单元测试卷

合集下载

人教版数学七年级上册第四章《几何图形初步》单元检测卷(含答案)

人教版数学七年级上册第四章《几何图形初步》单元检测卷(含答案)

人教版数学七年级上册第四章《几何图形初步》单元检测卷满分:100分 时间:100分钟一、选择题(每小题3分,共30分)1. 如图所示,将平面图形绕轴旋转一周,得到的几何体是( ) A . 球 B . 圆柱 C . 半球 D . 圆锥2. 如图是由4个大小相同的小正方体摆成的几何体,它的左视图是( )A .B .C .D .3. A ,B ,C 三点在同一直线上,线段AB =5cm ,BC =4cm ,那么A ,C 两点的距离是( ) A .1cm B .9cmC .1cm 或9cmD .以上答案都不对 4. 下列说法中正确的是( )A .如果两个角互余,则这两个角的和为180°B .连接两点的线段叫两点的距离C .两点之间线段最短D .若AC =BC ,则点C 是线段AB 的中点 5. 如果∠1与∠2互补,∠2与∠3相等,则∠1与∠3的关系是( ) A . ∠1=∠3 B . ∠1=180°-∠3 C . ∠1=90°+∠3 D . 以上都不对 6. 从点A 看B 的方向是北偏东35°,那么从B 看A 的方向为( )A . 南偏东55°B . 南偏西55°C . 南偏东35°D . 南偏西35° 7. 如图,已知线段AB =BC +CD ,若AC =6,CD =2,则AB 的长是()A . 3B . 4C . 5D . 6 8. 一个角的余角是它补角的25,这个角的补角的大小是( )A . 30°B . 60°C . 120°D . 150°9. 将长方形ABCD 沿AE 折叠,使点D 落到D ′处,得到如图所示的图形,已知∠CED ′=60°,则∠AED 的大小是( )A . 60°B . 50° B .C . 75°D . 55°10.在下午4时与5时之间,时针与分针的夹角为90°A .4时30分B .4时45分C .4时1160或4时11420分 D .4时13210分或4时13310分 二、填空题(每小题3分,满分24分)11. 如图,点A ,B ,C 在直线l 上,则图中共有 条线段,有 条射线.12. 一个角的余角为70°37′,那么这个角等于 .13. 如图,△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则点B 到直线CD 的距离是线段 的长.14. 已知线段AB =4cm ,延长线段AB 至点C ,使BC =2AB ,若D 点为线段AC 的中点,则15.将一副三角板如图放置,若∠A O D =20°,则∠B O C 的大小为________°.16. 如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠MON 等于 °.17. 如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,AC =8,NB =5,则线段MN = .18. 如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n 条最多可将平面分成56个部分,则n 的值为 .三、解答题(66分)19.(8分)如图,已知三点A,B,C.求作:(1)画直线AB;(2)画射线AC;(3)连接BC.20.(8分)如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠A O B=114°.求∠COD的度数.21.(9分)如图,有一艘渔船上午九点在A处沿正东方向航行,在A处测得灯塔C在北偏东60°方向上,行驶2小时到达B处,测得灯塔C在北偏东15°方向,求∠C的度数.22.(9分)如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,求线段AB的长;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长.23.(10分)如图,线段AB=12,动点P从点A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当点P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当点P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN的长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.24.(12分)点O为直线AB上一点,过点O作射线OC,使∠BOC=65°.将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求旋转角∠BON=________;∠CON=________;(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=5°,求∠AOM的度数.图1 图2 图3答案一、选择题:BCCCB DBAAC二、填空题:11.3,6 12.19°23′13.BD 14.215.160 16.135 17.4 18.10三、解答题19.略20.∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD=57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=38°.∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.21.∵A处测得灯塔C在北偏东60°方向上,∴∠MAC=60°,∴∠CAB=30°.∵行驶2小时到达B处,测得灯塔C在北偏东15°方向,∴∠NBC=15°,∴∠ABC=105°,∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣105°=45°.24.(1)25°(2)40°25°(3)因为∠NOC=5°,∠BOC=65°,所以∠BON=∠NOC+∠BOC=70°.因为∠MON=90°,∠AOM+∠MON+∠BON=180°.所以∠AOM=180°-∠MON-∠BON=180°-90°-70°=20°.。

人教版2018-2019学年七年级数学上册第四章检测题及答案

人教版2018-2019学年七年级数学上册第四章检测题及答案

第四章检测卷一、选择题(每小题3分,共30分)1■生活中的实物可以抽象出各种各样的几何图形, 如图所示蛋糕的形状类似 于( )A.圆柱B.球C.圆D.圆锥2■下列说法正确的是() A.两点确定一条直线 B.两条射线组成的图形叫作角C.两点之间直线最短D.若 AB = BC ,则点B 为AC 的中点3■若/ 1 = 40.4 ° / 2 = 40° 4'则/ 1 与/2 的关系是( )A.Z 1 = 7 2B.Z 1>Z 2C.Z 1<Z 2D.以上都不对4■如图,C , D 是线段 AB 上两点■若CB = 4cm , DB = 7cm ,且D 是AC 的 中点,贝U AB 的长为( ) A.10cm B.11cm C.12cm D.14cm 25■如图,7 AOB 为平角,且7 AOC =丫 BOC ,贝U7 BOC 的度数是( )A.140 °B.135 °C.120 °D.40 °6■如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能 围成一个正方体,则剪掉的这个小正方形是()A.甲B.乙C.丙D. 丁 题号-一一 二二二 -三 总分 得分时间:120分钟满分:120分 第1题图r第6题图 7■若一个锐角和它的余角的大小之比是 5 : 4,则这个锐角的补角的度数是 ( )A.100 °B.120 °C.130 °D.140 °&把一副三角尺ABC 与BDE 按如图所示方式拼在一起,其中 A , D ,B 三点 在同一直线上,BM 为/ ABC 的平分线,BN 为/ CBE 的平分线,则/ MBN 勺度数是 ( )A.30 °B.45 °C.55 °D.60 °9.两根木条,一根长20cm, —根长24cm ,将它们一端重合且放在同一条直 线上,此时两根木条的中点之间的距离为 ( )A.2cm B4cm C.2cm 或 22cm D.4cm 或 44cm10.如图,C 、D 在线段BE 上,下列说法:①直线 CD 上以B 、C 、D E 为端 点的线段共有6条;②图中有2对互补的角;③若/ BAE= 100。

【2019】最新人教版七年级上册第四章几何图形初步单元检测试题(含答案).doc

【2019】最新人教版七年级上册第四章几何图形初步单元检测试题(含答案).doc

人教版七年级数学上册《第4章几何图形初步》单元测试一.选择题1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.下列图形不是正方体展开图的是()A.B.C.D.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.若∠C=90°,∠A=25°30',则∠C﹣∠A的结果是()A.75°30'B.74°30'C.65°30'D.64°30' 6.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线7.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD 内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°8.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A 9.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a10.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.22二.填空题11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG 上,折痕分别是DE,DF,则∠EDF的度数为.12.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是.13.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是.14.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.15.如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线.若OC是∠AOD的平分线,则∠BOC=°,射线OC的方向是.16.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=°.18.如图,以图中的A、B、C、D为端点的线段共有条.三.解答题19.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.20.如图,直线AB、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.(1)求∠1,∠2,∠3的度数;(2)判断OF是否平分∠AOD,并说明理由.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD度数.22.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)23.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.24.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.25.(14分)数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE=,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.新人教版七年级数学上册《第4章几何图形初步》单元测试参考答案与试题解析一.选择题1.B.2.A.3.B.4.C.5.D.6.C.7.B.8.C.9.A.10.A.二.填空题11.90°.12.80°.13.我.14.36.15.120,北偏东80°.16.圆锥.17.40.18.6.三.解答题19.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.20.解:(1)∵∠BOC+∠2=180°,∠BOC=70°,∴∠2=180°﹣70°=110°;∵OE是∠BOC的角平分线,∴∠1=35°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣35°﹣110°=35°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣110°﹣35°=35°.∴∠AOF=∠3=35°,∴OF平分∠AOD.21.解:∵OD平分∠AOB,∴∠AOD=∠AOB=×114°=57°,∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=×114°=38°,∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:23.解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.24.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.25.解:(1)∠ACB+∠DCE=180°;若∠DCE为任意锐角时,∠ACB+∠DCE=180°,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;(2)∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有()个.A. 9B. 8C. 5D. 42.如图所示几何图形中,是棱柱的是()A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是()A. 正方体B. 长方体C. 三棱柱D. 四棱锥4.如图,∠AOC>∠BOD,则()A. ∠AOB>∠CODB. ∠AOB=∠CODC. ∠AOB<∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为()A. 30°B. 40°C. 50°D. 60°6.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是()度.A.45B.60C.90D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC的度数为()A. 50°B. 50°或120°C. 50°或130°D. 130°9.直棱柱的侧面都是()A. 正方形B. 长方形C. 五边形D. 菱形10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有( )A. 1次B. 2次C. 3次D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC 的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是________cm2.18.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。

2018年秋人教版七年级上册数学《第四章 几何图形初步》单元测试卷及解析

2018年秋人教版七年级上册数学《第四章 几何图形初步》单元测试卷及解析

2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题,哪种物体最接近于圆柱( )A. B. C. D.2.下列几何体的截面分别是()A. 圆、平行四边形、三角形、圆B. 圆、长方形、三角形、圆C. 圆、长方形、长方形、三角形D. 圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A. 三亚﹣﹣永兴岛B. 永兴岛﹣﹣黄岩岛C. 黄岩岛﹣﹣弹丸礁D. 渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()A. 7条B. 8条C. 9条D. 10条5.如图,C 为线段 AB 上一点,D 为线段 BC 的中点,AB=20,AD=14,则 AC的长为( )A. 10B. 8C. 7D. 66.如图,∠AOB 是平角,∠AOC=50°,∠BOD =60°,OM 平分∠BOD,ON 平分∠AOC,则∠MON 的度数是()A. 135°B. 155°C. 125°D. 145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A. 50°B. 65°C. 45°D. 60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A. S3<S1<S2B. S1<S2<S3C. S2<S1<S3D. S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A. 1个B. 2个C. 3个D. 4个10.如图是一个棱长为1的正方体的展开图,点A ,B ,C 是展开后小正方形的顶点,连接AB ,BC ,则∠ABC 的大小是( )A. 60°B. 50°C. 45°D. 30°第II 卷(非选择题)二、解答题(题型注释)6.96×108m ,太阳的体积大约是多少?(球的体积的计算公式是V=43πr 3,π取3.14)12.已知一个长方体的长为1cm ,宽为1cm ,高为2cm ,请求出: (1)长方体有 条棱, 个面; (2)长方体所有棱长的和; (3)长方体的表面积.13.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?14.如图,点 B 、C 把线段 MN 分成三部分,其比是 MB :BC :CN=2:3:4,P 是 MN 的中点,且 MN=18cm ,求 PC 的长.15.如图,∠AOB 是平角,∠DOE=90°,OC 平分∠DOB . (1)若∠AOE=32°,求∠BOC 的度数;(2)若OD 是∠AOC 的角平分线,求∠AOE 的度数.16.以直线AB 上一点O 为端点作射线 OC ,使∠BOC =60°,将一个直角三角形的直角顶点放在点O 处.(注:∠DOE =90°)(1)如图1,若直角三角板DOE 的一边OD 放在射线OB 上,则∠COE = °;(2)如图2,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OE 恰好平分∠AOC ,请说明OD 所在射线是∠BOC 的平分线;(3)如图3,将三角板DOE 绕点O 逆时针转动到某个位置时,若恰好∠COD = 15∠AOE ,求∠BOD 的度数?17.探索性问题:已知A ,B 在数轴上分别表示m ,n . (1)填表:(2)若A ,B 两点的距离为d ,则d 与m ,n 有何数量关系.(3)在数轴上整数点P 到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.三、填空题18.下面的几何体中,属于柱体的有______个.19.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是______20.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D两点间的距离是______.21.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是_____cm.22.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于_____.23.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是_____.24.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=_______° .25.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是_____.若∠1=28°32′35″,则∠1的补角=_____.参考答案1.A【解析】1.根据圆柱的特点:圆柱由一个曲面,两个平面(底面)围成的;圆柱两个面之间距离叫做高,圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长观察所给图形,观察图形用排除法可做出判断.A选项:有一个曲面,两个平面围成的,最接近圆柱,故本选项正确;B选项:有两个平面,但圆柱的母线没有垂直于底面,故本选项错误;C选项:两个底面的大小不同,故本选项错误;D选项:有两个平面,有两个曲面,故本选项错误;故选:A2.B【解析】2.根据平面图形得出截面.由图可知,下列几何体的截面分别是:圆、长方形、三角形、圆.故答案选B.3.A【解析】3.根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.4.B【解析】4.根据线段的定义找出所有的线段即可解答.由图可知,线段有AD,DB,BC,CE,EA,DE,AB,AC,一共八条,所以答案选择B.5.B【解析】5.先根据AB=20,AD=14求出BD的长,再由D为线段BC的中点求出BC的长;由已知AB=20得出AC的长,对比四个选项即可确定出正确答案.∵AB=20,AD=14, ∴BD=AB-AD=20-14=6, ∵D 为线段BC 的中点, ∴BC=2BD=12, ∴AC=AB-BC=20-12=8. 故选:B . 6.C【解析】6.根据条件可求出∠COD 的度数,利用角平分线的性质可求出∠MOC 与∠DON 的度数,最后根据∠MON=∠MOC+∠COD+∠DON 即可求出答案. 解:∵∠AOC+∠COD+∠BOD=180°, ∴∠COD=180°-∠AOC-∠COD=70°,∵OM 、ON 分别是∠AOC 、∠BOD 的平分线, ∴∠MOC=12∠AOC=25°,∠DON=12∠BOD=30°, ∴∠MON=∠MOC+∠COD+∠DON=125°, 故选:C . 7.B【解析】7.根据折叠的性质得到∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,再根据平角的定义有∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,易得∠A ′BC +∠E ′BD =180°×12=90°,则∠CBD =90°,再根据平角的定义即可求出∠DBE 的值.∵一张长方形纸片沿BC 、BD 折叠,∴∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,而∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,∴∠A ′BC +∠E ′BD =180°×12=90°,即∠CBD =90°. ∵∠ABE =180°,∴∠DBE =180°-∠ABC -∠CBD =180°-25°-90°=65°. 故选B . 8.C【解析】8.利用分割图形法找出S 1、S 2、S 3的面积,再根据平行四边形的面积公式找出S 4、S 5、S 6的面积,由此即可得出结论.∵矩形的长为a 米,宽为b 米,小路的宽为x 米, ∴S 1=ab−(a+b)x+S 4;S 2=ab−(a+b)x+S 5;S 3=ab−(a+b)x+S 6.S 4=x ⋅x sin60°= 2√33x 2,S 5=x 2,S 6=x ⋅ xsin30°=2x 2, ∴S 2<S 1<S 3. 故答案选C. 9.B【解析】9.由平面图形的折叠及正方体的表面展开图的特点进行判断即可. 解:常见立方体的展开图可以总结为11幅基础图形,如下,据此可知是正方体的平面展开图的有:故选:B . 10.C【解析】10.连接AC ,由图可知∠ACB=90°,简单计算即可发现AC=BC. 解:连接AC ,由图可知∠ACB=90°,由勾股定理可得AC=BC=√5,则△ACB 是一个直角等腰三角形,则∠ABC=45°, 故选择C. 11.1.41×1027m 3.【解析】11.根据已知条件太阳的半径,然后根据球体的体积公式即能得出答案. 解:当r=6.96×108时,V=πr 3≈×3.14×(6.96×108)3≈1.41×1027m 3,答:太阳的体积大约是1.41×1027m3.12.(1)12,6;(2)16(cm);(3)长方体的表面积是10cm2.【解析】12.(1)根据长方体的性质可得出;(2)长方体的棱长总和=4(长+宽+高);(3)长方体的表面积=2(长×宽+长×高+宽×高),把相关数字代入即可.解:(1)长方体有12条棱,6个面;故答案为:12,6;(2)(1+1+2)×4,,=4×4,=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2,=(1+2+2)×2,,=5×2,=10(cm2).故长方体的表面积是10cm2.13.A=﹣2,B=﹣3,C=﹣4.【解析】13.两数互为相反数,和为0.本题应对图形进行分析,可知A对应-2,B对应-3,C对应-4,由此可得结论.解:依题意得:A=﹣2,B=﹣3,C=﹣4.14.PC=1.【解析】14.根据比例设MB=2x,BC=3x,CN=4x,再根据线段中点的定义表示出MP并求出x,再根据PC= MC﹣MP列方程代入x的值,从而得解.解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC ﹣MP=2x+3x ﹣x=0.5x=1.15.(1)61°;(2)30°.【解析】15.(1)求出∠AOD 和∠BOD ,由OC 平分∠DOB ,求出∠BOC ;(2)根据OC 平分∠BOD ,OD 平分∠AOC 得出∠BOC=∠DOC=∠AOD ,求出∠AOD 即可得出∠AOE.解:(1)∠AOD=∠DOE ﹣∠AOE=90°﹣32°=58°,,∠BOD=∠AOB ﹣∠AOD=180°﹣58°=122°,又OC 平分∠BOD ,所以:∠BOC=∠BOD=×122°=61°;(2)因为OC 平分∠BOD,OD 平分∠AOC ,所以∠BOC=∠DOC=∠AOD ,又∠BOC+∠DOC+∠AOD=180°,所以∠AOD=×180°=60°,所以∠AOE=∠DOE ﹣∠AOD=90°﹣60°=30°.16.(1)30;(2)答案见解析;(3)65°或52.5°.【解析】16.试题分析:(1)根据图形得出∠COE=∠BOE-∠COB ,代入求出即可;(2)根据角平分线定义求出∠COE=∠AOE=12∠COA ,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB ,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x +90﹣x=120,解方程即可得.试题解析:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=∠BOE-∠COB=30°,故答案为:30;(2)∵OE 平分∠AOC ,∴∠COE=∠AOE=12∠COA , ∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB ,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120,∴x=5或7.5,即∠COD=65°或37.5°,∴∠BOD=65°或52.5°.17.(1)3,4,12,1,92,2;(2)d=|m﹣n|;(3)﹣5.【解析】17.(1)根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.(2)数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.(3)设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.18.4【解析】18.解这类题首先要明确柱体的概念,然后根据图示进行解答.柱体分为圆柱和棱柱,所以柱体有:第1、3、5、6,故答案为:4个.19.中.【解析】19.正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答. 根据正方形的平面展开图,观察可知,爱与中相对.20.2或8【解析】20.由于线段BC 与线段AB 的位置关系不能确定,故应分C 在线段AB 内和AB 外两种情况进行解答.解:①如图1所示,∵AB=10,BC=6,∴AC=AB-BC=10-6=4,∵D 是线段AC 的中点,∴AD=12AC=12×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D 是线段AC 的中点,∴AD=12AC=12×16=8.故答案为:2或8.21.16【解析】21. 分两种情况:①点P 在线段MN 上;②点P 在线段MN 外;然后利用两点之间距离性质,结合图形得出即可.①点P 在线段MN 上,MP+NP=MN=16cm ,②点P 在线段MN 外,当点P 在线段MN 的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P 在线段MN 的延长线上时,MP+NP > MN =16.综上所述:线段MP 和NP 的长度的和的最小值是16,此时点P 的位置在线段MN 上, 故答案为:16.22.32°【解析】22.根据比例可设∠3=2x,∠2=5x,利用方程和平角解答即可.∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2-∠1=12°,可得:5x-12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°23.60°.【解析】23.根据互补得出∠COB,进而得出∠AOC的度数.∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°-150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.24.56°【解析】24.分析:由折叠的性质和平角的定义得出2∠1+∠2=180°,即可求出结果.详解:根据题意得:2∠1+∠2=180°,∴∠2=180°-2×62°=56°,故答案为:56°.25.∠AOD,151°27′25″【解析】25.根据互补和互余解答即可.∵∠1=∠2,∴与∠1互补的角是∠AOD.∵∠1=28°32′35″,∴∠1的补角=151°27′25″.故答案为:∠AOD;151°27′25″.。

人教版-学年度上学期七年级数学期末复习试卷四 几何图形初步(含答案)

人教版-学年度上学期七年级数学期末复习试卷四 几何图形初步(含答案)

2018-2019七上期末复习试题四学生版第四章几何图形初步检测卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列几何体中,属于柱体的有( )①长方体;②正方体;③圆锥;④圆柱;⑤四棱锥;⑥三棱柱.A.2个 B.3个 C.4个 D.5个2.下列语句:①点A在直线上;②直线的一半就是射线;③延长直线AB到点C;④射线OA与射线AO是同一射线.其中正确的说法有( )A.0个 B.1个 C.2个 D.3个3.如图,圆柱体的表面展开后得到的平面图形是( ).4.如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是( )A.①②③ B.②③④ C.①③④ D.①②④5.如图所示的正方体的展开图是( )6.由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图,则组成这个几何体的小正方体的个数是()从正面看从左面看从上面看A.3个B.4个C.5个D.6个7.若∠与∠互为补角,∠是∠的2倍,则∠为()A.30°B.40°C.60°D.120°8.下列立体图形中:①圆柱;②圆锥;③正方体;④四棱柱,面数相同的是( )A.①② B.①③ C.②③ D.③④9.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50° B.20°或60° C.30°或50° D.30°或60°10.4点10分,时针与分针所夹的小于平角的角为()A.55°B.65°C.70°D.以上结论都不对二、填空题(每小题3分,共15分)11.木工师傅用刨子可将木板刨平,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其依据为: .12.如图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图中该正方体三种状态所显示的数据,可推出“?”处的数字是 .①②③13.两个完全相同的长方体的长、宽、高分别是5 cm ,4 cm ,3 cm ,把它们叠放在一起组成一个新长方体,在这些新的长方体中,表面积最大是14平面上有三点A 、B 、C ,①连接其中任意两点,可得线段3条;②经过任意两点画直线,可得到直线 .15如图,∠AOC=50°,∠BOC=20°,OE 平分∠BOC ,OF 平分∠AOC ,则∠EOF 的度数为 .三、解答题(共75分) 16.(6分)已知∠与∠互余,且∠比∠小25°,求2∠-51∠的值.17.(6分)如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =8cm ,BD =2cm . (1)图中共有多少条线段? (2)求AC 的长;(3)若点E 在直线AD 上,且EA =3cm .求BE 的长.18.(7分)点A 、B 、C 在同一直线上。

人教版初中数学七年级上册第四章《几何图形初步》单元测试卷(含答案)

人教版初中数学七年级上册第四章《几何图形初步》单元测试卷(含答案)

人教版初中数学七年级上册第四章《几何图形初步》测试题一、选择题(每小题3分,共30分) 1、如图,下列几何语句不正确的是( )A 直线AB 与直线BA 是同一直线 B 射线OA 与射线OB 是同一射线C 射线OA 与射线AB 是同一射线D 线段AB 与线段BA 是同一线段2、如图,下列说法正确的是( )A ∠1就是∠ABCB ∠1就是∠DCBC 以B 点为顶点的角有两个D 图中有两个角能用一个大写字母表示3、在同一平面内,如果两条直线和第三条直线相交,则( ) A 这两条直线平行 B 这两条直线相交 C 这两直线平行或相交 D 不能确定4、下列说法错误的是( )A 不相交的两条直线叫做平行线B 直线外一点与直线上各点连接的所有线段中,垂线段最短C 平行于同一条直线的两条直线平行D 平面内,过一点有且只有一条直线与已知直线垂直5、同一平面内两两相交的三条直线,如果最多有m 个交点,最少有n 个交点,那么m+n 是( )A 1B 2C 3D 46、在同一平面内,有三条直线a ,b ,c ,如果a c ⊥,b c ⊥,那么a 与b 的位置关系是( ) A 相交 B 平行 C 垂直 D 不能确定7、点到直线的距离是指( )A 直线外一点与这条直线上任意一点的距离B 直线外一点到这条直线的垂线的长度C 直线外一点到这条直线的垂线段D 直线外一点到这条直线的垂线段的长度8、把一条弯曲的高速路改为直道,可以缩短路程,其道理用几何知识解释应为()A 两点确定一条直线B 两点之间,线段最短C 垂线段最短D 平面内过一点有且只有一条直线与已知直线垂直 9、如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下面等式不正确的是( )A AB CD 31=B DB AC CD -= C BD AB CD -=21D BC AD CD -=10甲、乙、丙、丁四位同学在判断时钟的时针和分针互相垂直的时刻,他们每个人都说两个时刻,其中说对的是( )A 甲说3时整和3时30分B 乙说6时15分和6时45分C 丙说9时整和12时15分D 丁说3时整和9时整 二、填空题(每小题3分,共计30分.)11、要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,其依据是 。

【数学】人教版七年级数学上册第四章几何图形初步单元测试A卷(4).doc

【数学】人教版七年级数学上册第四章几何图形初步单元测试A卷(4).doc

人教版七年级上册第三章一元一次方程单元测试卷一、填空题1、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是 .2、如图,点A 在点O 北偏东32°方向上,点B 在点O 南偏东43°方向上,则∠AOB=3、平面上有任意三点,过其中两点画直线,共可以画 .4、两根木条,一根长60cm ,另一根长80cm ,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是 .5、.计算:175°26′÷3= .6、一个角的余角比这个角的补角的一半小30°,则这个角的大小为度.7、一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是 .8、如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是 .9、下列四种说法:①因为AM=MB,所以M是AB的中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB的中点,其中正确的是(只填写序号)10、如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=70°,∠COE=40°,那么∠BOD=度.二、选择题11.下列说法中正确的是().A.射线AB和射线BA是同一条射线B. 延长线段AB和延长线段BA的含义是相同的C. 延长直线ABD.经过两点可以画一条直线,并且只能画一条直线12.如图,下列说法不正确的是().A.∠1与∠AOB是同一个角B. ∠AOC也可用∠O来表示C. 图中共有三个角:∠AOB, ∠AOC, ∠BOCD. ∠ 与∠BOC是同一个角13.甲看乙的方向为北偏东30°,那么乙看甲的方向是().A. 南偏东60°B.南偏西60°C. 南偏西30°D.南偏东30°14.那么这个几何体是().β1OCBA15.下面四个图形中,经过折叠能围成如图所示的几何图形的是()16.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为().A. 35°48′37〞, 125°48′37〞B. 35°48′37〞, 144°11′23〞C. 36°11′23〞, 125°48′37〞D. 36°11′23〞, 144°11′23〞三、解答题17.(1)如图1,已知点D是线段AC的中点,点B在线段DC上,且AB=4BC,若BD=6 cm,求AB的长;(2)如图2,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE,试求∠COE的度数.A B C DA B C D18.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.19.如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①运动1 s后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.参考答案一、填空题1、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最知 .2、如图,点A在点O北偏东32°方向上,点B在点O南偏东43°方向上,则∠AOB=1053、平面上有任意三点,过其中两点画直线,共可以画1或3条 .4、两根木条,一根长60cm,另一根长80cm,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是7或10 .5、.计算:175°26′÷3= .6、一个角的余角比这个角的补角的一半小30°,则这个角的大小为60度.7、一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是功 .8、如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是15 .9、下列四种说法:①因为AM=MB ,所以M 是AB 的中点;②在线段AM 的延长线上取一点B ,如果AB=2AM ,那么M 是AB 的中点;③因为M 是AB 的中点,所以AM=MB=AB ;④因为A 、M 、B 在同一条直线上,且AM=BM ,所以M 是AB 的中点,其中正确的是②③ (只填写序号) 10、如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,若∠AOC=70°,∠COE=40°,那么∠BOD=55度.二、选择题11.下列说法中正确的是(D ).A.射线AB 和射线BA 是同一条射线B. 延长线段AB 和延长线段BA 的含义是相同的C. 延长直线ABD.经过两点可以画一条直线,并且只能画一条直线 12.如图,下列说法不正确的是(B ).A.∠1与∠AOB是同一个角B. ∠AOC也可用∠O来表示C. 图中共有三个角:∠AOB, ∠AOC, ∠BOCD. ∠ 与∠BOC是同一个角(C)C13.甲看乙的方向为北偏东30°,那么乙看甲的方向是().A. 南偏东60°B.南偏西60°C. 南偏西30°D.南偏东30°14.那么这个几何体是(B).15.下面四个图形中,经过折叠能围成如图所示的几何图形的是(B)β1OCBAA B C D16.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为(A ). A. 35°48′37〞, 125°48′37〞 B. 35°48′37〞, 144°11′23〞 C. 36°11′23〞, 125°48′37〞 D. 36°11′23〞, 144°11′23〞三、解答题17(1)如图1,已知点D 是线段AC 的中点,点B 在线段DC 上,且AB =4BC ,若BD =6 cm ,求AB 的长;(2)如图2,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE ,试求∠COE 的度数.解:(1)因为AB =4BC ,AB +BC =AC ,所以AC =5BC.因为点D 是线段AC 的中点, 所以AD =DC =12AC =12BC. 因为BD =DC -BC =6 cm , 所以52BC -BC =6 cm. 所以BC =4 cm. 所以AB =4BC =16 cm.(2)因为∠AOB =90°,OC 平分∠AOB , 所以∠BOC =12∠AOB =45°.因为∠BOD =∠COD -∠BOC =90°-45°=45°,∠BOD =3∠DOE , 所以∠DOE =15°.所以∠COE =∠COD -∠DOE =90°-15°=75°.A B C D18.如图,已知线段AB 上有两点C ,D ,且AC ∶CD ∶DB =2∶3∶4,E ,F 分别为AC ,DB 的中点,EF =2.4 cm ,求线段AB 的长. 解:因为AC ∶CD ∶DB =2∶3∶4,所以设AC =2x cm ,CD =3x cm ,DB =4x cm. 所以EF =EC +CD +DF =x +3x +2x =6x cm. 所以6x =2.4,即x =0.4.所以AB =2x +3x +4x =9x =3.6 cm.19.如图,P 是线段AB 上任一点,AB =12 cm ,C 、D 两点分别从P 、B 同时向A 点运动,且C 点的运动速度为2 cm/s ,D 点的运动速度为3 cm/s ,运动的时间为t s.人教版七年级上册第四章几何图形初步单元测试卷一、 选择题 (本题共计 10 小题,每题 分,共计30分 , )1. 以下几何图形中,表示立体图形的是( ) A.B.C.D.2. 同一副三角板(两块)画角,不可能画出的角的度数是( ) A. B. C. D.3. 两个锐角的和( ) A.必定是锐角 B.必定是钝角 C.必定是直角D.可能是锐角,可能是直角,也可能是钝角4. 如图,下列说法正确的是( )A. 的方向是北偏东B. 的方向是南偏东C. 的方向是南偏西D. 的方向是北偏西5. 已知 ″,则 的余角是( ) A. B. C. D.6. 如图所示的图形绕虚线旋转一周,所形成的几何体是( )A.B.C.D.7. 下列说法:①射线 和射线 是同一条射线;②若 ,则点 为线段 的中点; ③同角的补角相等;④点 在线段 上, , 分别是线段 , 的中点.若 ,则线段 . 其中说法正确的是( ) A.①② B.②③ C.②④ D.③④8. 已知 , 是 的平分线, , 是 的平分线,则 的度数为( ) A. B. C. D. 或9. 五棱柱的顶点总个数有( )个. A. B. C. D.10. 延长线段 到点 ,使 ,点 是线段 的中点,则 为( ) A. B. C. D.二、 填空题 (本题共计 6 小题,每题 分,共计18分 , )11. 如图所示:小明从学校回家有 条路行径走,他走最近的路线是________号路线.其道理用几何知识解释为________.12. 如图所示的图形绕虚线旋转一周得到的几何体的名称是________.13. 工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:________.14. 如图,线段,点分线段为,是线段的中点,则线段________.15. 观察下列各图,在第个图中有一个角,第个图中共有个角,第个图中共有个角,则第个图中角的个数是________,第个图中角的个数为________.16. 时钟在人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12 COA,∵∠EOD=90。

【数学】人教版七年级上册第四章《几何图形初步》单元测试

【数学】人教版七年级上册第四章《几何图形初步》单元测试

人教版七年级上册第四章《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.【专题】计算题.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.【点评】本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.14、B15、C【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.二、填空题16、55°46′.【考点】度分秒的换算.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.17、18°15′0″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:18.25°=18°+0.25×60=18°15′0″,故答案为:18°15′0″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.18、67.5度.19、_720、m或3m.【考点】两点间的距离.【分析】A、B、C三点在同一条直线上,则A可能在线段BC上,也可能A在CB的延长线上,应分两种情况进行讨论.【解答】解:如图①,当点A在线段BC上时,AC=BC﹣AB=2m﹣m=m;如图②,当点A在线段CB的延长线上时,AC=BC+AB=2m+m=3m.故答案为:m或3m.【点评】本题是求线段的长度,能分清是有两种情况,正确进行讨论是解决本题的关键.21、8【考点】两点间的距离.【分析】根据题意求出CD的长,根据线段中点的定义解答即可.【解答】解:∵CB=3cm,DB=7cm,∴CD=4cm,∵D是AC的中点,∴AC=2CD=8cm,故答案为:8.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.22、4 .【考点】两点间的距离.【专题】推理填空题.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.23、8或1224、2 cm.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25、10 或 50 .【考点】比较线段的长短.【专题】压轴题;分类讨论.【分析】画出图形后结合图形求解.【解答】解:(1)当 C 在线段 AB 延长线上时,∵M、N 分别为 AB、BC 的中点,∴BM= AB=30,BN= BC=20;∴MN=50.当 C 在 AB 上时,同理可知 BM=30,BN=20,∴MN=10;所以 MN=50 或 10.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.26、30 º或90 º;27、485.三、简答题28、【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.29、【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=5cm.30、【考点】两点间的距离.【专题】方程思想.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【点评】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31、(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;32、【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;33、【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.34、【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.35、【考点】余角和补角.【分析】(1)根据∠DOB=90°可得∠AOD=90°,再由∠DOE=50°,∠EOD=90°,可得∠DOC=40°,然后再根据角的和差关系可得∠AOC的度数;(2)根据同角的余角相等可得∠AOE=∠DOC,∠EOD=∠COB;(3)首先根据余角定义可得∠DOE+∠DOC=90°,由∠DOE变大可得∠DOC变小,再由∠AOC=90°+∠DOC 可得∠AOC变小.【解答】解:(1)∵∠DOB=90°,∴∠AOD=90°,∵∠DOE=50°,∠EOD=90°,∴∠DOC=40°,∴∠AOC=90°+40°=130°,故答案为:130°.(2)∠AOE=∠DOC,∠DOE=∠BOC,如果∠DOC≠50°,它们还会相等,∴∠AOE+∠EOD=90°,∵∠EOC=90°,∴∠EOD+∠DOC=90°,∴∠AOE=∠DOC,∵∠DOB=90°,∴∠DOC+∠COB=90°,∴∠EOD=∠COB.(3)若∠DOE变大,则∠AOC变小.∵∠EOC=90°,∴∠DOE+∠DOC=90°,∵∠DOE变大,∴∠DOC变小,∵∠AOC=∠AOD+∠DOC=90°+∠DOC,∴∠AOC变小.36、【考点】角平分线的定义.【分析】(1)由∠AOB=90°,∠AOC=30°,易得∠BOC,可得∠MOC,由角平分线的定义可得∠CON,可得结果;(2)同理(1)可得结果;(3)同理(1)可得结果;(4)根据结果与∠AOB,∠AOC的度数归纳规律.【解答】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠MOC=60°,∵∠AOC=30°,∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;(2)∵∠AOB=60°,∠AOC=30°,∴∠BOC=90°,∴∠MOC=45°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=45°﹣15°=30°;(3)∵∠AOB=90°,∠AOC=60°,∴∠BOC=150°,∴∠MOC=75°,∵∠AOC=60°,∴∠CON=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(4)从上面结果中看出∠MON的大小是∠AOB的一半,与∠AOC无关.人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD 所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD 所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE 平分∠AOC ,∴∠COE=∠AOE=12COA , ∵∠EOD=90最新七年级上学期期末考试数学试题及答案一、选择题(本大题共15 个小题,每小题只有一个正确答案,每小题 2 分,共 30 分) l .在7-,|7|-,(7)--,(7)-+,(7)+-,|7|--中 ,负数有( )个A . 2 个B . 3 个C . 4 个D . 5 个2.下列四个图中,能用1∠、AOB ∠、O ∠三种方法表示同一个角的是( )3.据民政部网站消息截至 2018 年底,我国 60 岁以上老 年人口巳经达到 2.56 亿人。

人教版七年级上册第四章几何图形初步单元检测试题(含答案)

人教版七年级上册第四章几何图形初步单元检测试题(含答案)

第 1 页 共 34 页人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有( )个.A. 9B. 8C. 5D. 4 2.如图所示几何图形中,是棱柱的是( )A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是( ) A. 正方体 B. 长方体 C. 三棱柱 D. 四棱锥4.如图,∠AOC >∠BOD ,则( )A. ∠AOB >∠CODB. ∠AOB=∠CODC. ∠AOB <∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC 的度数为( )A. 30°B. 40°C. 50°D. 60°6.如图,线段CD 在线段AB 上,且CD=2,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是( )度. A.45 B.60 C.90 D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC 的度数为( )A. 50°B. 50° 或120°C. 50°或130°D. 130° 9.直棱柱的侧面都是( )A. 正方形B. 长方形C. 五边形D. 菱形 10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有 ( ) A. 1次 B. 2次 C. 3次 D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露.的面涂上颜色,那么涂颜色面的面积之和是________cm218.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。

最新人教版2018-2019学年七年级数学上册《几何图形初步》综合测试题及答案-精编试题

最新人教版2018-2019学年七年级数学上册《几何图形初步》综合测试题及答案-精编试题

第1题图会社谐和设建第3题图第四章几何图形初步测试题 (时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。

每小题2分,共24分。

1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( ) A.和 B.谐 C.社 D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A. 正方体、圆柱、三棱柱、圆锥B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥DCB ABADC BAβββααα第9题图BA4.如图,对于直线AB ,线段CD ,射线EF ,其中的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长 6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( ) A. 3cm B. 4cm C. 5cm D. 6cm 9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为1乙甲NM PDC BAB ()D CAD CBA( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( )A. 91°20/24//B. 91°34/C. 91°20/4//D. 91°3/4//11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。

人教版七年级上册数学《第四章 几何图形初步》章节检测试卷及答案(共五套)

人教版七年级上册数学《第四章 几何图形初步》章节检测试卷及答案(共五套)

人教版七年级上册数学《第四章几何图形初步》章节检测试卷《第四章几何图形初步》单元检测试卷(一)考试时间:60分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法正确的是( ).A.直线的一半是射线B.直线上两点间的部分叫做线段C.线段AB的长度就是A,B两点间的距离D.若点P使PA=AB,则P是AB的中点2.钟表在5点半时,它的时针和分针所成的锐角是( ).A.15° B.70° C.75° D.90°3.从点A看B的方向是北偏东35°,那么从B看A的方向是( ).A.南偏东55° B.南偏西55°C.南偏东35° D.南偏西35°4.如图是一正方体展开图,则“有”“志”“者”三面的对面分别是( ).A.事竟成B.事成竟C.成竟事D.竟成事5.下图中的三棱柱从正面、左面、上面看到的图形是( ).A.三个三角形B .两个长方形和一个三角形C .三个长方形D .两个长方形,且长方形内有一条连接对边的点的线段和一个三角形6.如图所示,点P ,Q ,C 都在直线AB 上,且P 是AC 的中点,Q 是BC 的中点,若AC =m ,BC =n ,则线段PQ 的长为( ).A .B . C.D . 7.如图所示的四个图形,可以折叠成棱柱的是( ).8.线段AB =5厘米,BC =4厘米,那么A ,C 两点间的距离是( ).A .1厘米B .9厘米C .1厘米或9厘米D .以上结果都不对9.已知一个角的余角的补角是这个角补角的,则这个角的余角度数是( ). A .90° B .60° C .30° D .10°10.轮船从A 地出发向北偏东70°方向行驶了4海里到达B 地,又从B 地出发向南偏西20°方向行驶了5海里到达C 地,则∠ABC 等于( ).A .90°B .50°C .110°D .70°二、填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.植树时只要先确定两个树坑的位置,就能确定一行树所在的位置,其根据是__________.12.已知线段AB =9厘米,在直线AB 上画线段BC ,使它等于3厘米,则线段AC =__________.13.若∠AOB =40°,∠BOC =60°,则∠AOC =__________.14.53°40′30″×2-75°57′28″÷2=__________.15.已知线段AB =3厘米,延长AB 到C ,使BC =2AB ,若D 为AB 中点,则线段3m 2n 2m n +2m n -45DC 的长为__________.16.8°44′24″用度表示为__________,110.32°用度、分、秒表示为__________.17.如图是一套三角尺组成的图形,则∠AFD =____________,∠AEB =__________,∠BED =____________.18.∠α与∠β互补,若∠α=47°37′,则∠β=__________.19.将线段AB 延长到C ,使BC=,延长BC 到D ,使CD =,延长CD到E ,使DE =,若AE =80厘米,则AB =__________. 20.在圆柱的展开图中,圆柱的侧面展开图为__________,棱柱的侧面展开图为三、解答题(本大题共5小题,共40分)21.(6分)如图所示的一张纸:(1)将其折叠能叠成什么几何体?(2)要把这个几何体重新展开,最少需要剪开几条棱?22.(7分)如图所示,点E ,F 分别是线段AC ,BC 的中点,若EF =3厘米,求线段AB 的长.23.(8分)如图所示,直线AB ,CD ,EF 都经过点O ,且AB ⊥CD ,OG 二等分∠BOE ,如果∠EOG =∠AOE ,求∠EOG ,∠DOF 和∠AOE 的度数.13AB 13BC 13CD 2524.(9分)如图所示,设相邻两个角∠AOB ,∠BOC 的平分线分别为OE ,OF ,且∠EOF 是直角,你能说明OA ,OC 为什么成一条直线吗?试试看吧!25.(10分)某校七年级学生李刚在周六下午六点多钟外出买东西时,看手表上的时针和分针的夹角是110°,下午近七点回家时,发现时针和分针的夹角又是110°,你能知道李刚同学外出用了多长时间吗?你是怎么知道的呢?参考答案1答案:C2答案:A 点拨:由于5点半时,时针在5和6之间,分针在6上,所以它们之间的夹角是半个大格,即×30°=15°. 3答案:D4答案:A5答案:D6答案:C 点拨:PQ =PC +CQ =. 7答案:C 点拨:由于棱柱的上底与下底分别在两边,所以A ,B ,D 都不对. 8答案:D 点拨:C 点可能在线段AB 内,亦可能在线段AB 的延长线上,还可能在直线AB 外.9答案:B 点拨:设这个角为∠α,则180°-(90°-∠α)=, ∴∠α=30°.∴90°-∠α=90°-30°=60°.10答案:B11答案:两点确定一条直线12答案:6厘米或12厘米 点拨:由于点C 的位置不确定,所以要分情况讨论:当C 在线段AB 上时,AC =AB -BC =9-3=6(厘米);当C 在AB的延长线上时,1211222m n AC BC ++=4(180)5a ︒-∠AC =AB +BC =9+3=12(厘米).13答案:100°或20°14答案:69°22′16″15答案:7.5厘米16答案:8.74° 110°19′12″17答案:135° 30° 60°18答案:132°23′19答案:54厘米 点拨:设DE =x 厘米,则CD =3x 厘米,BC =9x 厘米,AB =27x 厘米,∴AE =x +3x +9x +27x =80,解得x =2,∴AB =54厘米. __________,圆锥的侧面展开图为__________.20答案:长方形 长方形 扇形21解:(1)三棱柱.(2)最少剪开5条棱.22解:∵E ,F 分别是AC ,BC 的中点,∴EC =,FC =, ∴EF =EC -FC =-===3(厘米), ∴AB =6厘米.23解:∵∠EOG =,OG 平分∠BOE , ∴∠BOE =. ∵∠AOE +∠BOE ==180°, ∴∠AOE =100°,∠BOE ==×100°=80°,∴∠EOG =40°. ∵AB ⊥CD ,∠EOF =180°,∴∠DOF =180°-∠BOE -∠BOD =180°-80°-90°=10°.24解:根据题意可得:∠AOE =∠BOE ,∠COF =∠BOF ,∠EOF =90°, ∴(∠AOE +∠EOB )+(∠COF +∠BOF )=2×90°=180°,即∠AOB +∠BOC =180°,∴∠AOC =180°,12AC 12BC 12AC 12BC 1()2AC BC -12AB 25AOE ∠45AOE ∠95AOE ∠45AOE ∠45∴AO ,OC 成一直线(即A ,O ,C 三点共线).25解:设时针从李刚外出到回家走了x °,则分针走了(2×110°+x °), 由题意,得,解得x =20, 因时针每小时走30°,则小时,即李刚外出用了40分钟时间.《第四章 几何图形初步》单元检测试卷(二)姓名:________班级:_____得分:_________一 选择题:1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A.5B.6C.7D.82.如图,把一个正方形三次对折后沿虚线剪下则得到的图形是 ( )3.下列四个图中能用,,三种方法表示同一个角的是( )A. B. C. D.22036030x x ︒+︒︒=︒︒202303︒=︒4.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A. B. C. D.5.下列说法中,正确的有( )①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,垂线最短;④若AB=BC,则点B是线段AC的中点.A.1个B.2个C.3个D.4个6.下列命题中是真命题是()A.锐角大于它的余角B.锐角大于它的补角C.钝角大于他的补角D.锐角与钝角之和等于平角7.下列举反例说明“一个角的余角大于这个角”是假命题的四个选项中,错误的是( )A.设这个角是45°,它的余角是40°,但45°=45°B.设这个角是30°,它的余角是60°,但30°<60°C.设这个角是60°,它的余角是30°,但30°<60°D.设这个角是50°,它的余角是40°,但40°<50°8.把两条线段AB和CD放在同一条直线上比较长短时,下列说法错误的是()A.如果线段AB的两个端点均落在线段CD的内部,那么AB<CDB.如果A,C重合,B落在线段CD的内部,那么AB<CDC.如果线段AB的一个端点在线段CD的内部,另一个端点在线段CD的外部,那么AB〉CDD.如果B,D重合,A,C位于点B的同侧,且落在线段CD的外部,则AB〉CD9.下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从地到地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④10.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④如果AB=BC则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线⑥直线经过点A,那么点A在直线上.A.2个B.3个C.4个D.5个11.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5cmB.1cmC.5或1 cmD.无法确定12.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间距离是5.4cm,则线段AB长度为()A.8.1cmB.9.1cmC.10.8cmD.7.4cm13.经过同一平面内A、B、C三点可连结直线的条数为( )A.只能一条B.只能三条C.三条或一条D.不能确定14.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM的中点,则MN:PQ等于()A.1B.2C.3D.415.如图∠AOB是平角,过点O作射线OE,OC,OD.把∠BOE用图中的角表示成两个角或三个角和的形式,能有几种不同的表示方法()A.2种 B.3种 C.4种 D.5种16.如图,甲从 A 点出发向北偏东 70°方向走到点 B,乙从点 A 出发向南偏西15°方向走到点 C,则∠BAC 的度数是()A.85° B.160° C.125°D.105°17.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为( )A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°18.如图,∠AOB=∠COD,若∠AOD=110º,∠BOC=70º,则以下结论正确的个数为()①∠AOC=∠BOD=90º②∠AOB=20º③∠AOB=∠AOD-∠AOC ④A.1个B.2个C.3个D.4个19.一个角比它的余角大18°22′46″,则这个角的补角的度数为( )A.35°48′37″B.144°11′23″C.125°48′37″D.36°11′23″20.如图所示, 两人沿着边长为90m的正方形, 按A→B→C→D→A……的方向行走. 甲从A点以65m/min的速度、乙从B点以72m/min的速度行走, 当乙第一次追上甲时, 将在正方形的()(A)AB边上(B)DA边上(C)BC边上(D)CD边上二填空题:21.如图,点C是的边OA上一点,D、E是边OB上两点,则图中共有条线段,条射线,个小于平角的角。

2018_2019学年第一学期七年级人教版数学(上)第四章几何图形初步测试题(含答案解析)

2018_2019学年第一学期七年级人教版数学(上)第四章几何图形初步测试题(含答案解析)
5.如图,点A,B各有一只小蚂蚁,点B处的蚂蚁在A点北偏东60°的方向上,则点A处的蚂蚁在B点()
A.北偏东60°的方向上B.北偏东30°的方向上
C.南偏西30°的方向上D.南偏西60°的方向上
6.已知一个角为55°,下列说法错误的是()
A.这个角的余角为45°B.这个角的补角为125°
C.这个角的补角比这个角的余角大90°D.这个角的一半为27.5°
15.如图,长方形纸片的长为4,宽为2,将该长方形绕虚线MN旋转半周,得到的图形是_______,它的体积为_______.(结果保留π)
16.小英利用量角器作∠AOB=80°,以OB为始边作∠BOC=20°,OD平分∠AOB,则∠COD的度数为_________.
17.(1)如图,写出几何体的名称;
②可以用一个大写字母来表示,如∠B;此种方法只适用于以这个中间字母为端点的角只有一个.
③可以用一个小写数字来表示,如∠1;
④可以用一个小写的希腊字母来表示,如∠α.
【详解】
解:由角的表示方法可知ABC的表示方法均正确,对于顶点A,该处有3个角,故∠A的表示方法不正确,故选择D.
【点睛】
本题考查了角的表示方法.
22.已知线段AB=8 cm,BC=3 cm.
(1)线段AC的长度能否确定?(直接回答“能”或“不能”);
(2)是否存在使A、C之间的距离最短的情形?若存在,请求出此时AC的长度;若不存在,说明理由.
(3)能比较BA+BC与AC的大小吗?为什么?
23.点O在直线MN上,把两个一样的三角尺按图12所示放置,OD,OE分别平分∠CON和∠AOM.
A.∠α>∠β>∠γB.∠α>∠γ>∠β
C.∠β>∠γ>∠αD.∠γ>∠β>∠α

【2019】人教版七年级数学上册第四章几何图形的初步单元测试(含答案).doc

【2019】人教版七年级数学上册第四章几何图形的初步单元测试(含答案).doc

人教版七年级数学上册_第四章_几何图形初步_单元检测试卷(有答案)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列立体图形中是圆柱的是( )A.B.C.D. 2. 如图所示的是五星红旗上的一颗五角星,其图中所示的角 的度数为( )A. B. C. D.3. 在下列说法中,正确的有( )①比较角的大小就是比较它们角的度数大小②角的大小与边的长短无关③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线 ④如果 ,则 是 的平分线.A. 个B. 个C. 个D. 个4. 比较 与 时,把它们的顶点 和边 重合,把 和 放在 的同一侧,若 ,则( )A. 落在 的内部B. 落在 的外部C. 和 重合D.不能确定 的位置 5. 如图所示,点 在直线 上, 与 互余, ,则 的度数是( )A. B. C. D.6. 下列说法错误的是( )A. ″的余角是B.点 是线段 上的点, , ,点 是线段 的中点,则线段C. ,经过顶点 引一条射线 ,且 ,则D.已知线段 , 如图,则尺规作图中,线段 7. 如图,将一个直角三角形板 的顶点 放在直线 上,若 ,则 等于( )A. B. C.D.8. 平面内有三条直线,它们的交点个数可能有( )种情形.A. B. C. D.9. 时钟钟面上的秒针绕中心旋转 ,下列说法正确的是( )A.时针不动,分针旋转了B.时针不动,分针旋转了C.时针和分针都没有旋转D.分针旋转了 ,时针旋转角度很小 10. 下列说法正确的是( )A.经过一点可以作两条直线B.棱柱侧面的形状可能是一个三角形C.长方体的截面形状一定是长方形D.棱柱的每条棱长都相等二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 在一平面内有四个点,过其中任意两个点画直线,可以画________条直线.12. 如图所示,从 地到 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其他的路.其理由是________.13. 已知直线 上有三点 , , ,线段 , ,点 是线段 的中点,则 ________.14. 工人师傅在用方砖铺地时,常常打两个木桩,然后沿着拉紧的线铺砖,这样地砖就铺得整齐,这个事实说明的原理是________.15. 如图,线段 表示一根对折以后的绳子,现从 处把绳子剪断,剪断后的各段绳子中最长的一段 ,若 ,则这条绳子的原长为________ .16. 若 与 互余,则 与 的关系是________.17. 一天 小时中,时钟的分针和时针共组合成________次平角,________次周角. 18. 如图所示,已知 , ,且点 是 的中点,则 ________ .19. 从小丽家出发,向南走 ,再向西走 到公园;从小刚家出发,向南走 ,再向西走 也到公园,那么小刚家在小丽家的________方向.20. 如图, 可以表示成 ________或 ________, 可以表示成_ 人教版七年级数学上册第四章几何图形初步单元测试A 卷一、填空题1.已知线段AB =6cm ,在直线AB 上画线段A C =2cm ,则BC 的长是_________cm .2.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6cm ,则AB =cm.3.已知与互余,且40α=∠,则β∠为.4.已知线段AB ,延长AB 到C ,使BC =2AB ,D 为AB 的中点,若BD =3cm ,则AC 的长为cm.5.∠1+∠2=180°,∠2+∠3=180°,根据________________________,得∠1=∠3.6.如图所示,一艘船从A 点出发,沿东北方向航行至点B ,再从B 点出发沿南偏东15°方向行至点C ,则∠ABC =度.α∠β∠7.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.8.如下图,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角;求画n条射线所得的角的个数.二、选择题9.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行10.如图所示,用直尺度量线段AB,可以读出AB的长度为()A.6cm B.7cm C.8cm D.9cm11.已知:α、β都是钝角,甲、乙、丙、丁四人计算(α+β)的结果依次为12°,44°,66°,88°,其中只有一人算正确,那么算得正确答案的是()A.甲B.乙C.丙D.丁12.如图给出的分别有射线、直线、线段,其中能相交的图形有()A.①②③④B.①C.②③④D.①③13.下列各图不是正方体展开图的是()A.B.C.D.14.按下列语句,不能正确画出图形的是()A.延长直线ABB.直线EF经过点CC.线段m与n交于点PD.经过点O的三条直线a、b、c15.如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°16.能用∠α、∠AOB、∠O三种方式表示同一个角的图形是()A .B .C .D .17.如图两条直线相交,最多有一个交点,三条直线相交,最多有三个交点,四条直线相交最多有( )个交点,如果是100条直线相交最多有( )个交点.A .4,4950B .4,5050C .6,4950D .6,505018.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A.白B. 红C.黄D.黑三、解答题19.计算:⑴(180°-91°32/24//)÷3 ⑵ 34°25/×3+35°42/20. 如图,AOB 为直线,OC 平分∠AOD ,∠BOD =42°,求∠A OC 的度数.21. 如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB;(2)作射线BC;(3)画线段CD;(4)连接AD,并将其反向延长至E,使DE=2AD;(5)找到一点F,使点F到A、B、C、D四点距离和最短.22. 一个角的补角与它的余角的度数之比是3:1,求这个角的度数.23.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.参考答案一、填空题1.已知线段AB =6cm ,在直线AB 上画线段A C =2cm ,则BC 的长是____4或8_____cm .2.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6cm ,则AB = 12 cm.3.已知α∠与β∠互余,且40α=∠,则β∠为 50° .4.已知线段AB ,延长AB 到C ,使BC =2AB ,D 为AB 的中点,若BD =3cm ,则AC 的长为 18 cm.5.∠1+∠2=180°,∠2+∠3=180°,根据________同角的补角相等________________,得∠1=∠3.6.如图所示,一艘船从A 点出发,沿东北方向航行至点B ,再从B 点出发沿南偏东15°方向行至点C ,则∠ABC = 60 度.7.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.8.如下图,在已知角内画射线,画1条射线,图中共有 3 个角;画2条射线,图中共有 6 个角;画3条射线,图中共有 10 个角;求画n条射线所得的角的个数(2)(1)2n n++.二、选择题9.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(A)A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行10.如图所示,用直尺度量线段AB,可以读出AB的长度为(B)A.6cm B.7cm C.8cm D.9cm11.已知:α、β都是钝角,甲、乙、丙、丁四人计算(α+β)的结果依次为12°,44°,66°,88°,其中只有一人算正确,那么算得正确答案的是( B )A.甲B.乙C.丙D.丁12.如图给出的分别有射线、直线、线段,其中能相交的图形有( D )A.①②③④B.①C.②③④D.①③13.下列各图不是正方体展开图的是( D )A.B.C.D.14.按下列语句,不能正确画出图形的是( A )A.延长直线ABB.直线EF经过点CC.线段m与n交于点PD.经过点O的三条直线a、b、c15.如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( B )A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°16.能用∠α、∠AOB、∠O三种方式表示同一个角的图形是( B )A.B.C.D.17.如图两条直线相交,最多有一个交点,三条直线相交,最多有三个交点,四条直线相交最多有( )个交点,如果是100条直线相交最多有( C )个交点.A .4,4950B .4,5050C .6,4950D .6,505018.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( C )A.白B. 红C.黄D.黑19.计算:⑴(180°-91°32/24//)÷3 ⑵ 34°25/×3+35°42/解:⑴.29°29/12//;⑵.138°57/20. 如图,AOB 为直线,OC 平分∠AOD ,∠BOD =42°,求∠A OC 的度数.解:69°21. 如图,平面上有四个点A 、B 、C 、D,根据下列语句画图(1)画直线AB ; (2)作射线BC ; (3)画线段CD ;(4)连接AD,并将其反向延长至E ,使DE=2AD ; (5)找到一点F ,使点F 到A 、B 、C 、D 四点距离和最短.解:如图所22. 一个角的补角与它的余角的度数之比是3:1,求这个角的度数.4523.如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°(1)请你数一数,图中有多少个小于平角的角; (2)求出∠BOD 的度数;(3)请通过计算说明OE 是否平分∠BOC. 解:(1)图中有9个小于平角的角;(2)155°(提示:因为OD 平分∠AOC ,∠AOC =50°,所以∠AOD ==25°,所以∠BOD=1人教版七年级数学上册第四章几何图形初步单元测试B 卷一、填空题1.已知线段AB =8 cm ,在直线AB 上画线段BC 使BC =3 cm ,则线段AC =. 2.如图是某个几何体的表面展开图,那么这个几何体是.3.如图,点A ,B ,C 在直线l 上,则图中共有条线段,有条射线.4.如图,点O 是直线AD 上的点,∠AOB ,∠BOC ,∠COD 三个角从小到大依次相差25°,则这三个角的度数分别是.5.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOD =120°,则∠DOE =,∠COE =. 6.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n 条直线最多可将平面分成56个部分,则n 的值为.二、选择题7.如图的几何体,从左边看到的图是 ( )8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是() A .用两个钉子就可以把木条固定在墙上AOC 21B .利用圆规可以比较两条线段的大小关系C .把弯曲的公路改直,就能缩短路程D .植树时,只要定出两棵树的位置,就能确定同一行树所在的直线 9. 如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若 ∠AOC =76°,则∠BOM 等于() A .38°B .104°C .142°D .144°10.将两块直角三角板的直角顶点重合,如图所示,若, 则∠BOC 的度数是().A. 45° B .52° C. 60° D. 50° 11.下列说法中错误的有( ). (1)线段有两个端点,直线有一个端点; (2)角的大小与我们画出的角的两边的长短无关; (3)线段上有无数个点; (4)同角或等角的补角相等; (5)两个锐角的和一定大于直角.A .1个B .2个C .3个D .4个12.下列四个图中,能用上∠1、∠AOB 、∠O 三种方法表示同一个的是( ).128AOD∠第3题第4题13.对于直线AB ,线段CD ,射线EF ,在下列各图中能相交的是( ).14.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( ). A :南偏西50°方向 B :南偏西40°方向 C :北偏东50°方向 D :北偏东40°方向15.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是() A. 正方体、圆柱、三棱柱、圆锥B. 正方体、圆锥、三棱柱、圆柱C. 正方体、圆柱、三棱锥、圆锥D. 正方体、圆柱、四棱柱、圆锥16.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有() A. 1个 B. 2个 C. 3个 D. 4个 三、解答题17.一个角的补角比它的余角的3倍小20°,求这个角的度数.18.(1)如图1,已知点D 是线段AC 的中点,点B 在线段DC 上,且AB =4BC ,若BD =6 cm ,求AB 的长;(2)如图2,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE ,试求∠COE 的度数.19.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.20.(12分)如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①运动1 s后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.参考答案一、填空题1.已知线段AB=8 cm,在直线AB上画线段BC使BC=3 cm,则线段AC=5cm或11cm .2.如图是某个几何体的表面展开图,那么这个几何体是圆锥.3.如图,点A,B,C在直线l上,则图中共有3条线段,有6条射线.4.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是35°,60°,85°.5.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOD=120°,则∠DOE=30°,∠COE =150°.6.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.二、选择题7.如图的几何体,从左边看到的图是( B )。

人教版七年级上第四章《几何图形初步》单元综合检测试卷含答案

人教版七年级上第四章《几何图形初步》单元综合检测试卷含答案
A.两点确定一条直线 B.同角的余角相等 C.两点之间线段最短 D.两点之间的距离是指连接这两点的线段 2.如图,四个几何体分别为长方体、圆柱体、球体和三棱桂,这四个几何体中截面不可能是长方形的几何 体是( )
A.
长方体
B. 圆珠体
C.
球体
D. 三棱柱
3.用一副三角板可以画出的最大锐角的度数是( )
6.为了维护我国的海洋权益,我海军在海战演 戏中,欲确定每艘战舰的位置,需要知道每艘战舰相对我方
潜艇的( )
A.距离
B.方位角
C.距离和方位角
D.以上都不对
7.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该
地区图上两个点之间距离最短的是( )
A.三亚﹣﹣永兴岛
B.永兴岛﹣﹣黄岩岛
C.黄岩岛﹣﹣弹丸礁
D.渚碧礁﹣﹣曾母暗山
8.下列图形通过折叠能围成一个三棱柱的是( )
A.
B.

C.
D.
9.下列语句中准确规范的是( ) A.直线 a,b 相交于一点 m B.反向延长直线 AB C.反向延长射线 AO(O 是端点) D.延长线段 AB到 C,使 BC=AB
10.如图,C、D 是线段 AB上的两个点,CD=3cm,M 是 AC的中点,N 是 DB的中点,AB=9.8cm,那么线段 MN 的长等于( )
A.5.4cm B.6.4cm
C.6.8cm
D.7cm
A.85°
B.75°
C.60°
D.45°
4.已知∠AOB=70°,以 O 端点作射线 OC,使∠AOC=28°,则∠BOC的度数为( )
A.42°
B.98°
C.42°或 98° D.82°

【2019】新人教版七年级上册第四章《几何图形初步》单元测试(解析版).doc

【2019】新人教版七年级上册第四章《几何图形初步》单元测试(解析版).doc

人教版七年级上数学单元测试卷:第四章几何图形初步(word版,含答案)一、填空题(每小题3分,共18分)1.写出如图所示立体图形的名称:①____;②____;③____.2.计算:(1)53°19′42″+16°40′18″=__ __;(2)23°15′16″×5=__ __.3.延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的__ __倍.4.把一张长方形纸条按如图的方式折叠后,量得∠AOB′=110°,则∠B′OC的度数是____.5.如图,已知∠COE=∠BOD=∠AOC=90°,则图中互余的角有___ _对,互补的角有____对.6.如图,点A在数轴上对应的数为2,若点B也在数轴上,且线段AB的长为4,C为OB 的中点,则点C在数轴上对应的数为__ __.二、选择题(每小题3分,共30分)7.下列能用∠C表示∠1的是( )8.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°9.下列图形中可以作为一个三棱柱的展开图的是( )10.下面四个几何体中,从左面看到的图形是四边形的几何体共有( )A .1个B .2个C .3个D .4个11.已知M 是线段AB 的中点,那么:①AB =2AM ;②BM =12AB ;③AM =BM ;④AM +BM =AB ,上面四个式子中,正确的个数有( ) A .1个 B .2个 C .3个 D .4个12.如图,已知∠1=∠2,∠3=∠4,则下列结论:①AD 平分∠BAF ;②AF 平分∠DAC ;③AE 平分∠DAF ;④AE 平分∠BAC ,其中正确的个数是( ) A .1 B .2 C .3 D .413.平面上五个点最多可以确定直线的条数为( )A .5条B .8条C .10条D .12条 14.如图,直线l 1,l 2,l 3把平面分成( )部分.A .4B .5C .6D .715.如图,在时刻8:30,时钟上的时针和分针之间的夹角为( ) A .85° B .75° C .70° D .60°16.如果AB =10 cm ,BC =8 cm ,则A ,C 两点间的距离为( ) A .2 cm B .18 cm C .2 cm 或18 cm D .不能确定 三、解答题(共52分)17.(8分)如图是由七块相同的小正方体搭成的立体图形,请画出这个图形分别从正面看、从左面看和从上面看到的平面图形.18.(8分)如图,两辆汽车从A 点同时出发,一辆沿西北方向以40千米/时的速度行驶;另一辆沿南偏西60°的方向以60千米/时的速度行驶,34小时后分别到达B ,C 两点,如果图中1 cm 代表10 km ,那么试在图中画出B ,C 两点,并通过测量,说出此时两辆车的距离.19.(8分)如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是AC 的中点,D 是AB 的中点,求DE 的长.20.(8分)如图,点A ,O ,B 在同一条直线上,∠COB 与∠BOD 互余,OE ,OF 分别是∠AOC,∠AOD的平分线,求∠EOF的度数.21.(8分)如图,A,O,E在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,问∠COD 与∠DOE之间有什么关系?并说明理由.22.(12人教版七年级上册第四章几何图形初步单元测试卷一、选择题(每小题3分,共30分)1.(2017广西河池中考)如图4-5-1,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )图4-5-1A.60°B.90°C.120°D.150°2.下面说法:①若线段AC=BC,则C是线段AB的中点;②两点之间,直线最短;③延长直线AB;④若一个角既有余角又有补角,则它的补角一定比它的余角大.其中正确的有( )3.(2017四川南充中考)图4-5-2是由7个小正方体组合而成的几何体,从正面看,所看到的图形是( )图4-5-24.如图4-5-3所示,小于平角的角有( )图4-5-3A.9个B.8个C.7个D.6个5.如图4-5-4,C、D是线段AB上两点,若BC=3 cm,BD=5 cm,且D是AC的中点,则AC的长为( )图4-5-4A.2 cmB.4 cmC.8 cmD.13 cm6.小明由点A出发向正东方向走10 m到达点B,再由点B向东南方向走10 m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°7.如图4-5-5所示,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )图4-5-5A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD8.(2017湖南张家界中考)如图4-5-6是一个正方体的表面展开图,则正方体中与“美”字所在面相对的面上标的字是( )图4-5-6A.丽B.张C.家D.界9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.(2017山西忻州一中期末)如图4-5-7,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论正确的有( )图4-5-7①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=∠BOD.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)11.(2017浙江诸暨中学期末)∠AOB的大小可由量角器测得(如图4-5-8所示),则∠AOB 的补角的大小为.图4-5-812.如图4-5-9所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.图4-5-913.如果一个角的补角是150°,那么这个角的余角为°.14.如图4-5-10,已知M、N分别是AC、CB的中点,MN=6 cm,则AB= cm.图4-5-1015.如图4-5-11所示,O是直线AB上一点,OC是∠AOB的平分线.图4-5-11(1)图中互余的角是;(2)图中互补的角是.16.如图4-5-12,∠AOB=90°,∠BOC=30°,OD平分∠AOC,则∠BOD=.图4-5-1217.(2017贵州安顺西秀旧州中学期末)如图4-5-13所示,已知∠AOB=70°,∠BOC=20°,OE平分∠AOB,OF平分∠BOC,则∠EOF的度数是.图4-5-1318.点A、B、C是数轴上的三个点,且BC=2AB.已知点A表示的数是-1,点B表示的数是3,点C表示的数是.19.如图4-5-14,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.图4-5-14(1)∠MON=;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)20.如图4-5-15,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是.图4-5-15三、解答题(共40分)21.(8分)计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.22.(6分)如果一个角的余角是它的补角的,求这个角的度数.23.(6分)画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.24.(6分)如图4-5-16所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC的度数.图4-5-1625.(6分)图4-5-17是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数.(1)把-10,8,10,-3,-8,3分别填入图中的六个小正方形中;(2)若某两个相对面上的数字分别为-和-5,求x的值.图4-5-1726.(8分)如图4-5-18所示,请按照要求解答问题.(1)数轴上的点C在2、3的正中间位置,则点C表示的数是,线段AB的中点D 表示的数是;(2)线段AB的中点D与线段BC的中点E的距离为;(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,并判断BC是否平分∠MBN.简要说明理由.图4-5-18第四章几何图形初步答案解析一、选择题(每小题3分,共30分)1.(2017广西河池中考)如图4-5-1,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )图4-5-1A.60°B.90°C.120°D.150°答案 C ∵∠BOC=60°,∠BOC+∠AOC=180°,∴∠AOC=120°.2.下面说法:①若线段AC=BC,则C是线段AB的中点;②两点之间,直线最短;③延长直线AB;④若一个角既有余角又有补角,则它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B ①如图,C不是线段AB的中点,故①不正确;②两点之间,线段最短,故②不正确;③直线向两边无限延伸,不能延长,故③不正确;④正确,故选B.3.(2017四川南充中考)图4-5-2是由7个小正方体组合而成的几何体,从正面看,所看到的图形是( )图4-5-2答案 A 从正面看所得的图形就是从前向后看立体图形所得到的平面图形.可看到四个正方形,其中左边从上到下共有3个正方形,右边只有1个正方形.故选A.4.如图4-5-3所示,小于平角的角有( )图4-5-3A.9个B.8个C.7个D.6个答案 C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7(个)角,故选C.5.如图4-5-4,C、D是线段AB上两点,若BC=3 cm,BD=5 cm,且D是AC的中点,则AC的长为( )图4-5-4A.2 cmB.4 cmC.8 cmD.13 cm答案 B ∵BC=3 cm,BD=5 cm,∴CD=BD-BC=2 cm,∵D是AC的中点,∴AC=2CD=4 cm,故选B.6.小明由点A出发向正东方向走10 m到达点B,再由点B向东南方向走10 m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D 由题意作图如下:由图可得∠ABC=90°+45°=135°.7.如图4-5-5所示,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )图4-5-5A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D 设∠COD=x,因为OD平分∠BOC,所以∠BOD=∠COD=x,∠BOC=2x.又OC平分∠AOB,所以∠AOC=∠BOC=2x,则∠AOB=4x,所以∠COD=∠AOB,∠AOD=∠AOB,∠BOD=∠AOB,∠BOC=∠AOD,故选D.8.(2017湖南张家界中考)如图4-5-6是一个正方体的表面展开图,则正方体中与“美”字所在面相对的面上标的字是( )图4-5-6A.丽B.张C.家D.界答案 C 同一行或列中,中间间隔一个小正方形的两个小正方形在正方体中就是一对相对面,所以“丽”与“张”相对;相对面不共顶点,所以“的”与“美”“家”不相对,从而“的”与“界”相对;因此剩下的两个字“美”与“家”是相对的.9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D 如图1,DE=3;如图2,DE=5.图1 图210.(2017山西忻州一中期末)如图4-5-7,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论正确的有( )图4-5-7①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=∠BOD.A.1个B.2个C.3个D.4个答案 C 因为∠AOD=110°,∠BOC=70°,所以∠COD+∠AOB=40°,又因为∠AOB=∠COD,所以∠AOB=∠COD=20°,所以∠AOC=∠BOD=90°,故①②正确;∠AOD-∠AOC=∠COD=∠AOB,故③正确;∠AOB=∠BOD,故④不正确.所以正确的有3个.二、填空题(每小题3分,共30分)11.(2017浙江诸暨中学期末)∠AOB的大小可由量角器测得(如图4-5-8所示),则∠AOB 的补角的大小为.图4-5-8答案120°解析由题图知∠AOB=60°,所以∠AOB的补角的大小为180°-60°=120°.12.如图4-5-9所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.图4-5-9答案 3解析由题图可知AC=AB+BC=8+4=12,所以AC=3BC.13.如果一个角的补角是150°,那么这个角的余角为°.答案60解析因为180°-150°=30°,所以这个角的大小为30°,所以这个角的余角为90°-30°=60°.14.如图4-5-10,已知M、N分别是AC、CB的中点,MN=6 cm,则AB= cm.图4-5-10答案12解析因为M、N分别是AC、CB的中点,所以CM=AC,CN=CB,则AB=AC+BC=2CM+2CN=2(CM+CN)=2MN=2×6=12(cm).15.如图4-5-11所示,O是直线AB上一点,OC是∠AOB的平分线.图4-5-11(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,所以∠AOC=∠BOC=∠AOB=90°,所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.16.如图4-5-12,∠AOB=90°,∠BOC=30°,OD平分∠AOC,则∠BOD=.图4-5-12答案30°解析因为∠AOB=90°,∠BOC=30°,所以∠AOC=90°+30°=120°.又因为OD平分∠AOC,所以∠COD=∠AOC=60°,所以∠BOD=∠COD-∠COB=60°-30°=30°.17.(2017贵州安顺西秀旧州中学期末)如图4-5-13所示,已知∠AOB=70°,∠BOC=20°,OE平分∠AOB,OF平分∠BOC,则∠EOF的度数是.图4-5-13答案45°解析因为OE平分∠AOB,OF平分∠BOC,所以∠EOB=×70°=35°,∠BOF=×20°=10°,故∠EOF=∠EOB+∠BOF=35°+10°=45°.18.点A、B、C是数轴上的三个点,且BC=2AB.已知点A表示的数是-1,点B表示的数是3,点C表示的数是.答案-5或11解析AB=3-(-1)=4,因为点A、B、C是数轴上的三个点,且BC=2AB,所以BC的长为8,所以点C表示的数为3+8=11或3-8=-5.19.如图4-5-14,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.图4-5-14(1)∠MON=;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)答案(1)42°(2)不会解析(1)∠MON=∠MOC+∠NOC=∠BOC+∠AOC=(∠BOC+∠AOC)=×∠AOB=×84°=42°.(2)由(1)可知,∠MON=∠AOB,∴∠MON的值不会随着OC在∠AOB内绕点O转动而改变.20.如图4-5-15,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是.图4-5-15答案90°解析由折叠可知,∠CFG=∠EFG=∠CFE,因为FH平分∠BFE,所以∠EFH=∠BFH=∠EFB.因为∠CFG+∠EFG+∠EFH+∠BFH=180°,所以∠GFH=∠EFG+∠EFH=90°.三、解答题(共40分)21.(8分)计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.解析(1)48°39'40″+67°41'35″=115°80'75″=116°21'15″.(2)49°28'52″÷4=12°+88'52″÷4=12°22'+52″÷4=12°22'13″.22.(6分)如果一个角的余角是它的补角的,求这个角的度数.解析设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.(6分)画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.解析(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).所以AD=AC=3 cm,故BD=DA+AB=3+2=5(cm).24.(6分)如图4-5-16所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC的度数.图4-5-16解析因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BOC,所以∠BOC=2∠BOF=30°,所以∠AOC=∠AOB+∠BOC=90°+30°=120°.25.(6分)图4-5-17是一个正方体盒子的表面展开图,该正方体六个面上人教版七年级上册第三章一元一次方程单元测试卷一.选择题(共12小题,共36分)1.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()A.1个B.2个C.3个D.4个2.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为()A.B.C.D.3.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB的长等于()A.6cm B.7cm C.10cm D.11cm4.如图是某几何体的表面展开图,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.时钟的时间是3点30分,时钟面上的时针与分针的夹角是()A.90°B.100°C.75°D.105°6.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对7.下列说法正确的是()A.射线比直线短B.小于平角的角可分为锐角和钝角两类C.两条射线组成的图形叫做角D.一个角的补角不一定比这个角大8.下列说法错误的是()A.长方体、正方体都是棱柱B.圆锥和圆柱的底面都是圆C.三棱柱的底面是三角形D.六棱柱有6条棱、6个侧面、侧面为长方形9.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB 10.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4 11.如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是()A.113°B.134°C.136°D.144°12.把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分染成红色,那么红色部分的面积为()A.21B.24C.33D.37二.填空题(共6小题,共18分)13.一个漂亮的礼物盒是一个有11个面的棱柱,那么它有个顶点.14.把一副三角板按照如图所示的位置拼在一起,不重叠也没有缝隙,则∠ABC 的度数为.15.已知∠AOB=80°,∠BOC=40°,射线OM是∠AOB平分线,射线ON是∠BOC 平分线,则∠MON=.16.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=.17.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是.18.如图,C、D、E为线段AB上三点,且AC=CD,E为BD的中点,DE=AB=2cm,则CE的长为cm.三.解答题(共6小题,共46分)19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线.(1)若∠BOC=50°,∠BOA=80°,求∠DOE的度数;(2)若∠AOC=150°,求∠DOE的度数;(3)你发现∠DOE与∠AOC有什么等量关系?给出结论并说明.20.某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.21.某宾馆大堂有6 根圆柱形大柱,高10 米,大柱周长25.12 分米,要全部涂上油漆,如果按每平方米的油漆费为80 元计算,需用多少钱?22.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.23.尺规作图题(不写作图步骤,但保留作图痕迹).已知:如图∠MON(1)求作:∠MON的平分线OC.(2)根据作法,请说明所作的射线OC就是∠MON的平分线OC.24.点A,O,B依次在直线MN上,如图1,现将射线OA绕点O顺时针方向以每秒10°的速度旋转,同时射线OB绕着点O按逆时针方向以每秒15°的速度旋转,直线MN保持不动,如图2,设旋转时间为t秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB的度数.(2)在旋转过程中,当∠AOB=105°时,求t的值.(3)在旋转过程中,当OA或OB是某一个角(小于180°)的角平分线时,求t 的值.参考答案一.选择题1.解:①∵直线AB和直线BA是同一条直线,∴①正确;②∵角是角,线是线,∴平角是一条直线,∴②错误;③两点之间,线段最短,∴③正确;④∵如果A、B、C三点不共线,则AB=BC不能得出点B是线段AC的中点,∴④错误.故选:B.2.解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.3.解:∵CB=4cm,DB=7cm,∴CD=7﹣4=3(cm);∵D是AC的中点,∴AD=CD=3cm,∴AB=AD+DB=3+7=10(cm).故选:C.4.解:∵三棱柱的展开图是两个三角形和三个长方形组成,∴该几何体是三棱柱.故选:B.5.解:3点30分相距2+=份,3点30分,此时钟面上的时针与分针的夹角是30×=75°.故选:C.6.解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.7.解:A.射线和直线不可测量,不能比较长短,故A错误;B.小于平角的角可分为锐角和钝角和直角三类,故B错误;C.有公共端点的两条射线组成的图形叫做角,故C错误;D.一个角的补角不一定比这个角大,故D正确.故选:D.8.解:A、长方体、正方体都是棱柱,故本选项不符合题意;B、圆锥和圆柱的底面都是圆,故本选项不符合题意;C、三棱柱的底面是三角形,故本选项不符合题意;D、六棱柱有18条棱、6个侧面、侧面为长方形,故本选项符合题意;故选:D.9.解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段A B中点.故选:B.10.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“﹣4”是相对面,∵相对面上的两数互为相反数,∴A、B、C内的三个数依次是0、﹣3、4.故选:A.11.解:∵OE平分∠BOD,∠BOE=23°,∴∠BOD=23°×2=46°;∵∠AOB是直角,∴∠AOD=90°﹣46°=44°,又∵OA平分∠COD,∴∠COD=2∠AOD=2×44°=88°,∴∠BOC=∠BOD+∠COD=46°+88°=134°.故选:B.12.解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5,第二层露出的表面积为:1×1×6×4﹣1×1×13=11,第三层露出的表面积为:1×1×6×9﹣1×1×37=17,所以红色部分的面积为:5+11+17=33.方法2:立方体俯视图9:,前后左右视图各6格,红色部分的面积为9+6×4=33.故选:C.二.填空题(共6小题)13.解:∵礼物盒是一个有11个面的棱柱,∴侧面有11﹣2=9个,∴顶点数为9+9=18,故答案为:18.14.解:∠ABC=30°+90°=120°,故答案为:120°15.解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠BOC=40°∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×40°=20°,∴∠MON=∠BON﹣∠AOM=40°﹣20°=20°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠BOC=40°∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×40°=20°,∴∠MON=∠BOM+∠BON=40°+20°=60°.故答案为:20°或60°.16.解:∵DA=6,DB=4,∴AB=DB+DA=4+6=10,∵C为线段AB的中点,∴BC=AB=×10=5,∴CD=BC﹣DB=5﹣4=1.故答案为:1.17.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“晋”与“祠”是相对面,“汾”与“酒”是相对面,“恒”与“山”是相对面.故答案为:祠.18.解:∵DE=AB=2cm,∴AB=2×5=10,∵E为BD的中点,∴BD=2DE=2×2=4cm,∴AD=AB﹣B D=10﹣4=6cm,∵AC=CD,∴CD=AD=×6=4m,∴CE=CD+DE=4+2=6cm.故答案为;6.三.解答题(共6小题)19.解:(1)∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∵∠BOC=50°,∠BOA=80°,∴∠BOD=25°,∠BOE=40°,∴∠DOE=25°+40°=65°;(2)∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∵∠AOC=150°,∴∠DOE=∠DOB+∠EOB=(∠BOC+∠BOA)=∠AOC=75°;(3)∠DOE=∠AOC;理由是:∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∴∠DOE=∠DOB+∠EOB=(∠BOC+∠BOA)=∠AOC.20.解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心.21.解:6×2.512×10×80=12057.6(元),答:需用12057.6元.22.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.23.解:(1)如图,射线OC是∠MON的平分线,(2)证明:如图,连接OC、BC、AC,根据作法可得BC=AC,OA=OB,在△OAC和△OBC中,∵∴△OAC≌△OBC(SSS),∴∠AOC=∠BOC,即射线OC是∠MON的平分线.24.解:(1)当t=2时,∠AOM=10°t=20°,∠BON=15°t=30°,所以∠AOB=180°﹣∠AOM﹣∠BON=130°;(2)当∠AOB=105°时,有两种情况:①10t+15t=180﹣105,解得:t=3;②10t+15t=180+105,解得:t=11.4;(3)①当OB是∠AON的角平分线时,10t+15t+15t=180,解得:t=4.5;②当OA是∠BOM的角平分线时,10t+10t+15t=180,解得:t=;③当OB是∠AOM的角平分线时,5t+20t=180,解得:t=9;④当OA是∠BON的角平分线时,10t+7.5t=180,解得:t=.。

2018年秋人教版七年级上册数学-第四章-几何图形初步-单元测试卷-(1)

2018年秋人教版七年级上册数学-第四章-几何图形初步-单元测试卷-(1)

2018年秋人教版七年级上册数学-第四章-几何图形初步-单元测试卷-(1)第3页 共2页 ◎ 第4页 共2页 …………○…………外…………○…………装…………○…………订学校:___________姓名:___________班级:___________考号:_____…………○…………内…………○…………装…………○…………订第5页 共2页 ◎ 第6页 共2页 …………○…………外…………○…………装…………○…………订学校:___________姓名:___________班级:___________考号:_____…………○…………内…………○…………装…………○…………订第7页共2页◎第8页共2页第9页 共10页 ◎第10页 共10页∠BOC=30°,则∠AOD 的度数为( )A . 100°B . 110°C . 130°D . 140° 10.如图,O 为直线AB 上一点,∠AOC=α,∠BOC=β,则β的余角可表示为( ) A . (α+β) B . α C . (α﹣β) D . β第11页 共10页 ◎ 第12页 共10页第II 卷(非选择题) 请点击修改第II 卷的文字说明二、填空题 11.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是_____. 12.(题文)直线AB ,BC ,CA 的位置关系如图所示,则下列语句:①点A 在直线BC 上;②直线AB 经过点C ;③直线AB ,BC ,CA 两两相交;④点B 是直线AB ,BC ,CA 的公共点,正确的有_____(只填写序号). 13.青青同学把一张长方形纸折了两次,如图,使点A ,B 都落在DG 上,折痕分别是DE ,DF ,则∠EDF 的度数为_____. 14.将一副三角板如图放置,若∠AOD=20°,则∠BOC 的大小为 . 三、解答题第13页 共10页 ◎ 第14页 共10页15.如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面与右面标注的式子相等. (1)求x 的值; (2)求正方体的上面和右面的数字和.16.如图,已知线段AB=6,延长线段AB 到C ,使BC=2AB ,点D 是AC 的中点. 求:(1)AC 的长; (2)BD 的长. 17.如图,已知A 、B 、C 、D 四点,根据下列语句画图 (1)画直线AB (2)连接AC 、BD ,相交于点O (3)画射线AD 、BC ,交于点P .18.如图,已知线段AB ,按下列要求完成画图和计算: (1)延长线段AB 到点C ,使BC=2AB ,取AC 中点D ; (2)在(1)的条件下,如果AB=4,求线段BD 的长度. 19.如图,已知在△ABC 中,AB=AC . (1)试用直尺和圆规在AC 上找一点D ,使AD=BD (不写作法,但需保留作图痕迹). (2)在(1)中,连接BD ,若BD=BC ,求∠A 的度数. 20.如图,△ABC 中,BC >AC ,∠C=50°.第15页 共10页 ◎ 第16页 共10页(Ⅰ)作图:在CB 上截取CD=CA ,连接AD ,过点D 作DE⊥AC,垂足为E ;(要求:尺规作图,保留作图痕迹,不写作法) (Ⅱ)求∠ADE 的度数. 21.如图,O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC. (1)若∠AOC=30°,求∠DOE 的度数; (2)若∠AOC=α,直接写出∠DOE 的度数(用含α的代数式表示); (3)在(1)的条件下,∠BOC 的内部有一射线OG ,射线OG 将∠BOC 分为1:4两部分,求∠DOG 的度数. 22.如图,将书页一角斜折过去,使角的顶点A 落在A′处,BC 为折痕,BD 平分∠A′BE,求∠CBD 的度数. 23.如图1,已知∠MON=140°,∠AOC 与∠BOC 互余,OC 平分∠MOB, (1)在图1中,若∠AOC=40°,则∠BOC= °,∠NOB= °. (2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系( 必须写出推理的主要过程,但每一步后面不必写出理由); (3)在已知条件不变的前提下,当∠AOB 绕着点O 顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α第17页 共10页 ◎第18页 共10页与β之间的数量关系.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

人教版数学七年级上册第四章 《几何图形初步》单元测试卷

人教版数学七年级上册第四章 《几何图形初步》单元测试卷

第四章《几何图形初步》单元测试卷一,选择题(每小题3分,共45分)1,说法正确的是( ).A.直线的一半是射线B.直线上两点间的部分叫做线段C.线段AB的长度就是A,B两点间的距离D.若点P使PA=AB,则P是AB的中点2,四个图形,可以折叠成棱柱的是( ).3,下列说法中,正确的有()①过两点有且只有一条直线②连结两点的线段叫做两点的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点A.1个 B.2个 C.3个 D.4个4,一个角的余角的补角是这个角补角的45,则这个角的余角度数是( ).A.90°B.60°C.30°D.10°5,线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝B.0.5㎝C.1.5㎝D.1㎝6,个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美 B.丽 C.云 D.南7,下列叙述正确的是( ) A .180°的角是补角 B .110°和90°的角互为补角 C .10°、20°、60°的角互为余角 D .120°和60°的角互为补角8,M 、N 两点的距离是20,有一点P ,如果PM +PN =30,那么下列结论正确的是( )A .P 点必在线段MN 上B .P 点必在直线MN 上C .P 点必在直线MN 外D .P 点可能在直线MN 外,也可能在直线MN 上 9,时钟的分钟走过5分钟的角度是( ) A 、300 B 、130 C 、120 D 、5010,如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( ) A.21∠1 B.21∠2 C.21(∠1-∠2) D.21(∠1+∠2)11,如图所示,点P ,Q ,C 都在直线AB 上,且P 是AC 的中点,Q 是BC 的中点,若AC =m ,BC =n ,则线段PQ 的长为( ).A .3mB .2n C .2m n+ D .2m n -12,赵师傅透过放大5倍的放大镜从正上方看30°的角,则通过放大镜他看到的角等于()度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年人教版数学七年级上册第四章几何图形初步单元测试卷
一、选择题(每小题3分,共30分)
1. 分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()
2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()
A. 1个
B. 2个
C. 3个
D. 4个
3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()
A. 正方体、圆柱、三棱柱、圆锥
B. 正方体、圆锥、三棱柱、圆柱
C. 正方体、圆柱、三棱锥、圆锥
D. 正方体、圆柱、四棱柱、圆锥
4.如图,对于直线AB,线段CD,射线EF,其中能相交的是()
5.下面等式成立的是()
A.83.5°=83°50′
B.37°12′36″=37.48°
C.24°24′24″=24.44°
D.41.25°=41°15′
6.下列语句:
①一条直线有且只有一条垂线;
②不相等的两个角一定不是对顶角;
③不在同一直线上的四个点可画6条直线;
④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.
其中错误的有()
A. 1个
B.2个
C.3个
D. 4个
7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()
A.25°
B. 35°
C. 45°
D.55°
7题图 8题图
8. 如图,∠1+∠2的度数为()A.60° B.90° C.110° D.180°
9. C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()
A. 3cm
B. 4cm
C. 5cm
D. 6cm
10.甲、乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),
两人做法如下:
甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;
乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°;
对于两人的做法,下列判断正确的是()
A.甲乙都对
B.甲对乙错
C.甲错乙对
D.甲乙都错
二、填空题(每空3分,共30分)
11.如图,各图中阴影部分绕着直线AB旋转3600,所形成的立体图形分别是________________.
11题图 12题图
12.如图,以图中的A、B、C、D、E为端点的线段共有________条.
13.如图所示,两个直角三角形的直角顶点重合,如果∠AOD=1280,那么∠BOC=______.
13题图 14题图 15题图 16题图 17题图
14.如图,直线AB ,CD 相交于点0,OE 平分∠AOD,若∠BOC=80°,则∠AOE= _________ °.
15. 若图是某几何体的平面展开图,则这个几何体是_____. 16.如图绕着中心最小旋转 能与自身重合.
17.如图所示,一艘船从A 点出发,沿东北方向航行至点B ,再从B 点出发沿南偏东15°方向行至点C ,则∠ABC = 度.
18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转_____度,就可以形成一个球体。

19. 已知∠A =40°,则∠A 的补角等于 .
20.两条直线相交有1个交点,三条直线相交最多有3个交点,最少有 个交点.
三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)
21.如图,若CB=4cm ,DB=7cm ,且D 是AC 的中点,求线段DC 和AB 的长度.
22.直线AB ,CD 相交于点O ,OE 平分∠AOD ,∠FOC=900,∠1=400,求∠2与∠3的度数
O
F
E D C B A 321D C B A
第24题图3x -2A 1-2x 3第25题图E A /
D C B A 23.已知:如图,∠AOB 是直角,∠AOC=40°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线.
(1)求∠MON 的大小;
(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小是否发生改变?为什么?
24.如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面与 右面标注的式子相等.
⑴ 求x 的值.
⑵ 求正方体的上面和底面的数字和.
25.探究题:如图,将书页一角斜折过去,使角的顶点A 落在A /处,BC 为折痕,BD 平分
∠A /BE ,求∠CBD 的度数.
26.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.
(1)若DE=9cm ,求AB 的长;
(2)若CE=5cm ,求DB 的长.
27. 一个角的余角比它的补角的
3
1还少20°,求这个角.
答案
一、选择题(每小题3分,共30分)
1.C
2.B
3.A
4.B
5.D
6.B
7.D
8.B
9.C 10.A
二、填空题(每空3分,共30分)
11.圆柱、圆锥、球 12.10 13.520 14.40 15. 圆柱 16. 90° 17.60°18.180 360 19. 140º 20. 1
三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)
21.DC=3cm,AB=10cm
22.∠2=500,∠3=650
23.解:(1)∵∠AOB是直角,∠AOC=40°,
∴∠AOB+∠AOC=90°+40°=130°,
∵OM是∠BOC的平分线,ON是∠AOC的平分线,
∴,.
∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,
(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.
∵=,又∠AOB是直角,不改变,
∴.
24.⑴1⑵4.
25.90°
26.解:(1)∵D是AC的中点,E是BC的中点,
∴AC=2CD,BC=2CE,
∴AB=AC+BC=2DE=18cm;
(2)∵E是BC的中点,
∴BC=2CE=10cm,
∵C是AB的中点,D是AC的中点,
∴DC= AC= BC=5cm,
∴DB=DC+CB=10+5=15cm.
27.75°。

相关文档
最新文档