2013年高考真题解析分类汇编(理科数学)12:程序框图

合集下载

2013年高考理科数学试题解析

2013年高考理科数学试题解析

2013年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷 一、 选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.2、若复数z 满足错误!未找到引用源。

(3-4i)z =|4+3i |,则z 的虚部为 ( ) A 、-4(B )-45错误!未找到引用源。

(C )4(D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=2243(34)(34)(34)i i i ++-+=3455i+,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样错误!未找到引用源。

C 、按学段分层抽样 D 、系统抽样【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为52,则C 的渐近线方程为 A .14y x =± B .13y x =± C .12y x=± D .y x =± 【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,52c a=,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x=±,故选C . 5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈,∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( ) A 、500π3cm 3B 、866π3cm 3错误!未找到引用源。

2013高考 数学(理)真题专业解析(湖北卷)汇总

2013高考 数学(理)真题专业解析(湖北卷)汇总

2013年普通高等学校招生全国统一考试数学试卷(理科)(湖北卷)解析本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.主题1. 在复平面内,复数2i 1iz =+(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D 思路分析:考点解剖:本题主要考查复数的概念、运算、共轭复数及复平面等知识. 解题思路:先化简复数,然后求出复数对应的点的坐标. 解答过程:因为()()()2i 1i 2i 2i 21i 1i 1i 1i 2z -+====+++-,所以z 的共轭复数1i z =-.其对应的点的坐标为()1,1-,位于第四象限. 故选D .规律总结:对于复数的除法运算,一般是分子分母同时乘以分子的共轭复数,从而化简;运算计算时要注意2i 1=-而不是1.主题2. 已知全集为R ,集合1{|()1}2x A x =≤,2{|680}B x x x =-+≤,则A B =R C ( ) A .{|0}x x ≤ B .{|24}x x ≤≤ C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或答案:C思路分析:考点解剖:本题主要考查合的补集、交集运算,一元二次不等式的解法,指数函数的单调性等.解题思路:先化简集合,然后求B R C ,A B R C .解答过程:易知集合{}|0A x x =≥,{}|24B x x =≤≤,故{}|24B x x x =<>R C 或,从而{}|024A B x x x =≤<>R C 或.故选C .规律总结:集合的基本运算是高考热点之一,一般会与不等式等内容结合起来考查,难度较小.主题3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨ 答案:A思路分析:考点解剖:本题主要考查逻辑联结词、复合命题的判断.解题思路:“至少有一位学员没有降落在指定范围”包括“甲没有降落在指定范围或者乙没有降落在指定范围或者甲乙都没有降落在指定范围.”解答过程:“至少有一位学员没有降落在指定范围”即:甲没有降落在指定范围或者乙没有降落在指定范围或者甲乙都没有降落在指定范围.又命题p 是“甲降落在指定范围”,可知命题p ⌝是“甲没有降落在指定范围”; 同理,命题q ⌝是“乙没有降落在指定范围”,所以“至少有一位学员没有降落在指定范围”可表示为()()p q ⌝∨⌝.规律总结:对于逻辑联结词问题,关键是要明白各个常见的逻辑联结词所表示的含义,同时理解命题本身的意义.主题4.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .12π B .6π C .3π D .56π答案:B 思路分析:考点解剖:本题主要考查三角函数图象的对称性、奇偶性、平移以及辅助角公式等. 解题思路:先求出平移后函数的解析式,再根据奇偶性列式求解. 解答过程:将函数sin 2sin 3y x x x π⎛⎫=+=+ ⎪⎝⎭的图象向左平移m 个单位后,得到函数2sin 3y x m π⎛⎫=++ ⎪⎝⎭的图象,由题意,函数2sin 3y x m π⎛⎫=++ ⎪⎝⎭关于y 轴对称,所以函数2sin 3y x m π⎛⎫=++ ⎪⎝⎭为偶函数,故()32m k k πππ+=+∈Z ,解得()6m k k ππ=+∈Z .故当0k =时,m 取得最小正值6π.故选B .规律总结:若三角函数()sin y a x ωϕ=+为偶函数,则()2k k πϕπ=+∈Z ;若三角函数()sin y a x ωϕ=+为奇函数,则()k k ϕπ=∈Z .主题5. 已知04πθ<<,则双曲线22221222222:1:1cos sin sin sin tan x y y x C C θθθθθ-=-=与的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等 答案:D 思路分析:考点解剖:本题主要考查双曲线的实轴、虚轴、焦距、离心率的基本性质以及三角函数的恒等变换.解题思路:根据双曲线的定义求解. 解答过程:因为04πθ<<,所以cos 0sin 0θθ>>,. 对于双曲线1C ,实半轴cos a θ=,虚半轴sin b θ=,则半焦距1c =,故离心率为1cos c e a θ==;对于双曲线2C ,实半轴'sin a θ=,虚半轴2sin 'cos b θθ=,则半焦距sin 'cos c θθ==,故离心率为sin '1cos ''sin cos c e a θθθθ===; 故两双曲线满足离心率相等.故选D .规律总结:求解本题的关键是要深刻理解双曲线的性质,以及仔细审题,切忌疏忽大意. 主题6.已知点(1,1)(1,2)(2,1)(3,4)A B C D ---、、、,则向量AB 在CD 方向上的投影为( )AB.2C.2D答案:A 思路分析:考点解剖:本题主要考查向量的基本运算、数量积和向量投影. 解题思路:先求出向量,AB CD 的坐标,然后运用cos AB θ求解.解答过程:由已知得()()2,1,5,5AB CD ==,所以2,15,5cos 5AB CD AB CDθ==10=.故向量AB 在CD 方向上的投影为cos 102AB θ==.故选A .规律总结:向量a 在b 方向上的投影为cos θ==a b a ba a ab b.主题7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t t=-++(t的单位:s ,v 的单位m/s )行驶至停止,在此期间汽车继续行驶的距离(单位:m )是( )A .1+25ln 5B .118+25ln3C .4+25ln 5D .4+50ln 2 答案:C思路分析:考点解剖:本题主要考查一元二次方程的求解,定积分计算和实际应用. 解题思路:弄清汽车从刹车到停止所花的时间,然后用定积分求解. 解答过程:由()257301v t t t=-+=+,化简得:()()3840t t +-=, 解得83t =-(舍去)或4t =.故汽车行驶4秒后停止. 所以在此期间汽车继续行驶的距离是:()()442400025373725ln 1|425ln 512S v t dt t dt t t t t ⎛⎫⎡⎤==-+=-++=+ ⎪⎢⎥+⎝⎭⎣⎦⎰⎰.故选C .规律总结:定积分在不同的条件下所表达的含义是不一样的.本题中,速度和时间关系式的定积分的意义就是汽车行驶距离.如若未能理解这一点,将难以快速有效的解题.主题8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别为1234V V V V ,,,,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<<B .1324V V V V <<< C .2134V V V V <<<D .2314V V V V <<<第8题图答案:C 思路分析:考点解剖:本题主要考查空间几何体的体积计算以及旋转体、多面体的三视图的识别. 解题思路:弄清从上到下各几何体的形状,然后运用各尺寸及各形体体积公式求解. 解答过程:根据题目提供的信息:上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,观察几何体的三视图,可知:该几何体从下到上分别是棱台、正方体、圆柱、圆台.根据已知尺寸,可求得各几何体的体积分别为:()117433V πππππ=+=,22122V ππ=⨯⨯=,3328V ==,()412816433V =+=,因为7282833ππ<<<,所以2134V V V V <<<. 故选C .规律总结:对于三视图求体积问题,一般先要将三视图还原为直观图,然后根据几何体的特征及体积公式求解;圆台(棱台)的体积公式为:()1'3V S S h=+. 主题9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中抽取一个小正方体,记它的涂漆面数为X ,则X 的均值()E X =( )A .126125B .65C .168125D .75答案:B 思路分析:考点解剖:本题主要考查概率、随机变量的均值,以及空间想象的能力,分类讨论的能力.解题思路:先观察求出面数分别为3,2,1,0的小正方体的个数,然后求各概率. 解答过程:通过观察可知,涂漆面数为3面的小正方体有8个,涂漆面数为2面的小正方体有31236⨯=个,涂漆面数为1面的小正方体有9654⨯=个,则涂漆面数为0面的小正方体有1258365427---=个.则()()()83654,,125125125P P P X X X =3==2==1=,()27125P X =0=.()2754368601231251251251255E X =⨯+⨯+⨯+⨯=.故选B .规律总结:求解均值关键是求各随机变量取值下的概率,本题难点在于涂漆面数分别为3,2,1的小正方体的个数的求解;另外,牢记一个公式:()()()121n P x P x P x +++=…,对于最后一个不好求的概率,往往可以利用该公式求解,事半功倍.主题10.已知a 为常数,函数()(ln )f x x x ax =-有两个极值点1212,()x x x x <,则( )A .121()0,()2f x f x >>-B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-答案:D 思路分析:考点解剖:本题主要考查导数的应用,函数的极值,不等关系以及函数与方程思想,数形结合的数学思想等.解题思路:先求出极值点()1212,x x x x <所满足的方程;然后通过假设方程l n 21x a x -+ ()00x =>只有一根,来求出12,,a x x 的范围;最后利用等量关系转化,结合不等式知识与导数知识求()()12,f x f x 的范围.解答过程:因为()1'ln ln 21f x x ax x a x ax x ⎛⎫=-+-=-+ ⎪⎝⎭,又12,x x 是函数()f x 的两个极值点,所以12,x x 是方程ln 210x ax -+=的两根.假设方程()ln 2100x ax x -+=>只有一根,数形结合,即:直线21y ax =-与曲线ln y x =相切. 设切点为()00,ln x x ,则切线方程为()0001ln y xx x x -=-,即001ln 1y x x x =+-.又切线方程为21y ax =-,对比得012,1ln 1,a x x ⎧=⎪⎨⎪-=-⎩解得01,21.a x ⎧=⎪⎨⎪=⎩ 故若要使直线21y ax =-与曲线ln y x =相交, 即:函数()()ln f x x x ax =-有2个极值点,需满足1210,201,1.a x x ⎧<<⎪⎪<<⎨⎪>⎪⎩因为()()()111111ln 1f x x x ax x ax =-=-(利用11ln 210x ax -+=转化),且易知1112ax <<,所以()1110x ax -<.即()10f x <. 同理,()()()222222222ln 11ln ln ln 122x f x x x ax x x x x +⎛⎫=-=-=- ⎪⎝⎭(利用22ln 210x ax -+=转化). 令()()1ln 12g x x x =-,则()1'ln 2g x x=. 当1x >时,()'0g x >,故函数()g x 在()1,+∞上单调递增.又21x >,所以()()()22211ln 1122g x x x g =->=-.即:()()22211ln 122f x x x =->-.故选D.规律总结:巧妙利用导数求极值,利用数形结合思想解决方程根的问题是解决本题的关键所在.若按常规方法求解,则极易出错或加大解题难度.第Ⅱ卷共12小题,共100分.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)主题11.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(Ⅰ)直方图中x的值为___________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为___________.第11题图答案:(Ⅰ)0.0044;(Ⅱ)70思路分析:考点解剖:本题主要考查频率分布直方图、识图看图的能力.解题思路:(Ⅰ)利用频率和为1求解;(Ⅱ)先求出用电量落在区间[100,250)内的频率,再用100乘以频率,即得用电量落在区间[100,250)内的户数.解答过程:(Ⅰ)由频率分布直方图可知:()x+++++⨯=,0.00240.00360.00600.00240.0012501解得0.0044x=;(Ⅱ)用电量落在区间[100,250)内的频率是:()++⨯=,0.00360.00600.0044500.7则用户数为1000.770⨯=.规律总结:解决简单的统计知识在实际中的应用的问题的关键是正确识图、提取有用信息,理解统计图中各个量的意义.主题12.阅读如图所示的程序框图,运行相应的程序,输出的结果i=___________.答案:5思路分析:考点解剖:本题主要考查程序框图的应用.解题思路:分步求解,ia=时,输出的i值即为所求.a的值,只到4解答过程:由算法框图知:第一次运行时:5,i2a=;a==,不满足4第二次运行时:16,i3a=;a==,不满足4第三次运行时:8,i4a=;a==,不满足4第四次运行时:4,i5a=,a==,满足4故输出i5=.规律总结:程序框图问题,关键是要根据不同条件,执行不同的步骤,从而推理出正确的结论.主题13.设,,x y z ∈R,且满足:2221,23x y z x y z ++=++=则x y z ++=___________.思路分析:考点解剖:本题主要考查柯西不等式的应用.解题思路:利用柯西不等式,得到等号成立的条件,比较即可求得,,x y z 的值. 解答过程:根据柯西不等式,得:()()()222222212323x y z x y z ++++≥++,当且仅当存在实数k ,使得,2,3x k y k z k ===时,等号成立.由于题目已知2221,23x y z x y z ++=++=所以此时,2,3x k y k z k ===,代入23x y z ++=k =,所以x y ==,z =.所以7x y z ++=. 规律总结:三维形式的柯西不等式为:()()222222123123aa ab b b ++++≥()2112233a b a b a b ++,当且仅当()1,2,3i i a kb i ==时等号成立.主题14.古希腊毕达哥拉斯的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为2(+1)11=+222n n n n .记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数211(,3)=+22N n n n正方形数 2(,4)=N n n五边形数231(,5)=-22N n n n六边形数2(,6)=2-N n n n………………………………………可以推测(,)N n k 的表达式,由此计算(10,24)N =_________________. 答案:1000 思路分析:考点解剖:本题主要考查观察、猜想、推理能力.解题思路:将三角形数、正方形数、五边形数、六边形数的表达式通分,观察分子与项数n 的区别,归纳猜想即可.解答过程:通过观察,表达式可做如下变形: 三角形数:()()()223243,322n n n n N n -+-+==;正方形数:()()()22424420,422n n n n N n -+-+==;五边形数:()()()2252453,522n n n n N n -+--==;六边形数:()()()22624642,622n n n n N n -+--==;……………………………………………观察每个分式的分子,特别是2n 与n 前面系数的变化规律,发现2n 前的系数以1递增,n 前的系数以1递减,于是根据规律,可以推测:()()()224,2k n k n N n k -+-=. 所以()()()2242104241010,2410002N -+-==. 规律总结:在归纳、推理过程中,关键是要有敏锐的观察力.通过变形,找出前几项的表达式与项数之间的关系,从而推出一般形式下的表达式.对于一般表达式,还要代入题目条件进行验证,以免出错.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)主题15.(选修4-1:几何证明选讲)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则CE EO的值为 .答案:8 思路分析:考点解剖:本题主要考查几何证明、圆、相似三角形的性质.解题思路:先求出,OD OC 的等量关系;然后利用相似三角形的性质求解. 解答过程:由已知3,2AB AD AB OA ==, 所以23AD OA=, 所以13OD OA=. 又由圆的性质可知,OA OC =,得:13OD OC=. 又因为C 在直径AB 上的射影为D ,D 在半径OC 上的射影为E , 知:CDO DEO ∆∆,所以ODEO OC OD=,所以19EO OC=. 故8CEEO=.规律总结:几何证明选讲主要考查简单推理证明能力,难度一般较小.在证明过程中要严谨,以免出错.主题16.(选修4-4:坐标系与参数方程) 在直线坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴为正半轴为极轴)中,直线l 与圆O的极坐标方程分别为sin 4πρθ⎛⎫+=⎪⎝⎭()m m 为非零常数与=b ρ.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 .思路分析:考点解剖:本题主要考查椭圆的参数方程,直线、圆的极坐标方程与平面直角坐标系方程的转化.解题思路:先将参数方程,极坐标方程化为直角坐标方程,进而结合直线与圆的位置关系求解.解答过程:由已知椭圆C 的参数方程cos ,sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>),求出其直角坐标方程为()222210x y a b a b +=>>;同样, 由已知条件可求出直线l 与圆O 的直角坐标方程分别为:0x y m +-=,222x y b +=. 因为直线l 经过椭圆C 的焦点,所以||c m =. 又直线l 与圆O 相切,则圆心()0,0O 到直线l的距离为b=,得:||m =.故c =.又因为222a b c =+,所以3ca =, 即:椭圆C规律总结:坐标系和参数方程问题,一般步骤都是将参数方程、极坐标方程转化为直角坐标方程,再利用圆锥曲线的性质解题.在不同的坐标系的转化过程中要小心,避免造成不必要的失分.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 主题17.(本小题满分12分)在ABC ∆中,角,,A B C 对应的边分别是,,a b c .已知()cos23cos 1A B C -+=.(Ⅰ)求角A 的大小;(Ⅱ)若ABC ∆的面积S =,5b =,求sin sin B C 的值. 思路分析:考点解剖:本题主要考查三角恒等变换,正弦定理及余弦定理的应用. 解题思路:(Ⅰ)利用二倍角公式、和角公式进行恒等变换求解;(Ⅱ)先利用三角形的面积公式求得c ,再利用余弦定理求得a ,最后利用正弦定理求解.解答过程:解:(Ⅰ)由cos23cos()1A B C -+=,得:22cos 3cos 20A A +-=, 即:(2cos 1)(cos 2)0A A -+=,解得:1cos 2A =或cos 2A =-(舍去). 因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ====得:20bc =. 又5b =,知4c =.由余弦定理得:2222cos 25162021,a b c bc A =+-=+-=故a = 又由正弦定理得:222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.规律总结:解三角形问题主要考查正弦定理、余弦定理及利用三角公式进行恒等变换的技能及运算能力,以化简、求值或判断三角形的形状为主,考查有关定理的应用、三角恒等变换的能力、运算能力以及转化的数学思想,一般难度不大.主题18.(本小题满分12分)已知等比数列{}n a 满足:2310a a -=,123125a a a =.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)是否存在正整数m ,使得121111ma a a +++≥?若存在,求m 的最小值;若不存在,说明理由.思路分析:考点解剖:本题主要考查等比数列的性质,通项公式,前n 项和与不等式的综合应用.同时考查分类讨论的数学方法.解题思路:(Ⅰ)利用等比数列的通项公式表示123,,a a a ,然后联立方程组求解;(Ⅱ)先利用{}na 的通项公式表示出1{}na 的通项公式,然后利用等比数列求和公式及分类讨论求解.解答过程:解:(Ⅰ)设等比数列{}n a 的公比为q ,则由已知可得331211125,||10,a q a q a q ⎧=⎪⎨-=⎪⎩解得15,33,a q ⎧=⎪⎨⎪=⎩或15,1.a q =-⎧⎨=-⎩ 故:1533n n a -=⋅,或15(1)n n a -=-⋅-. (Ⅱ)若1533n n a -=⋅,则1131()53n n a -=⋅,故:1{}n a 是首项为35,公比为13的等比数列,从而131[1()]191953[1()]11031013mmm n na =⋅-==⋅-<<-∑. 若1(5)(1)n na -=-⋅-,则111(1)5n n a -=--, 故1{}n a 是首项为15-,公比为1-的等比数列.从而11,21(),1502().mn n m k k a m k k +=+⎧-=-∈⎪=⎨⎪=∈⎩∑N N ,故111m n n a =<∑. 综上,对任何正整数m ,总有111mn na =<∑.故不存在正整数m ,使得121111ma a a +++≥成立. 规律总结:本题考查等差数列的通项公式、求和公式与解方程、不等式的综合运用.解决数列与其他知识的综合应用问题应对等差、等比数列的概念、性质有深刻的理解,然后运用数列的性质进行分析、转化从而解题.主题19.(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP=.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.思路分析:考点解剖:本题主要考查空间中线线、线面、面面关系的应用及空间想象能力,推理能力.解题思路:(Ⅰ)先证明直线//EF 平面ABC ,再证明//EF l ,从而得出:直线//l 平面PAC ;(Ⅱ)方法一:利用线面、面面关系、二面角的性质先找出直线l 为直线BD ,角θ为CDF ∠,角α为BDF ∠,角β为CBF ∠,然后求证.方法二:建立适当的空间直角坐标系,将几何问题转化为向量的坐标运算.解答过程:解:(Ⅰ)直线l ∥平面PAC ,证明如下:连接EF ,因为E ,F 分别是PA ,PC 的中点,所以EF ∥AC . 又EF ⊄平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC . 而EF ⊂平面BEF ,且平面BEF平面ABC l =,所以EF ∥l .因为l ⊄平面PAC ,EF ⊂平面PAC ,所以直线l ∥平面PAC .(Ⅱ)(综合法)如图1,连接BD ,由(Ⅰ)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是O 的直径,所以AC BC ⊥,于是l BC ⊥. 已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC l ⊥. 而PCBC C =,所以l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l BF ⊥.故CBF ∠就是二面角E l C --的平面角,即CBF β∠=. 由12DQ CP =,作DQ ∥CP ,且12DQ CP=. 连接PQ ,DF ,因为F 是CP 的中点,2CP PF =,所以DQ PF =. 从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故CDF ∠就是直线PQ 与平面ABC 所成的角,即CDF θ∠=. 又BD ⊥平面PBC ,有BD BF ⊥,知BDF ∠为锐角,故BDF ∠为异面直线PQ 与EF 所成的角,即BDF α∠=, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得sin CF DF θ=,sin BF DF α=,sin CF BF β=,从而sin sin sin CF BF CFBF DF DFαβθ=⋅==,即sin sin sin θαβ=. (Ⅱ)(向量法)如图2,由12DQ CP =,作DQ ∥CP ,且12DQ CP=. 第19题解答图1 第19题解答图2连接PQ ,EF ,BE ,BF ,BD ,由(Ⅰ)可知交线l 即为直线BD . 以点C 为原点,向量,,CA CB CP所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设,,2CA a CB b CP c ===, 则有(0,0,0),(,0,0),(0,,0),(0,0,2),(,,)C A a B b P c Q a b c ,1(,0,),(0,0,)2E a cF c . 于是1(,0,0)2FE a =,(,,)QP a b c =--,(0,,)BF b c =-, 所以||cos||||FE QP FE QP aα⋅==⋅,从而sin α=又取平面ABC 的一个法向量为(0,0,1)=m ,可得:||sin ||||QP QP a θ⋅==⋅m m ,设平面BEF 的一个法向量为(,,)x y z =n , 所以由0,0,FE BF ⎧⋅=⎪⎨⋅=⎪⎩n n 可得:10,20.ax bycz ⎧=⎪⎨⎪-+=⎩ 取(0,,)c b =n .于是|||cos |||||β⋅=⋅m n m n ,从而sinβ=. 故:sin sin sin αβθ===,即:sin sin sin θαβ=.规律总结:常规方法解决立体几何问题要注意充分利用各种性质定理、判定定理,挖掘出隐含的条件;利用空间向量解决立体几何问题时,关键是建立适当的空间直角坐标系.以上两点,可有效减少出错的几率.主题20.(本小题满分12分)假设每天从甲地去乙地的旅客人数X 是服从正态分布2(800,50)N 的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为0p .(Ⅰ)求0p 的值;(参考数据:若X ~2(,)N μσ,有()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=.) (Ⅱ)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于0p 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?思路分析:考点解剖:本题主要考查正态分布、线性规划的实际应用. 解题思路:(Ⅰ)利用正态分布的定义和性质求解;(Ⅱ)根据题目条件先列出A B 、型号汽车数量需要满足的关系式,然后作图,利用可行域解题.解答过程:解:(Ⅰ)由于随机变量X 服从正态分布2(800,50)N ,故有800μ=,50σ=. (700900)0.9544P X <≤=.由正态分布的对称性,可得:0(900)(800)(800900)p P X P X P X =≤=≤+<≤11(700900)0.977222P X =+<≤=. (Ⅱ)设A 型、B 型车辆的数量分别为, x y 辆,则相应的营运成本为16002400x y +. 依题意,, x y 还需满足:021, 7, (3660)x y y x P X x y p +≤≤+≤+≥.由(Ⅰ)知,0(900)p P X =≤,故0(3660)P X x y p ≤+≥等价于3660900x y +≥.于是问题等价于求满足约束条件21, 7,3660900,, 0, ,x y y x x y x y x y +≤⎧⎪≤+⎪⎨+≥⎪⎪≥∈⎩N ,且使目标函数16002400z x y =+达到最小的,x y . 作可行域如图所示,可行域的三个顶点坐标分别为(5,12), (7,14), (15,6)P Q R .由图可知,当直线16002400z x y =+经过可行域的点P 时,直线16002400z x y =+在y 轴上截距2400z 最小,即取得最小值. 故应配备A 型车5辆、B 型车12辆.规律总结:线性规划问题,目标函数的最值一般在可行域边界的几个顶点处取得.但当顶点坐标(,)x y 中的,x y 为非整数或负数时,我们还必须注意考虑,x y 的实际意义,以免出错.主题21.(本小题满分13分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为()2,2m n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记m nλ=,BDM ∆和ABN ∆的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.思路分析:考点解剖:本题主要考查椭圆的性质、圆锥曲线的综合应用以及分类讨论的思想方法.解题思路:(Ⅰ)方法一:先利用椭圆的代数性质求出12,S S 的值,然后利用方程12S S λ=求解.方法二:利用椭圆的几何性质求出12,S S 的值,然后利用方程12S S λ=求解.(Ⅱ)方法一:先假设存在λ,然后根据12S S λ=得出||||AD BC 关于λ的方程,同时利用直线与椭圆的性质,得出||||AD BC 关于椭圆代数式的方程,最后联立方程组求解.方法二:先假设存在λ,然后根据12S S λ=得出A Bx x 关于λ的方程,同时利用直线与椭圆的性质,得出A Bx x 关于椭圆代数式的方程,最后联立方程组求解.解答过程:解:依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=.其中0a m n >>>, 1.m n λ=> (Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则: 111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---.若12S S λ=,则11λλλ+=-,化简得:2210λλ--=.由1λ>,可解得:1λ=.故当直线l 与y 轴重合时,若12S S λ=,则1λ=.解法2:如图1,若直线l 与y 轴重合,则:||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=.所以12||1||1S BD m n S AB m n λλ++===--.若12S S λ=,则11λλλ+=-,化简得2210λλ--=.由1λ>,可解得1λ=.故当直线l 与y 轴重合时,若12S S λ=,则1λ=.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=.根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则:因为1d ==,2d ==,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是:||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =,B x =.根据对称性可知C B x x =-,D Ax x =-,于是:2||||2A B x AD BC x ==②从而由①和②式可得第21题解答图1第21题解答图21(1)λλλ+-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >.于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-,等价于2221(1)()0t t λ--<.由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=.根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则:因为1d ==,2d ==,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+==-,所以11AB xx λλ+=-.由点(,)A A A x kx ,(,)B BB x kx 分别在C 1,C 2上,可得:222221A A x k x a m +=,222221B Bx k x a n +=,两式相减可得:22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22A Bx x >.所以由上式解得:22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A BB A m x x a x x λ->-,可解得:1AB x x λ<<. 从而111λλλ+<<-,解得:1λ>+当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.规律总结:本题是涉及圆锥曲线的存在性问题,此类问题一般分为探究条件和探究结论两种,若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在.若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论.主题22.(本小题满分14分) 设n 是正整数,r 为正有理数.(Ⅰ)求函数1()(1)(1)1(1)r f x x r x x +=+-+->-的最小值; (Ⅱ)证明:1111(1)(1)11r r r r rn n n n n r r ++++--+-<<++;(Ⅲ)设x ∈R ,记x ⎡⎤⎢⎥为不小于...x 的最小整数,例如22=⎡⎤⎢⎥,π4=⎡⎤⎢⎥,312⎡⎤-=-⎢⎥⎢⎥.令3125S =+,求S ⎡⎤⎢⎥的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈)思路分析:考点解剖:本题主要考查导数、函数单调性、不等式证明以及分类讨论、推理能力. 解题思路:(Ⅰ)先求出函数()f x 的导函数,然后利用导函数的性质求最小值; (Ⅱ)通过取11,x x n n==-,利用函数()f x 的单调性求证;(Ⅲ)令13r =,n 分别取值81,82,…,125,利用(Ⅱ)的结论解题.解答过程:解:(Ⅰ)因为()(1)(1)(1)(1)[(1)1]r r f x r x r r x '=++-+=++-,令()0f x '=,解得0x =. 当10x -<<时,()0f x '<,所以()f x 在(1,0)-内是减函数; 当0x >时,()0f x '>,所以()f x 在(0,)+∞内是增函数.故函数()f x 在0x =处取得最小值(0)0f =. (Ⅱ)由(Ⅰ),当(1,)x ∈-+∞时,有()(0)0f x f ≥=,即:1(1)1(1)r x r x ++≥++,且等号当且仅当0x =时成立,故当1x >-且0x ≠时,有1(1)1(1)r x r x ++>++. ① 在①中,令1x n =(这时1x >-且0x ≠),得111(1)1r r n n+++>+.上式两边同乘1r n +,得:11(1)(1)r r r n n n r +++>++,即:11(1).1r r rn n n r +++-<+ ②当1n >时,在①中令1x n=-(这时1x >-且0x ≠),类似可得: 11(1).1r r rn n n r ++-->+ ③ 且当1n =时,③也成立. 综合②,③得:1111(1)(1).11r r r r rn n n n n r r ++++--+-<<++ ④ (Ⅲ)在④中,令13r =,n 分别取值81,82,83,…,125,得: 44443333338180(8281)44-<-(), 44443333338281(8382)44--(), 44443333338382(8483)44-<<-(, ………4444333333125124(126125)44-<<-(). 将以上各式相加,并整理得:444433333312580(12681)44S -<<-(). 代入数据计算,可得:4433312580210.24-≈(),4433312681210.94-≈().由S ⎡⎤⎢⎥的定义,得211S =⎡⎤⎢⎥. 规律总结:本题要注意通过取特殊值1x n=-,从而与不等式的证明巧妙的联系在一起.在解题过程中要注意定义域的范围的确定,否则极易出错.。

2013年高考山东卷试题及答案解析(理科数学)

2013年高考山东卷试题及答案解析(理科数学)

2013年山东卷高考理数真题(解析版)理 科 数 学注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所胡题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷与答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( ) A. 2+I B.2-I C. 5+I D.5-i【答案】D【解析】由(z-3)(2-i)=5,得55(2)5(2)3332352(2)(2)5i i z i i i i i ++=+=+=+=++=+--+,所以5z i =-,选D.2.设集合A={0,1,2},则集合B={x-y |x ∈A, y ∈A }中元素的个数是( ) A. 1B. 3C. 5D.9【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=--,即{2,1,0,1,2}B =--,有5个元素,选C.3.已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+1x,则f(-1)= ( ) A. -2 B. 0 C. 1 D. 2【答案】A【解析】因为函数为奇函数,所以(1)(1)(11)2f f -=-=-+=-,选A.4.已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为94,底面积是边长为 3的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 ( ) A. 512πB.3πC. 4πD. 6π【答案】B【解析】取正三角形ABC 的中心,连结OP ,则PAO ∠是PA 与平面ABC 所成的角。

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。

2013年高考试题分类汇编(程序框图)

2013年高考试题分类汇编(程序框图)

2013年高考试题分类汇编(程序框图)1.(2013·全国卷Ⅰ·文理科)执行右面的程序框图,如果输入的[1,3]t∈-,则输出的S属于A.[3,4]- B.[5,2]- C.[4,3]- D.[2,5]-2.(2013·全国卷Ⅱ·理科)执行右面的程序框图,如果输入的10N =,那么输出的S=A.11112310++++ B.11112!3!10!++++C.11112311++++ D.11112!3!11!++++3.(2013·全国卷Ⅱ·文科)执行右面的程序框图,如果输入的4N =,那么输出的S =A.1111234+++B.1111232432+++⨯⨯⨯ C.111112345++++111112324325432++++⨯⨯⨯⨯⨯⨯4.(2013·山东卷·理科)执行右面的程序框图,若输入的ε的值为025,则输出的n 的值为 .5.(2013·安徽卷·文理科)如图所示,程序框图(算法流程图)的输出结果是A.16B.25C.3D.11126.(2013·浙江卷·理科)某程序框图如图所示,若该程序运行后输出的值是95,则aA.4 B.5 C.6 D.77.(2013·浙江卷·文科)某程序框图如图所示,则该程序运行后输出的值等于______.8.(2013·北京卷·文理科)执行如图所示的程序框图,输出的S 值为A.1B.23C.1321 D.6109879.(2013·天津卷·文理科)阅读右边的程序框图,运行相应的程序,则输出n的值为A .7B .6C .5D .410.(2013·福建卷·文科)阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n后,输出的(10,20)S∈那么n的值是A.3 B.4 C.5 D.611.(2013·辽宁卷·理科)执行如图所示的程序框图,若输入10n=,则输出S=A.511B.1011C.3655D.725512.(2013·辽宁卷·文科)执行如图所示的程序框图,若输入8n=,则输出S=A.511B.1011C.3655D.725513.(2013·湖南卷·文理科)执行如图所示的程序框图,如果输入1a =,2b =,则输出a 的值是 .14.(2013·江西卷·文理科)阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为A.22s i =-B.21s i =-C.2s i =D.24s i =+S15.(2013·湖北卷·理科)阅读如图所示的程序框图,运行相应的程序,输出的结果i= .入m的值为2,则输出的结果i= .17.(2013·重庆卷·理科)执行如图所示的程序框图,如果输出3s =,那么判断框内应填入的条件是A.6k ≤B.k 8k ≤ D.9k ≤18.(2013·广东卷·文理科)执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为 .。

2013年山东高考数学理科试卷(带详解)

2013年山东高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。

2、第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()P AB P A P B = 。

第Ⅰ卷(共60分)一、选择题:本大题共12小题。

每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数z 满组(3)(2i)5z --=(z 为虚数单位),则z 的共轭复数z 为 ( ) A. 2i + B. 2i - C.5i + D. 5i - 【测量目标】复数代数形式的四则运算.【考查方式】给出复数的等式,求它的共轭复数. 【难易程度】容易. 【参考答案】D【试题解析】由(3)(2i)5z --=,得5(2i)35i,5i.(2i)(2i)z z +=+=+∴=--+故选D.2.已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是 ( ) A. 1 B.3 C.5 D. 9【测量目标】集合的含义.【考查方式】给出集合的关系,求集合的元素. 【难易程度】容易. 【参考答案】C【试题解析】当x =0,y =0时,0x y -=;当x =0,y =1时,1x y -=-;当x =0,y =2时,2x y -=-;x =1,y =0时,1x y -=;当x =1,y =1时,0x y -=;当x =1,y =2时,1x y -=-;当x =2,y =0时,2x y -=,当x =2,y =1时,1x y -=;当x =2,y =2时,0x y -=.根据集合中元素的互异性知,B 中点的元素有0,1,2,1,2,--共5个.3.已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f ( ) A.-2 B.0 C. 1 D.2【测量目标】函数的奇偶性.【考查方式】利用函数的奇偶性质求函数值. 【难易程度】中等. 【参考答案】A【试题解析】当x >0时,21(),(1) 2.f x x f x=+∴=而f (x )为奇函数,(1)(1) 2.f f ∴-=-=-4.已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 ( )A.5π12 B. π3 C. π4 D. π6【测量目标】二面角的大小和柱的体积.【考查方式】给出几何体的相关性质,求二面角的大小. 【难易程度】中等 【参考答案】B【试题解析】如图所示,P 为正三角形111A B C 的中心,设O 为△ABC 的中心,由题意知:PO ,ABC ⊥平面连接OA ,则PAO ∠即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB BC AC ==则2S ==,1119,4ABC A B C V S PO PO -=⨯=∴=又1,tan POAO PAO AO==∴∠==π.3PAO =故选B .第4题图Twj825.将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 ( )A.3π4 B.π4 C. 0 D. π4-【测量目标】三角函数的平移问题.【考查方式】通过得到是偶函数求平移的距离. 【难易程度】中等. 【参考答案】B【试题解析】A 选项得到sin 2y x =-为奇函数;B 选项得到cos 2y x =为偶函数.C 选项得到πsin(2)4y x =+为非奇非偶函数.D 选项得到sin 2y x =为奇函数.故选B.6.在平面直角坐标系xOy 中,M 为不等式组220210,380x y x y x y --⎧⎪+-⎨⎪+-⎩,………所表示的区域上一动点,则直线OM的斜率的最小值为 ( ) A. 2 B. 1 C. 13-D.12-【测量目标】二元线性规划求最值.【考查方式】给出限制条件方程,求最小斜率. 【难易程度】中等. 【参考答案】C【试题解析】画出如图可行域可知,由210,380x y x y +-=⎧⎨+-=⎩得(3,1)C -当M 与C 重合时,OM 的斜率最小,13OM k =-.第6题图Twj847.给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【测量目标】充分必要条件.【考查方式】推测命题之间的关系. 【难易程度】容易. 【参考答案】A【试题解析】p 是q 的必要不充分条件,则q 是p 充分不必要条件.8.函数cos sin =+y x x x 的图象大致为Twj77 Twj78 Twj79 Twj80第8题图A B C D【测量目标】函数图象的判断.【考查方式】给出函数解析式判断函数的图象. 【难易程度】中等. 【参考答案】D 【试题解析】当π2x =时,y =1,排除C,当π2x =-时,1y =-,排除B ,当πx =时,π<0,A,y =-排除故选D.9.过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为 ( )A. 230+-=x yB. 230--=x yC. 430--=x yD. 430+-=x y【测量目标】直线与圆的位置关系.【考查方式】给出直线和圆的位置关系,求直线的方程. 【难易程度】中等. 【参考答案】A【试题解析】设(3,1),P 圆心(1,0)C ,切点为A,B ,则P ,A,C,B 四点共圆,且PC 为圆的直径,∴四边形P ABC 的外接圆的方程为2215(2)+()24x y --=,圆C:22(1)1x y -+=,相减的230x y +-=,即为直线的方程.10.用0,1,⋅⋅⋅,9十个数字,可以组成有重复数字的三位数的个数为 ( )A. 243B. 252C. 261D. 279【测量目标】排列组合的应用.【考查方式】用数字的组合来考查排列组合. 【难易程度】较难. 【参考答案】B【试题解析】9位数一共可以组成900个数,其中无重复的三位数为998648⨯⨯=(个),∴有重复数字的三位数有900648=252-(个).11.抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p ( )A.B. C.D.【测量目标】圆锥曲线的综合问题.【考查方式】通过限制条件求曲线基本要素. 【难易程度】较难. 【参考答案】D【试题解析】 双曲线222:1,3x C y -=∴又焦点为(2,0),F渐近线方程为y x =.抛物线方程1C :21(0),2y x p p=>焦点为(0)2p F ',.设00(,),M x y 则22001201122.24o px p p y x k k p x -==∴=-又0011,,33x x y x y x p pp =''=∴===联立解的.12.设正实数,,x y z 满足22340.-+-=x xy y z 则当xy z 取得最大值时,212+-x y z的最大值为 ( ) A. 0 B. 1 C.94D. 3 【测量目标】基本不等式最值.【考查方式】给出关系式,求不等式的最大值. 【难易程度】较难. 【参考答案】B【试题解析】2234(0,0,0),x x xy y x y z =-+>>>22111434433xy xy x y z x xy y y x∴===-+-+-=?,当且仅当42x y x y y x==时,即时等号成立,此时222222122121342,+(1)1,22z x xy y y x y z y y y y =-+=∴-=+-=--+∴当y =1时,211x y z+-的最大值为1第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。

2013高考 数学(理)真题专业解析(全国卷)汇总

2013高考 数学(理)真题专业解析(全国卷)汇总

2013年普通高等学校招生全国统一考试数学试卷(理科)(全国卷)解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合={1,2,3}M∈∈,则M中元素的个数为,,={x|x=a+b,a A,b B}A,B={45}()A.3 B.4 C.5 D.6答案:B思路分析:考点解剖:本题主要考查集合的性质与分类讨论思想.解题思路:弄清集合M中的元素与集合A和集合B中元素的关系,从而求集合M中的元素即可.解答过程:集合B中的元素4分别与集合A中的元素求和为5、6、7,集合B中的元素5分别与集合A中的元素求和得6、7、8.所以M={5,6,7,8},元素个数为4.故选B.规律总结:要弄清集合的表示方法,特别是描述法,容易忽略互异性.2.3(1)=()A.-8 B.8 C.8i- D.8i答案:A思路分析:考点解剖:本题考查复数的运算.解题思路:运用完全平方和公式与平方差公式化简复数.解答过程:3=-=-.故选A.(1)(12)8规律总结:要记住21i=-这个复数里面最常用的结论,还容易计算出错.3.已知向量(1,1)+⊥-,则λ=()=+,若()()m n m nmλ=+,(2,2)nλA.-4 B.-3 C.-2 D.-1答案:B思路分析:考点剖析:本题主要考查向量的坐标运算与两向量垂直.解题思路:运用“若a b ⊥,则有0a b ⋅=”及“22||a a =”即可求解.解答过程:因为()()m n m n +⊥-,所以有22222()()[(1)1][(2)2]0m n m n m n λλ+⋅-=-=++-++=,从而有3λ=-.故选B.规律总结:要记住两向量垂直的充要条件是它们的数量积为零,可能数量积分式会用错. 4.已知函数f(x)的定义域为(1,0)-,则函数(21)f x +的定义域( ) A .(1,1)- B .1(1,)2-- C .(1,0)- D .1(,1)2答案:B 思路分析:考点剖析:本题主要考查复合函数的定义域.解题思路:弄清函数()f x 与(21)f x +定义域的关系求解即可. 解答过程:由1210x -<+<,得112x -<<-.故选B.规律总结:由两函数的定义域的关系,列出不等式,求解. 5.函数21()log (1)f x x=+(x>0)的反函数1()f x -=( )A .1(0)21x x >- B .1(0)21x x ≠- C .21()x x R -∈ D .21(0)x x -> 答案:A 思路分析:考点剖析:本题主要考查求反函数的解析式.解题思路:由原函数的解析式解出x (即用y 表示x ),即可得反函数的解析式. 解答过程:由121yx =+,得121y x =-.因此11()(0)21x f x x -=>-.故选A. 规律总结:对于求反函数的解析式,关键是把原函数的解析式中的x 当作未知数求解. 需要特别注意要求反函数的定义域也就是求原函数的值域.6.已知数列{}n a 满足130n n a a ++=,243a =-,则{}n a 的前10项和等于( )A .106(13)--- B .101(13)9- C .103(13)-- D .103(13)-+ 答案:C 思路分析:考点剖析:本题主要考查等比数列的判断方法与求和公式. 解题思路:先判断数列为等比数列,再用求和公式求解. 解答过程:由于113n n a a +=-,从而知数列{}n a 是首项14a =,公比13q =-的等比数列,因此前101014[1()]33(13)113---=++.故选C. 规律总结:根据数列的递推关系,若为特殊数列直接代公式求解,若为其它数列再选用其它方法.7.84(1)(1)x y ++的展开式中22x y 的系数是( )A .56B .84C .112D .168 答案:D 思路分析:考点解析:本题主要考查二项式定理解题思路:运用求二项式定理展开式系数的方法求解. 解答过程:8(1)x +展开式中2x 的系数是2828C =,4(1)y +展开式中2y 的系数是246C =,所以84(1)(1)x y ++的展开式中22x y 的系数是286168⨯=.故选D.规律总结:解决二项式定理系数问题常用通项公式k n kkna b C-求解,容易计算出错或用错公式.8.椭圆C:22143x y +=的左右顶点分别为12,A A ,点P 在C 上且直线2PA 斜率的取值范围是[2,1]--,那么直线1PA 斜率的取值范围是( )A .13[,]24B .33[,]84C .1[,1]2D .3[,1]4答案:B 思路分析:考点剖析:本题主要考查直线与椭圆的位置关系、数形结合的思想. 解题思路:先设出点P 的坐标,然后得直线2PA 与直线1PA 斜率的积为常数求解.解答过程:设P 点坐标为00(,)x y ,则2200143x y +=,2002pA y k x =-,1002pA y k x =+,于是122200222003334244PA PA x y k k x x -⋅===---,故12314PA PA k k =-.2[2,1]PA k ∈--133[,]84PA k∴=.故选B. 规律总结:设出点P 的坐标,再由斜率公式是求解此类问题的常用方法.容易分析计算出错.9.若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( ) A .[1,0]- B .[1,)-+∞ C .[0,3] D .[3,)+∞ 答案:D 思路分析:考点剖析:本题主要考查导数判断函数的单调性、恒成立问题,考查化归转化思想. 解题思路:先将问题转化为不等式恒成立问题,再转化为求函数最值问题. 解答过程:由条件知21()20f x x a x =+-≥在1(,)2+∞上恒成立,212a xx≥-在1(,)2+∞上恒成立. 212y x x =-在1(,)2+∞上为减函数,max 211232()2y <-⨯=,3a ∴≥,故选D. 规律总结:运用函数的导数的应用将含有参数的函数的单调性转化为不等式恒成立问题是解决此类问题的常用方法.10.已知正四棱柱1111ABCD A BC D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B.3D .13答案:A 思路分析:考点剖析:本题主要考查直线与平面所成的角解题思路:先证明线面垂直,找出线面角的平面角,再求三角形的内角. 解答过程:如下图,连接AC 交BD 于点O ,连接1C O ,过C 作1CH C O ⊥于H11BD ACBD AA AC AA A ⊥⎫⎪⊥⇒⎬⎪⋂=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11CH BDCH C O BD C O O ⊥⎫⎪⇒⊥⎬⎪⋂=⎭1CH C BD ⇒⊥平面HDC ∴∠为CD 与平面1BDC设122AA AB ==,则2AC OC ==,1C O ====由等面积法,得11C O CH OC CC ⋅=⋅,即222CH =⋅,23CH ∴=,223sin 13HC HDC DC ∴∠===.故选A.规律总结:求线面角的常用方法是先找出线面角的平面角再转化为求三角形的内角,易出现平面角找不对而出错.11.已知抛物线C:28y x =与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B两点,若0MA MB ∙=,则k=( )A .12B.2C.2 答案:D 思路分析:考点剖析:本题主要考查直线与抛物线的位置关系与向量知识的交汇.解题思路:先设出A 、B 两点的坐标,再将0MA MB ∙=化成只含k 的等式求解. 解答过程:由题意知抛物线C 的焦点坐标为,则直线AB 的方程为(2)y k x =-, 其代入28y x =得22224(2)40k x k x k -++=设11(,)A x y ,22(,)B x y ,则21224(2)k x x k ++=,124x x =. ①由1122(2)(2)y k x y k x =-⎧⎨=-⎩有1212212()4[122(12)4]y y k x x k y y k x x x x +=+-⎧⎨⋅=-++⎩②0MA MB ⋅=∴ 1122(2,2)(2,2)0x y x y +-∙+-=所以:121212122()2()80x x x x y y y y +++-++= ③ 由①②③解得k=2,故选D规律总结:解这类问题通常用一种设而不求(本题设出点A 、B 的坐标而不必求出)的方法求解,易选错方法与增加计算量.12.已知函数()cos sin 2f x x x =,下列结论中错误的是( )A .()y f x =的图像关于点(,0)π中心对称B .()y f x =的图像关于直线2x π=对称C .()f x.()f x 既是奇函数,又是周期函数 答案:C 思路分析:考点剖析:本题主要考查三角恒等变换与三角函数的图象和性质.解题思路:本题首先用同角三角函数的基本关系式中的平方关系,通过换元,再用导数求最值.解答过程:由题意知22()2cos sin 2(1sin )sin f x x x x x ==-令sin ,[1,1],t x t =∈- 则23()2(1)22g t t t t t =-=-令2`()260g t t =-=,得t =当1t =±时,函数值为0;(1)0g ±=,(g =,g =所以max()g x =,即()f x.故选C.规律总结:解本类选择题通过观察从容易判断的选项入手,恰好选项C 求最值是一种非常常见需要熟练掌握的,易看错求错,换成正确答案;对称性,奇偶性,最值判断方法没有掌握导致出错.二、填空题:本大题共4小题,每小题5分. 13.已知α是第三象限角,1sin 3α=-,则cot α=答案:思路分析:考点剖析:本题主要考查三角恒等变换化简求值. 解题思路:先求出cos α,再用公式cos cot sin ααα=求解.解答过程:由题意知cos 3α===-,故c o sc o t 22s i nααα==规律总结:求解三角三函数的问题须要牢记公式并灵活运用,易忽略象限角致符号出错. 14. 6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答) 答案:480 思路分析:考点剖析:本题主要考查排列问题;解题思路:先将排除甲、乙外的4人,再排甲、乙. 解答过程:先排除甲、乙外的4人,方法有44A 再将甲、乙插入这4人形成的5个间隔中,有25A 的排法,因此甲、乙不相邻的不同排法有4245A A =480规律总结:不相邻问题常用的解决方法就是插空法. D.若直15.记不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,所表示的平面区域为线(1)y a x =+与D 有公共点,则a 的取值范围是答案:1[,4]2思路分析:考点剖析:本题主要考查线性规划问题.解题思路:先作出平面区域D ,再由直线(1)y a x =+的过定点求解. 解答过程:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线(1)y a x =+过定点(1,0)C -,由图并结合题意可知12BCk =,4AC k =,若直线(1)y a x =+与平面区域D 有公共点,则142a ≤≤. 规律总结:解决此类问题常用的方法是准确作图运用数形结合的思想方法求解. 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为060,则球O 的表面积等于答案:16π思路分析:考点剖析:本题主要考查空间几何体、空间想象能力与分析问题的能力. 解题思路:先由二面角求出球的半径,再用表面积公式求解.解答过程:如右图,没MN 为两圆的公共弦,E 为MN 的中点,则OE MN ⊥,KE MN ⊥ 结合题意可知60OEK ∠=︒,又MN=R ,OMN ∴∆为正三角形,OE R∴=又OK EK ⊥,3sin 602OE R ∴=⋅︒=2R ∴=.2416S R ππ∴== 规律总结:解决球类问题常运用弦的中点与球(圆)心的连线将空间问题转化为平面问题.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 等差数列{}n a 的前n 项和为n S .已知232S a =,且124,,S S S 成等比数列,求{}na 的通项公式.答案:3n a =或21n a n =-思路分析:考点剖析:本题主要考查等差数列的通项公式与前n 项和公式及等比中项的概念. 解题思路:(1)先求出2a 与公差,(2)求通项公式.解答过程:设数列{}na 的公差为d .由232S a =得2223a a =,故20a =或23a =. 由124,,S S S 成等比数列得2214S S S =⋅.又12S a d =-,222S a d =-,4242S a d =+. 故2222(2)()(42)a d a d a d -=-+.若20a =,则222d d =-,所以0d =,此时0n S =,不合题意;若23a =,则2(6)(3)(122)d d d-=-+,解得0d =或2d =.因此{}na 的通项公式为3n a =或21na n =-规律总结:关于等差、等比数列的问题,通常的解法是灵活运用通项公式与求和公式. 18.(本小题满分12分)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,()()a b c a b c ac ++-+=.(Ⅰ)求B;(Ⅱ)若sin sin A C =,求C.答案:(Ⅰ)120B =︒;(Ⅱ)15C =︒或45C =︒ 思路分析:考点剖析:本题主要考查解斜三角形.解题思路:(1)先用佘弦定理求得角B ,(2)用c o s ()c o s ()2s i n s i n A C A C A C-=++求解.解答过程:(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a c b ac +-=-由佘弦定理得2221cos 22a cb B ac +-==-,因此120B =︒ (Ⅱ)由(Ⅰ)知60A C +=︒,所以cos()cos cos sin sin cos cos sin sin 2sin sin cos()2sin sin 112242A C A C A CA C A C A C A C A C -=+=-+=++=+⨯=故30A C -=︒或30A C -=-︒,因此15C =︒或45C =︒规律总结:通常解正佘弦定理的运用问题要根据已知条件的特点恰当选用定理求解,若与三角函数综合还须要恰当凑角灵活运用公式,三角形求角通常还要用内角和定理.19.(本小题满分12分)如图,四棱锥P-ABCD 中,090ABC BAD ∠=∠=,2BC AD =,PAB ∆和PAD ∆都是等边三角形.(Ⅰ)证明:PB CD ⊥; (Ⅱ)求二面角A-PD-C 的大小. 答案:(Ⅰ)详见解答过程;(Ⅱ)arccos3π-思路分析:考点剖析:本题主要考查空间直线与直线垂直的证明和求二面角.解题思路:(1)运用三垂线定理证明空间线线垂直,(2)找出二面角的平面角转化为解三角形或用空间向量求解.解答过程:(Ⅰ)取BC 的中点为E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O.连结OA ,OB ,OD ,OE.由PAB ∆和PAD ∆都是等边三角形知PA=PB=PD.所以OA=OB=OD ,即点O 为正方形ABED 对角线的交点,故OE BD ⊥,从而PB OE ⊥.因为O 是BD 的中点,E 是BC 的中点,所以//OE CD .因此PB CD ⊥(Ⅱ)解法一:由(Ⅰ)知PB CD ⊥,PO CD ⊥,PB PO P ⋂=.故CD ⊥平面PBD.又PD PBD ⊂平面,所以CD PD ⊥. 取PD 的中点为F ,PC 的中点G ,连结FG. 则FG//CD ,FG ⊥PD连结AF ,由APD ∆为等边三角形可得AF PD ⊥. 所以AFG ∠为二面角A-PD-C 的平面角. 连结AG ,EG ,则EG//PB. 又PB AE ⊥,所以EG AE ⊥. 设AB=2,则AE=112EG PB == 故3AG ==在AFG ∆中,12FG CD ==AF ,3AG =.所以222cos 2FG AF AG AFG FG AF +-∠==⨯⨯.因此二面角A-PD-C的大小为π-.解法二:由(Ⅰ)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为z 轴的正方向建立如图所示的空间直角坐标系O-xyz. 设||2AB =,则(A,(0,D,C,PPC =,(0,PD =,(2,0,AP =,(2,AD =.设平面PCD 的法向量为1(,,)n x y z=,则1(,,)0n PC x y z ⋅=⋅=,1(,,)(0,0n PD x y z ⋅=⋅=.可得20x y z --=,0y z +=. 取1y =-,得0,1x z ==,故1(0,1,1)n =-设平面PAD 的法向量为2(,,)n m p q,则2(,,)0n AP m p q ⋅=⋅=,2(,,)0n AD m p q ⋅=⋅=,可得0m q +=,0m q -=.取1m =,得1p =,1q =-,故2(1,1,1)n =-.于是121212cos ,3||||n n n n n n ⋅<>==-⋅由于12,n n <>等于二面角A-PD-C 的平面角,所以二面角A-PD-C 的大小为a r c c π-.规律总结:解决立体几何问题通常有几何法与向量法.用几何法求解时,考查空间想象能力运用化归转化的数学思想方法,有时需要灵活运用线线、线面、面面位置关系的判定定理与性质定理,有时需要把空间问题转化为平面几何问题求解;运用向量法关键是找三条共点两两垂直的直线建立坐标系并运用好法向量与相关公式.20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结束相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X 表示前4局中乙当裁判的次数,求X 的数学期望. 答案:(Ⅰ)14(Ⅱ)98思路分析:考点剖析:本题主要考查独立性事件的概率与随机变量的数学期望.解题思路:(1)运用独立性事件的概率公式求得第4局甲当裁判的概率,(2)分别求出各个随机变量对应的概率再运用数学期望的公式求解.解答过程:(Ⅰ)记1A 表示事件“第2局结果为甲胜“,2A 表示事件“第3局甲参加比赛时,结果为甲负“.A 表示事件“第4局甲当裁判“. 则A=12A A ⋅.12121()()()()4P A P A A P A P A =⋅=⋅=(Ⅱ)X 的可能值为0,1,2.记3A 表示事件“第3局乙和丙比赛时,结果为乙胜丙“1B 表示事件“第1局结果为乙和丙”.2B 表示事件“第2局乙和甲比赛时,结果为乙胜甲”.3B 表示事件“第3局乙参加比赛时,结果为乙负”.则1231231(0)()()()()8P X P B B A P B P B P A ==⋅⋅=⋅⋅=13131(2)()()()4P X P B B P B P B ==⋅=⋅=115(1)1(0)(2)1848P X P X P X ==-=-==--=.90(0)1(1)2(2)8EX P X P X P X =⋅=+⋅=+⋅==规律总结:解决概率问题时,通常要认真读题弄清独立事件与互斥事件正确求出概率,求解数学期望时可用随机变量的分布列的性质检验计算结果并掌握快速准确计算的方法.21.(本小题满分12分) 已知双曲线C:22221x y a b -=(a>0,b>0)的左、右焦点分别为1F 、2F ,离心率为3,直线y=2与C(Ⅰ)求a,b;(Ⅱ)设过2F 的直线l 与C 的左、右两支分别交于A 、B 两点,且11||||AF BF =,证明:2||AF 、||AB 、2||BF 成等比数列.答案:(Ⅰ)1,a b ==(Ⅱ)详见解答过程思路分析:考点剖析:本题主要考查双曲线的几何性质和直线与双曲线的位置关系.解题思路:(1)由离心率即可得a 和b 的关系,(2)再由直线y=2与C 的两个交点间的(Ⅰ),(3)由直线l 与C 的方程联立消y 后运用一元二次方程根与系数的关系和两点间的距离公式求解.解答过程:(Ⅰ)由题设知3ca=,即2229a b a+=,故228b a =.所以C 的方程为22288x y a -=.将2y =代入上式,求得x =由题设知=21a =.所以1,a b ==(Ⅱ)由(Ⅰ)知,1(3,0)F -,2(3,0)F ,C 的方程为2288x y -= ①由题意可设l 的方程为(3)y k x =-,||k <,代入①并化简得2222(8)6980k x k x k --++=.设11(,)A x y ,22(,)B x y ,则11x ≤,21x ≥,212268k x x k +=-,2122988k x x k +⋅=-.于是,11||(31)AF x ==-+.12||31BF x ===+.由12||||AF BF =得12(31)31x x -+=+,即1223x x +=-.226283k k =--,解得245k =,从而12199x x ⋅=-由于21||13AF x ===-.22||31BF x ===-.故2212||||||23()4AB AF BF x x =-=-+=.221212||||3()9116AF BF x x x x ⋅=+--=因而222||||||AF BF AB ⋅=,所以2||AF 、||AB 、2||BF 成等比数列.规律总结:解决圆锥曲线类的解答题时,需要熟练掌握圆锥曲线的几何性质、定义、标准方程,对于直线与圆锥曲线问题通常的解决方法是联立直线与双曲线的方程然后消元运用一元二次方程根与系数的关系及其它解析几何的常见的公式(如两点间的距离公式,斜率公式…)求解.22.(本小题满分12分) 已知函数(1)()ln(1)1x x f x x xλ+=+-+.(Ⅰ)若0x ≥时,()0f x ≤,求λ的最小值; (Ⅱ)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n n a a n-+>. 答案:(Ⅰ)12;(Ⅱ)详见解答过程思路分析:考点剖析:本题考察函数与数列的综合应用,是一创新性题目,主要考察了学生对问题的分析、推理、解决;掌握函数、数列的性质,具有良好的分析、逻辑推理能力是解决本题的前提.解题思路:(1)运用导数即可求得λ的最小值,(2)运用所要证明的不等式与问题(Ⅰ)中结论的联系即可求解.解答过程:(Ⅰ)由已知(0)0f =,2'2(12)()(1)x x f x x λλ--=+,'(0)0f =.若12λ<,则当02(12)x λ<<-时,'()0f x >,所以()0f x >. 若12λ≥,则当0x >时,'()0f x <,所以当0x >时,()0f x <. 综上,λ的最小值是12.(Ⅱ)证明:令12λ=.由(Ⅰ)知,当0x >时,()0f x <, 即(2)ln(1)22x x x x+>++.取1x k =,则211ln()2(1)k k k k k++>+. 于是212111()422(1)n n n k n a a n k k -=-+=++∑21212(1)n k n k k k -=+=+∑211lnn k nk k -=+>∑ln 2ln n n =- ln 2=.所以21ln 24n n a a n-+>. 规律总结:函数与数列综合题考在解答案题中考查,通过构造、推理、分类、放缩等方法,融知识、能力与素质与一体,综合问题对分析问题,解决问题能力具有很高要求.。

【解析分类汇编系列二:北京2013(一模)数学理】12.程序与框图 Word版含答案

【解析分类汇编系列二:北京2013(一模)数学理】12.程序与框图 Word版含答案

【解析分类汇编系列二:北京2013(一模)数学理】12程序与框图
1.(2013届北京石景山区一模理科)4.执行右面的框图,输出的结果s的值为()
A.-3 B.2 C.
1
2
-D.
1
3
【答案】A
第1次循环,S=﹣3,i=2;第2次循环,S=﹣,i=3;第3次循环,S=,i=4;
第4次循环,S=2,i=5;第5次循环,S=﹣3,i=6;

框图的作用是求周期为4的数列,输出S的值,不满足2014≤2013,退出循环,循环次
数是2013次,即输出的结果为﹣3,故选A.
2.(2013届北京大兴区一模理科)执行如图所示的程序框图.若5
n=,则输出s的值是()A.-21 B.11
C.43 D.86
【答案】A
第一次循环,11(2)1,2s i =+-=-=;第二次循环,21(2)3,3s i =-+-==;
第三次循环,33(2)5,4s i =+-=-=;第四次循环,41(2)11,5s i =-+-==,第五次循环,511(2)21,6s i =+-=-=,此时不满足条件,输出21s =-,所以选A.
3.(2013届北京丰台区一模理科)执行右边的程序框图,输出k 的值是
( ) A .3 B .4 C .5 D .6
【答案】A。

2013年全国高考数学理科试卷解析版(江西卷)

2013年全国高考数学理科试卷解析版(江西卷)

2013年普通高等学校招生全国统一考试(江西卷)理科数学解析本试卷分第I 卷(选择题)和第II 卷(非选择题0两部分。

第I 卷1至2页,第II 卷3至4页,满分150分,考试时间120分钟。

考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第一卷一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i2. 函数ln(1-x)的定义域为A .(0,1) B.[0,1) C.(0,1] D.[0,1]3. 等比数列x ,3x+3,6x+6,…..的第四项等于A .-24 B.0 C.12 D.244. 总体有编号为01,02,…,19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为A.08B.07C.02D.015. (x 2-32x )5展开式中的常数项为 A.80 B.-80 C.40 D.-406.若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为 A.123S S S << B.213S S S <<C.231S S S <<D.321S S S <<7.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为A.2*2S i =-B.2*1S i =-C.2*S i =D.2*4S i =+8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为,m n ,那么m n +=A.8B.9C.10D.119.过点引直线l 与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于A.y EB BC CD =++3B.3-C.3±10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间l //1l ,l 与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D两点,设弧FG 的长为(0)x x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是第Ⅱ卷注意事项:第卷共2页,须用黑色墨水签字笔在答题卡上书写作答。

2013全国高考1卷理科数学试题与答案解析

2013全国高考1卷理科数学试题与答案解析

WORD 格式整理2012 年普通高等学校招生全国统一考试理科数学 第 I 卷一、选择题: 本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

( 1)已知集合 A {1,2,3,4,5} , B {( x, y) |x A, yA, x y A} ,则 B 中所含元素的个数为 ( A ) 3 ( B )6 (C ) 8 (D ) 10( 2)将 2 名教师, 4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1 名教师和2 名学生组成,不同的安排方案共有 ( A ) 12 种 ( B ) 10 种 ( C ) 9种 (D ) 8 种( 3)下面是关于复数 z 2 的四个命题 1ip 1 : | z | 2 p 2 : z 22i p 3 : z 的共轭复数为 1 i p 4 : z 的虚部为1其中真命题为(A ) p 2 , p 3( B ) p 1 ,p 2( C ) p 2 ,p 4 ( D ) p 3 , p 4( 4)设 F 1, F 2 是椭圆 E : x2 y 21(a b 0) 的左、右焦点, P 为a 2b 23aF PF 是底角为 30 的等腰三角形,则直线 x 上的一点,2 2 1E 的离心率为(A) 1 2 3 4 (B) 3 (C) (D) 2 4 5( 5)已知 { a n } 为等比数列, a 4a 7 2 , a 5 a 6 8 ,则 a 1 a10(A) 7 (B) 5 (C) 5 (D) 7( 6)如果执行右边的程序图,输入正整数N ( N 2) 和实数 a 1 , a 2 ,..., a N 输入A, B , 则(A) A B 为 a 1 , a 2 ,..., a N 的和( B )AB为 a ,a ,..., a 的算式平均数 2 1 2 N( C ) A 和 B 分别是 a 1 , a 2 ,..., a N 中最大的数和最小的数专业技术参考资料WORD 格式整理( D ) A 和 B 分别是 a 1 , a 2 ,..., a N 中最小的数和最大的数( 7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( A ) 6 (B)9 ( C ) 12 ( D ) 18( 8)等轴双曲线 C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 216x 的准线交于 A, B 两点,| AB | 4 3 ,则 C 的实轴长为( A ) 2 ( B ) 2 2 ( C ) 4 ( D ) 8( 9)已知 0 ,函数 f (x) sin( x ) 在 , 单调递减,则 的取值范围4 2(A) [ 1 ,5 ](B) [ 1 , 3] (C) (0, 1 ](D) (0, 2]2 4 2 4 2( 10)已知函数 f ( x) 1 ,则 y f ( x) 的图像大致为1) ln(x x( 11)已知三棱锥 S ABC 的所有顶点都在球 O 的球面上,ABC 是边长为 1 SC 为 O的正三角形, 的直径,且 SC 2 ,则此棱锥的体积为(A)2(B)3 (C)2(D)2 6 63 2( 12)设点 P 在曲线 y 1 e x上,点 Q 在曲线 yln(2 x) 上,则 | PQ |的最小值为2(A) 1 ln 2 (B)2(1 ln2) (C) 1 ln 2 (D)2(1 ln 2) 专业技术参考资料WORD 格式整理第Ⅱ卷本卷包括必考题和选考题两部分。

2013年高考数学试题(16)算法框图

2013年高考数学试题(16)算法框图

1.(安徽理科第11题,文科第12题)如图所示,程序框图(算法流程图)的输出结果 是 .答案:15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. 2.(北京理科第4题)执行如图所示的程序框图,输出的s 值为(A )-3 (B )-12 (C )13(D )2 解:第一次:311212,1=+-==S i 开始,0==s i2,0==s i4<i否输出s结束是1+=i i11+-=s s skT T +=开始,0==k T ?105>T是输出k结束否1+=k k第二次:21131131,2-=+-==S i ;第三次:3121121,3-=+---==S i 第四次:21313,4=+---==S i ,退出循环,选D3.(北京文科第6题)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2 (B)3 (C)4 (D)5答案:C4.(福建文科5)阅读下图所示的程序框图,运行相应的程序,输出的结果是A.3B.11C.38D.123答案:B5.(福建理科第11题)运行如图所示的程序,输出的结果是_______。

开始1=a10<a否输出a结束22+=a a是答案:36、(湖南理科13)若执行如图3所示的框图,输入1231,2,3,2x x x x ====,则输出的数等于 。

答案:23解析:由框图的算法功能可知,输出的数为三个数的方差,则222(12)(22)(32)233S -+-+-==。

1=a2=bb a a +=PRINT aEND7.(湖南文科11)若执行如图2所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 .答案:154解析:由框图功能可知,输出的数等于12341544x x x x x +++==。

2013高考 数学(理)真题专业解析(四川卷)汇总

2013高考 数学(理)真题专业解析(四川卷)汇总

2013年普通高等学校招生全国统一考试数学试卷(理科)(四川卷)解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )A .{2}-B .{2}C .{2,2}-D .∅ 答案:A 思路分析:考点解剖:本题主要考查解方程与集合的基本运算.解题思路:此题准确的求出集A 、B 至关重要,产生两集合后,再求交集即可。

解答过程:易得{}2A =-,{}2,2B =-于是{}2A B =-规律总结:求集合的交与并,首先要正确的求出集合的具体元素或元素所满足的关系式,然后再交或并.2、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D 答案:B 思路分析:考点解剖:本题主要考查共轭复数的概念.解题思路:此题通过两共轭复数之间的关系即可产生结论。

解答过程:由两共轭复数的实部相同,虚部互为相反数,因此答案为B.规律总结:共轭复数的实部相同,虚部互为相反数,在复平面上关于x对称.3、一个几何体的三视图如图所示,则该几何体的直观图可以是()答案:D思路分析:考点解剖:本题主要考查三视图转化为几何体.解题思路:此题理解好三视图与几何体之间的关系即可。

解答过程:注意到俯视的两个圆,就可以产生结论.规律总结:对于由三视图产生几何体,一定要认真分析图形的特征,仔细分析每个面的形状的特点,然后产生最后结论.4、设x Z∈,集合A是奇数集,集合B是偶数集。

若命题:,2∀∈∈,则()p x A x B A.:,2p x A x B⌝∀∈∉B.:,2⌝∀∉∉p x A x BC.:,2⌝∃∉∈p x A x BD.:,2⌝∃∈∉p x A x B答案:D 思路分析:考点解剖:本题主要考查含有一个量词的命题的否定.解题思路:此题理解好含有一个量词的命题与其否定之间的形式转化即可。

2013年全国高考数学试题分类汇编算法初步与框图

2013年全国高考数学试题分类汇编算法初步与框图

第十二章算法初步与框图考点算法与程序框图1.(2013天津,3,5分)阅读下边的程序框图,运行相应的程序,则输出n的值为( )A.7B.6C.5D.4答案 D2.(2013安徽,3,5分)如图所示,程序框图(算法流程图)的输出结果为( )A. B. C. D.答案 C3.(2013陕西,4,5分)根据下列算法语句,当输入x为60时,输出y的值为( )输入x;If x≤50Theny=0.5*xElsey=25+0.6*(x-50)End If输出y.A.25B.30C.31D.61答案 C4.(2013重庆,5,5分)执行如图所示的程序框图,则输出的k的值是( )A.3B.4C.5D.6答案 C5.(2013北京,6,5分)执行如图所示的程序框图,输出的S值为( )A.1B.C.D.答案 C6.(2013山东,6,5分)执行两次如图所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为( )A.0.2,0.2B.0.2,0.8C.0.8,0.2D.0.8,0.8答案 C、7.(2013江西,7,5分)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A.S<8B.S<9C.S<10D.S<11答案 B8.(2013课标全国Ⅱ,7,5分)执行下面的程序框图,如果输入的N=4,那么输出的S=( )A.1+++B.1+++C.1++++D.1++++答案 B9.(2013辽宁,8,5分)执行如图所示的程序框图,若输入n=8,则输出S=( )A. B. C. D.答案 A10.(2013广东,5,5分)执行如图所示的程序框图,若输入n的值为3,则输出s的值是( )A.1B.2C.4D.7答案 C11.(2013湖北,13,5分)阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=.答案 412.(2013浙江,14,4分)若某程序框图如图所示,则该程序运行后输出的值等于.答案13.(2013湖南,12,5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为.答案9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013高考试题解析分类汇编(理数)12:程序框图一、选择题错误!未指定书签。

1.(2013年高考北京卷(理))执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .610987答案:C 框图首先给变量i 和S 赋值0和1. 执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S 的值为.2错误!未指定书签。

.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))某程序框图如图所示,若该程序运行后输出的值是59,则 ( )A .4=aB .5=aC .6=aD . 7=a答案:A :由已知可得该程序的功能是 计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则 2﹣=.∴a=4,3错误!未指定书签。

.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图所示,程序框图(算法流程图)的输出结果是( )A .16B .2524 C .34 D .1112答案:D .1211,1211122366141210=∴=++=+++=s s ,所以选D错误!未指定书签。

4.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))执行如题(8)图所示的程序框图,如果输出3s =,那么判断框内应填入的条件是( )A .6k ≤B .7k ≤C .8k ≤D .9k ≤(第5题图)答案:B【命题立意】本题考查程序框图的识别和运行。

第一次循环,2log 3,3s k ==,此时满足条件,循环;第二次循环,23log 3log 42,4s k =⋅==,此时满足条件,循环;第三次循环,234log 3log 4log 5,5s k =⋅⋅=,此时满足条件,循环;第四次循环,2345log 3log 4log 5log 6,6s k =⋅⋅⋅=,此时满足条件,循环;第五次循环,23456log 3log 4log 5log 6log 7,7s k =⋅⋅⋅⋅=,此时满足条件,循环;第六次循环,234567log 3log 4log 5log 6log 7log 83,8s k =⋅⋅⋅⋅⋅==,此时不满足条件,输出3s =,所以判断框内应填入的条件是7k ≤,选B.错误!未指定书签。

4.(2013年高考江西卷(理))阅读如下程序框图,如果输出5i=,那么在空白矩形框中应填入的语句为( )A .2*2S i =-B .2*1S i =-C .2*S i =D .2*4S i =+ 答案:C本题考查程序框图的识别和运行。

由条件知当3i =时,10S <,当5i =时,10S ≥。

当5i =时,A,B 不成立。

当3i =时,D 不合适,所以选C.错误!未指定书签。

5(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))阅读如图所示的程序框图,若输入的10k =,则该算法的功能是 ( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和 C .计算数列{}21n -的前10项和D .计算数列{}21n -的前9项和答案:C第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .6错误!未指定书签。

.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))执行右面的程序框图,如果输入的10N =,那么输出的S=( )A .1111+2310+++…… B .1111+2310+++……!!! C .1111+2311+++……D .1111+2311+++……!!!答案:B框图首先给累加变量S 和循环变量i 赋值, S=0+1=1,k=1+1=2;判断k >10不成立,执行S=1+,k=2+1=3; 判断k >10不成立,执行S=1++,k=3+1=4; 判断k >10不成立,执行S=1+++,k=4+1=5;…判断i >10不成立,执行S=,i=10+1=11; 判断i >10成立,输出S=.算法结束.选B .错误!未指定书签。

7.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))执行如图所示的程序框图,若输入10,n S ==则输出的 ( )A .511B .1011C .3655 D .7255答案:A第一次循环21,421s i ==-,第二次循环2211,62141s i =+=--,第三次循环222111,8214161s i =++=---,第四次循环,22221111,1021416181s i =+++=----,第五次循环,2222211111,1221416181101s i =++++=-----,此时输出222221111152141618110111s =++++=-----,因为21111()2111i i i =--+-,且2i i =+,所以11111115[()()()]2133591111s =-+-++-= ,选A.8错误!未指定书签。

.(2013年高考新课标1(理))运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-答案:A由判断框中的条件为t <1,可得: 函数分为两段,即t <1与t ≥1,又由满足条件时函数的解析式为:s=3t ;不满足条件时,即t ≥1时,函数的解析式为:s=4t ﹣t 2故分段函数的解析式为:s=,如果输入的t ∈[﹣1,3],画出此分段函数在t ∈[﹣1,3]时的图象, 则输出的s 属于[﹣3,4]. 故选A .9错误!未指定书签。

.(2013年高考陕西卷(理))根据下列算法语句, 当输入x 为60时, 输出y 的值为( )A .25B .30C .31D .61答案:C31)50(6.025,60=-⋅+=∴=x y x ,所以选C9错误!未指定书签。

.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为( )A .64B .73C .512D .585答案:B第一次循环,1,2S x ==;第二次循环,3129,4S x=+==;第三次循环,3947350S =+=>,满足条件输出73S =,选B.二、填空题10错误!未指定书签。

.( 2013年高考湖南卷(理))执行如图3所示的程序框图,如果输入1,2,a b a ==则输出的的值为_____9_____.答案:9本题考查程序框图的运行与识别。

第一次循环,123a =+=,第二次循环,325a =+=,第三次循环,527a =+=第四次循环,7298a =+=>,满足条件,输出9a =。

11错误!未指定书签。

.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))下图是一个算法的流程图,则输出的n 的值是________.答案:3经过了两次循环,n 值变为312错误!未指定书签。

.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为______.答案:7;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==;第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7.13错误!未指定书签。

.( 2013年高考湖北卷(理))阅读如图所示的程序框图,运行相应的程序,输出的结果i =___________.答案:5本题考查程序的运行与识别。

第一次循环,105,22a i ===;第二次循环,35116,3a i =⨯+==;第三次循环,168,42a i ===;第五次循环,84,52a i ===,此时满足条件输出5i =。

14错误!未指定书签。

.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))执行右图的程序框图,若输入的ε的值为0.25,则输出的n 的值为_____.答案:3第一次循环,10123,312,2F F n =+==-==,此时1110.253F =≤不成立。

第二次循环,10235,523,3F F n =+==-==,此时1110.255F =≤成立,输出3n =。

相关文档
最新文档