人教版初一数学上册一元一次方程(配套问题)

合集下载

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4一. 教材分析《实际问题与一元一次方程——配套问题》是人教版七年级数学上册第三章第四节的内容。

本节课的主要任务是通过实际问题引导学生理解一元一次方程的解法,培养学生运用数学知识解决实际问题的能力。

教材中给出了四个配套问题,分别是:购物问题、速度问题、利润问题和工程问题。

这些问题都是日常生活中常见的问题,通过这些问题让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

二. 学情分析七年级的学生已经学习了代数的基础知识,对一元一次方程有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,更不知道如何运用一元一次方程解决问题。

因此,在教学过程中,教师需要引导学生正确地将实际问题转化为数学问题,并运用一元一次方程进行解答。

三. 说教学目标1.知识与技能目标:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣。

四. 说教学重难点1.教学重点:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.教学难点:如何引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。

六. 说教学过程1.导入新课:通过一个购物问题引入本节课的内容,激发学生的学习兴趣。

2.知识讲解:讲解一元一次方程的解法,并通过实例让学生理解解法的步骤。

3.案例分析:分析教材中的四个配套问题,引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。

4.实践环节:让学生分组讨论,选取一个实际问题进行解决,培养学生的动手能力和团队协作能力。

数学人教版七年级上册一元一次不等式——配套问题

数学人教版七年级上册一元一次不等式——配套问题

3.4实际问题与一元一次方程——配套问题【教学任务分析】一、自主预习活动1:配套与人员分配问题【问题1】例题1某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应分配多少名工人生产螺钉,多少名工人生产螺母?【分析】引导学生分析题意,找出相等关系每人每天的工作效率×人数=每天的工作量(产品数量)螺母的数量=螺钉数量× 2每人每天的工作效率×人数=每天的工作量解:设应分配x名工人生产螺钉,其余(22-x)名工人生产螺母.根据螺母数量和螺钉数量的关系,列得2×1200x=2000(22-x)去括号,得2400x=44000-2000x移项及合并同类项,得4400x=44000系数化为1,得X=10生产螺母的人数为 22-x=12答:应分配10名工人生产螺钉,12名工人生产螺母.教学设计:例题1是生产调度问题即如何规划分工使两种产品在数量上配套的问题.“螺母的数量是螺钉数量的2倍”是本题中特有的相等关系.“每人每天的工作效率×人数=每天的工作量”两者结合,就能列出方程.由学生尝试解决问题,即学生完成板演,集体订正.然后可以用幻灯片打出完整的解题过程,让学生进行比较,明确步骤中的各个要点.提问:还可以怎么列方程?问题2:配套与物质分配问题例2 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套。

现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?分析:生产的盒身的数量是盒底数量的一半或盒底数量是盒身数量的2倍是列方程的等量关系。

解:设用x张白铁皮制盒身,(36-x)张制盒底,则共制盒身25x个,共制盒底40(36-x)个,根据题意,得2×25x=40(36-x)解得x=1636-x=20所以用16张制盒身,20张制盒底正好使盒身与盒底配套.教学设计:例题2是物体分配问题是如何分配材料,从而使产品刚好配套。

人教版七年级上册数学一元一次方程应用题—配套问题

人教版七年级上册数学一元一次方程应用题—配套问题

人教版七年级上册数学一元一次方程应用题—配套问题1.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)列一元一次方程解决问题:现库内存有布料200m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料327m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?2.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,4个甲种部件和6个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?3.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?4.利兴罐头盒厂有18个工人,每人每天可制作盒身25个,或制作盒底40个,一个盒身与2个盒底配成一套罐头盒,那么安排多少人制作盒身、多少人制作盒底才能使一天生产的盒身与盒底刚好配套?(列方程解)5.某糕点厂中秋节前要制作一批盒装月饼,每盒中装4块大月饼和8块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉,现共有面粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?最多可生产多少盒盒装月饼?6.某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?7.为积极落实“垃圾分类”,环保公司计划派出13名工人外出安放A、B两种型号的专用垃圾箱,其中每人每天可以安放4个A型垃圾箱或者5个B型垃圾箱.按照规范要求,1个A型垃圾箱要配2个B型垃圾箱.为使每天安放的A型垃圾箱和B型垃圾箱刚好配套,公司应分配多少名工人安放A型垃圾箱?8.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?9.一车间加工轴杆和轴承,每名工人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90名工人;(1)应该怎样调配,多少名工人加工轴杆,多少名工人加工轴承,才能使每天生产的轴承和轴杆正好配套?(2)由于急需,又从二车间抽调12名具有相同能力的工人来一车间;问能安排这些新来的工人加工轴杆、轴承,使每天生产的轴承和轴杆正好配套?10.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?11.某丝巾厂家70名工人义务承接了志愿者手上,脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾180条或者脖子上的丝巾120条,一条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成_______套.12.某车间36名工人生产螺母和螺钉,每人每天平均生产螺钉200个或螺母500个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?13.某礼品制造厂接了一批玩具熊的订单,按计划天数生产,若每天生产20个玩具熊,则最终比订单少生产100个;若每天生产23个玩具熊,则最终比订单多生产20个.原计划几天完成订单?14.制作一张桌子,要用一个桌面和4条腿组成,31m木材可制作300条桌腿或可制作15个桌面,现有330m木材,应该用多少立方木材制作桌面,用多少立方木材制作桌腿,才能使桌腿和桌面配套?15.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,求该工厂有多少工人生产A 零件?16.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,每吨需费用10元;乙厂每小时可处理垃圾45吨,每吨需费用11元.(1)甲,乙两厂同时处理该城市的垃圾,每天需多少时间完成?(2)如果该城市每天用于处理垃圾的费用为7300元,那么甲厂每天处理垃圾多少吨?17.机械厂加工车间有52名工人,平均每人每天加工大齿轮12个或小齿轮8个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?18.某车间有28名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母12个或螺栓22个.若分配多少名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.19.为了增强身体素质,提高班级凝聚力,某校初一年级师生在11月中旬集体乘车去青龙湖参加定向越野活动.学校租来大巴车若干辆,若按照每辆车载40名学生,则还有22名学生没有座位;若按照每辆车载43名学生,则前面的车辆都是载43名学生,只有最后一辆车载23名学生,求参加定向越野的学生共有多少人?20.某工厂车间有28个工人,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.设该工厂有x名工人生产A零件:(1)求车间每天生产A零件和B零件各多少个?(用含x的式子表示)(2)求该工厂有多少工人生产A零件?。

人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)

人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)
五、教学反思
在这次教学活动中,我尝试了多种方法引导学生学习《实际问题与一元一次方程》这一章节。首先,通过生活中的实例导入新课,让学生感受到数学与生活的紧密联系。在讲授过程中,我注重理论与实践相结合,让学生在实际问题中感受一元一次方程的魅力。
在教学中,我发现有些学生在从实际问题抽象出一元一次方程时存在困难。为了帮助他们突破这个难点,我采用了案例分析、分组讨论等形式,让学生在互动中加深理解。同时,我特别强调了解方程的基本步骤,引导学生通过对比错误解法和正确解法,掌握解题方法。
人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)
一、教学内容
人教版七年级上册3.4实际问题与一元一次方程-配套问题,主要包括以下内容:
1.理解一元一次方程在解决实际问题中的应用;
2.学会根据实际问题列出一元一次方程;
3.掌握解一元一次方程的方法,如移项、合并同类项、系数化为1等;
4.解决涉及单价、数量、总价等实际问题,如购物问题、行程问题等;
5.通过解决实际问题,提高学生运用养目标
1.提升学生数学抽象、逻辑推理和数学建模的核心素养,使学生能够从实际问题中抽象出一元一次方程,并用方程解决实际问题;
2.培养学生运用数学知识解决实际问题的能力,提高数学应用意识,增强对数学在实际生活中作用的认知;
3.培养学生合作交流、思考问题的习惯,提高学生分析问题、解决问题的能力,培养批判性思维和创新意识;
-难点一:识别实际问题中的关键信息,如购物问题中的单价、数量和总价,学生可能难以把握这些信息之间的关系,需要通过具体实例和图示帮助学生理解。
-难点二:将实际问题转化为方程时,学生可能会对如何选择变量、如何表达数量关系感到困惑。教学中应通过多个示例,指导学生如何进行变量选择和方程构建。

人教版七年级上册数学一元一次方程的应用--配套问题

人教版七年级上册数学一元一次方程的应用--配套问题

人教版七年级上册数学3.4一元一次方程的应用--配套问题一、选择题1.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程( )A.60(28−x)=90x B.60x=90(28−x)C.2×60(28−x)=90x D.60(28−x)=2×90x2.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为( )A.4x=5(90−x)B.5x=4(90−x)C.x=4(90−x)×5D.4x×5=90−x3.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27−x)B.16x=22(27−x)C.2×16x=22(27−x)D.2×22x=16(27−x)4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为( )A.3×10x=2×16(34−x)B.3×16x=2×10(34−x)C.2×16x=3×10(34−x)D.2×10x=3×16(34−x)5.如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x名工人生产桌面,则下面所列方程正确的是( )A.20x=3×300(24−x)B.300x=3×20(24−x)C.3×20x=300(24−x)D.20x=300(24−x)6.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是( )A.2×1000(26−x)=800x B.1000(13−x)=800xC.1000(26−x)=2×800x D.1000(26−x)=800x7.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为( )A.4x=5(90−x)B.5x=4(90−x)C.x=4(90−x)×5D.4x×5=90−x二、填空题(共4题)8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.9.某车间有34名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需配4个螺母,为使每天生产的螺钉与螺母刚好配套,应安排名工人生产螺钉.10.在某公益活动中,参加活动者手上、脖子上需佩戴丝带和丝巾,某工厂的70名工人承接了制作丝带、丝巾的任务.已知每名工人每天平均生产丝带180条或丝巾120条,并且一条丝巾要配两条丝带.为了使每天生产的丝带丝巾刚好配套,设分配x 名工人生产丝带,则根据题意可列方程为.11.某车间有27名工人,每人每天可以生产22个螺母或16个螺栓,1个螺栓配2个螺母,为使每天生产的螺栓和螺母刚好配套,设分配x名工人生产螺栓,则可列方程为.三、解答题(共7题)12.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?13.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排工人使生产的产品刚好成套?14.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?15.某车间每天能制作甲种零件300只,或者制作乙种零件200只,1只甲种零件需要配2只乙种零件.(1) 若制作甲种零件2天,则需要制作乙种零件只,才能刚好配成套.(2) 现要在20天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?16.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?17.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1) 现有20块相同的金属原料,问最多能加工多少个这样的零件?(2) 若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3) 若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.18.小敏和小强假期到某厂参加社会实践.该厂用白板纸做包装盒,设计每张白板纸做盒身2个或做盒盖3个,且1个盒身和2个盒盖恰好做成一个包装盒.为了充分利用材料,要求做成的盒身和盒盖正好配套.(1) 现有14张白板纸,最多可做多少个包装盒?(2) 现有27张白板纸,最多可做多少个包装盒?为了解决这个问题,小敏和小强各设计了一种解决方案:小敏:把这些白板纸分成两部分,一部分做盒身,一部分做盒盖;小强:先把一张白板纸适当套裁出一个盒身和一个盒盖,余下白板纸分成两部分,一部分做盒身,一部分做盒盖.请探究:小敏和小强设计的方案是否可行?若可行,求出最多可做包装盒的个数;若不行,请说明理由.(3) 通过以上两个同题的探究,为不浪费白板纸,请你对该厂就采购白板纸的张数n提一条合理化的建议.答案一、选择题(共7题)1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】A二、填空题(共4题)8. 【答案】1000(26−x)=2×800x9. 【答案】1010. 【答案】180x=2×120(70−x)11. 【答案】2×16x=22(27−x)三、解答题(共7题)12. 【答案】设生产螺栓的工人有x名,则生产螺母的工人有(28−x)名,根据题意得:12x×2=18(28−x).解得:x=12.28−12=16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.13. 【答案】设安排x人生产大齿轮,则安排(85−x)人生产小齿轮,可使生产的产品刚好成套,根据题意得:3×8x=10(85−x).解得:x=25.则85−x=60.答:应安排25个工人生产大齿轮,安排60个工人生产小齿轮才能使生产的产品刚好成套.14. 【答案】设分配x人生产甲种零部件,根据题意,得3×12x=2×15(22−x).解得:x=10.22−x=12.答:分配10人生产甲种零部件,12人乙种零部件.15. 【答案】(1) 1200(2) 设应制作甲种零件x天,则应制作乙种零件(20−x)天,依题意,得:2×300x=200(20−x),解得:x=5,∴20−x=15.答:应制作甲种零件5天,乙种零件15天.16. 【答案】设需安排x名工人加工大齿轮,则安排(27−x)名工人加工小齿轮.依题意得12×(27−x)3=10x2,解得x=12,则27−x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.17. 【答案】(1) 设用x块金属原料加工螺栓,则用(20−x)块金属原料加工螺帽.由题意,可得2×3x=4(20−x),解得x=8,则3×8=24.答:最多能加工24个这样的零件;(2) 若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y块金属原料加工螺栓,则用(26−y)块金属原料加工螺帽.由题意,可得2×3y=4(26−y),解得y=10.4.由于10.4不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3) 设用a块金属原料加工螺栓,则用(n−a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n−a),解得a=25n,则n−a=35n,即n所满足的条件是:n是5的正整数倍的数.18. 【答案】(1) 设x张做盒身,则2x×2=3(14−x),解得x=6.可做盒子6×2=12(个).(2) 小敏方案不行:设x张做盒身,则2x×2=3(27−x),解得x=817,不合题意.小强方案可行:设余下的纸板x张做盒身,则(2x+1)×2=3(26−x)+1,解得x=11,可做盒子11×2+1=23(个).(3) n为7的正整数倍.。

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)

七年级一元一次方程配套问题:方法总结:总数量相等或对应成比例。

1、某车间每天能制作甲种零件500只,或者乙种零件250只,甲、乙两种各一只配成一套产品,现要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?2、制作一张桌子要用一个桌面和4条桌腿,1m的立方木材可制作20个桌面,或者制作400条桌腿,现有12m的立方木材,应怎样计划用料才能制作尽可能多的桌子?3、某车间有22名工人,每人一天平均生产螺钉1200个或螺母2000个,一个螺钉配两螺母,为使每天的产品刚好配套则应该分配多少名工人生产螺钉?多少名工人生产螺母?4、一套仪器由一个A部件和三个B部件构成。

用1立方米钢材可做40个A部件或240个B部件。

现要用6立方米钢材做这种仪器,应用多少钢材做A、B两种部件,恰好配成这种仪器多少套?5、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?6、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?练习:1、包装厂有42人,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?2、用铝片做听装饮料瓶,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?3、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A 种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?4、某车间有工人16名,每人每天可加工甲零件5个或乙零件4个,已知每加工一个甲零件可获利16元,美加工一个乙零件可获利24元,若此车间一共获利1440元。

人教版数学七年级上册实际问题与一元一次方程-配套问题课件

人教版数学七年级上册实际问题与一元一次方程-配套问题课件

解: (1) 设盈利25%的衣服进价是 x 元, 依题意得 x+0.25 x=60 解得 x=48.
(2) 设亏损25%的衣服进价是 y元, 依题意得 y-0.25y=60 解得 y=80.
两件衣服总成本:x+y=48+80=128 (元). 因为120-128=-8(元) 所以卖这两件衣服共亏损了8元.
列出方程 (4)通过解方程
解决问题
每人每天生 产(个)
生产人员分 配(个)
生产总量 (个)
甲种零件
12 x
12x
乙种零件
16 27-x 16× (27-x)
解题过程如下:
解:设应安排x名工人生产甲种零 件,(27-x)名工人生产乙种零件. 依题意得: 3× 16× (27-x)=2×12x 即24x=48(27-x) 解方程得x=18 27-18=9 答:应安排18人生产甲种零件,9 人生产乙种零件
列出方程 (4)通过解方程
解决问题
变式演练,掌握新知
某车间有27名工人,生产甲、乙两种零件,每3个甲零件与2个乙零件配成一套,已知每 个工人每天能加工甲零件12个或乙零件16个,为使每天生产的两种零件配套,应如何分 配工人的生产任务?
配套关系
甲:乙=3:2
等量关系
3乙总=2甲总
(1)抓住配套关系 (2)设出未知数 (3)根据配套关系
我们也可以借助表格来进一步分析题目中的数量 关系.
每人每天生 产(个)
生产人员分 配(个)
生产总量 (个)
螺钉
1200 x
1200x
螺母
2000 22-x
2000(22-x)
每天的工作总量=每人每天的工作效率 × 人数 根据配套关系 2倍螺钉数量=螺母数量 列出方程

人教版七年级上册数学第三章一元一次方程应用题——配套问题

人教版七年级上册数学第三章一元一次方程应用题——配套问题

人教版七年级上册数学第三章一元一次方程应用题——配套问题1.某工厂甲、乙两个车间共有22名工人,每人每天可以生产1200个螺钉或2000个螺母.(1)如果甲车间的人数比乙车间的人数多4人,那么两个车间各有多少人?(2)如果1个螺钉需配2个螺母,为使每天生产的螺钉和螺母刚好匹配,工厂应安排其中多少人生产螺母?2.制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作15个桌面,或者制作300条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?最多能制作多少张桌子?3.一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3.现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?4.某中学有住宿生若干人,若每个房间住8人,则有3人无处住;若每个房间住9人则有两张空床位,问该中学有宿舍多少间,住宿生有多少人?5.在预防新型冠状病毒期间,电子体温枪成为最重要的抗疫资源之一.某品牌电子体温枪由甲、乙两部件各一个组成,加工厂每天能生产甲部件600个,或者生产乙部件400个,现要在30天内生产最多的该种电子体温枪,则甲、乙两种部件各应生产多少天?6.某车间有84名工人,每人每天可以生产16个大齿轮或10个小齿轮,已知1个大齿轮和2个小齿轮配成一套,为使每天生产的大齿轮和小齿轮刚好配套,应安排生产大齿轮和小齿轮的工人各多少名?一共可以配成多少套?7.某车间有技术工人58人,平均每天每人可加工甲种部件16个或乙种部件10个,1个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?8.某车间每天能生产甲种零件150个,或乙种零件100个,甲、乙两种零件分别取3个、1个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?9.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天可以生产多少套这样成套的产品?10.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知二个大齿轮和三个小齿轮配成一套,问应如何安排劳力使生产的产品刚好成套?11.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?12.某车间有75个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件15个或乙种零件20个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?13.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?14.某车间每天能制作甲种零件500个,或者制作乙种零件250个,甲乙两种零件各一个配成一套产品,现要在30天内制作最多的成套产品,则甲种零件制作多少天?15.某班统计数学考试成绩,平均成绩是84.3分:后来发现莉莉的成绩是97分,而被错误地统计为79分.重新计算后,平均成绩是84.7分.这个班有多少名学生?16.配制一种黑色火药,硫磺、硝、木炭的比为1:2:3,要配火药1218千克,各需多少千克硫磺、硝、木炭?(设未知数,只列方程)17.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元,求钢笔和毛笔的单价各为多少元?18.某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?19.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,要使桌面和桌腿正好配套,应分别计划用多少立方米木材制作桌面和桌腿?20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件,几个工人加工乙种零件?。

人教版初一数学上册一元一次方程---配套问题

人教版初一数学上册一元一次方程---配套问题

螺钉数目﹕螺母数目=1﹕2
螺母数目=2×螺钉数目
基础训练 巩固应用
1.某车间22名工人生产螺钉和螺母,每人每天平均生产 螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使 每天生产的产品刚好配套,应该分配多少名工人生产螺钉, 多少工人生产螺母?
解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母. 依题意得: 1 200x ︰2 000(22-x)= 1︰ 2.
归纳小结 反思提高 1.本节课主要学习了哪些内容? 2.利用一元一次方程解决成龙配套问题的基本步骤是什么?
3.提炼口诀,帮助记忆. 成龙配套应用题,列表分析找关系; 配套数量成比例,方程模型来建立.
布置作业 必做题: 课本P106 T2、T3题 选做题: 某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块 大月饼和4块小月饼.制作1块大月饼要用0.05kg面粉,1块小 月饼要用0.02kg面粉.现共有面粉4500kg,制作两种饼各用 多少面粉,才能生产最多的盒装月饼?
分析:
产品类型
单位产量
铝合金板 ( m2 )
灯罩
4
x
总产量
4x
栅板
12 (11-x) 12(11-x)
灯罩数目﹕ 栅板数目=3﹕2
3×栅板数目=2×灯罩数目
基础训练 巩固应用
2.一套格栅灯具由3个圆弧灯罩和2块栅板间隔组成, 均可用铝合金板 冲压制成.已知1 m2铝合金板可以冲压4个圆弧灯罩或12块栅板. 现用11 m2 铝合金板制作这种格栅灯具,应分配多少平方米铝合金板制作圆弧灯罩, 多少平方米铝合金板制作栅板,恰好配成这种格栅灯具多少套?
即 2 000(22-x) =2×1200x, 两边约去400,得 5(22-x) =6x,

七年级一元一次方程配套问题

七年级一元一次方程配套问题

七年级一元一次方程配套问题
配套问题是一元一次方程中常见的问题类型,通常涉及到物品的组合和搭配。

以下是一个简单的配套问题示例:
假设有100个人,他们需要不同数量的大米和面粉。

其中,50人需要4袋大米,另外50人需要3袋面粉。

现在我们知道,3袋面粉可以换5袋大米。

那么,应该如何分配这些大米和面粉才能满足每个人的需求?
设需要x 袋大米和y 袋面粉。

根据题目信息,我们可以建立以下方程:
50人需要4袋大米,所以x = 4 × 50。

另外50人需要3袋面粉,所以y = 3 × 50。

由于3袋面粉可以换5袋大米,所以实际上需要的面粉数量应该是x/5 × 3。

用数学方程表示为:
x = 4 × 50
y = 3 × 50
y = (x/5) × 3
现在我们要来解这个方程组,找出x 和y 的值。

计算结果为:x = 200, y = 150
所以,需要分配200袋大米和150袋面粉,以满足每个人的需求。

人教版七年级数学实际问题与一元一次方程(产品配套问题含答案)

人教版七年级数学实际问题与一元一次方程(产品配套问题含答案)

第4课时实际问题与一元一次方程(产品配套问题)1.有一个专项加工茶杯车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?直接设法:设安排加工杯身的工人为x人,则加工杯盖的工人为人,每小时加工杯身个,杯盖个,则可列方程为,解得x= .间接设法:设加工杯身x个,则加工杯盖x个,所以加工杯身的工人为人,加工杯盖的工人为人,则可列方程为 .解得x= .故加工杯身的工人为人.2.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x张铁皮做盒身,根据题意可列方程为( )A.2×15(108-x)=42xB.15x=2×42(108-x)C.15(108-x)=2×42xD.2×15x=42(108-x)3.某车间共有75名工人生产A,B两种工件,已知一名工人每天可生产A种工件15件或B 种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,则车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?4.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为人,根据题意,可列方程为,解得x= .5.用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身与两个瓶底配成一套,现有150张铝片,用多少张制瓶身,多少张制瓶底可以正好制成整套的饮料瓶?6.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,请你设计一下,用多少木料做桌面,多少木料做桌腿,恰好配成方桌多少张?7.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓、螺母按1∶3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓、螺母刚好配套?第4课时产品配套问题参考答案1.直接设法:设安排加工杯身的工人为x人,则加工杯盖的工人为(90-x)人,每小时加工杯身12x个,杯盖15(90-x)个,则可列方程为12x=15(90-x),解得x=50.间接设法:设加工杯身x个,则加工杯盖x个,所以加工杯身的工人为x12人,加工杯盖的工人为x15人,则可列方程为x12+x15=90.解得x=600.故加工杯身的工人为50人.2.D3.解:设该车间分配x名工人生产A种工件,(75-x)名工人生产B种工件,根据题意,得2×15x=20(75-x),解得x=30.则75-x=45.答:该车间分配30名工人生产A种工件,45名工人生产B种工件,才能保证连续安装机械时,两种工件恰好配套.4.(54-x) 8x=10(54-x) 30.5.解:设用x张铝片制瓶身,(150-x)张铝片制瓶底可以正好制成整套的饮料瓶.根据题意,得16x×2=43×(150-x).解得x=86.所以150-x=64.答:用86张铝片制瓶身,64张铝片制瓶底可以正好制成整套的饮料瓶.6.解:设用x立方米木料做桌面,那么桌腿用木料(5-x)立方米,根据题意,得4×50x=300(5-x).解得x=3.所以5-x=2,50x=150.答:用3立方米木料做桌面,用2立方米木料做桌腿,恰好配成方桌150张.7.解:设安排x人生产螺栓,则安排(30-x)人生产螺母,由题意,得12x×3=18×(30-x),解得x=10.所以30-x=20.答:安排10个人生产螺栓,安排20个人生产螺母能使每天生产的螺栓、螺母刚好配套.。

七年级-人教版-数学-上册-第1课时-一元一次方程的应用——配套问题

七年级-人教版-数学-上册-第1课时-一元一次方程的应用——配套问题
2.可以借用表格,分析配套问题 中量与量的关系.
利用一元一次方 程解决配套问题
找出配套关系
解题步骤
根据配套关系列出 一元一次方程
解一元一次方程
解:设 x 名工人加工大齿轮,则(85-x)名工人加工小齿轮, 根据题意,列出方程:3×16x=10(85-x)×2, 解方程,得 x=25,85-x=60. 答:应安排 25 名工人加工大齿轮,60 名工人加工小齿轮,可 使每天加工的齿轮刚好配套.
1.分析配套问题时,要弄清题目 中涉及量的比例关系.
乙产品配成一套,那么
甲产品数
乙产品数

a
b
由等式的性质可得,甲产品数的 b 倍等于乙产品数的 a 倍.
例1 一张方桌由 1 个桌面、4 条桌腿组成,如果 1 m3 木料可 以做方桌的桌面 50 个或做桌腿 300 条.现有 5 m3 木料,为使做出 的桌面和桌腿恰好配成方桌,应分别用多少木料做桌面和桌腿?能 配成多少张方桌?
第1课时 一元一次方程的 应用——配套问题
根据前面的学习,我们已经知道,方程是分析和解决问题的 一种很有用的数学工具.本节课我们来讨论如何用一元一次方程 解决实际问题中的配套问题.
在学习新课之前,先让我们一起来解决下面这个问题:
一种配套产品由一个螺柱和两个螺母组成,现已生产 x 个
螺柱,需生产多少个螺母刚好配套? 如果生产了x 个螺母,那
么需要生产多少个螺柱刚好配套呢?
2x
1x
2
某车间有 22 名工人,每人每天可以生产 1 200 个螺柱或 2 000 个螺母,1 个螺柱需要配 2 个螺母,为使每天生产的螺柱和螺母刚 好配套,应安排生产螺柱和螺母的工人各多少名?
分析:已知量是什么?未知量是什么?

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)1、某车间可以制作甲种零件和乙种零件,每天甲种零件可以制作500只,乙种零件可以制作250只。

一套产品需要一只甲种零件和一只乙种零件。

现在需要在30天内制作尽可能多的成套产品,问甲、乙两种零件各应制作多少天?解:设甲种零件制作x天,那么乙种零件制作(30-x)天。

因为总数量相等,所以有500x=250(30-x),解得x=10,即甲种零件制作10天,乙种零件制作20天。

2、制作一张桌子需要一个桌面和四条桌腿,现在有12立方米的立方木材,1立方米木材可以制作20个桌面或400条桌腿。

问如何计划用料才能制作尽可能多的桌子?解:设用x立方米木材制作桌面,那么用(12-x)立方米木材制作桌腿。

因为总数量相等,所以有20x=400(12-x),解得x=2.4,即用2.4立方米木材制作桌面,用9.6立方米木材制作桌腿。

3、某车间有22名工人,每人每天平均可以生产1200个螺钉或2000个螺母。

一只螺钉需要配两只螺母。

为了使每天的产品刚好配套,问应该分配多少名工人生产螺钉?多少名工人生产螺母?解:设生产螺钉的工人数为x,那么生产螺母的工人数为(22-x)。

因为总数量相等,所以有1200x=2000(22-x),解得x=12,即应该安排12名工人生产螺钉,10名工人生产螺母。

4、一套仪器由一个A部件和三个B部件构成。

现在有6立方米的钢材,1立方米钢材可以制作40个A部件或240个B部件。

问应该用多少钢材制作A、B两种部件,才能恰好配成这种仪器多少套?解:设用x立方米钢材制作A部件,那么用(6-x)立方米钢材制作B部件。

因为总数量相等,所以有40x=240(6-x),解得x=1,即用1立方米钢材制作A部件,用5立方米钢材制作B部件。

因为每套仪器需要一个A部件和三个B部件,所以可以制作1个A部件和15个B部件,即可以制作5套仪器。

5、机械厂加工车间有85名工人,平均每人每天可以加工16个大齿轮或10个小齿轮。

七年级-人教版-数学-上册-[能力提升]第1课时-一元一次方程的应用——配套问题

七年级-人教版-数学-上册-[能力提升]第1课时-一元一次方程的应用——配套问题

第1课时一元一次方程的应用——配套问题1.在加固某段河坝时,需动用15台挖土、运土机械.每台机械每小时能挖土3 m3或运土2 m3,为了使挖土和运土工作同时结束,安排了x台机械挖土,则可列方程为().A.3x-2x=15B.3x=2(15-x)C.2x=3(15-x)D.3x+2x=152.用白铁皮做罐头盒,每张铁皮可制盒身15个或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,要使这些材料可以正好制成整套罐头盒,则做盒身的铁皮应用().A.61张B.62张C.63张D.64张3.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排_______名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.4.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B 部件,现要用6m3钢材制作这种仪器,为使所做的A部件和B部件刚好配套,则做A 部件和B部件的钢材各需多少立方米?5.用一批卡纸做包装盒,每张卡纸可做2个盒身或5个底盖,一个盒身与两个底盖配成一个完整的包装盒.(1)如果用25张卡纸做盒身,20张卡纸做底盖,做成的盒身和底盖是否正好配套?请通过计算结果加以说明.(2)如果有63张卡纸,请问用多少张卡纸做盒身,多少张卡纸做底盖,才能使做成的盒身和底盖正好配套?参考答案1.【答案】B【解析】因为安排了x台机械挖土,所以安排(15-x)台机械运土.因为每台机械每小时能挖土3 m3或运土2 m3,所以x台机械挖土3x m3,(15-x)台机械运土2(15-x) m3.因为要使挖土和运土工作同时结束,所以3x=2(15-x).2.【答案】C【解析】设做盒身的铁皮应用x张,则做盒底的铁皮应用(108-x)张.由题意,得2×15x=42(108-x).解得x=63.所以做盒身的铁皮应用63张.3.【答案】5【解析】设制作大花瓶的有x人,则制作小饰品的有(20-x)人,由题意,得5×12x=10(20-x)×2.解得x=5.4.【答案】解:设应用x m3钢材做A部件,则应用(6-x)m3钢材做B部件,由题意,得3×40x=240(6-x).解方程,得x=4.则6-x=2.答:为使所做的A部件和B部件刚好配套,应用4 m3钢材做A部件,2 m3钢材做B部件.5.【答案】解:(1)做成的盒身和底盖正好配套,理由如下:做成盒身的总数为25×2=50(个),做成底盖的总数为20×5=100(个),因为一个盒身与两个底盖配成一个完整的包装盒,且100÷2=50,所以用25张卡纸做盒身,20张卡纸做底盖,做成的盒身和底盖正好配套.(2)设用x张卡纸做盒身,则用(63-x)张卡纸做底盖,由题意,得2×2x=5(63-x).解方程,得x=35.所以63-x=63-35=28.答:用35张卡纸做盒身,28张卡纸做底盖,做成的盒身和底盖正好配套.。

5.3 实际问题与一元一次方程 第1课时 配套、工程问题 人教版数学七年级上册

5.3 实际问题与一元一次方程  第1课时 配套、工程问题 人教版数学七年级上册
5.3 实际问题与一元一次方程
第1课时 配套问题及工程问题
数学 七年级上册人教版
栏目导航
预习导学
课堂互动
基 础 题
中 档 题
素 养 题
预习导学
1.解决配套问题时,关键是明确题目中的 相等 关系,它是列方程的依据
.一般来说,题目中有两个等量关系,根据其中一个等量关系设未知数,根
据另一个等量关系 列方等量关系
;
(3)设:设出未知数,
(4)解: 解方程
;
(5)验:检验答案
是否符合题意
;
(6)答:根据题目写出解答.
课堂互动
知识点1 产品配套问题
例1
某车间有20名工人,生产螺栓和螺母,每人每天能生产螺栓12个
或螺母16个.如果分配x名工人生产螺栓,其余的工人生产螺母,要恰好
使每天生产的螺栓和螺母按1∶2配套,求x的值.所列的方程是(
成需18天,丙队单独完成需12天.前7天由甲、乙两队合作,但乙队中途
离开了一段时间,后2天由乙、丙两队合作完成,则乙队中途离开了
3 天.
基础题
1.一套仪器由一个A部件和三个B部件构成.用1 m3钢材可做60个A部
件或150个B部件,现要用9 m3钢材制作这种仪器.设应用x m3钢材做
A

A
件,剩余钢材做B部件,恰好配套,则可列方程为( )
所以侧面的个数为6x+4(19-x)=(2x+76)(个);
底面的个数为5(19-x)=(95-5x)(个).
(2)若裁剪出的侧面和底面恰好全部用完,能做多少个三棱柱盒子?
解:(2)由题意,得 2(2x+76)=3(95-5x).
解得 x=7.

数学人教版七年级上册“配套问题”

数学人教版七年级上册“配套问题”

3.4.1实际问题与一元一次方程(配套问题)【学习目标】【学习重点】会找出配套问题中的相等关系,进一步列出一元一次方程,解决实际问题。

根据已知条件列出一元一次方程解决实际问题。

【学习难点】能找出配套问题中表示相等关系的句子。

【学习过程】一、复习旧知:1、请同学们回忆小学列方程解应用题有哪些步骤?2、注意:(1)、设未知数及作答时若有单位的一定要带单位。

(2)、方程中数量单位要统一。

二、探究新知活动一:抢答 1、有下面的句子你可以得到什么相等的式子? (1)、1个螺钉需要配2个螺母。

(2)、1个A部件和3个B部件配套。

(3)、1件上衣配1条裤子。

(4)、1个桌面配4个桌腿。

2、你还能举出其他的实例吗?与老师和同学分享一下吧!___________________________________________________________活动二:例1:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?分析:1、问题求的什么?你可以怎么设未知数?2、哪句话中隐含等量关系?怎么理解配套的意思?3、怎么列方程?螺钉数为个,生产的螺母数为个,螺母数= 螺钉数。

完整过程为:解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母. 依题意得:解方程,得:答:应安排名工人生产螺钉,名工人生产螺母.活动三:以上这个问题聪明的你一定还有其他的方法?与老师和同学分享一下吧!三、合作与尝试1、某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,应分配多少人生产螺栓,多少人生产螺帽,才能使生产出的螺栓和螺帽刚好配套(每一个螺栓要配两个螺帽)?2、一套仪器由一个A部件和三个B部件构成,用1 m3钢材可以做40个A部件或240个B部件。

现要用6 m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?3、某家具厂生产一种方桌,设计时1立方米的木材可做50个桌面,或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿,使用的木材使桌面、桌腿刚好配套,并指出共可生产多少张方桌?(一个桌面四条桌腿)四、课堂小结你学到了什么?(先想一想,然后再与老师和同学交流)____________________________________________________________________________________________________ ________________________________________________________________________________________________________ ________________________________________________________________________________________________________ ________________________________________________________________五、课外作业与提高(1)、必做题:教材P106 习题3.4:2,3题。

数学人教版七年级上册一元一次方程(配套问题)

数学人教版七年级上册一元一次方程(配套问题)

3.4实际问题与一元一次方程(第一课时)教学目标:通过分析零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。

教学重点:找出能够表示问题全部含义的相等关系。

教学难点:探索实际问题与一元一次方程的关系。

教学流程图:教学过程:一、情境导入(儿歌:数青蛙)配套比例: )()(眼睛数量青蛙数量= ⇒ 二、探究学习1、自主学习某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母。

1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?①审:勾画表示等量关系的句子2、合作探究分析:本题的配套关系是:(1个螺钉配2个螺母)配套比例: )()(螺母的产量螺钉的产量= ⇒③列方程:④解方程:⑤答:3、归纳:解决配套问题经历了以上哪些步骤?三、巩固练习一张方桌四条腿,1立方米木料可加工30个桌面或者80个桌腿,现有12立方米木料,怎样安排生产可使生产出的桌面和桌腿恰好配套?审题:本题的配套关系是:(一张方桌四条腿)配套比例: )()(桌腿数量桌面数量= ⇒列方程:解方程:答:四、归纳小结:①解决配套问题的步骤.②还有其他收获吗?五、运用迁移,服务社会(竞选自愿者)2014年冬天,新疆牧民遭受雪灾,我校现在我校派选30名志愿者,去帮忙搭建帐篷和安顿灾民住进帐篷,1名志愿者要帮忙搭建3顶帐篷或安顿4名灾民住进帐篷,1顶帐篷能容纳两名灾民住下,现在请你安排人员,使灾民尽快住进帐篷免受严寒之苦.小明:我设x名志愿者搭建帐篷,怎样列方程呢?小红:我设x名志愿者安顿灾民,怎样列方程呢?复习巩固第2和3题六、课后作业:1、完成教材P1062、用今天所学的方法,预习教材例2的工程问题七、附:板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 实际问题与一元一次方程
第1课时 产品配套问题和工程问题
1.以“探究”的形式讨论如何用一元一次方程解决实际问题;(重点,难点)
2.体会一元一次方程与实际生活的密切联系,加强数学建模思想的应用意识;(重点)
3.培养运用一元一次方程分析和解决实际问题的能力.(重点)
一、情境导入
近来我们市要修一条公路,公路大约长120千米,今天一早,有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢?
二、合作探究
探究点一:产品配套问题
某车间有工人660名,生产一种
由一个螺栓和两个螺母组成的配套产品,每人每天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?
解析:本题找出等量关系为:生产的螺栓数×2=生产的螺母数,把相关的代数式
代入即可列方程.
解:设分配x 人生产螺栓,(660-x )人生产螺母,
依题意得14x ×2=(660-x )×20, 解得x =275, ∴660-x =385.
答:应分配385人生产螺母,275人生产螺栓.
方法总结:此题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解
决本题的关键.
探究点二:工程问题
一个道路工程,甲队单独施工9
天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?
解析:首先设乙队还需x 天才能完成,
由题意可得等量关系:甲队干三天的工作量+乙队干(x +3)天的工作量=1,根据等量关系列出方程,求解即可.
解:设乙队还需x 天才能完成,由题意得
19×3+1
24(3+x )=1, 解得x =13.
答:乙队还需13天才能完成. 方法总结:找到等量关系是解决问题的
关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.
三、板书设计
1.配套问题:找出等量关系
2.工程问题:
(1)工程总量=效率×时间.
(2)各部分的工程和=工作总量=1.
本节课以生活中常见的一个问题展开,提高学生的兴趣,让学生们认识到数学知识与我们的实际生活息息相关.然后通过例题教学,为学生提供了探索空间,通过猜测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的积极性.让学生在实践中获得解决问题的方法,得到学习的乐趣.。

相关文档
最新文档