全国高考数学复习第七篇立体几何与空间向量第3节空间点直线平面之间的位置关系习题理

合集下载

第七篇立体几何(必修2)第3节空间点、直线、平面之间的位置关系word版含解析_最新修正版

第七篇立体几何(必修2)第3节空间点、直线、平面之间的位置关系word版含解析_最新修正版

第3节空间点、直线、平面之间的位置关系应用能力提升也“中和M【选题明细表】基础巩固(时间:30分钟)1.(2018 •遂宁模拟)直线I不平行于平面a ,且I ?a ,则(B )(A) a内的所有直线与I异面(B) a内不存在与I平行的直线(C) a内存在唯一的直线与I平行(D) a内的直线与I都相交解析:如图,设I Aa =A, a内的直线若经过A点,则与直线I相交;若不经过点A,则与直线I异面.2.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是(D )(A)若AC与BD共面,则AD与BC共面(B)若AC与BD是异面直线,则AD与BC是异面直线(C)若AB二AC,DB=DCU ADI BC(D)若 AB 二AC,DB=DCU AD=BC解析:ABCD 可能为平面四边形,也可能为空间四边形,故D 不成立.3.(2018 •周口月考)如图所示的是正方体或四面体,P,Q,R,S 分别是所解析:A 中PS// QR 故共面;B 中PS 与QR 相交,故共面;C 中四边形PQRS 是平行四边形,故共面.4.(2018 •咸阳模拟)已知m,n,l 为不同的直线,a , p 为不同的平面,有 F 面四个命题:① m,n 为异面直线,过空间任一点P, 一定能作一条直线I 与m,n 都 相② m,n 为异面直线,过空间任一点P, 一定存在一个与直线m,n 都平行的 平面.③ a 丄p , aQp =l,m ? a ,n ? p ,m,n 与I 都斜交,则m 与n —定不垂 直.④m,n 是a 内两相交直线,则a 与P 相交的充要条件是 m,n 至少有一条则四个结论中正确的个数为(B )(A)1 (B)2 (C)3 (D)4解析:①错误,因为过直线m 存在一个与直线n 平行的平面,当点P 在这 个平面内且不在直线m 上时,就不满足结论;②错误,因为过直线m 存在在棱的中点,这四个点不共面的是( 5D )©0>(B)一个与直线n平行的平面,当点P在这个平面内时,就不满足结论;③正确,否则,若nr± n,在直线m上取一点作直线a丄I,由a丄p ,得a丄n.从而有n丄a ,则n丄l;④正确.5.(2018 •潮州模拟)如图,在正方体ABCDA i BQD中,过顶点A与正方体其他顶点的连线与直线BG成60°角的条数为(B )(A)1 (B)2(C)3 (D)4解析:有2条:A i B和A i C.6.(2018 •全国n卷)在正方体ABCEAiBGD中,E为棱CC的中点,则异面直线AE与CD所成角的正切值为(C )£(A)N(B)解析:如图,因为AB//CD所以AE与CD所成的角为/ EAB./TTTIii4JA在Rt△ ABE中,设AB=2,则BEm®则tan / EAB乔丘,所以异面直线AE与CD所成角的正切值为2 .故选C.7.设a,b,c是空间中的三条直线,下面给出四个命题:①若a // b,b // c,贝J a // c;②若a丄b,b丄c,贝J a // c;③若a与b相交,b与c相交,则a与c相交;④若a?平面a ,b ?平面p ,则a,b —定是异面直线.上述命题中正确的命题是(写出所有正确命题的序号).解析:由公理4知①正确;当a丄b,b丄c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a? a ,b? p ,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.(2018 •宁德模拟)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,C①GH与EF平行;②BD与MN为异面直线;③GH与MN成60° 角;④DE与MN垂直.以上四个命题中,正确命题的序号是解析:还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE丄MN.能力提升(时间:15分钟)•全国I卷)平面a过正方体ABCDAiBGD的顶点A, a//平面n平面ABCD=ma n平面ABBA F n,则m,n所成角的正弦值为解析:在正方体ABCD-AiGD中,由题意,直线m// BD,直线n // AB,又^ A i DB为等边三角形,/ DBA=60° ,sin60所以m,n所成角的正弦值为2 ,故选A.10.(2018 •茂名一模)如图为一正方体的平面展开图,在这个正方体中,有下列四个命题:D\4£W MF①AF丄GC;②BD与GC为异面直线且夹角为60° ;③BD// MN;答案:②③④71i9.(2016CBD, a(A) 2 (B)遐M 1兀(C M (D) 3=2④ BG 与平面ABCC 所成的角为45° . 其中正确的个数是(B )(A)1 (B)2 (C)3 (D)4解析:将正方体展开图还原成正方体,①如图知AF 与GC 异面垂直,故① 正确;②显然BD 与 GC 为异面直线,连接MB,MD 则BM/ GC 在等边△ BDM 中 ,BD 与BM 所成的60°角就是异面直线BD 与 GC 所成的角,故②正确;③显然BD 与MN 异面垂直,故③错误;④显然GDL 平面ABCD 所以在Rt △ BDG中,/ GBD 是 BG 与平面ABCD 所成的角,Rt △ BDG 不是等腰直角三角形. 所以BG 与平面ABCD 所成的角不是45° ,故④错误.故选B.11.(2018 •长春模拟)设四面体的六条棱的长分别为 1,1,1,1^和a,且长为a 的棱与长为謂的棱异面,则a 的取值范围是(A ) (A)(0,渥)(B)(0,列 (C)(1,渥)(D)(1,⑵解析:如图所示,令AB 罰,CD 二a,设点E 为AB 的中点,则EDI AB,ECI AB,则ED =5几対=2 同理EC 互.由构成三角形的条件知OvavED+EC=® 所以0vav 楣.4£B12.(2018 •百色月考)不在同一条直线上的三点A,B,C到平面a的距离相等,且A?a ,给出以下三个结论:ABC中至少有一条边平行于a ;ABC中至多有两边平行于a ;③△ ABC中只可能有一条边与a相交,其中正确的结论是解析:如图所示,三点A,B,C可能在a的同侧,也可能在a两侧,其中真命题是①.答案:①13.(2018 •鹤岗模拟)已知圆柱Q的母线长为I,底面半径为r,O是上底面圆心,A,B是下底面圆周上两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为6则F=解析:过A作圆柱的母线AD,连接OD则AD=I,OD=r,且^ ODA为直角三角形,且/ OAE为异面直线BC与OA所成的角.nCS所以/ OAD=,rr因为tan启==3 ,答案:A/314.如图所示,三棱锥P-ABC中,PA丄平面ABC,/ BAC=60 ,PA=AB=AC=2,E是PC的中点.(1)求证:AE与PB是异面直线;⑵求异面直线AE和PB所成角的余弦值; (3)求三棱锥AEBC的体积.(1)证明:假设AE与PB共面,设平面为a因为A€a ,B €a ,E €a ,所以平面a即为平面ABE, 所以P€平面ABE这与P?平面ABE矛盾, 所以AE与PB是异面直线.⑵解:取BC的中点F,连接EF,AF,则EF// PB,所以/ AEF或其补角就是异面直线AE和PB所成角.因为/ BAC=60 ,PA=AB=AC=2,PA平面ABC,所以AF=^,AE=2PB=2Q,EF=2cosAEF=& 数£里(七网MR98资ffiiS华汇gRSli力作i I. hu khi] a, OP 11所以异面直线AE和PB所成角的余弦值为4.⑶解:因为E是PC的中点,1所以E到平面ABC的距离为t pA=1,1卩朋詔二卩弗甜二B X (2 X 2 X \「勺)X 1 = 3 .最新修正版20元包年下载25。

高考数学一轮复习第7章立体几何第3讲空间点直线平面之间的位置关系

高考数学一轮复习第7章立体几何第3讲空间点直线平面之间的位置关系

第三讲 空间点、直线、平面之间的位置关系知识梳理·双基自测 知识梳理知识点一 平面的基本性质公理1:如果一条直线上的_两点__在一个平面内,那么这条直线在这个平面内. 公理2:过_不共线__的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们_有且只有一条__过该点的公共直线. 知识点二 空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系 图形语言符号语言 a ∥ba ∥αα∥β相交 关系图形语言符号语言 a∩b=Aa∩α=Aα∩β=l独有 关系 图形语言符号语言a,b 是异面直线a ⊂α(1)异面直线所成的角①定义:设a,b 是两条异面直线,经过空间中任一点O 作直线a′∥a,b′∥b,把a′与b′所成的_锐角或直角__叫做异面直线a 与b 所成的角.②范围:⎝⎛⎦⎥⎤0,π2.(2)平行公理平行于同一条直线的两条直线_平行__. (3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角_相等或互补__.重要结论异面直线的判定定理过平面内一点与平面外一点的直线和这个平面内不经过该点的直线是异面直线.用符号可表示为:若l⊂α,A∉α,B∈α,B∉l,则直线AB与l是异面直线(如图).双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( ×)(3)如果两个平面有三个公共点,则这两个平面重合.( ×)(4)经过两条相交直线,有且只有一个平面.( √)(5)两两相交的三条直线共面.( ×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.( ×)题组二走进教材2.(必修2P52B组T1)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C 与EF所成角的大小为( C )A.30°B.45°C.60°D.90°[解析] 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.故选C.3.(必修2P45例2)如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA上的点,(1)若AE EB =AH HD 且CF FB =CGGD,则E 、F 、G 、H 是否共面._共面__.(2)若E 、F 、G 、H 分别为棱AB 、BC 、CD 、DA 的中点,①当AC,BD 满足条件_AC =BD__时,四边形EFGH 为菱形;②当AC,BD 满足条件_AC =BD 且AC ⊥BD__时,四边形EFGH 为正方形.题组三 走向高考4.(2019·新课标Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD,M 是线段ED 的中点,则( B )A .BM =EN,且直线BM,EN 是相交直线B .BM≠EN ,且直线BM,EN 是相交直线C .BM =EN,且直线BM,EN 是异面直线D .BM≠EN ,且直线BM,EN 是异面直线[解析] ∵点N 为正方形ABCD 的中心,△ECD 为正三角形,M 是线段ED 的中点,∴BM ⊂平面BDE,EN ⊂平面BDE,∵BM 是△BDE 中DE 边上的中线,EN 是△BDE 中BD 边上的中线, ∴直线BM,EN 是相交直线, 设DE =a,则BD =2a, ∵平面ECD ⊥平面ABCD, ∴BE =34a 2+54a 2=2a, ∴BM =72a,EN =34a 2+14a 2=a, ∴BM≠EN ,故选B .5.(2017·新课标Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( C )A .32 B .155 C .105D .33[解析] 解法一:如图所示,补成四棱柱ABCD -A 1B 1C 1D 1,连DC 1、BD,则DC 1∥AB 1,∴∠BC 1D 即为异面直线AB 1与BC 1所成的角, 由题意知BC 1=2,BD =22+12-2×2×1×cos 60°=3, C 1D =5,∴BC 21+BD 2=C 1D 2,∴∠DBC 1=90°, ∴cos ∠BC 1D =25=105.故选C . 解法二:(向量法)如图建立空间直角坐标系,则B(0,0,0),A(2,0,0),B 1(0,0,1),C 1⎝ ⎛⎭⎪⎫-12,32,1,从而AB 1→=(-2,0,1),BC 1→=⎝ ⎛⎭⎪⎫-12,32,1,记异面直线AB 1与BC 1所成角为θ,则cos θ=|AB 1→·BC 1→||AB 1→|·|BC 1→|=25×2=105,故选C .解法三:如图所示,分别延长CB,C 1B 1至D,D 1,使BD =BC,B 1D 1=B 1C 1,连接DD 1,B 1D .由题意知,C 1B B 1D,则∠AB 1D 即为异面直线AB 1与BC 1所成的角.连接AD,在△ABD 中,由AD 2=AB 2+BD 2-2AB·BD·cos∠ABD,得AD = 3. 又B 1D =BC 1=2,AB 1=5,∴cos ∠AB 1D =AB 21+B 1D 2-AD 22AB 1·B 1D =5+2-32×5×2=105.考点突破·互动探究考点一 平面基本性质的应用——自主练透例1 如图,在空间四边形ABCD 中,E,F 分别是AB,AD 的中点,G,H 分别在BC,CD 上,且BG ︰GC =DH ︰HC =1︰2.(1)求证:E,F,G,H 四点共面;(2)设EG 与FH 交于点P,求证:P,A,C 三点共线. [解析] (1)证明:∵E,F 分别为AB,AD 的中点, ∴EF ∥BD .在△BCD 中,BG GC =DH HC =12,∴GH ∥BD,∴EF ∥GH. ∴E,F,G,H 四点共面.(2)∵EG∩FH=P,P ∈EG,EG ⊂平面ABC, ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点. 又平面ABC∩平面ADC =AC, ∴P ∈AC,∴P,A,C 三点共线.注:本题(2)可改为:求证GE 、HF 、AC 三线共点.名师点拨1.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上.(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.2.点、线共面的常用判定方法(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.3.证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.〔变式训练1〕如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[解析] (1)如图,连接EF,CD1,A1B.因为E,F分别是AB,AA1的中点,所以EF∥A1B.又A1B∥CD1,所以EF∥CD1,所以E,C,D1,F四点共面.(2)因为EF∥CD1,EF<CD1,所以CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABC D∩平面ADD1A1=DA,所以P∈直线DA.所以CE,D1F,DA三线共点.考点二空间两条直线的位置关系——师生共研例2 (1)(2019·上海)已知平面α、β、γ两两垂直,直线a、b、c满足:a⊂α,b⊂β,c⊂γ,则直线a、b、c不可能满足以下哪种关系( B )A.两两垂直B.两两平行C.两两相交D.两两异面(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为_③④__(注:把你认为正确的结论序号都填上).[解析] (1)如图1,可得a、b、c可能两两垂直;如图2,可得a、b、c可能两两相交;如图3,可得a、b、c可能两两异面;故选B.(2)因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故①错;取DD1中点E,连接AE,则BN∥AE,但AE与AM相交,故②错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故③正确;同理④正确,故填③④.名师点拨1.异面直线的判定方法(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.此法在异面直线的判定中经常用到.(2)判定定理法:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.2.判定平行直线的常用方法(1)三角形中位线的性质.(2)平行四边形的对边平行.(3)平行线分线段成比例定理.(4)公理:若a∥b,b∥c,则a∥c.〔变式训练2〕(1)(2021·甘肃诊断)如图为正方体表面的一种展开图,则图中的AB,CD,EF,GH在原正方体中互为异面直线的有_3__对.(2)(多选题)(2021·湘潭调研改编)下图中,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形是( BD )[解析] (1)画出该正方体的直观图如图所示,其中异面直线有(AB,GH),(AB,GD),(GH,EB).故共有3对.故答案为:3.(2)图A中,直线GH∥MN;图B中,G,H,N三点共面,但M∉平面GHN,N∉HG,因此直线GH与MN异面;图C中,连接MG,GM∥HN,因此GH与MN共面;图D中,G、M、N共面,但H∉平面GMN,G∉MN因此GH与MN异面,故选B、D.考点三异面直线所成的角——师生共研例3 (1)(2021·广西玉林模拟)如图,正方体ABCD-A1B1C1D1中,E,F分别为A1B1,CD的中点,则异面直线D1E与A1F所成的角的余弦值为( A )A .55 B .56 C .33D .36(2)(2021·山东泰安模拟)如图,在三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M,N 分别为AD,BC 的中点,则异面直线AN,CM 所成的角的余弦值是( C )A .58 B .58 C .78D .78(3)若两条异面直线a 、b 所成角为60°,则过空间一点O 与两异面直线a 、b 所成角都为60°的直线有_3__条.[解析] (1)解法一:(平移法) 如图,连接BE,BF 、D 1F,由题意知BED 1F 为平行四边形, ∴D 1E ∥BF,∴异面直线D 1E 与A 1F 所成角为A 1F 与BF 所成锐角,即∠A 1FB, 连接A 1B,设AB =2,则在△A 1BF 中,A 1B =22,BF =5, A 1F =AA 21+AD 2+DF 2=3,∴cos ∠A 1FB =A 1F 2+BF 2-A 1B 22·A 1F·BF =9+5-82×3×5=55.∴异面直线D 1E 与A 1F 所成的角的余弦值为55.故选A . 解法二:(向量法)如图建立空间直角坐标系,不妨设正方体的棱长为2,异面直线D 1E 与A 1F 所成角为θ, 则D 1E →=(2,1,0),A 1F →=(-2,1,-2),∴cos θ=|D 1E →·A 1F →||D 1E →|·|A 1F →|=35×3=55.故选A .(2)连接ND,取ND 的中点E,连接ME,则ME ∥AN,异面直线AN,CM 所成的角就是∠EMC,∵AN =AB 2-BN 2=22, ∴ME =2=EN,MC =22,又∵EN ⊥NC,∴EC =EN 2+NC 2=3,∴cos ∠EMC =EM 2+MC 2-EC 22EM·MC =2+8-32×2×22=78.故选C .(3)如图,过O 分别作a′∥a,b′∥b,则a′,b′所成角为60°,如图易知过O 与a′、b′所成角都为60°的直线有3条, 即与a,b 所成角都为60°的直线有3条.[引申1]本例(2)中MN 与BD 所成角的余弦值为_73__. [解析] 取CD 的中点H,连DN,NH,MH,则NH ∥BD,∠HNM 为异面直线MN 与BD 所成的角,由题意知AN =22,从而MN =7,又NH =32=MH,∴cos ∠HNM =12MN NH =73.[引申2]本例(3)中与异面直线a 、b 所成角都为75°的直线有_4__条. 注:本例中,若直线与异面直线所成角都为θ,则 (1)0<θ<π6时,0条;(2)θ=π6时,1条;(3)π6<θ<π3时,2条;(4)π3<θ<π2时,4条;(5)θ=π2时,1条.名师点拨求异面直线所成角的方法1.平移法(1)一作:根据定义作平行线,作出异面直线所成的角. (2)二证:证明作出的角是异面直线所成的角. (3)三求:解三角形,求出所作的角.注:①为便于作出异面直线所成角,可用补形法,如将三棱柱补成四棱柱;②注意余弦定理的应用. 2.向量法建立空间直角坐标系,利用公式|cos θ|=|m·n||m||n|求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.〔变式训练3〕(1)(2021·山西运城调研)如图,等边△ABC 为圆锥的轴截面,D 为AB 的中点,E 为弧BC 的中点,则直线DE 与AC 所成角的余弦值为( C )A .13 B .12 C .22D .34(2)(2021·黑龙江师大附中期中)直三棱柱ABC -A 1B 1C 1中,AB ⊥AC,AB =AC =AA 1,则直线A 1B 与AC 1所成角的大小为( B )A .30°B .60°C .90°D .120°[解析] (1)取BC 的中点O,连接OE,OD,∵D 为AB 的中点, ∴OD ∥AC,∴∠EDO 即为DE 与AC 所成的角,由E 为BC ︵的中点得OE ⊥BC,又平面ABC ⊥平面BCE, ∴OE ⊥平面ABC,从而OE ⊥OD, 设正△ABC 的边长为2a,则OD =a =OE, ∴cos ∠EDO =cos π4=22,故选C .(2)解法一:(平移法)在直三棱柱ABC -A 1B 1C 1中,连接A 1C,A 1C∩AC 1=O,则O 为A 1C 的中点,取BC 的中点H,连接OH,则OH ∥A 1B,∴∠AOH 或其补角即为直线A 1B 与AC 1所成的角.设AB =AC =AA 1=1,则BC =2, 易得AO =AH =OH =22, ∴三角形AOH 是正三角形,∴∠AOH =60°,即异面直线所成角为60°.故选B . 解法二:(向量法)如图建立空间直角坐标系,不妨设AB =1,A 1B 与AC 1所成角为θ,则A 1B →=(1,0,-1),AC 1→=(0,1,1), ∴cos θ=|A 1B →·AC 1→||A 1B →|·|AC 1→|=12×2=12.∴θ=60°,故选B .名师讲坛·素养提升 空间几何体的截面问题例4 (原创)E 、F 分别为正方体ABCD -A 1B 1C 1D 1的棱CC 1、C 1D 1的中点,若AB =6,则过A 、E 、F 三点的截面的面积为_71532__.[解析] 作直线EF 分别与直线DC 、DD 1相交于P 、Q,连AP 交BC 于M,连AQ 交A 1D 1于N,连接NF 、ME. 则五边形AMEFN 即为过A 、E 、F 三点的截面. 由题意易知AP =AQ =117,PQ =92, ∴S △APQ =91532,又ME ∥AQ,且EM AQ =13,∴S △MPE =S △QNF =19S △APQ ,∴S AMEFN =79S △APQ =71532.名师点拨作出截面的关键是找到截线,作出截线的主要根据有: (1)确定平面的条件; (2)三线共点的条件; (3)面面平行的性质定理. 〔变式训练4〕(多选题)(2021·百师联盟联考)正方体ABCD -A 1B 1C 1D 1的棱长为2,用一个平面α截这个正方体,把该正方体分为体积相等的两部分,则下列结论正确的是( AD )A .这两部分的表面积也相等B .截面可以是三角形C .截面可以是五边形D .截面可以是正六边形[解析] 平面α截这个正方体,把该正方体分为体积相等的两部分,则平面α一定过正方体的中心,所以这两部分的表面积也相等,根据对称性,截面不会是三角形、五边形,但可以是正六边形(如图).故选AD .。

第7章立体几何 第3节空间点、直线、平面之间的位置关系

第7章立体几何 第3节空间点、直线、平面之间的位置关系
(2)证明三线共点的思路是:先证两条直线交于一点,再证 第三条直线经过这点,通常是先证两条直线的交点在某两个平 面的交线上而第三条直线恰好是两个平面的交线. 2.证明问题时应注意符号语言要准确,结论成立的条件
要完善.
主干回顾· 夯实基础
考点技法· 全面突破
学科素能· 增分宝典
课时跟踪检测
第七章 立体几何
两点 在一个平面内, _____
那么这条直线在此平 面内
公 理2
B, C 三点不共线⇒ 过不在一条直线上的 _____________ A,
三点 , ______ 有且只有一个 有且只有一个平面 α,
平面 使 A∈α,B∈α,C∈α
主干回顾· 夯实基础
考点技法· 全面突破
学科素能· 增分宝典
课时跟踪检测
利用线面垂直的性质来解决.
主干回顾· 夯实基础
考点技法· 全面突破
学科素能· 增分宝典
课时跟踪检测
第七章 立体几何
1 . (2015· 福建联考 ) 设 a , b , c 是空间中的三条直线,下
面给出四个命题:
①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a∥c; ③若a与b相交,b与c相交,则a与c相交; ④若a⊂平面α,b⊂平面β,则a,b一定是异面直线. 上述命题中正确的是 ________ . ( 写出所有正确命题的序 号).
①正确.
主干回顾· 夯实基础
考点技法· 全面突破
学科素能· 增分宝典
课时跟踪检测
第七章 立体几何
异面直线所成的角(☆☆☆)
[典例2] 如图,已知三棱锥ABCD中,AB=CD,且直线 AB与CD所成的角为60°,点M,N分别是BC,AD的中点,求 直线AB和MN所成的角.

高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系 理

高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系 理
整理ppt
4.公理 2 的三个推论 推论 1:经过一条直线和这条直线外一点有且只有一个 平面; 推论 2:经过两条 相交 直线有且只有一个平面; 推论 3:经过两条 平行 直线有且只有一个平面.
整理ppt
公理中“有且只有”一个平面的含义是什么? 提示:平面存在且唯一,“有且只有”有时说成“确 定”.
3 连接 AO,在 Rt△AOD 中,cos∠ADO=DADO=22=34.
整理ppt
求异面直线所成的角常采用“平移线段 法”,平移的方法一般有三种类型:利用图中已有的平行线 平移;利用特殊点(线段的端点或中点)作平行线平移;补形 平移.计算异面直线所成的角通常放在三角形中进行.
整理ppt
(2014·大纲全国卷)已知正四面体 ABCD 中,E 是 AB 的
整理ppt
3.定理 空间中如果两个角的两边分别对应平行,那么这两个角 相等或互补.
整理ppt
(1)不相交的两条直线是异面直线吗? (2)不在同一平面内的直线是异面直线吗? 提示:(1)不一定,不相交的两条直线可能平行,也可能 异面. (2)不一定,不在同一平面内的直线可能异面,也可能平 行.
整理ppt
整理ppt
(2)∵EF 綊12CD1,
∴直线 D1F 和 CE 必相交. 设 D1F∩CE=P.延长 D1F、CE 交于点 P. ∵P∈D1F 且 D1F⊂平面 AA1D1D,∴P∈平面 AA1D1D. 又 P∈EC 且 CE⊂平面 ABCD,∴P∈平面 ABCD,即 P 是平面 ABCD 与平面 AA1D1D 的公共点,而平面 ABCD∩ 平面 AA1D1D=AD,∴P∈AD. ∴CE、D1F、DA 三线共点.
整理ppt
(2)已知空间四边形 ABCD 中,E,H 分别是边 AB,AD 的中点,F,G 分别是边 BC,CD 的中点.

高考数学大一轮复习 第7章 第3节 空间点、直线、平面之间的位置关系 理

高考数学大一轮复习 第7章 第3节 空间点、直线、平面之间的位置关系 理

a⊂α 无数个 a∥α 没有 a∩α=A a⊥α 一个
3.空间中两个平面的位置关系
位置关系 符号表示
公共点
两平面平行 ________ ________公共点
两平面相交
斜交 ________
垂直
________
有一条公共 ________
α∥β 没有 α∩β=l α⊥β 直线
[基础训练]
1.判断正误,正确的打“√”,错误的打“×”. (1)如果两个平面有三个公共点,则这两个平面重合.( ) (2)正方体各面所在平面将空间分成9部分.( ) (3)设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M, 则点M一定不在直线l上.( ) (4)四边形一定是平面图形.( )
答案:1或4 解析:如果这四点在同一平面内,那么确定一个平面;如果这 四点不共面,则任意三点可确定一个平面,所以可确定四个.
5 . 如 图 所 示 , 在 正 方 体 ABCD - A1B1C1D1 中 , E , F 分 别 是 AB,AD的中点,则异面直线B1C与EF所成的角的大小为________.
[证明] 如图,连接CD1,EF,A1B,
因为E,F分别是AB和AA1的中点, 所以EF∥A1B且EF=12A1B.
又因为A1D1∥BC,且A1D1=BC, 所以四边形A1BCD1是平行四边形, 所以A1B∥CD1, 所以EF∥CD1, 即EF与CD1确定一个平面α. 且E,F,C,D1∈α, 即E,C,D1,F四点共面.
[互动探究] 本调研条件不变,如何证明“CE,D1F,DA交于 一点”?
[互动探究证明] 由调研解析可知EF∥CD1,且EF=12CD1, 所以四边形CD1FE是梯形, 所以CE与D1F必相交.设交点为P,如图, 则P∈CE且P∈D1F. 又因为平面ABCD∩平面A1ADD1= AD, 所以P∈AD, 所以CE,D1F, DA交于一点.

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。

高考数学第七章立体几何7.3空间点、直线、平面之间的位置关系高三全册数学

高考数学第七章立体几何7.3空间点、直线、平面之间的位置关系高三全册数学

1.已知 a,b,c 为三条不重合的直线,已知下列结论:
①若 a⊥b,a⊥c,则 b∥c;②若 a⊥b,a⊥c,则 b⊥c;
③若 a∥b,b⊥c,则 a⊥c.
其中正确的个数为( B )
A.0
B.1
C.2
D.3
解析:在空间中,若 a⊥b,a⊥c,则 b,c 可能平行,也 可能相交,还可能异面,所以①②错,③显然成立.
第三十一页,共四十七页。
考点三 异面直线所成的角
【例 3】 如图,在底面为正方形,侧棱垂直于底面的四棱柱 ABCD-A1B1C1D1 中,AA1=2AB=2,则异面直线 A1B 与 AD1 所成角的余
弦值为( D )
A.15 C.35
B.25 D.45
第三十二页,共四十七页。
【解析】 连接 BC1,易证 BC1∥AD1,则∠A1BC1 或其补角 为异面直线 A1B 与 AD1 所成的角.连接 A1C1,由 AB=1,AA1=2, 易得 A1C1= 2,A1B=BC1= 5,故 cos∠A1BC1=2×5+55-×2 5=45, 即异面直线 A1B 与 AD1 所成角的余弦值为45.
第二十六页,共四十七页。
【解析】 取 CD 的中点 O,连接 ON,EO,因为△ECD 为 正三角形,所以 EO⊥CD,又平面 ECD⊥平面 ABCD,平面 ECD∩ 平面 ABCD=CD,所以 EO⊥平面 ABCD.设正方形 ABCD 的边 长为 2,则 EO= 3,ON=1,所以 EN2=EO2+ON2=4,得 EN =2.过 M 作 CD 的垂线,垂足为 P,连接 BP,则 MP= 23,CP =32,所以 BM2=MP2+BP2= 232+322+22=7,得 BM= 7, 所以 BM≠EN.连接 BD,BE,因为四边形 ABCD 为正方形,所以 N 为 BD 的中点,即 EN,MB 均在平面 BDE 内,所以直线 BM,

2023年高考数学一轮复习第七章立体几何与空间向量3空间点直线平面之间的位置关系练习含解析

2023年高考数学一轮复习第七章立体几何与空间向量3空间点直线平面之间的位置关系练习含解析

空间点、直线、平面之间的位置关系考试要求 1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.了解四个基本事实和一个定理,并能应用定理解决问题.知识梳理 1.平面基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内. 基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行. 2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 3.空间中直线与直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线,平行直线,异面直线:不同在任何一个平面内,没有 公共点.4.空间中直线与平面的位置关系直线与平面的位置关系有:直线在平面内、直线与平面相交、直线与平面平行三种情况. 5.空间中平面与平面的位置关系平面与平面的位置关系有平行、相交两种情况. 6.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补. 7.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎦⎥⎤0,π2.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( × ) (2)两两相交的三条直线最多可以确定三个平面.( √ ) (3)如果两个平面有三个公共点,那么这两个平面重合.( × ) (4)没有公共点的两条直线是异面直线.( × ) 教材改编题1.(多选)如图是一个正方体的展开图,如果将它还原为正方体,则下列说法正确的是( )A .AB 与CD 是异面直线 B .GH 与CD 相交C .EF ∥CD D .EF 与AB 异面 答案 ABC解析 把展开图还原成正方体,如图所示.还原后点G 与C 重合,点B 与F 重合,由图可知ABC 正确,EF 与AB 相交,故D 错. 2.如果直线a ⊂平面α,直线b ⊂平面β.且α∥β,则a 与b ( ) A .共面 B .平行 C .是异面直线D .可能平行,也可能是异面直线 答案 D解析 α∥β,说明a 与b 无公共点, ∴a 与b 可能平行也可能是异面直线.3.如图,在三棱锥A -BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形; (2)当AC ,BD 满足条件________时,四边形EFGH 为正方形. 答案 (1)AC =BD (2)AC =BD 且AC ⊥BD 解析 (1)∵四边形EFGH 为菱形, ∴EF =EH ,∵EF 綉12AC ,EH 綉12BD ,∴AC =BD .(2)∵四边形EFGH 为正方形, ∴EF =EH 且EF ⊥EH , ∵EF 綉12AC ,EH 綉12BD ,∴AC =BD 且AC ⊥BD .题型一 基本事实应用例1 如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是AB ,AA 1的中点,连接D 1F ,CE .求证:(1)E ,C ,D 1,F 四点共面; (2)CE ,D 1F ,DA 三线共点.证明 (1)如图所示,连接CD 1,EF ,A 1B , ∵E ,F 分别是AB ,AA 1的中点, ∴EF ∥A 1B ,且EF =12A 1B .又∵A 1D 1∥BC ,A 1D 1=BC , ∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥CD 1,∴EF ∥CD 1,∴EF 与CD 1能够确定一个平面ECD 1F , 即E ,C ,D 1,F 四点共面.(2)由(1)知EF ∥CD 1,且EF =12CD 1,∴四边形CD 1FE 是梯形, ∴CE 与D 1F 必相交,设交点为P , 则P ∈CE ,且P ∈D 1F ,∵CE ⊂平面ABCD ,D 1F ⊂平面A 1ADD 1, ∴P ∈平面ABCD ,且P ∈平面A 1ADD 1. 又∵平面ABCD ∩平面A 1ADD 1=AD , ∴P ∈AD ,∴CE ,D 1F ,DA 三线共点. 教师备选如图所示,已知在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q .求证:(1)D ,B ,F ,E 四点共面;(2)若A 1C 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 证明 (1)∵EF 是△D 1B 1C 1的中位线, ∴EF ∥B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,B 1D 1∥BD , ∴EF ∥BD .∴EF ,BD 确定一个平面,即D ,B ,F ,E 四点共面. (2)在正方体ABCD -A 1B 1C 1D 1中, 设平面A 1ACC 1为α, 平面BDEF 为β. ∵Q ∈A 1C 1,∴Q ∈α.又Q∈EF,∴Q∈β,则Q是α与β的公共点,同理,P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.思维升华共面、共线、共点问题的证明(1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上.(3)证明共点的方法:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1 (1)(多选)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点共面的图是( )答案ABC解析对于A,PS∥QR,故P,Q,R,S四点共面;同理,B,C图中四点也共面;D中四点不共面.(2)在三棱锥A-BCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF∩HG=P,则点P( )A.一定在直线BD上B.一定在直线AC上C.在直线AC或BD上D.不在直线AC上,也不在直线BD上答案 B解析如图所示,因为EF⊂平面ABC,HG⊂平面ACD,EF∩HG=P,所以P∈平面ABC,P∈平面ACD.又因为平面ABC∩平面ACD=AC,所以P∈AC.题型二空间线面位置关系命题点1 空间位置关系的判断例2 (1)下列推断中,错误的是( )A.若M∈α,M∈β,α∩β=l,则M∈lB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合答案 C解析对于A,因为M∈α,M∈β,α∩β=l,由基本事实3可知M∈l,A对;对于B,A∈α,A∈β,B∈α,B∈β,故直线AB⊂α,AB⊂β,即α∩β=AB,B对;对于C,若l∩α=A,则有l⊄α,A∈l,但A∈α,C错;对于D,有三个不共线的点在平面α,β中,故α,β重合,D对.(2)已知在长方体ABCD-A1B1C1D1中,M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,则下列说法正确的是( )A.直线MN与直线A1B是异面直线B.直线MN与直线DD1相交C.直线MN与直线AC1是异面直线D.直线MN与直线A1C平行答案 C解析如图,因为M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,所以M,N分别是A1C1,BC1的中点,所以直线MN与直线A1B平行,所以A错误;因为直线MN经过平面BB1D1D内一点M,且点M不在直线DD1上,所以直线MN与直线DD1是异面直线,所以B错误;因为直线MN经过平面ABC1内一点N,且点N不在直线AC1上,所以直线MN与直线AC1是异面直线,所以C正确;因为直线MN经过平面A1CC1内一点M,且点M不在直线A1C上,所以直线MN与直线A1C是异面直线,所以D错误.命题点2 异面直线所成角例3 (1)(2021·全国乙卷)在正方体ABCD -A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2B .π3C .π4D .π6答案 D解析 方法一 如图,连接C 1P ,因为ABCD -A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,所以C 1P ⊥平面B 1BP .又BP ⊂平面B 1BP ,所以C 1P ⊥BP .连接BC 1,则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则在Rt△C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6.方法二 如图所示,连接BC 1,A 1B ,A 1P ,PC 1,则易知AD 1∥BC 1,所以直线PB 与AD 1所成的角等于直线PB 与BC 1所成的角.根据P 为正方形A 1B 1C 1D 1的对角线B 1D 1的中点,易知A 1,P ,C 1三点共线,且P 为A 1C 1的中点.易知A 1B =BC 1=A 1C 1,所以△A 1BC 1为等边三角形,所以∠A 1BC 1=π3,又P 为A 1C 1的中点,所以可得∠PBC 1=12∠A 1BC 1=π6.(2)(2022·衡水检测)如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =3,SE =14SB ,则异面直线SC 与OE 所成角的正切值为( )A .222B .53C .1316D .113答案 D解析 如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF ,则∠CSF (或其补角)为异面直线SC 与OE 所成的角.∵SE =14SB ,∴SE =13BE .又OB =3,∴OF =13OB =1.∵SO ⊥OC ,SO =OC =3, ∴SC =32.∵SO ⊥OF ,∴SF =SO 2+OF 2=10. ∵OC ⊥OF ,∴CF =10. ∴在等腰△SCF 中,tan∠CSF =102-⎝ ⎛⎭⎪⎫3222322=113. 教师备选1.(多选)设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则下列结论不正确的是( )A .若a ⊂α,b ⊂β,则a 与b 是异面直线B .若a 与b 异面,b 与c 异面,则a 与c 异面C .若a ,b 不同在平面α内,则a 与b 异面D .若a ,b 不同在任何一个平面内,则a 与b 异面 答案 ABC2.在长方体ABCDA 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A .15B .56C .55D .22 答案 C解析 如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM .易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角或其补角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2, DM =AD 2+⎝ ⎛⎭⎪⎫12AB 2=52, DB 1=AB 2+AD 2+BB 21=5. 所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos∠MOD =12+⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55. 思维升华 (1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型. (2)求异面直线所成的角的三个步骤一作:根据定义作平行线,作出异面直线所成的角. 二证:证明作出的角是异面直线所成的角. 三求:解三角形,求出所作的角.跟踪训练2 (1)如图所示,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 与MN 是异面直线的图形有________.(填序号)答案 ②④(2)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列结论正确的是( ) A .l 与l 1,l 2都不相交 B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交 答案 D解析 如图1,l 1与l 2是异面直线,l 1与l 平行,l 2与l 相交,故A ,B 不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故C 不正确.图1 图2题型三 空间几何体的切割(截面)问题例4 (1)在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱DD 1和BB 1上的点,MD =13DD 1,NB =13BB 1,那么正方体中过M ,N ,C 1的截面图形是( ) A .三角形 B .四边形 C .五边形 D .六边形答案 C解析 先确定截面上的已知边与几何体上和其共面的边的交点,再确定截面与几何体的棱的交点.如图,设直线C 1M ,CD 相交于点P ,直线C 1N ,CB 相交于点Q ,连接PQ 交直线AD 于点E ,交直线AB 于点F ,则五边形C 1MEFN 为所求截面图形.(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为2.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为______. 答案π2解析 以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线是以C 1为圆心,1为半径的圆与正方形BCC 1B 1相交的一段弧(圆周的四分之一),其长度为14×2π×1=π2.延伸探究 将本例(2)中正方体改为直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3=2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ ︵的长为π2×2=2π2,即交线长为2π2.教师备选如图,在正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,平面α经过直线BD 且与直线C 1E 平行,若正方体的棱长为2,则平面α截正方体所得的多边形的面积为________.答案 92解析 如图,过点B 作BM ∥C 1E 交B 1C 1于点M ,过点M 作BD 的平行线,交C 1D 1于点N ,连接DN ,则平面BDNM 即为符合条件的平面α,由图可知M ,N 分别为B 1C 1,C 1D 1的中点, 故BD =22,MN =2, 且BM =DN =5, ∴等腰梯形MNDB 的高为h =52-⎝⎛⎭⎪⎫222=322, ∴梯形MNDB 的面积为 12×(2+22)×322=92. 思维升华 (1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线. (2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线. 跟踪训练3 (1)(多选)正方体ABCD -A 1B 1C 1D 1的棱长为2,已知平面α⊥AC 1,则关于α截此正方体所得截面的判断正确的是( ) A .截面形状可能为正三角形 B .截面形状可能为正方形 C .截面形状可能为正六边形 D .截面面积最大值为3 3 答案 ACD解析 易知A ,C 正确,B 不正确,下面说明D 正确,如图,截面为正六边形,当六边形的顶点均为棱的中点时,其面积最大,MN =22,GH =2,OE =OO ′2+O ′E 2=1+⎝⎛⎭⎪⎫222=62, 所以S =2×12×(2+22)×62=33,故D 正确.(2)(2022·兰州模拟)如图,正方体A 1C 的棱长为1,点M 在棱A 1D 1上,A 1M =2MD 1,过M 的平面α与平面A 1BC 1平行,且与正方体各面相交得到截面多边形,则该截面多边形的周长为________.答案 3 2解析 在平面A 1D 1DA 中寻找与平面A 1BC 1平行的直线时,只需要ME ∥BC 1,如图所示,因为A 1M =2MD 1,故该截面与正方体的交点位于靠近D 1,A ,C 的三等分点处,故可得截面为MIHGFE ,设正方体的棱长为3a , 则ME =22a ,MI =2a ,IH =22a ,HG =2a ,FG =22a ,EF =2a ,所以截面MIHGFE 的周长为ME +EF +FG +GH +HI +IM =92a , 又因为正方体A 1C 的棱长为1,即3a =1, 故截面多边形的周长为32.课时精练1.下列叙述错误的是( )A .若P ∈α∩β,且α∩β=l ,则P ∈lB.若直线a∩b=A,则直线a与b能确定一个平面C.三点A,B,C确定一个平面D.若A∈l,B∈l且A∈α,B∈α,则l⊂α答案 C解析选项A,点P是两平面的公共点,当然在交线上,故正确;选项B,由基本事实的推论可知,两相交直线确定一个平面,故正确;选项C,只有不共线的三点才能确定一个平面,故错误;选项D,由基本事实2,直线上有两点在一个平面内,则这条直线在平面内.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列判断正确的是( ) A.若m⊥α,n⊥β,α⊥β,则直线m与n可能相交或异面B.若α⊥β,m⊂α,n⊂β,则直线m与n一定平行C.若m⊥α,n∥β,α⊥β,则直线m与n一定垂直D.若m∥α,n∥β,α∥β,则直线m与n一定平行答案 A解析m,n是两条不同的直线,α,β是两个不同的平面,对于A,若m⊥α,n⊥β,α⊥β,则直线m与n相交垂直或异面垂直,故A正确;对于B,若α⊥β,m⊂α,n⊂β,则直线m与n相交、平行或异面,故B错误;对于C,若m⊥α,n∥β,α⊥β,则直线m与n相交、平行或异面,故C错误;对于D,若m∥α,n∥β,α∥β,则直线m与n平行或异面,故D错误.3.(2022·营口模拟)已知空间中不过同一点的三条直线a,b,l,则“a,b,l两两相交”是“a,b,l共面”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析空间中不过同一点的三条直线a,b,l,若a,b,l在同一平面,则a,b,l相交或a,b,l有两个平行,另一直线与之相交,或三条直线两两平行.所以a,b,l在同一平面,则a,b,l两两相交不一定成立;而若a,b,l两两相交,则a,b,l在同一平面成立.故“a,b,l两两相交”是“a,b,l共面”的充分不必要条件.4.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M,N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是( )A .MN =12EF ,且MN 与EF 平行B .MN ≠12EF ,且MN 与EF 平行C .MN =12EF ,且MN 与EF 异面D .MN ≠12EF ,且MN 与EF 异面答案 D解析 设正方体ABCD -A 1B 1C 1D 1的棱长为2a , 则MN =MC 21+C 1N 2=⎝ ⎛⎭⎪⎫2a 22+⎝ ⎛⎭⎪⎫2a 22 =2a ,作点E 在平面ABCD 内的射影点G ,连接EG ,GF ,所以EF =EG 2+GF 2=⎝ ⎛⎭⎪⎫2a 22+2a2=3a ,所以MN ≠12EF ,故选项A ,C 错误;连接DE ,因为E 为平面ADD 1A 1的中心, 所以DE =12A 1D ,又因为M ,N 分别为B 1C 1,CC 1的中点,所以MN ∥B 1C , 又因为B 1C ∥A 1D ,所以MN ∥ED , 且DE ∩EF =E ,所以MN 与EF 异面,故选项B 错误.5.(多选)(2022·临沂模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,O 是DB 的中点,直线A 1C 交平面C 1BD 于点M ,则下列结论正确的是( )A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,B1,B四点共面D.D1,D,O,M四点共面答案AB解析∵O∈AC,AC⊂平面ACC1A1,∴O∈平面ACC1A1.∵O∈BD,BD⊂平面C1BD,∴O∈平面C1BD,∴O是平面ACC1A1和平面C1BD的公共点,同理可得,点M和C1都是平面ACC1A1和平面C1BD的公共点,∴三点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O三点共线,故A,B正确;根据异面直线的判定定理可得BB1与C1O为异面直线,故C1,O,B1,B四点不共面,故C不正确;根据异面直线的判定定理可得DD1与MO为异面直线,故D1,D,O,M四点不共面,故D不正确.6.(多选)(2022·厦门模拟)下列说法不正确的是( )A.两组对边分别相等的四边形确定一个平面B.和同一条直线异面的两直线一定共面C.与两异面直线分别相交的两直线一定不平行D.一条直线和两平行线中的一条相交,也必定和另一条相交答案ABD解析两组对边分别相等的四边形可能是空间四边形,故A错误;如图1,直线DD1与B1C1都是直线AB的异面直线,同样DD1与B1C1也是异面直线,故B错误;如图2,设直线AB与CD是异面直线,则直线AC与BD一定不平行,否则AC∥BD,有AC与BD确定一个平面α,则AC⊂α,BD⊂α,所以A∈α,B∈α,C∈α,D∈α,所以AB⊂α,CD⊂α,这与假设矛盾,故C正确;如图1,AB∥CD,而直线AA1与AB相交,但与直线CD不相交,故D错误.图1 图27.(2022·哈尔滨模拟)已知在直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为________. 答案105解析 如图所示,补成直四棱柱ABCD -A 1B 1C 1D 1,则所求角为∠BC 1D 或其补角,∵BC 1=2,BD =22+1-2×2×1×cos60°=3,C 1D =AB 1=5, 易得C 1D 2=BD 2+BC 21,即BC 1⊥BD , 因此cos∠BC 1D =BC 1C 1D =25=105. 8.(2022·本溪模拟)在空间中,给出下面四个命题,其中假命题为________.(填序号) ①过平面α外的两点,有且只有一个平面与平面α垂直; ②若平面β内有不共线三点到平面α的距离都相等,则α∥β; ③若直线l 与平面α内的任意一条直线垂直,则l ⊥α; ④两条异面直线在同一平面内的射影一定是两条相交直线. 答案 ①②④解析 对于①,当平面α外两点的连线与平面α垂直时,此时过两点有无数个平面与平面α垂直,所以①不正确;对于②,若平面β内有不共线三点到平面α的距离都相等,平面α与β可能平行,也可能相交,所以②不正确;对于③,直线l 与平面内的任意直线垂直时,得到l ⊥α,所以③正确;对于④,两条异面直线在同一平面内的射影可能是两条相交直线或两条平行直线或直线和直线外的一点,所以④不正确.9.(2022·上海市静安区模拟)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,CC 1的中点.(1)求异面直线A 1E 与D 1F 所成的角的余弦值; (2)求三棱锥A 1-D 1EF 的体积.解 (1)如图,设BB 1的中点为H ,连接HF ,EH ,A 1H ,因为F 是CC 1的中点,所以A 1D 1∥CB ∥HF ,A 1D 1=CB =HF , 因此四边形A 1D 1FH 是平行四边形, 所以D 1F ∥A 1H ,D 1F =A 1H ,因此∠EA 1H 是异面直线A 1E 与D 1F 所成的角或其补角, 正方体ABCD -A 1B 1C 1D 1的棱长为2,E 是AB 的中点, 所以A 1E =A 1H =22+12=5,EH =12+12=2,由余弦定理可知,cos∠EA 1H =A 1E 2+A 1H 2-EH 22A 1E ·A 1H =5+5-22×5×5=45,所以异面直线A 1E 与D 1F 所成的角的余弦值为45.(2)因为A 1D 1∥HF ,HF ⊄平面A 1D 1E ,A 1D 1⊂平面A 1D 1E , 所以HF ∥平面A 1D 1E ,因此点H ,F 到平面A 1D 1E 的距离相等, 即111111F A D E H A D E D A EH V V V ---==,11D A EH V -=13D 1A 1·1A EH S △=13×2×⎝ ⎛⎭⎪⎫22-12×2×1×2-12×1×1=1,所以三棱锥A 1-D 1EF 的体积为1.10.如图,四棱柱ABCD -A 1B 1C 1D 1的侧棱AA 1⊥底面ABCD ,四边形ABCD 为菱形,E ,F 分别为AA 1,CC 1的中点,M 为AB 上一点.(1)若D 1E 与CM 相交于点K ,求证D 1E ,CM ,DA 三条直线相交于同一点; (2)若AB =2,AA 1=4,∠BAD =π3,求点D 1到平面FBD 的距离.(1)证明 ∵D 1E 与CM 相交于点K , ∴K ∈D 1E ,K ∈CM ,而D 1E ⊂平面ADD 1A 1,CM ⊂平面ABCD , 且平面ADD 1A 1∩平面ABCD =AD , ∴K ∈AD ,∴D 1E ,CM ,DA 三条直线相交于同一点K . (2)解 ∵四边形ABCD 为菱形,AB =2, ∴BC =CD =2,而四棱柱的侧棱AA 1⊥底面ABCD , ∴CC 1⊥底面ABCD ,又∵F 是CC 1的中点,CC 1=4,∴CF =2, ∴BF =DF =22,又∵四边形ABCD 为菱形,∠BAD =π3,∴BD =AB =2, ∴S △FBD =12×2×222-1=7.设点D 1到平面FBD 的距离为h ,点B 到平面DD 1F 的距离为d , 则d =2sin π3=3,又∵11D FBD B DD F V V --=, ∴13×S △FBD ×h =13×1DD F S △×d , ∴13×7×h =13×12×4×2×3, 解得h =4217.即点D1到平面FBD的距离为421 7.11.(多选)(2022·太原模拟)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,下列结论正确的是( )A.GH与EF平行B.BD与MN为异面直线C.GH与MN成60°角D.DE与MN垂直答案BCD解析如图,还原成正四面体A-DEF,其中H与N重合,A,B,C三点重合,连接GM,易知GH与EF异面,BD与MN异面.又△GMH为等边三角形,∴GH与MN成60°角,易证DE⊥AF,MN∥AF,∴MN⊥DE.∴B,C,D正确.12.(多选)(2022·广州六校联考)如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,下列结论正确的是( )A.AP与CM是异面直线B.AP,CM,DD1相交于一点C.MN∥BD1D.MN∥平面BB1D1D答案 BD解析 如图,连接MP ,AC ,因为MP ∥AC ,MP ≠AC ,所以AP 与CM 是相交直线,又平面A 1ADD 1∩平面C 1CDD 1=DD 1,所以AP ,CM ,DD 1相交于一点,则A 不正确,B 正确;令AC ∩BD =O ,连接OD 1,ON .因为M ,N 分别是C 1D 1,BC 的中点,所以ON ∥D 1M ∥CD ,ON =D 1M =12CD , 则四边形MNOD 1为平行四边形,所以MN ∥OD 1,因为MN ⊄平面BB 1D 1D ,OD 1⊂平面BB 1D 1D ,所以MN ∥平面BB 1D 1D ,C 不正确,D 正确.13.(2022·玉林模拟)在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q 分别为A 1B ,B 1D 1,A 1D ,CD 1的中点,则直线EF 与PQ 所成角的大小是________.答案 π3解析 如图,连接A 1C 1,BC 1,则F 是A 1C 1的中点,又E 为A 1B 的中点,所以EF ∥BC 1,连接DC 1,则Q 是DC 1的中点,又P 为A 1D 的中点,所以PQ ∥A 1C 1,于是∠A 1C 1B 是直线EF 与PQ 所成的角或其补角.易知△A 1C 1B 是正三角形,所以∠A 1C 1B =π3. 14.(2022·盐城模拟)在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别为棱A 1D 1,CC 1的中点,过P ,Q ,A 作正方体的截面,则截面多边形的周长是________.答案 25+95+2133 解析 如图所示,过Q 作QM ∥AP 交BC 于M ,由A 1P =CQ =2,tan∠APA 1=2,则tan∠CMQ =2,CM =CQtan∠CMQ=1, 延长MQ 交B 1C 1的延长线于E 点,连接PE ,交D 1C 1于N 点,则多边形AMQNP 即为截面,根据平行线性质有C 1E =CM =1, C 1N ND 1=C 1E PD 1=12, 则C 1N =43,D 1N =83, 因此NQ =22+⎝ ⎛⎭⎪⎫432=2133, NP =22+⎝ ⎛⎭⎪⎫832=103, 又AP =42+22=25,AM =42+32=5,MQ =12+22=5,所以多边形AMQNP 的周长为AM +MQ +QN +NP +PA=5+5+2133+103+2 5 =25+95+2133.15.(2022·大连模拟)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的正方形,AA 1=3,E ,F 分别是AB ,BC 的中点,过点D 1,E ,F 的平面记为α,则下列说法中错误的是( )A .点B 到平面α的距离与点A 1到平面α的距离之比为1∶2B .平面α截直四棱柱ABCD -A 1B 1C 1D 1所得截面的面积为732C .平面α将直四棱柱分割成的上、下两部分的体积之比为47∶25D .平面α截直四棱柱ABCD -A 1B 1C 1D 1所得截面的形状为四边形 答案 D解析 对于A ,因为平面α过线段AB 的中点E ,所以点A 到平面α的距离与点B 到平面α的距离相等.由平面α过A 1A 的三等分点M 可知,点A 1到平面α的距离是点A 到平面α的距离的2倍,因此,点A 1到平面α的距离是点B 到平面α的距离的2倍.故选项A 正确;延长DA ,DC 交直线EF 的延长线于点P ,Q ,连接D 1P ,D 1Q ,交棱A 1A ,C 1C 于点M ,N .连接ME ,NF ,可得五边形D 1MEFN ,故选项D 错误;由平行线分线段成比例可得AP =BF =1,故DP =DD 1=3,则△DD 1P 为等腰三角形.由相似三角形可知,AM =AP =1,A 1M =2,则D 1M =D 1N =22,ME =EF =FN =2.连接MN ,则MN =22,因此五边形D 1MEFN 可分为等边三角形D 1MN 和等腰梯形MEFN .等腰梯形MEFN 的高h =22-⎝ ⎛⎭⎪⎫22-222=62, 则等腰梯形MEFN 的面积为22+22×62=332.又1D MN S △=12×22×6=23,所以五边形D 1MEFN 的面积为332+23=732,故选项B 正确;记平面将直四棱柱分割成上、下两部分的体积分别为V 1,V 2,则V 2=1D DPQ V --V M -PAE -V N -CFQ=13×12×3×3×3-13×12×1×1×1-13×12×1×1×1=256, 所以V 1=1111ABCD A B C D V --V 2=12-256=476, V 1∶V 2=47∶25,故选项C 正确.16.如图1,在边长为4的正三角形ABC 中,D ,F 分别为AB ,AC 的中点,E 为AD 的中点.将△BCD 与△AEF 分别沿CD ,EF 同侧折起,使得二面角A -EF -D 与二面角B -CD -E 的大小都等于90°,得到如图2所示的多面体.图1 图2(1)在多面体中,求证:A ,B ,D ,E 四点共面;(2)求多面体的体积.(1)证明 因为二面角A -EF -D 的大小等于90°,所以平面AEF ⊥平面DEFC ,又AE ⊥EF ,AE ⊂平面AEF ,平面AEF ∩平面DEFC =EF ,所以AE ⊥平面DEFC ,同理,可得BD ⊥平面DEFC ,所以AE ∥BD ,故A ,B ,D ,E 四点共面.(2)解 因为AE ⊥平面DEFC ,BD ⊥平面DEFC ,EF ∥CD ,AE ∥BD ,DE ⊥CD ,所以AE 是四棱锥A -CDEF 的高,点A 到平面BCD 的距离等于点E 到平面BCD 的距离, 又AE =DE =1,CD =23,EF =3,BD =2,所以V =V A -CDEF +V A -BCD =13S 梯形CDEF ·AE +13S △BCD ·DE =736.。

2020版高考数学第七章立体几何第三节空间点、直线、平面之间的位置关系学案理(含解析)新人教A版

2020版高考数学第七章立体几何第三节空间点、直线、平面之间的位置关系学案理(含解析)新人教A版

第三节空间点、直线、平面之间的位置关系2019考纲考题考情1.平面的基本性质如果一条直线上的两点在一个平面内,那么这条直线在此平面内过不在同一条直线上的三点,有且只有一个平面如果两个不重合的平面有一个公共点,过该点的公共直线(2)平行公理:公理4:平行于同一直线的两条直线互相平行——空间平行线的传递性。

(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

(4)异面直线所成的角:①定义:设a 、b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)。

②范围:⎝⎛⎦⎥⎤0,π2。

3.直线与平面的位置关系 内相平1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面。

2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线。

3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角。

一、走进教材1.(必修2P 43练习T 1改编)下列命题中正确的是( ) A .过三点确定一个平面 B .四边形是平面图形C .三条直线两两相交则确定一个平面D .两个相交平面把空间分成四个区域解析 对于A ,过不在同一条直线上的三点有且只有一个平面,故A 错误;对于B ,四边形也可能是空间四边形,不一定是平面图形,故B 错误;对于C ,三条直线两两相交,可以确定一个平面或三个平面,故C 错误;对于D ,平面是无限延展的,两个相交平面把空间分成四个区域,故D 正确。

答案 D2.(必修2P 49练习题)若直线a 不平行于平面α,且a ⊄α,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交解析 若直线a 不平行于平面α,且a ⊄α,则线面相交,A 选项不正确,α内存在直线与a 相交;B 选项正确,α内的直线与直线a 的位置关系是相交或者异面,不可能平行;C 选项不正确,因为α内的直线与直线a 的位置关系是相交或者异面,不可能平行;D 选项不正确,α内只有过直线a 与平面的交点的直线与a 相交。

高考数学总复习第七章立体几何7.3空间点、直线、平面之间的位置关系课件

高考数学总复习第七章立体几何7.3空间点、直线、平面之间的位置关系课件

证明:(1)∵E,F 分别为 AB,AD 的中点, ∴EF∥BD. ∵在△BCD 中,BGGC=DHHC=12, ∴GH∥BD,∴EF∥GH. ∴E,F,G,H 四点共面. (2)∵EG∩FH=P,P∈EG,EG⊂平面 ABC, ∴P∈平面 ABC.同理 P∈平面 ADC. ∴P 为平面 ABC 与平面 ADC 的公共点. 又平面 ABC∩平面 ADC=AC, ∴P∈AC,∴P,A,C 三点共线.
形中位线定理,得 OE∥PD,OE=12PD=12,则∠AEO 或其补角 是异面直线 AE 与 PD 所成的角.又△PAB 是等边三角形,所以
AE= 23AB= 23.易得 OA=OB=OC=OD= 22,在△OAE 中,由 余弦定理,得 cos∠AEO=AE2+2AOEE·O2-E OA2= 33,即异面直线 AE

PD
所成角的余弦值为
3 3.
(2)(2019·佛山模拟)如图所示,在正三棱柱 ABC A1B1C1 中,D 是
ACπ 的中点,AA1∶AB= 2∶1,则异面直线 AB1 与 BD 所成的角为 ___3__ .
解析:如图,取 A1C1 的中点 E,连接 B1E,ED,AE,易知 BD∥B1E.
在 Rt△AB1E 中,∠AB1E 为异面直线 AB1 与 BD 所成的角. 设 AB=1,则 A1A= 2,AB1= 3,B1E= 23, 所以 cos∠AB1E=BA1BE1=12, 因此∠AB1E=π3, 故异面直线 AB1 与 BD 所成的角为π3.
考点二 空间两直线的位置关系
(1)若直线 l1 和 l2 是异面直线,l1 在平面 α 内,l2 在平面 β
内,l 是平面 α 与平面 β 的交线,则下列命题正确的是( D )
A.l 与 l1,l2 都不相交 B.l 与 l1,l2 都相交 C.l 至多与 l1,l2 中的一条相交 D.l 至少与 l1,l2 中的一条相交

高考总复习数学文科 第七篇 立体几何第3讲 空间点、直线、平面之间的位置关系

高考总复习数学文科 第七篇 立体几何第3讲 空间点、直线、平面之间的位置关系

高考总复习数学文科 第七篇 立体几何第3讲 空间点、直线、平面之间的位置关系[最新考纲]1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.知 识 梳 理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)空间两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)平行公理和等角定理 ①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.辨 析 感 悟1.对平面基本性质的认识(1)两个不重合的平面只能把空间分成四个部分.(×)(2)两个平面α,β有一个公共点A ,就说α,β相交于A 点,记作α∩β=A .(×)(3)(教材练习改编)两两相交的三条直线最多可以确定三个平面.(√)(4)(教材练习改编)如果两个平面有三个公共点,则这两个平面重合.(×)2.对空间直线关系的认识(5)已知a ,b 是异面直线、直线c 平行于直线a ,那么c 与b 不可能是平行直线.(√)(6)没有公共点的两条直线是异面直线.(×)[感悟·提升]1.一点提醒 对做有关平面基本性质的判断题时,要抓住关键词,如“有且只有”、“只能”、“最多”等.如(1)中两个不重合的平面还可把空间分成三部分.2.两个防范 一是两个不重合的平面只要有一个公共点,那么两个平面一定相交得到的是一条直线,如(2);二是搞清“三个公共点”是共线还是不共线,如(4).3.一个理解异面直线是指不同在任何一个平面内,没有公共点.不能错误地理解为不在某一个平面内的两条直线就是异面直线,如(6).考点一平面的基本性质及其应用【例1】(1)以下四个命题中,正确命题的个数是().①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0B.1C.2D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R的截面图形是().A.三角形B.四边形C.五边形D.六边形解析(1)①正确,可以用反证法证明;②从条件看出两平面有三个公共点A,B,C,但是若A,B,C共线,则结论不正确;③不正确,共面不具有传递性;④不正确,因为此时所得的四边形四条边可以不在一个平面上.(2)如图所示,作RG∥PQ交C1D1于G,连接QP并延长与CB延长线交于M,连接MR交BB1于E,连接PE,则PE,RE为截面的部分外形.同理连PQ并延长交CD于N,连接NG交DD1于F,连接QF,FG.∴截面为六边形PQFGRE.答案(1)B(2)D规律方法(1)公理1是判断一条直线是否在某个平面的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.要能够熟练用文字语言、符号语言、图形语言来表示公理.(2)画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定,作图时充分利用几何体本身提供的面面平行等条件,可以更快地确定交线的位置.【训练1】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.解析可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点分别为M,N,可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;④中,可证Q点所在棱与面PRS平行,因此,P,Q,R,S四点不共面.答案①②③考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.解析把正四面体的平面展开图还原.如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.答案②③④规律方法空间中两直线位置关系的判定,主要是异面、平行和垂直的判定,对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、平行公理及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.【训练2】在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).解析图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉面GHN,因此直线GH 与MN 异面;图③中,连接MG ,GM ∥HN ,因此GH 与MN 共面;图④中,G ,M ,N 共面,但H ∉面GMN ,因此GH 与MN 异面.所以在图②④中GH 与MN 异面.答案 ②④考点三 异面直线所成的角【例3】 在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60°,对角线AC 与BD 交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成角为60°.(1)求四棱锥的体积;(2)若E 是PB 的中点,求异面直线DE 与P A 所成角的余弦值.审题路线 (1)找出PB 与平面ABCD 所成角⇒计算出PO 的长⇒求出四棱锥的体积.(2)取AB 的中点F ⇒作△P AB 的中位线⇒找到异面直线DE 与P A 所成的角⇒计算.解(1)在四棱锥P -ABCD 中,∵PO ⊥面ABCD ,∴∠PBO 是PB 与面ABCD 所成的角,即∠PBO =60°,∵BO =AB ·sin 30°=1,∵PO ⊥OB ,∴PO =BO ·tan 60°=3,∵底面菱形的面积S =2 3.∴四棱锥P -ABCD 的体积V P -ABCD =13×23×3=2. (2)取AB 的中点F ,连接EF ,DF ,∵E 为PB 中点,∴EF ∥P A ,∴∠DEF 为异面直线DE 与P A 所成角(或其补角).在Rt △AOB 中,AO =AB ·cos 30°=3=OP ,∴在Rt △POA 中,P A =6,∴EF =62.在正△ABD 和正△PDB 中,DF =DE =3,∴cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=(3)2+⎝ ⎛⎭⎪⎫622-(3)22×3×62=6432=24. 即异面直线DE 与P A所成角的余弦值为24.规律方法 (1)平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是⎝ ⎛⎦⎥⎤0,π2,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.(2)求异面直线所成的角要特别注意异面直线之间所成角的范围.【训练3】(2014·成都模拟)在正方体ABCD-A1B1C1D1中,E,F分别是棱A1B1,A1D1的中点,则A1B与EF所成角的大小为________.解析如图,连接B1D1,D1C,B1C.由题意知EF是△A1B1D1的中位线,所以EF∥B1D1.又A1B∥D1C,所以A1B与EF所成的角等于B1D1与D1C所成的角.因为△D1B1C为正三角形,所以∠B1D1C=π3.故A1B与EF所成角的大小为π3.答案π31.证明线共点问题,常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.2.证明点或线共面问题,一般有以下两种途径:(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面内;(2)将所有条件分为两部分,然后分别确定平面,再证平面重合.3.异面直线的判定方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.思想方法8——构造模型判断空间线面的位置关系【典例】(2012·上海卷)已知空间三条直线l,m,n,若l与m异面,且l 与n异面,则().A.m与n异面B.m与n相交C.m与n平行D.m与n异面、相交、平行均有可能解析在如图所示的长方体中,m,n1与l都异面,但是m∥n1,所以A,B 错误;m,n2与l都异面,且m,n2也异面,所以C错误.答案 D[反思感悟]这类试题一般称为空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.【自主体验】1.(2013·浙江卷)设m,n是两条不同的直线,α,β是两个不同的平面().A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析本题可借助特殊图形求解,画一个正方体作为模型(如图).设底面ABCD为α,侧面A1ADD1为β.①当A1B1=m,B1C1=n时,显然A不正确;②当B1C1=m时,显然D不正确;③当B1C1=m时,显然B不正确.故选C.答案 C2.对于不同的直线m,n和不同的平面α,β,γ,有如下四个命题:①若m∥α,m⊥n,则n⊥α;②若m⊥α,m⊥n,则n∥α;③若α⊥β,γ⊥β,则α∥γ;④若m⊥α,m∥n,n⊂β,则α⊥β.其中真命题的个数是().A.1B.2C.3D.4解析本题可借助特殊图形求解.画一个正方体作为模型(如图)设底面ABCD为α.①当A1B1=m,B1C1=n,显然符合①的条件,但结论不成立;②当A1A=m,AC=n,显然符合②的条件,但结论不成立;③与底面ABCD相邻两个面可以两两垂直,但任何两个都不平行;④由面面垂直的判定定理可知,④是正确的.只有④正确,故选A.答案A基础巩固题组(建议用时:40分钟)一、选择题1.(2013·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a 在α,β内的射影分别为直线b和c,则直线b和c的位置关系是().A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案 D2.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是().A.相交B.异面C.平行D.垂直解析如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.答案 A3.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是().①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P ∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④解析当a∩α=P时,P∈a,P∈α,但a⊄α,①错;a∩β=P时,②错;如图,∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确.答案 D4.(2013·山西重点中学联考)已知l,m,n是空间中的三条直线,命题p:若m⊥l,n⊥l,则m∥n;命题q:若直线l,m,n两两相交,则直线l,m,n 共面,则下列命题为真命题的是().A.p∧q B.p∨qC.p∨(綈q)D.(綈p)∧q解析命题p中,m,n可能平行、还可能相交或异面,所以命题p为假命题;命题q中,当三条直线交于三个不同的点时,三条直线一定共面,当三条直线交于一点时,三条直线不一定共面,所以命题q也为假命题.所以綈p和綈q 都为真命题,故p∨(綈q)为真命题.选C.答案 C5.如图,在正方体ABCD-A1B1C1D1中,过顶点A1与正方体其他顶点的连线与直线BC1成60°角的条数为().A.1B.2C.3D.4解析有2条:A1B和A1C1.答案 B二、填空题6.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.解析如图所示,与AB异面的直线有B1C1,CC1,A1D1,DD1四条,因为各棱具有不同的位置,且正方体共有12条棱,排除两棱的重复计算,共有异面直线12×42=24(对).答案247.如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).解析A,M,C1三点共面,且在平面AD1C1B中,但C∉平面AD1C1B,因此直线AM与CC1是异面直线,同理AM与BN也是异面直线,AM与DD1也是异面直线,①②错,④正确;M,B,B1三点共面,且在平面MBB1中,但N∉平面MBB1,因此直线BN与MB1是异面直线,③正确.答案③④8.(2013·江西卷)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.解析取CD的中点为G,由题意知平面EFG与正方体的左、右侧面所在平面重合或平行,从而EF与正方体的左、右侧面所在的平面平行或EF在平面内.所以直线EF与正方体的前、后侧面及上、下底面所在平面相交.故直线EF 与正方体的六个面所在的平面相交的平面个数为4.答案 4三、解答题9.如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠F AB=90°,BC綉12AD,BE綉12F A,G,H分别为F A,FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?(1)证明由已知FG=GA,FH=HD,可得GH綉12AD.又BC綉12AD,∴GH綉BC,∴四边形BCHG为平行四边形.(2)解由BE綉12AF,G为F A中点知,BE綉FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG綉CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C,D,F,E四点共面.10.在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,求证:点C1,O,M共线.证明如图所示,∵A1A∥C1C,∴A1A,C1C确定平面A1C.∵A1C⊂平面A1C,O∈A1C,∴O∈平面A1C,而O=平面BDC1∩线A1C,∴O∈平面BDC1,∴O在平面BDC1与平面A1C的交线上.∵AC∩BD=M,∴M∈平面BDC1,且M∈平面A1C,∴平面BDC1∩平面A1C=C1M,∴O∈C1M,即C1,O,M三点共线.能力提升题组(建议用时:25分钟)一、选择题1.(2014·长春一模)一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中().A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°解析如图,把展开图中的各正方形按图1所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图2所示的直观图,可见选项A,B,C不正确.∴正确选项为D.图2中,BE∥CD,∠ABE为AB与CD所成的角,△ABE为等边三角形,∴∠ABE=60°.答案 D2.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线().A.不存在B.有且只有两条C.有且只有三条D.有无数条解析法一图1在EF上任意取一点M,直线A1D1与M确定一个平面(如图1),这个平面与CD有且仅有1个交点N,当M取不同的位置就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点.如图所示.故选D.法二在A1D1上任取一点P,过点P与直线EF作一个平面α(如图2),因CD与平面α不平行,图2所以它们相交,设它们交于点Q ,连接PQ ,则PQ 与EF 必然相交,即PQ 为所求直线.由点P 的任意性,知有无数条直线与三条直线A 1D 1,EF ,CD 都相交.答案 D 二、填空题 3.(2013·安徽卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62.解析 如图1,当CQ =12时,平面APQ 与平面ADD 1A 1的交线AD 1必平行于PQ ,且D 1Q =AP =52,∴S 为等腰梯形,∴②正确;同理,当0<CQ <12时,S 为四边形,∴①正确;图1图2如图2,当CQ =34时,将正方体ABCD -A 1B 1C 1D 1补成底面不变,高为1.5的长方体ABCD -A 2B 2C 2D 2.Q 为CC 2的中点,连接AD 2交A 1D 1于点E ,易知PQ ∥AD 2,作ER ∥AP ,交C 1D 1于R ,连接RQ ,则五边形APQRE 为截面S .延长RQ ,交DC 的延长线于F ,同时与AP 的延长线也交于F ,由P 为BC 的中点,PC ∥AD ,知CF =12DF =1,由题意知△RC 1Q ∽△FCQ ,∴RC 1CF =C 1QCQ ,∴C 1R =13,∴③正确;由图2知当34<CQ <1时,S 为五边形,∴④错误;当CQ =1时,点Q 与点C 1重合,截面S 为边长为52的菱形,对角线AQ =3,另一条对角线为2,∴S =62,⑤正确.答案 ①②③⑤ 三、解答题4.如图,在正方体ABCD -A 1B 1C 1D 1中,(1)求A1C1与B1C所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解(1)如图,连接AC,AB1,由ABCD-A1B1C1D1是正方体,知AA1C1C为平行四边形,所以AC∥A1C1,从而B1C与AC所成的角就是A1C1与B1C所成的角.由△AB1C中,由AB1=AC=B1C可知∠B1CA=60°,即A1C1与B1C所成角为60°.(2)如图,连接BD,由(1)知AC∥A1C1.∴AC与EF所成的角就是A1C1与EF所成的角.∵EF是△ABD的中位线,∴EF∥BD.又∵AC⊥BD,∴AC⊥EF,即所求角为90°.∴EF⊥A1C1.即A1C1与EF所成的角为90°.。

全国版2019版高考数学一轮复习第7章立体几何第3讲空间点直线平面之间的位置关系课件

全国版2019版高考数学一轮复习第7章立体几何第3讲空间点直线平面之间的位置关系课件

5.[2018·大连模拟]如图,在三棱锥 C-ABD 中,E,F 分别是 AC 和 BD 的中点,若 CD=2AB=4,EF⊥AB,则 EF 与 CD 所成的角是___3_0_°___.
解析 取 CB 的中点 G,连接 EG,FG, ∵EG∥AB,FG∥CD, ∴EF 与 CD 所成的角为∠EFG 或其补角.
(2)由(1)知 EF 綊21BD,GH 綊23BD.
∴四边形 FEGH 为梯形,∴GE 与 HF 交于一点,设 EG∩FH=P,P∈EG,EG⊂平面 ABC,
∴P∈平面 ABC.同理 P∈平面 ADC. ∴P 为平面 ABC 与平面 ADC 的公共点, 又平面 ABC∩平面 ADC=AC, ∴P∈AC,∴P,A,C 三点共线.
解析 由直线 l1 和 l2 是异面直线可知 l1 与 l2 不平行,故 l1,l2 中至少有一条与 l 相交.故选 D.
命题角度 2 异面直线的判定 例 3 如图所示,正方体 ABCD-A1B1C1D1 中,M,N 分别为棱 C1D1,C1C 的中点,有以下四个结论:
①直线 AM 与 CC1 是相交直线; ②直线 AM 与 BN 是平行直线; ③直线 BN 与 MB1 是异面直线; ④直线 AM 与 DD1 是异面直线.
1.三个公理的作用是证明点共线、点共面、线共面、线 共点等几何问题.
2.求异面直线所成的角就是要通过平移转化的方法,将 异面直线所成的角转化成同一平面内的直线所成的角,放到 同一个可解的三角形中去求解.
满分策略
1.正确理解异面直线“不同在任何一个平面内”的含 义,不要理解成“不在同一个平面内”.
2.不共线的三点确定一个平面,一定不能丢掉“不共 线”条件.
所以
cosθ=AB221×+AABD1×21-ABD11D21=2×5+25-×3

高考数学一轮复习第七篇立体几何与空间向量第3节空间点直线平面之间的位置关系训练理新人教版

高考数学一轮复习第七篇立体几何与空间向量第3节空间点直线平面之间的位置关系训练理新人教版

第3节空间点、直线、平面之间的位置关系基础巩固(时间:30分钟)1.已知空间三条直线l,m,n,若l与m异面,且l与n异面,则( D )(A)m与n异面(B)m与n相交(C)m与n平行(D)m与n异面、相交、平行均有可能解析:在如图所示的长方体中,m,n1与l都异面,但是m∥n1,所以A,B错误;m,n2与l都异面,且m,n2也异面,所以C错误.2.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是( D )解析: 在A图中分别连接PS,QR,易证PS∥QR,所以P,Q,R,S共面;在C图中分别连接PQ,RS,易证PQ∥RS,所以P,Q,R,S共面;在B图中过P,Q,R,S可作一正六边形,故四点共面;D图中PS与QR为异面直线,所以四点不共面,故选D.3.如图是某个正方体的侧面展开图,l1,l2是两条侧面对角线,则在正方体中,l1与l2( D )(A)互相平行(B)异面且互相垂直(C)异面且夹角为(D)相交且夹角为解析:将侧面展开图还原成正方体如图所示,则B,C两点重合.故l1与l2相交,连接AD,△ABD为正三角形,所以l1与l2的夹角为.故选D.ABCD中,M,N分别为AB,CD的中点,则下列判断:①MN≥(AC+BD);②MN> (AC+BD);③MN= (AC+BD);④MN< (AC+BD).其中正确的是( D )(A)①③ (B)②④ (C)② (D)④解析:如图,取BC的中点O,连接MO,NO,则OM=AC,ON=BD.在△MON中,MN<OM+ON= (AC+BD),所以④正确.5.在正方体ABCDA1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体过P,Q,R的截面图形是( D )(A)三角形(B)四边形(C)五边形(D)六边形解析:如图所示,作RG∥PQ交C1D1于G,连接QP并延长与CB延长线交于M,且QP反向延长线与CD延长线交于N,连接MR交BB1于E,连接PE,则PE,RE为截面与正方体的交线,同理连接NG交DD1于F,连接QF,FG,则QF,FG为截面与正方体的交线,所以截面为六边形PQFGRE.DABC的三视图,点O在三个视图中都是所在边的中点,则异面直线DO和AB所成角的余弦值等于( A )(A)(B) (C)(D)解析:由题意得如图的直观图,从A出发的三条线段AB,AC,AD两两垂直且AB=AC=2,AD=1,O是BC中点,取AC中点E,连接DE,DO,OE,则OE=1.又可知AE=1,由于OE∥AB,故∠DOE或其补角即为所求两异面直线所成的角.在直角三角形DAE中,DE=,由于O是中点,在直角三角形ABC中可以求得AO=.在直角三角形DAO中可以求得DO=,又EO=1,所以△DOE为直角三角形,cos∠DOE==,故所求余弦值为,故选A.7.如图所示,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则当AC,BD满足条件时,四边形EFGH为菱形,当AC,BD满足条件时,四边形EFGH是正方形.解析:易知EH∥BD∥FG,且EH=BD=FG,同理EF∥AC∥HG,且EF=AC=HG,显然四边形EFGH为平行四边形.要使平行四边形EFGH为菱形需满足EF=EH,即AC=BD;要使平行四边形EFGH为正方形需满足EF=EH且EF⊥EH,即AC=BD且AC⊥BD.答案:AC=BD AC=BD且AC⊥BD·安庆市二模)正四面体ABDC中,E,F分别为边AB,BD的中点,则异面直线AF,CE所成角的余弦值为.解析:如图,连接CF,取BF的中点M,连接CM,EM,则ME∥AF,故∠CEM(或其补角)即为所求的异面直线所成的角.设这个正四面体的棱长为2,在△ABD中,AF==CE=CF,EM=,CM=.所以cos∠CEM==.答案:能力提升(时间:15分钟)9.如图,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( A )(A)A,M,O三点共线(B)A,M,O,A1不共面(C)A,M,C,O不共面(D)B,B1,O,M共面解析:连接A1C1,AC,则A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,又A在平面ACC1A1和平面AB1D1的交线上.所以A,M,O三点共线.B,C不正确,BB1与AO异面,所以D不正确.故选A.10.长方体ABCDA1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为( C )(A)4 (B)(C)4或(D)4或5解析:设AE=x,则BC=,AC=.因为A1C1∥AC,所以∠ACE为异面直线A1C1与CE所成的角,由余弦定理得=,所以x4-7x2+6=0,所以x2=1或6,所以x=1或.设球O的半径为R,则2R===4或.故选C.11.如图所示,在正方体ABCDA1B1C1D1中,M,N分别是棱C1D1,C1C的中点,给出以下四个结论:①直线AM与直线C1C相交;②直线AM与直线BN平行;③直线AM与直线DD1异面;④直线BN与直线MB1异面.其中正确结论的序号为.(把你认为正确的结论的序号都填上)解析:AM与C1C异面,故①错;AM与BN异面,故②错.易知③④正确.答案:③④12.在正三棱柱ABCA1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为.解析:如图,取A1C1的中点D1,连接B1D1,因为D是AC的中点,所以B1D1∥BD,所以∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,则AA1=a,所以AB1=a,B1D1=a,AD1==a.所以,在△AB1D1中,由余弦定理得cos∠AB1D1===,所以∠AB1D1=60°.答案:60°,在体积为的正三棱锥ABCD中,BD长为2,E为棱BC的中点,求:(1)异面直线AE与CD所成角的余弦值;(2)正三棱锥ABCD的表面积.解:(1)过点A作AO⊥平面BCD,垂足为O,则O为△BCD的中心,由××22×3×AO=,得AO=1.又在正三角形BCD中得OE=1,所以AE=.取BD中点F,连接AF,EF,故EF∥CD,所以∠AEF就是异面直线AE与CD所成的角.在△AEF中,AE=AF=,EF=.所以cos∠AEF==.所以,异面直线AE与CD所成的角的余弦值为.(2)由AE=可得正三棱锥ABCD的侧面积为S=3··BC·AE=×2×=3,所以正三棱锥ABCD的表面积为S=3+·BC2=3+3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3节空间点、直线、平面之间的位置关系
基础对点练(时间:30分钟)
1.(2016·黑龙江大庆高三月考)下列说法正确的是( D )
(A)若a⊂α,b⊂β,则a与b是异面直线
(B)若a与b异面,b与c异面,则a与c异面
(C)若a,b不同在平面α内,则a与b异面
(D)若a,b不同在任何一个平面内,则a与b异面
解析:由异面直线的定义可知选D.
2.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( A )
(A)6(B)12
(C)12(D)24
解析: 如图,已知空间四边形ABCD,对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG 或∠FGH为AC与BD所成的45°角,故
S四边形EFGH=3×4·sin 45°=6,故选A.
3.若直线上有两个点在平面外,则( D )
(A)直线上至少有一个点在平面内
(B)直线上有无穷多个点在平面内
(C)直线上所有点都在平面外
(D)直线上至多有一个点在平面内
解析:根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.选D.
4. (2016·淄博实验阶段测试)如图所示,在正方体ABCD A 1B1C1D1中,M,N分别是棱C1D1,C1C 的中点.给出以下四个结论:
①直线AM与直线C1C相交;
②直线AM与直线BN平行;
③直线AM与直线DD1异面;
④直线BN与直线MB1异面.
其中正确结论的序号为( B )
(A)①② (B)③④ (C)①③ (D)②④
解析:AM与C1C异面,故①错;AM与BN异面,故②错;③,④正确.
5.(2016·福州质检)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p是q的
( A )
(A)充分不必要条件
(B)必要不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
解析:若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件,故选A.
6. 如图,ABCD A 1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( A )
(A)A,M,O三点共线
(B)A,M,O,A1不共面
(C)A,M,C,O不共面
(D)B,B1,O,M共面
解析: 连接A1C1,AC,则A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线.
7.(2016·洛阳一模)已知正四棱柱ABCD A 1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( A )
(A)(B)(C)(D)
解析: 如图所示,因为BD⊥平面ACC1A1,所以平面ACC1A1⊥平面BDC1.在Rt△CC1O中,过C作CH⊥C1O于H,连接DH,则∠CDH即为所求.令AB=a,显然CH====a,
所以sin ∠CDH==,
即CD与平面BDC1所成角的正弦值为.
8. (2016·揭阳模拟)如图所示,在正三棱柱ABC A 1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为.
解析:如图,取A1C1的中点D1,连接B1D1,
因为D是AC的中点,所以B1D1∥BD,所以∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,
则AA1=a,所以AB1=a,B1D1=a,
AD1==a.
所以,在△AB1D1中,由余弦定理得
cos ∠AB1D1=
==,
所以∠AB1D1=60°.
答案:60°
9. 如图所示,在直三棱柱ABC A 1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是.
解析:由于AC∥A1C1,所以∠BA1C1(或其补角)就是所求异面直线所成的角.在△BA1C1
中,A1B=,A1C1=1,BC1=,cos ∠BA1C1==.
答案:
能力提升练(时间:15分钟)
ABC-A1B1C1中,AA1与AC,AB所成的角均为60°,∠BAC=90°,且AB=AC=AA1,则A1B与AC1所成角的正弦值为( D )
(A)1 (B)(C)(D)
解析: 如图所示,把三棱柱补成四棱柱ABDC A 1B1D1C1,连接BD1,则BD1∥AC1,则∠A1BD1就是异面直线A1B与AC1所成的角,设AB=a,在△A1BD1中,A1B=a,BD1=a,A1D1=a,所以sin ∠
A1BD1=.
11.(2016·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:
①若a∥b,b∥c,则a∥c;
②若a⊥b,b⊥c,则a∥c;
③若a与b相交,b与c相交,则a与c相交;
④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.
上述命题中正确的命题是(写出所有正确命题的序号).
解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b 相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a 与b“不同在任何一个平面内”,故④错.
答案:①
12.(2015·四川卷) 如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点.设异面直线EM与AF所成的角为θ,则cos θ的最大值为.
解析:如图,建立空间直角坐标系A xyz,
设AB=2,QM=m(0≤m≤2),
则F(2,1,0),E(1,0,0),M(0,m,2),
=(2,1,0),=(1,-m,-2),
cos θ=|cos<,>|
=||
=||
=.
设y=(0≤m≤2),
则y′=
=
=.
当0≤m≤2时,y′≤0,
所以y=在[0,2]上单调递减.
所以当m=0时,y取最大值,
此时cos θ取最大值,(cos θ)max==.
答案:
ABC A 1B1C1的侧棱长和底面边长均为2,A1在底面ABC内的射影O为底面△ABC的中心,如图所示.
(1)连接BC1,求异面直线AA1与BC1所成角的大小;
(2)连接A 1C,A1B,求三棱锥C1BCA1的体积.
解:(1)连接AO,并延长与BC交于点D,则D是BC边上的中点.
因为点O是正△ABC的中心,且A1O⊥平面ABC,
所以BC⊥AD,BC⊥A1O.
因为AD∩A1O=O,
所以BC⊥平面ADA1.
所以BC⊥AA1.又AA1∥CC1,
所以异面直线AA1与BC1所成的角为∠BC1C.
因为CC1⊥BC,BC=CC1=B1C1=BB1=2,
即四边形BCC1B1为正方形,
所以异面直线AA1与BC1所成角的大小为.
(2)因为三棱柱的所有棱长都为2,
所以可求得AD=,AO=AD=,A1O==.
所以=S△ABC·A1O=2,
=-=.
所以===.
ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:
(1)D,B,E,F四点共面;
(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
证明:(1) 如图所示,因为EF是△D1B1C1的中位线,
所以EF∥B1D1.
在正方体AC1中,B1D1∥BD,
所以EF∥BD.
所以EF,BD确定一个平面.
即D,B,F,E四点共面.
(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1确定的平面为α,
又设平面BDEF为β.
因为Q∈A1C1,所以Q∈α.
又Q∈EF,所以Q∈β.
则Q是α与β的公共点,
同理,P点也是α与β的公共点.
所以α∩β=PQ.
又A1C∩β=R,
所以R∈A1C,R∈α且R∈β.
则R∈PQ,
故P,Q,R三点共线.
好题天天练
,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断正确的是 .(填所有正确结论的序号)
①MN与CC1垂直;②MN与AC垂直;③MN与BD平行;④MN与A1B1平行.
解题关键:连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN∥B1D1.
解析: 连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,
所以MN∥B1D1,
因为CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,
所以MN⊥CC1,MN⊥AC,MN∥BD,故①②③正确.
又因为A1B1与B1D1相交,
所以MN与A1B1不平行,因此④错误.
答案:①②③
2. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
①AB⊥EF;
②AB与CM所成的角为60°;
③EF与MN是异面直线;
④MN∥CD.
以上四个结论中,正确结论的序号是.
解题关键:把平面展开图还原为正方体,观察正方体进行判断.
解析: 把正方体的平面展开图还原成原来的正方体, 如图所示,则AB⊥EF,EF与MN为异面直线,AB∥CM,MN⊥CD,故①③正确.
答案:①③。

相关文档
最新文档