2004年高考数学模拟试题2答案
2004—数二真题、标准答案及解析
2004年考硕数学(二)真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y==的特解为_______. (6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 20tan x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα [](8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[](9)22lim (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln(1)x dx +⎰ [](10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >. [](11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++ [](12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰.(B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[](13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[](14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z z x y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.2004年考硕数学(二)真题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n→∞→∞--====++, 所以 ()f x 0,01,0x x x=⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d y dx < 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++, 222223214113(1)3(1)d y d dy dt tdt dx dx dxt t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令220d ydx < ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞.(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.)【评注】本题属新题型.已考过的题型有求参数方程所确定的函数的二阶导数, 如1989、1991、1994、2003数二考题,也考过函数的凹凸性.(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰⎰.【详解2】1120111)arcsin 2dt t t π+∞-===⎰⎰⎰.【评注】本题为混合广义积分的基本计算题,主要考查广义积分(或定积分)的换元积分法. (4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z z x y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x z z e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数.23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx zz e x e --∂=∂+,23213x z z y e-∂=∂+ 所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x zF x y z e y z -=+-=则232x z F e x -∂=⋅∂, 2Fy∂=∂, 23(3)1x z F e z -∂=--∂2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x z x z e dx dy e dz --=+- 2323(13)22x z x z e dz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x z z e x e --∂=∂+, 23213x z z y e-∂=∂+ 从而 32z zx y∂∂+=∂∂ 【评注】此题属于典型的隐函数求偏导. (5)微分方程3()20y x dx xdy +-=满足165x y==的特解为315y x =+.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解:12dy dx y x= 积分得 1ln ln ln 2y x c =+y ⇒=设(y c x =,代入方程得211(((22c x c x c x x x '-= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=,故所求通解为 315y x =.【详解2】原方程变形为21122dy y x dx x -=, 由一阶线性方程通解公式得1122212dx dx x x y e x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰11ln ln 22212x x ex edx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=,从而所求的解为 315y x =.【评注】此题为求解一阶线性方程的常规题.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值. 【详解1】 2ABA BA E **=+ 2A B A B A E**⇔-=, (2)A E BA E *⇔-=,21A E B A E *∴-==,221111010(1)(1)392100001B A E AA*====-⋅---. 【详解2】由1A A A *-=,得 11122ABA BA E AB A A B A A AA **---=+⇒=+2A AB A B A ⇒=+ (2)A A E B A ⇒-= 32AA EB A ⇒-=21192B A A E∴==- 【评注】此题是由矩阵方程及矩阵的运算法则求行列式值的一般题型,考点是伴随矩阵的性质和矩阵乘积的行列式.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 2tan x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα[]B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302000lim limcos x x x t dtt dtγα++→→=⎰3lim x +→=320lim lim 02x x x++→→===, 即 o ()γα=.又2000lim lim x x x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ). 【评注】此题为比较由变限积分定义的无穷小阶的常规题. (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[]C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点.又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点.所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).【评注】此题是判定分段函数的极值点与拐点的常规题目 (9)22lim (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰ []B【分析】将原极限变型,使其对应一函数在一区间上的积分和式.作变换后,从四个选项中选出正确的. 【详解】 22lim (1)n n→∞+212lim ln (1)(1)(1)nn n nnn →∞⎡⎤=+++⎢⎥⎣⎦212limln(1)ln(1)(1)n n n n n n →∞⎡⎤=++++++⎢⎥⎣⎦11lim 2ln(1)nn i i n n →∞==+∑ 102ln(1)x dx =+⎰2112ln x t tdt +=⎰212ln xdx =⎰故选(B ).【评注】此题是将无穷和式的极限化为定积分的题型,值得注意的是化为定积分后还必须作一变换,才能化为四选项之一.(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >.[]C【分析】可借助于导数的定义及极限的性质讨论函数()f x 在0x =附近的局部性质. 【详解】由导数的定义知 0()(0)(0)lim00x f x f f x →-'=>-,由极限的性质, 0δ∃>, 使x δ<时, 有()(0)0f x f x->即0x δ>>时, ()(0)f x f >,0x δ-<<时, ()(0)f x f <, 故选(C ).【评注】此题是利用导数的定义和极限的性质讨论抽象函数在某一点附近的性质. (11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++ []A【分析】利用待定系数法确定二阶常系数线性非齐次方程特解的形式. 【详解】对应齐次方程 0y y ''+= 的特征方程为 210λ+=, 特征根为 i λ=±,对 2021(1)y y x e x ''+=+=+ 而言, 因0不是特征根, 从而其特解形式可设为21y ax bx c *=++对 sin ()ix m y y x I e ''+==, 因i 为特征根, 从而其特解形式可设为 2(sin cos )y x A x B x *=+ 从而 21sin y y x x ''+=++ 的特解形式可设为xy2(sin cos )y ax bx c x A x B x *=++++【评注】这是一道求二阶常系数线性非齐次方程特解的典型题,此题的考点是二阶常系数线性方程解的结构及非齐次方程特解的形式.(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A)11()dx f xy dy -⎰⎰. (B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]D【分析】将二重积分化为累次积分的方法是:先画出积分区域的示意图,再选择直角坐标系和极坐标系,并在两种坐标系下化为累次积分.【详解】积分区域见图. 在直角坐标系下,20()()Df xy dxdy dy f xy dx =⎰⎰⎰⎰1111()dx f xy dy -=⎰⎰故应排除(A )、(B ). 在极坐标系下, cos sin x r y r θθ=⎧⎨=⎩ ,2sin 20()(sin cos )Df xy dxdy d f r rdr πθθθθ=⎰⎰⎰⎰,故应选(D ).【评注】此题是将二重积分化为累次积分的常规题,关键在于确定累次积分的积分限.(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[]D【分析】根据矩阵的初等变换与初等矩阵之间的关系,对题中给出的行(列)变换通过左(右)乘一相应的初等矩阵来实现.【详解】由题意 010100001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100011001C B ⎛⎫⎪= ⎪ ⎪⎝⎭,010100100011001001C A ⎛⎫⎛⎫ ⎪⎪∴= ⎪⎪ ⎪⎪⎝⎭⎝⎭011100001A AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭,从而 011100001Q ⎛⎫⎪= ⎪ ⎪⎝⎭,故选(D ).【评注】此题的考点是初等变换与初等矩阵的关系,抽象矩阵的行列初等变换可通过左、右乘相应的初等矩阵来实现.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]A【分析】将A 写成行矩阵, 可讨论A 列向量组的线性相关性.将B 写成列矩阵, 可讨论B 行向量组的线性相关性.【详解】设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A =0AB = ⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪⎝⎭()1111110m m n mn m b A b A b A b A =++++= (1)由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由(1)知, 112210j j ij i m m b A b A b A b A +++++=,于是 12,,,m A A A 线性相关.又记 12m B B B B ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则0AB = ⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫ ⎪+++ ⎪== ⎪ ⎪ ⎪+++⎝⎭ 由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++=,从而 12,,,m B B B 线性相关,故应选(A ).【评注】此题的考点是分块矩阵和向量组的线性相关性,此题也可以利用齐次线性方程组的理论求解. 三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】此极限属于型未定式.可利用罗必塔法则,并结合无穷小代换求解. 【详解1】 原式2cos ln 331limx x x ex +⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20ln 2cos ln 3lim x x x →+-=()01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim22cos 6x x x x →=-⋅=-+ 【详解2】 原式2cos ln 331limx x x ex+⎛⎫⎪⎝⎭→-=202cos ln 3limx x x →+⎛⎫ ⎪⎝⎭=20cos 1ln 3lim x x x→-+=(1) 20cos 11lim 36x x x →-==-【评注】此题为求未定式极限的常见题型.在求极限时,要注意将罗必塔法则和无穷小代换结合,以简化运算.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.【分析】分段函数在分段点的可导性只能用导数定义讨论. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++. (Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x +++→→--'===--0()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x---→→-++'===-. 令(0)(0)f f -+''=, 得12k =-. 即当12k =-时, ()f x 在0x =处可导. 【评注】此题的考点是用定义讨论分段函数的可导性. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数; (Ⅱ)求()f x 的值域.【分析】利用变量代换讨论变限积分定义的函数的周期性,利用求函数最值的方法讨论函数的值域. 【详解】 (Ⅰ) 32()sin x x f x t dt πππ+++=⎰,设t u π=+, 则有22()sin()sin ()x x xxf x u du u du f x ππππ+++=+==⎰⎰,故()f x 是以π为周期的周期函数.(Ⅱ)因为sin x 在(,)-∞+∞上连续且周期为π, 故只需在[0,]π上讨论其值域. 因为 ()sin()sin cos sin 2f x x x x x π'=+-=-,令()0f x '=, 得14x π=, 234x π=, 且344()s i n 24f t d t πππ==⎰554433443()sin sin sin 24f t dt t dt t dt πππππππ==-=-⎰⎰⎰又 20(0)sin 1f t dt π==⎰, 32()(sin )1f t dt πππ=-=⎰,∴()f x的最小值是2故()f x的值域是[2.【评注】此题的讨论分两部分:(1)证明定积分等式,常用的方法是变量代换.(2)求变上限积分的最值, 其方法与一般函数的最值相同.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.【分析】用定积分表示旋转体的体积和侧面积,二者及截面积都是t 的函数,然后计算它们之间的关系. 【详解】 (Ⅰ)0()2tS t π=⎰022x x te e π-⎛+= ⎝⎰ 2022x x te e dx π-⎛⎫+= ⎪⎝⎭⎰, 2200()2x x tte e V t y dx dx ππ-⎛⎫+== ⎪⎝⎭⎰⎰, ()2()S t V t ∴=. (Ⅱ)22()2t t x te e F t yππ-=⎛⎫+== ⎪⎝⎭,20222()lim lim()2x x tt t t t e e dx S t F t e e ππ-→+∞→+∞-⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭⎰222lim 222t t t t t t t e e e e e e---→+∞⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ lim 1t tttt e e e e --→+∞+==- 【评注】在 t 固定时,此题属于利用定积分表示旋转体的体积和侧面积的题型,考点是定积分几何应用的公式和罗必塔求与变限积分有关的极限问题.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e ->-. 【分析】文字不等式可以借助于函数不等式的证明方法来证明,常用函数不等式的证明方法主要有单调性、极值和最值法等.【详证1】设224()ln x x x e ϕ=-, 则 2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,所以当x e >时, ()0x ϕ''<, 故()x ϕ'单调减小, 从而当2e x e <<时, 22244()()0x e e e ϕϕ''>=-=, 即当2e x e <<时, ()x ϕ单调增加.因此, 当2e a b e <<<时, ()()b a ϕϕ>, 即 222244ln ln b b a a e e ->- 故 2224ln ln ()b a b a e ->-.【详证2】设2224()ln ln ()x x a x a eϕ=---, 则2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,∴x e >时, ()0x ϕ''<()x ϕ'⇒, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=.令x b =有()0b ϕ>即 2224ln ln ()b a b a e ->-.【详证3】证 对函数2ln x 在[,]a b 上应用拉格朗日定理, 得 222ln ln ln ()b a b a ξξ->-, a b ξ<<.设ln ()t t t ϕ=, 则21ln ()t t tϕ-'=, 当t e >时, ()0t ϕ'<, 所以()t ϕ单调减小, 从而2()()e ϕξϕ>, 即222ln ln 2e e eξξ>=,故 2224ln ln ()b a b a e->- 【评注】此题是文字不等式的证明题型.由于不能直接利用中值定理证明,所以常用的方法是将文字不等式化为函数不等式,然后借助函数不等式的证明方法加以证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.【分析】本题属物理应用.已知加速度或力求运动方程是质点运动学中一类重要的计算,可利用牛顿第二定律,建立微分方程,再求解.【详解1】由题设,飞机的质量9000m kg =,着陆时的水平速度0700/v km h =.从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为()x t ,速度为()v t .根据牛顿第二定律,得dvm kv dt=-. 又dv dv dx dv v dt dx dt dx=⋅=, mdx dv k ∴=-,积分得 ()mx t v C k=-+,由于0(0)v v =,(0)0x =, 故得0mC v k=, 从而0()(())mx t v v t k=-.当()0v t →时, 069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【详解2】根据牛顿第二定律,得dvm kv dt =-. 所以 dv kdt v m=-, 两边积分得 kt mv Ce -=,代入初始条件 00t vv ==, 得0C v =,0()k t mv t v e -∴=,故飞机滑行的最长距离为 0() 1.05()k t mmv mv x v t dt e km kk+∞-+∞==-==⎰.【详解3】根据牛顿第二定律,得22d x dxm k dt dt=-,220d x k dx dt m dt+=,其特征方程为 20kr r m+=, 解得10r =, 2k r m=-, 故 12k t mx C C e-=+,由(0)0x =, 200(0)k t mt t kC dxv ev dtm-====-=,得012mv C C k=-=, 0()(1)k t mmv x t e k-∴=-.当t →+∞时,069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【评注】此题的考点是由物理问题建立微分方程,并进一步求解. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. 【分析】利用复合函数求偏导和混合偏导的方法直接计算. 【详解】122xy zx f ye f x∂''=+∂,122xy zy f xe f y∂''=-+∂, 21112222[(2)]x yx yx y z x f y f x e e f x y e f x y∂''''''=⋅-+⋅++∂∂2122[(2)]x y x yy e f y f x e''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 【评注】此题属求抽象复合函数高阶偏导数的常规题型. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时, 该方程组有非零解, 并求出其通解.【分析】此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.【详解1】对方程组的系数矩阵A 作初等行变换, 有11111111222220033333004444400a a a a a B a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭当0a =时, ()14r A =<, 故方程组有非零解, 其同解方程组为 12340x x x x +++=. 由此得基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)T η=-, 于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当0a ≠时,111110000210021003010301040014001aa B ++⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭当10a =-时, ()34r A =<, 故方程组也有非零解, 其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为(1,2,3,4)Tη=, 所以所求方程组的通解为x k η=, 其中k 为任意常数.【详解2】方程组的系数行列式311112222(10)33334444aa A a a a a +⎛⎫ ⎪+ ⎪==+ ⎪+ ⎪ ⎪+⎝⎭. 当0A =, 即0a =或10a =-时, 方程组有非零解. 当0a =时, 对系数矩阵A 作初等行变换, 有11111111222200003333000044440000A ⎛⎫⎛⎫ ⎪ ⎪⎪⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解方程组为12340x x x x +++=. 其基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)T η=-, 于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当10a =-时, 对A 作初等行变换, 有91119111282220100033733001004446400010A --⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 91110000210021003010301040014001-⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数【评注】解此题的方法是先根据齐次方程有非零解的条件确定方程组中的参数,再对求得的参数对应的方程组求解.(23)(本题满分9分)设矩阵12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.【分析】由矩阵特征根的定义确定a 的值,由线性无关特征向量的个数与E A λ-秩之间的关系确定A 是否可对角化.【详解】A 的特征多项式为1232201431431515aaλλλλλλλ-----=-------111(2)143(2)13315115aa λλλλλλ-=--=--------- 2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根, 则有22161830a -++=, 解得2a =-.当2a =-时, A 的特征值为2, 2, 6, 矩阵1232123123E A -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭的秩为1,故2λ=对应的线性无关的特征向量有两个, 从而A 可相似对角化.若2λ=不是特征方程的二重根, 则28183a λλ-++为完全平方,从而18316a +=, 解得23a =-. 当23a =-时, A 的特征值为2, 4, 4, 矩阵32321032113E A ⎛⎫ ⎪- ⎪-= ⎪ ⎪-- ⎪⎝⎭的秩为2, 故4λ=对应的线性无关的特征向量只有一个, 从而A 不可相似对角化.【评注】此题的考点是由特征根及重数的定义确定a 的值, 对a 的取值讨论对应矩阵的特征根及对应E A λ-的秩, 进而由E A λ-的秩与线性无关特征向量的个数关系确定A 是否可相似对角化.。
2004年高考湖南卷数学试题及参考答案(文科) (2)
AxD C xB 2004年全国统一数学(文史类 湖南卷)一、选择题:本大题 共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求的. 1.函数)11lg(xy -= 的定义域为( )A .{}0|<x xB .{}1|>x xC .{}10|<<x xD .{}10|><或x x2.设直线 ax+by+c=0的倾斜角为α,且sin α+cos α=0,则a,b 满足 ( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.设)(1x f -是函数f(x)=x 的反函数,则下列不等式中恒成立的是( )A .12)(1-≤-x x fB .12)(1+≤-x x fC .12)(1-≥-x x fD .12)(1+≥-x x f4.如果双曲线1121322=-y x 上一点P 到右焦点的距离为13, 那么点P 到右准线的距离是( )A .513 B .13 C .5 D .135 5.把正方形ABCD 沿对角线AC 折起,当A 、B C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC所成的角的大小为 ( )A .90°B .60°C .45°D .30°6.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品的情况需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成这两项调查宜采用的抽样方法依次为 A .分层抽样法,系统抽样法 B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法7.若f(x)=-x 2+2ax 与1)(+=x ax g 在区间[1,2]上都是减函数,则a 的值范围是 ( )A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .(0,1)D .]1,0(8.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0910.从正方体的八个顶点中任取三个点作为三角形,直角三角形的个数为 ( )A .56B .52C .48D .4011.农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800D元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元。
[高考]2004年高考数学模拟试题二
2004年高考数学模拟试题(二)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把所选项前的字母填在题后括号内. 1.直线032=+-y x 的倾斜角所在的区间是 ( )A .)4,0(πB .)2,4(ππ C .)43,2(ππ D .),43(ππ2.不等式0)12(|1|≥-+x x 的解集为( )A .}21|{≥x xB .}211|{≥-≤x x x 或C .}211|{≥-=x x x 或D .}211|{≤≤-x x3.已知θ是锐角,那么下列各值中θθcos sin +能取到的值是 ( )A .34 B .43 C .35 D .21 4.函数)0)(1lg(<-=x x y 的反函数是( )A .)0(101>-=x y xB .)0(101<-=x y xC .)0(101>=-x y xD .)0(101<=-x y x5.已知等差数列}{n a 的前n 项和为n S ,若854,18S a a 则-=等于 ( )A .18B .36C .54D .726.已知二面角βα--l 的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能 使b 和c 所成的角为60°的是( )A .b ∥α,c ∥βB .b ∥α,c ⊥βC .b ⊥α,c ⊥βD .b ⊥α,c ∥β7.设F 1,F 2是双曲线1422=-y x 的两个焦点,点P 在双曲线上,且21PF ⋅=0,则||||21PF PF ⋅的值等于( )A .2B .22C .4D .88.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且*∈N b a ,,则可作出的l 的条数 为 ( )A .1B .2C .3D .多于39.已知)2c o s()(),2sin()(ππ-=+=x x g x x f ,则下列结论中正确的是A .函数)()(x g x f y ⋅=的周期为2π ( )B .函数)()(x g x f y ⋅=的最大值为1C .将)(x f 的图象向左平移2π单位后得)(x g 的图象D .将)(x f 的图象向右平移2π单位后得)(x g 的图象10.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球 (至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率 A .小 B .大 C .相等 D .大小不能确定 ( ) 11.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路, ABQP 、BCRQ 、CDSR 近似 于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之 比约为5:1:2:3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在A . P 点B .Q 点C .R 点D .S 点 ( ) 12.函数)1(-=x f y 的图象如右图所示,它在R 上单调递减.现有如下结论:①1)0(>f ; ②1)21(<f ; ③0)1(1=-f④0)21(1>-f其中正确结论的个数是( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共有4小题,每小题4分,共16分.把答案填在题中横线上. 13.抛物线24x y =的准线方程是 . 14.已知)(x f y =是偶函数,当)(,]1,3[.4)(,0x f x xx x f x 记时当时--∈+=>的最大值为m ,最小值为n ,则m -n = .15.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关 系式为:sxx Z -=(其中x 是某位学生的考试分数,x 是该次考试的平均分,s 是该次 考试的标准差,Z 称为这位学生的标准分).转化成标准分后可能出现小数和负值,因此, 又常常再将Z 分数作线性变换转化成其他分数. 例如某次学业选拔考试采用的是T 分 数,线性变换公式是:T=40Z+60. 已知在这次考试中某位考生的考试分数是85,这次考试的平均分是70,标准差是25,则该考生的T 分数为 .16.如右图,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 上的中点,有以下四个结论: ①直线AM 与CC 1是相交直线 ②直线AM 与NB 是平行直线 ③直线BN 与MB 1是异面直线 ④直线AM 与DD 1是异面直线其中正确的结论为 (注:把你认为正确的结论的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°.(Ⅰ)求证:(a -b )⊥c ; (Ⅱ)若(k a +b+c )>1(k ∈R ),求k 的取值范围.18.(本小题满分12分)某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21.从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是31,出现绿灯的概率是32;若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52.问:(Ⅰ)第二次闭合后出现红灯的概率是多少?(Ⅱ)三次发光中,出现一次红灯、两次绿灯的概率是多少?注意:考生在(19甲)、(19乙)两题中选一题作答,如果两题都答,只以(19甲)计分.19.(甲)(本小题满分12分)如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,PA 与平面ABCD 所成的角为60°,在四边形ABCD 中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.(Ⅰ)建立适当的坐标系,并写出点B 、P 的坐标; (Ⅱ)求异面直线PA 与BC 所成的角;(Ⅲ)若PA 的中点为M ,求证:平面AMC ⊥平面PBC.19.(乙)(本小题满分12分)如图,在三棱柱ABC —A 1B 1C 1中,四边形A 1ABB 1是菱形,四边形BCC 1B 1是矩形,AB ⊥BC ,CB=3,AB=4,∠A 1AB=60°.(Ⅰ)求证:平面CA 1B ⊥平面A 1ABB 1(Ⅱ)求直线A 1C 与平面BCC 1B 1所成角的正切值; (Ⅲ)求点C 1到平面A 1CB 的距离.20.(本小题满分12分)直线)1(2:1:22>=++=a y ax C kx y l 与椭圆交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (Ⅰ)若1=k ,且四边形OAPB 为矩形,求a 的值; (Ⅱ)若2=a ,当k 变化时(k ∈R ),求点P 的轨迹方程.21.(本小题满分12分,附加题满分4分)某厂在一个空间容积为2000m 3的密封车间内生产某种化学药品. 开始生产后,每满60分钟会一次性释放出有害气体a m 3,并迅速扩散到空气中.每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作. 安全生产条例规定:只有当车间内的有害气体总量不超过1.25a m 3时才能正常进行生产.(Ⅰ)当r=20时,该车间能否连续正常6.5小时?请说明理由;(Ⅱ)能否找到一个大于20的数据r ,使该车间能连续正常生产6.5小时?请说明理由; (Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)已知该净化设备的工作方式是:在向外释放出室内混合气体(空气和有害气体)的同时向室内放入等体积的新鲜空气. 已知该净化设备的换气量是200m 3/分,试证明该设备连续工作20分钟能够将有害气体含量降至原有有害气体含量的20%以下.(提示:我们可以将净化过程划分成n 次,且n 趋向于无穷大.)(22)(本题满分14分)已知)0,()(23-∞+++=在d cx bx x x f 上是增函数,在[0,2]上是减函数,且方程0)(=x f 有三个根,它们分别为βα,2,.(Ⅰ)求c 的值;(Ⅱ)求证;2)1(≥f (Ⅲ)求||βα-的取值范围.。
2004届高考模拟试题数学
2004年高考数学模拟试题本试卷分第一卷(选择题)和第二卷(非选择题),共150分,考试时间120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量共线的向量共有( ) A .2个 B . 3个 C .6个 D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )3.如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S =TD.S ≠T7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么 A.S T B.T S C.S=T D.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定EF DO C B A12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上.13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________. 14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
2004年高考模拟试卷
2004年高考模拟试卷一,选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 如果命题为假命题,则()(A)p,q均为真命题 (B)p,q均为假命题( C)p,q中至少有一个为真命题 (D)p,q中至多有一个为真命题2、过抛物线y2=2px(p>0)的焦点F作两弦AB和CD,其所在直线倾角分别为与,则与的大小关系是()(A) > (B) = (C) < (D) ≥3.将函数的图象按向量平移后所得图象的解析式是()(A) (B)( C) (D)4.拟定从甲地到乙地通话m分钟的话费由给出,其中[m]是大于或等于m的最小正整数,如[3]=3,[3.74]=4,则甲地到乙地通话5。
2分钟的话费是()(A)3.71 (B)4.24 (C)4.77 (D)7.955.如果=则是四点构成平行四边形的()(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不不要条件6.已知函数的反函数为,则<0的解集是()(A) (B) (C)(2,+ (D)7.以知是直线,是平面,给出以下四命题:①②③④其中正确的命题是:(A)①② (B)①②③ (C)①②④ (D)②③④8.曲线在横坐标为的点处的切线为,则点(3,2)到的距离等于()(A) (B) (C) (D)9.正项等比数列满足:则数列的前10项和是()(A)65 (B)-65 (C)25 (D)-25 10.椭圆与直线交与A,B两点,过原点与线段AB中点的直线的斜率为,则的值为()(A) (B) (C) (D)11.定义其中i,n且。
若,则的值为()(A)2 (B)0 (C)-1 (D)-212.从正方体的八个顶点中任取4个,其中4点恰能构成三棱锥的概率为()(A) (B) ( C) (D)二填空题:(本小题共4小题,每小题4分,共16分,把答案填在题中横线上)13.随机抽取甲乙两位同学在平时数学测验中的5次成绩如下:甲:8892859491乙:9287858690从以上数据分析,甲乙两位同学数学成绩较稳定的是____________同学。
2004年数二真题及解析
2004年数学(二)真题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x=⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围.【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dxt t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭,令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞.(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.) 【评注】本题属新题型.已考过的题型有求参数方程所确定的函数的二阶导数, 如1989、1991、1994、2003数二考题,也考过函数的凹凸性.(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰.【详解2】11201101)arcsin 2dt dt tt π+∞-===⎰⎰⎰.【评注】本题为混合广义积分的基本计算题,主要考查广义积分(或定积分)的换元积分法.(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x zz e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数.23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx z z e x e--∂=∂+,23213x z z y e-∂=∂+所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x zF x y z e y z -=+-=则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂ 2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x zx z e dx dy e dz --=+-2323(13)22x zx z edz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x z z e x e--∂=∂+, 23213x z z y e -∂=∂+ 从而 32z zx y∂∂+=∂∂ 【评注】此题属于典型的隐函数求偏导.(5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解:12dy dx y x=积分得 1ln ln ln 2y x c =+ y ⇒=设(y c x =为非齐次方程的通解,代入方程得211(((22c x c x c x x x '-= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=,故所求通解为 315y x =.【详解2】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得1122212dx x xy e x edx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 11ln ln 22212x x ex e dx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=,从而所求的解为315y x =.【评注】此题为求解一阶线性方程的常规题.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值. 【详解1】 2ABA BA E **=+ 2ABA BA E **⇔-=,(2)A E BA E *⇔-=,21A E B A E *∴-==, 221111010(1)(1)392100001B A E AA *====-⋅---. 【详解2】由1A A A *-=,得 11122ABA BA E AB A A B A A AA **---=+⇒=+2A AB A B A ⇒=+ (2)A A E B A ⇒-= 32A A E B A ⇒-=21192B A A E∴==- 【评注】此题是由矩阵方程及矩阵的运算法则求行列式值的一般题型,考点是伴随矩阵的性质和矩阵乘积的行列式.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 2x β=⎰,30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα []B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302lim lim cos x x x t dtt dt γα++→→=⎰⎰32lim x +→= 320lim lim 02x x x x++→→===, 即o ()γα=.又 2000lim lim xx x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ). 【评注】此题为比较由变限积分定义的无穷小阶的常规题. (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点. []C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点. 又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点. 所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).【评注】此题是判定分段函数的极值点与拐点的常规题目 (9)lim (1)n n→∞+等于(A )221lnxdx ⎰. (B )212ln xdx ⎰. (C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰[]B【分析】将原极限变型,使其对应一函数在一区间上的积分和式.作变换后,从四个选项中选出正确的.【详解】 lim ln (1)n n→∞+ 212lim ln (1)(1(1)nn nn nn →∞⎡⎤=+++⎢⎥⎣⎦212limln(1ln(1(1)n n n n n n →∞⎡⎤=++++++⎢⎥⎣⎦11lim 2ln(1nn i i n n →∞==+∑ 102ln(1)x dx =+⎰2112ln x t tdt +=⎰212ln xdx =⎰故选(B ).【评注】此题是将无穷和式的极限化为定积分的题型,值得注意的是化为定积分后还必须作一变换,才能化为四选项之一.(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >. (D)对任意的(,0)x δ∈-有()(0)f x f >.[]C【分析】可借助于导数的定义及极限的性质讨论函数()f x 在0x =附近的局部性质.【详解】由导数的定义知 0()(0)(0)lim00x f x f f x →-'=>-,由极限的性质, 0δ∃>, 使x δ<时, 有()(0)0f x f x->即0x δ>>时, ()(0)f x f >, 0x δ-<<时, ()(0)f x f <, 故选(C ).【评注】此题是利用导数的定义和极限的性质讨论抽象函数在某一点附近的性质.(11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.y(D )2cos y ax bx c A x *=+++[]A【分析】利用待定系数法确定二阶常系数线性非齐次方程特解的形式. 【详解】对应齐次方程 0y y ''+= 的特征方程为 210λ+=,特征根为 i λ=±,对 2021(1)y y x e x ''+=+=+ 而言, 因0不是特征根, 从而其特解形式可设为21y ax bx c *=++对 sin ()ix m y y x I e ''+==, 因i 为特征根, 从而其特解形式可设为2(sin cos )y x A x B x *=+从而 21sin y y x x ''+=++ 的特解形式可设为2(sin cos )y ax bx c x A x B x *=++++【评注】这是一道求二阶常系数线性非齐次方程特解的典型题,此题的考点是二阶常系数线性方程解的结构及非齐次方程特解的形式.(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰. (B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D)2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]D在直角坐标系下,20()()Df xy dxdy dy f xy dx =⎰⎰⎰⎰1111()dx f xy dy -=⎰⎰故应排除(A )、(B ). 在极坐标系下, cos sin x r y r θθ=⎧⎨=⎩ ,2sin 20()(sin cos )Df xy dxdy d f r rdr πθθθθ=⎰⎰⎰⎰,故应选(D ).【评注】此题是将二重积分化为累次积分的常规题,关键在于确定累次积分的积分限.(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫⎪⎪ ⎪⎝⎭.[]D【分析】根据矩阵的初等变换与初等矩阵之间的关系,对题中给出的行(列)变换通过左(右)乘一相应的初等矩阵来实现.【详解】由题意 010100001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100011001C B ⎛⎫⎪= ⎪ ⎪⎝⎭,010100100011001001C A ⎛⎫⎛⎫ ⎪⎪∴= ⎪⎪ ⎪⎪⎝⎭⎝⎭011100001A AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭,从而 011100001Q ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故选(D ).【评注】此题的考点是初等变换与初等矩阵的关系,抽象矩阵的行列初等变换可通过左、右乘相应的初等矩阵来实现.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关. []A【分析】将A 写成行矩阵, 可讨论A 列向量组的线性相关性.将B 写成列矩阵, 可讨论B 行向量组的线性相关性.【详解】设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A = 0AB = ⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫ ⎪ ⎪⎪⋅⋅⋅ ⎪ ⎪⎝⎭()1111110m m n mn m b A b A b A b A =++++= (1)由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由(1)知, 112210j j i j i m m b A b A b A b A +++++=,于是 12,,,m A A A 线性相关.又记 12m B B B B ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则0AB = ⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪== ⎪ ⎪⎪+++⎝⎭由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++=,从而 12,,,m B B B 线性相关,故应选(A ).【评注】此题的考点是分块矩阵和向量组的线性相关性,此题也可以利用齐次线性方程组的理论求解.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】此极限属于型未定式.可利用罗必塔法则,并结合无穷小代换求解. 【详解1】 原式2cos ln 331limx x x ex+⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20ln 2cos ln 3lim x x x→+-=() 01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim22cos 6x x x x →=-⋅=-+ 【详解2】 原式2cos ln 331limx x x ex+⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20cos 1ln 3lim x x x→-+=(1) 20cos 11lim 36x x x →-==- 【评注】此题为求未定式极限的常见题型.在求极限时,要注意将罗必塔法则和无穷小代换结合,以简化运算.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.【分析】分段函数在分段点的可导性只能用导数定义讨论. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++.(Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x+++→→--'===-- 00()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x---→→-++'===-. 令(0)(0)f f -+''=, 得12k =-. 即当12k =-时, ()f x 在0x =处可导. 【评注】此题的考点是用定义讨论分段函数的可导性. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数; (Ⅱ)求()f x 的值域.【分析】利用变量代换讨论变限积分定义的函数的周期性,利用求函数最值的方法讨论函数的值域.【详解】 (Ⅰ) 32()sin x x f x t dt πππ+++=⎰,设t u π=+, 则有22()sin()sin ()x x xxf x u du u du f x ππππ+++=+==⎰⎰,故()f x 是以π为周期的周期函数.(Ⅱ)因为sin x 在(,)-∞+∞上连续且周期为π, 故只需在[0,]π上讨论其值域. 因为()sin()sin cos sin 2f x x x x x π'=+-=-,令()0f x '=, 得14x π=, 234x π=, 且344()sin 4f t dt πππ==⎰,554433443(sin sin sin 24f t dt t dt t dt πππππππ==-=⎰⎰⎰, 又 20(0)sin 1f t dt π==⎰, 32()(sin )1f t dt πππ=-=⎰,∴()f x的最小值是2, 故()f x的值域是[2.【评注】此题的讨论分两部分:(1)证明定积分等式,常用的方法是变量代换.(2)求变上限积分的最值, 其方法与一般函数的最值相同.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值;(Ⅱ)计算极限()lim()t S t F t →+∞.【分析】用定积分表示旋转体的体积和侧面积,二者及截面积都是t 的函数,然后计算它们之间的关系.【详解】 (Ⅰ)0()2tS t π=⎰022x x te e π-⎛+= ⎝⎰ 2022x x te e dx π-⎛⎫+= ⎪⎝⎭⎰, 2200()2x x tte e V t y dx dx ππ-⎛⎫+== ⎪⎝⎭⎰⎰, ()2()S t V t ∴=. (Ⅱ)22()2t t x te e F t yππ-=⎛⎫+== ⎪⎝⎭,20222()lim lim ()2x x tt t t t e e dx S t F t e e ππ-→+∞→+∞-⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭⎰222lim 222t t tt t t t e e e e e e ---→+∞⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭lim 1t tttt e e e e --→+∞+==- 【评注】在 t 固定时,此题属于利用定积分表示旋转体的体积和侧面积的题型,考点是定积分几何应用的公式和罗必塔求与变限积分有关的极限问题.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. 【分析】文字不等式可以借助于函数不等式的证明方法来证明,常用函数不等式的证明方法主要有单调性、极值和最值法等.【详证1】设224()ln x x x e ϕ=-, 则 2ln 4()2x x x e ϕ'=-21ln ()2xx x ϕ-''=,所以当x e >时, ()0x ϕ''<, 故()x ϕ'单调减小, 从而当2e x e <<时, 22244()()0x e e eϕϕ''>=-=, 即当2e x e <<时, ()x ϕ单调增加.因此, 当2e a b e <<<时, ()()b a ϕϕ>, 即 222244ln ln b b a a e e->- 故 2224ln ln ()b a b a e ->-.【详证2】设2224()ln ln ()x x a x a eϕ=---, 则2ln 4()2x x x e ϕ'=-21ln ()2xx xϕ-''=, ∴x e >时, ()0x ϕ''<()x ϕ'⇒, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=.令x b =有()0b ϕ>即 2224ln ln ()b a b a e ->-.【详证3】证 对函数2ln x 在[,]a b 上应用拉格朗日定理, 得 222ln ln ln ()b a b a ξξ->-, a b ξ<<.设ln ()t t t ϕ=, 则21ln ()t t tϕ-'=,当t e >时, ()0t ϕ'<, 所以()t ϕ单调减小, 从而2()()e ϕξϕ>, 即222ln ln 2e e eξξ>=, 故 2224ln ln ()b a b a e ->- 【评注】此题是文字不等式的证明题型.由于不能直接利用中值定理证明,所以常用的方法是将文字不等式化为函数不等式,然后借助函数不等式的证明方法加以证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.【分析】本题属物理应用.已知加速度或力求运动方程是质点运动学中一类重要的计算,可利用牛顿第二定律,建立微分方程,再求解.【详解1】由题设,飞机的质量9000m kg =,着陆时的水平速度0700/v km h =.从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为()x t ,速度为()v t .根据牛顿第二定律,得dvm kv dt=-. 又 dv dv dx dvv dt dx dt dx=⋅=,mdx dv k ∴=-,积分得 ()mx t v C k=-+,由于0(0)v v =,(0)0x =, 故得0mC v k=, 从而0()(())mx t v v t k=-.当()0v t →时,069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【详解2】根据牛顿第二定律,得dvm kv dt =-. 所以 dv kdt v m=-,两边积分得 kt mv Ce -=,代入初始条件 00t vv ==, 得0C v =,0()k mv t v e -∴=,故飞机滑行的最长距离为 00() 1.05()k t mmv mv x v t dt ekm kk+∞-+∞==-==⎰.【详解3】根据牛顿第二定律,得22d x dxm k dt dt=-,220d x k dx dt m dt+=, 其特征方程为 20kr r m+=, 解得10r =, 2k r m=-, 故 12k mx C C e-=+,由(0)0x =, 200(0)k mt t kC dxv ev dtm-====-=,得012mv C C k=-=, 0()(1)k t m mv x t e k-∴=-.当t →+∞时,069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【评注】此题的考点是由物理问题建立微分方程,并进一步求解. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. 【分析】利用复合函数求偏导和混合偏导的方法直接计算. 【详解】122xy zx f ye f x∂''=+∂, 122xy zy f xe f y∂''=-+∂,21112222[(2)]xy xy xy zx f y f xe e f xye f x y∂''''''=⋅-+⋅++∂∂2122[(2)]xy xy ye f y f xe ''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 【评注】此题属求抽象复合函数高阶偏导数的常规题型. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.【分析】此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.【详解1】对方程组的系数矩阵A 作初等行变换, 有11111111222220033333004444400a aa a a B a a a a a a ++⎛⎫⎛⎫⎪ ⎪+- ⎪ ⎪→= ⎪ ⎪+- ⎪ ⎪⎪ ⎪+-⎝⎭⎝⎭当0a =时, ()14r A =<, 故方程组有非零解, 其同解方程组为 12340x x x x +++=. 由此得基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)Tη=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当0a ≠时,111110000210021003010301040014001a a B ++⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭当10a =-时, ()34r A =<, 故方程组也有非零解, 其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为(1,2,3,4)Tη=, 所以所求方程组的通解为x k η=, 其中k 为任意常数.【详解2】方程组的系数行列式311112222(10)33334444aa A a a a a +⎛⎫ ⎪+ ⎪==+ ⎪+ ⎪ ⎪+⎝⎭. 当0A =, 即0a =或10a =-时, 方程组有非零解. 当0a =时, 对系数矩阵A 作初等行变换, 有11111111222200003333000044440000A ⎛⎫⎛⎫⎪⎪⎪⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解方程组为12340x x x x +++=. 其基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)Tη=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数. 当10a =-时, 对A 作初等行变换, 有91119111282220100033733001004446400010A --⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 91110000210021003010301040014001-⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数【评注】解此题的方法是先根据齐次方程有非零解的条件确定方程组中的参数,再对求得的参数对应的方程组求解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.【分析】由矩阵特征根的定义确定a 的值,由线性无关特征向量的个数与E A λ-秩之间的关系确定A 是否可对角化.【详解】A 的特征多项式为1232201431431515aaλλλλλλλ-----=-------110100(2)143(2)13315115aa λλλλλλ-=--=---------2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根, 则有22161830a -++=, 解得2a =-.当2a =-时, A 的特征值为2, 2, 6, 矩阵1232123123E A -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭的秩为1,故2λ=对应的线性无关的特征向量有两个, 从而A 可相似对角化.若2λ=不是特征方程的二重根, 则28183a λλ-++为完全平方, 从而18316a +=, 解得23a =-. 当23a =-时, A 的特征值为2, 4, 4, 矩阵32321032113E A ⎛⎫ ⎪- ⎪-= ⎪ ⎪-- ⎪⎝⎭的秩为2,故4λ=对应的线性无关的特征向量只有一个, 从而A 不可相似对角化.【评注】此题的考点是由特征根及重数的定义确定a 的值, 对a 的取值讨论对应矩阵的特征根及对应E A λ-的秩, 进而由E A λ-的秩与线性无关特征向量的个数关系确定A 是否可相似对角化.。
最新04年高考理科数学全国2卷资料
2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2}(B ){x |x >3} (C ){x |-1<x <2}(D ){x |2<x <3}(2)2212lim 45n x x x x →+-+-=(A )12(B )1 (C )25(D )14(3)设复数ω=-12,则1+ω=(A )–ω(B )ω2(C )1ω-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π(B )6π (C )-12π(D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为(A )13(B (C )23(D (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量43(,)55e =-,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11O A =λe ,其中λ= (A )115(B )-115(C )2 (D )-2(10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,32π)(B )(π,2π)(C )(32π,52π) (D )(2π,3π) (11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π(D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB =AD +DB =623tan tan +=+CDB CD A CD ,由AB =3得CD =2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C19.(I )证: 由a 1=1,a n +1=nn 2+S n (n =1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n +1=S n +1-S n (n =1,2,3,…),则S n +1-S n =nn 2+S n (n =1,2,3,…),∴nS n +1=2(n +1)S n ,112n n S n S n++=(n =1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列(II )解:由(I )知,114(2)11n n S S n n n +-=⋅≥+-,于是S n +1=4(n +1)·11n Sn --=4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n +1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1, ∵CB =CA 1,∴△CBA 1为等腰三角形, 又知D 为其底边AB 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1A 1B 1 又BB 1=1,∴A 1B =2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD =12A 1B=1,CD =CC 1又DM =12AC 1=,DM =C 1M ,∴△CDN ≌△CC 1M ,∠CDM =∠CC 1M =90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II )设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG =12CD ∴FG =12,FG ⊥BD . 由侧面矩形BB 1A 1A 的对角线的交点为D ,知BD =B 1D =12A1B =1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G =2,∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(2)2=32. ∴cos ∠B 1GF =2222211113()23B G FG B FB GFG+-+-==⋅即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B ,0,0),B 1,1,0),A 1(0,1,1),D,12,12), MCD =,12,12),1A B =,-1,-1), DM =(0,12,-12),10,0,CD A B CD DM ⋅=⋅=∴CD ⊥A 1B ,CD ⊥DM .因为A 1B 、DM 为平面BDM 内两条相交直线,A'C'所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G 11,),44BD =(-,12,12),1B G=31(,),44-∴10BD BG ⋅=,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与1B G 的夹角θ等于所求二面角的平面角,cos 11||||CD B GCD B G θ⋅==-⋅所以所求二面角的大小为π321.解:(I )C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为y =x -1. 将y =x -1代入方程y 2=4x ,并整理得x 2-6x +1=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OA OB ⋅=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.2112||||OA OB x y x y ⋅=+⋅+==cos<,OA OB >=41||||OA OB OA OB ⋅=-⋅所以OA 与OB 夹角的大小为π-arccos41. 解:(II)由题设知FB AF λ=得:(x 2-1,y 2)=λ(1-x 1,-y1),即21211(1)(1)(2)x x y y λλ-=-⎧⎨=-⎩由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0.∴B (λ或B (λ,又F (1,0),得直线l 的方程为(λ-1)y x -1)或(λ-1)y x -1)当λ∈[4,9]时,l 在y21λ+-[4,9]上是递减的,∴34≤43≤,-43≤4≤ 直线l 在y 轴上截距的变化范围是4334[,][,]3443--22.(I)解:函数f (x )的定义域是(-1,∞),'f (x )=111x-+.令'f (x )=0,解得x =0,当-1<x <0时,'f (x )>0,当x >0时,'f (x )<0,又f (0)=0,故当且仅当x =0时,f (x )取得最大值,最大值是0(II)证法一:g (a )+g (b )-2g (2a b +)=a ln a +b ln b -(a +b )ln 2a b +=a 22ln ln a bb a b a b+++. 由(I )的结论知ln(1+x )-x <0(x >-1,且x ≠0),由题设0<a <b ,得0,1022b a a ba b-->-<<,因此2ln ln(1)22a b a b a a b a a --=-+>-+,2ln ln(1)22b a b a ba b b b--=-+>-+. 所以a 22ln ln a b b a b a b +++>-022b a a b---=.又2,2a a b a b b +<+ a 22ln ln a b b a b a b +++<a 22ln ln ()ln ()ln 2.2a b b b b b a b a b a b a b++=-<-++综上0<g (a )+g (b )-2g (2a b+)<(b -a )ln2.(II)证法二:g (x )=x ln x ,'()ln 1g x x =+,设F (x )= g (a )+g (x )-2g (2a x+),则'()'()2[()]'ln ln .22a x a xF x g x g x ++=-==当0<x <a 时'()0,F x <因此F (x )在(0,a )内为减函数当x >a 时'()0,F x >因此F (x )在(a ,+∞)上为增函数x =a 时,F (x )有极小值F (a )因为F (a )=0,b >a ,所以F (b )>0,即0<g (a )+g (b )-2g (2a b+).设G (x )=F (x )-(x -a )ln2,则'()ln ln ln 2ln ln().2a xG x x x a x +=--=-+当x >0时,'()0G x <,因此G (x )在(0,+∞)上为减函数,因为G (a )=0,b >a ,所以G (b )<0.即g (a )+g (b )-2g (2a b+)<(b -a )ln2.。
2004年高考数学试题(全国2理)及答案
2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
北京市西城区2004年高考数学(理)二模试卷
北京市西城区2004年抽样测试高三数学试卷(理科)2004.5学校______________ 班级_______________ 姓名______________参考公式:三角函数的和差化积公式2cos2sin2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+=-正棱台、圆台的侧面积公式l c c S )'(21+=台侧 其中'c 、c 分别表示上下底面周长,l 表斜高或母线长 球体的体积公式334R V π=球一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线116922=-x y 的两条准线方程是( ) A .59±=x B .516±=x C .59±=y D .516±=y 2.不等式(2x-1)(1-|x|)<0成立的充要条件是( )A .x>1,或21<x B .x>1,或211<<-x C .211<<-x D .x<-1,或21>x3.在极坐标系中,定点)2,1(πA ,点B 在直线0sin cos 3=-θρθρ上移动.当线段AB 最短时,点B 极的坐标是( )A .)6,21(π B .)6,23(π C .)3,21(π D .)3,23(π 4.已知α,β表示平面,m ,n 表示直线.下列命题中正确的是( ) A .若α//β,α⊂m ,β⊂n 则m//n B .若α⊥β,α⊂m ,β⊂n ,则m ⊥n C .若m ⊥α,n ⊥β,m//n ,则α//β D .若m//α,n//β,m ⊥n ,则α⊥β 5.函数)1(12<+=x y x的反函数是( )A .)1(log 2-=x y ,x ∈(1,3)B .x y 2log 1+-=,x ∈(1,3)C .)1(log 2-=x y ,x ∈(1,3]D .x y 2log 1+-=,x ∈(1,3]6.在复平面内,向量→AB 对应的复数是2+i ,向量→CB 对应的复数是-1-3i ,则向量→CA 对应的复数为( )A .1-2IB .-1+2IC .3+4ID .-3-4i7.设集合A={1,2,3,4,5},a 、b ∈A ,则方程122=+by a x 表示焦点位于y 轴上的椭圆有( ) A .5个 B .10个 C .20个 D .25个8.人口问题是我国最大的社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础.由人口由此可估算出我国2004年的人口数为( )A .13.02亿B .13.22亿C .13.42亿D .13.66亿二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.如果函数⎩⎨⎧<>-=)0( , )()0(,32x x f x x y 是奇函数,则f(x)=_________.10.设正方体的棱长为a ,则以其六个面的中心为顶点的多面体的体积是_________.11.函数)10(≠>=a a a y x 且在[1,2]上最大值比最小值大2a,则a 的值是_________. 12.直线l 截圆0222=-+y y x 所得弦AB 的中点是)23,21(-,则直线l 的方程为_________________;|AB|=___________.13.函数))(cos 3(sin sin R x x x x y ∈+⋅=的最大值是__________,14.如图,)4(2≥n n 个正数排成n 行n 列方阵.符号),1,1(N j i n j n i a ij ∈≤≤≤≤、表示位于第i 行第j 列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q .若2111=a ,124=a ,4132=a .则q=___________;________=ij a . nnn n n n n a a a a a a a a a a a a 32122322211131211三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本题满分12分) 设x ∈R ,函数)20,0(21)(cos )(2πϕωϕω<<>-+=x x f .已知f(x)的最小正周期为π,且41)8(=πf . (Ⅰ)求ω和ϕ的值; (Ⅱ)求f(x)的单调递增区间. 16.(本题满分14分)如图,正三棱柱111C B A ABC -中,E 是AC 中点. (Ⅰ)求证:平面111A ACC BEC 平面⊥;(Ⅱ)求证:11//BEC AB 平面;(Ⅲ)若221=AB A A ,求二面角C BC E --1的大小.17.(本题满分13分)设函数f(x)=)1(log xaa -,其中0<a <1. (Ⅰ)证明f(x)是(a ,+∞)上的减函数;(Ⅱ)解不等式f(x)>1. 18.(本题满分14分)已知定点A (-2,-4),过点A 作倾斜角为45°的直线l .交抛物线px y 22=(p >o)于B 、C 两点,且|AB|,|BC|,|AC|成等比数列.(Ⅰ)求抛物线方程;(Ⅱ)在(Ⅰ)中的抛物线上是否存在点D ,使得|DB|=|DC|成立?如果存在,求出点D 的坐标;如果不存在,请说明理由.19.(本题满分13分)如图,工厂检验员通常用一个直径为2cm 的标准圆柱和一个直径为1cm 的标准圆柱检测一个直径为3cm 的圆柱状洞口.为了保证质量,有时再插入两个合适的同号标准圆柱,分别与三圆柱相切.记A 、B 、C 依次为直径2cm 、3cm 、1cm 的圆柱截面圆的圆心,求插入的两个标准圆柱的直径.20.(本题满分14分)已知正项数列{}n a 和{}n b 中,a a =1(0<a <1),a b -=11.当n ≥2时,21111,----=⋅=n n n n n n a b b b a a . (Ⅰ)证明:对任意N n ∈,有1=+n n b a ; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)记12+⋅=n n n b a c ,n S 为数列{}n c 的前n 项和.求∞→n lin n S 的值.高三数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.A 6.D 7.B 8.B二、填空题:本大题共6小题,每小题5分,共30分.9.2x+3 (5分) 10.63a (5分) 11.2321或 (只答对一个给2分)12.2 0;2y -x =+ (第一个空2分,第二个空3分).13.23(5分) 14.21;ij )21(⋅(第一个空2分,第二个空3分)三、解答题:本大题共6小题,共80分,其它解法,请仿此给分. 15.(本题满分12分)(Ⅰ)解:21)]22cos(1[2121)(cos )(2-++=-+=ϕωϕωx x x f =)22cos(21ϕω+x ……………………………………………………4分 ∵f(x)的最小正周期为π, ∴1,22==ωπωπ…………………………………6分 ∵41)24cos(21)8(=+=ϕππf ∴21)24cos(=+ϕπ∵20πϕ<<, ∴45244πϕππ<+<∴324πϕπ=+ ∴24πϕ=…………………………………………8分(Ⅱ)解:由(Ⅰ)得,).122cos(21)(π+=x x f ∴当ππππk x k 21222≤+≤-时,即)(242413Z k k x k ∈-≤≤-ππππ时,f(x)单调递增. ∴f(x)的单调递增区间是)(],24,2413[Z k k k ∈--ππππ………………………………12分 16.(本题满分14分)(Ⅰ)证明:∵111C B A ABC -是正三棱柱, ∴,1ABC AA 平面⊥ ∴1AA BE ⊥∵△ABC 是正三角形,E 是AC 中点, ∴AC,BE ⊥∴11A ACC BE 平面⊥, 又∵1BEC BE 平面⊂∴平面111A ACC BEC 平面⊥……………………………………………………4分 (Ⅱ)证明:连.,111D C B BC C B =⋂设 ∵111C B A ABC -是正三棱柱, ∴B BCC 1是矩形,D 是C B 1的中点. ∵E 是AC 的中点,∴1AB ∥DE . ∵1BEC DE 平面⊂,11BEC AB 平面⊄∴1AB ∥平面1BEC ………………………………………………………………8分 (Ⅲ)解:作F EC CF 于1⊥,1BC FG ⊥于G ,连CG . ∵平面111A ACC BEC 平面⊥,∴1BEC CF 平面⊥………………………………………………………………9分 ∴FG 是CG 在平面1BEC 上的射影. ∴根据三垂线定理得,1BC CG ⊥∴∠CGF 是二面角C BC E --1的平面角……………………………………11分 设a AB =,∵221=AB A A ,则a A A 221=.在1ECC Rt ∆中,a EC CC EC CF 6611=⋅=,在1BCC Rt ∆中,a BC CC BC CG 3311=⋅=.在CFG Rt ∆中, ∵22sin ==∠CG CF CGF ,∴︒=∠45CGF . ∴二面角C BC E --1的大小是45°………………………………14分 17.(本题满分13分)(Ⅰ)证明:任取),(,21+∞∈a x x ,且21x x <,)()(log )1(log )1(log )()(21122121a x x a x x x ax a x f x f a a a --=---=-…………3分 ∵)()()()()(1)()(21212121122112a x x x x a a x x a x x a x x a x x a x x --=----=---,…………5分∵21,10x x a a <<<<,∴01)()(,0)()(21122112<--->--a x x a x x a x x a x x 且.即1)()(02112<--<a x x a x x ,∴0)()(log 2112>--a x x a x x a .∴)()(21x f x f >,∴),()(+∞a x f 是上的减函数.……………………7分 (Ⅱ)解:[解法1] ∵10<<a ,∴⎪⎪⎩⎪⎪⎨⎧<->-⇔>-⇔>)2( 1)1( 01log )1(log 1)(a x a xax a x f a a ……………………10分解不等式(1)得,x>a 或x<0, 解不等式(2)得,aax -<<10, ∵0<a<1,∴aa a -<1 ∴原不等式解集为}1|{aax a x -<<……………………………………13分 [解法2] 函数f(x)的定义域为{x|x>a 或x<0}………………………………8分 ∵0<a<1,∴当x<0时,11>-xa, ∴0)1(log )(<-=xax f a ,不合题意.…………………………10分 当x>a 时,解方程f(x)=1,得aax -=1.由(Ⅰ)知f(x)是),(+∞a 上的减函数,∴f(x)>1时,aax -<1.∵a a a -<1,∴原不等式解集为}1|{aax a x -<<.……………………13分 18.(本题满分14分)(Ⅰ)解:直线l 方程为y=x-2,将其代入px y 22=,整理为,04)2(22=++-x p x .①……………………2分∵p>0,∴016)2(42>-+=∆p . 设),(),,(2211y x C y x B .∴4,242121=⋅+=+x x p x x .…………………………4分 ∵|AB|,|BC|,|AC|成等比数列,∴||||||2AC AB BC ⋅=. ∴)2(2)2(2|)|2(21212+⋅+=-x x x x ,整理为,045)(2)(2121221=-⋅---+x x x x x x . 将4,242121=⋅+=+x x p x x 代入上式,解得p=1. ∴抛物线方程x y 22=.………………………………7分(Ⅱ)解:假设在抛物线x y 22=上存在点),(33y x D ,使得|DB|+|DC|成立, 记线段BC 中点为),(00y x E .则11||||1-=-=⇔⊥⇔=K K BC DE DC DB DE .………………10分 当p=1时,①式成为0462=+-x x . ∴32210=+=x x x ,1200=-=x y . ∴点),(33y x D 应满足⎪⎩⎪⎨⎧-=--=13123323x y x y .…………………………12分解得,⎩⎨⎧-==⎩⎨⎧==48223333y x y x 或.∴存在点)2,2(D 或(8,-4),使得|DB|=|DC|成立…………………………14分 19.(本题满分13分)解:以经过三圆心A 、B 、C 的直线为x 轴,B 为原点,建立直角坐标系.……………1分 设所求圆D 的半径为rcm ,连结DA 、DC , 连BD 并延长交⊙B 于点E . ∵r DB r DA -=+=23||,1|| ∴||25||||AB DB DA >=+. ∴点D 在以A 、B 为焦点,长轴长为25的椭圆上. ∵212,252==c a ,∴23222=-=c a b .∴该椭圆方程为13225)41(1622=++y x ……………………5分又∵r DC r DB +=-=21||,23||,∴|DB|+|DC|=2>|BC|同理,点D 还在以B 、C 为焦点,长轴长为2的椭圆上,其方程为134)21(22=+-y x …………………………………………9分 由⎪⎪⎩⎪⎪⎨⎧=+-=++134)21(13225)41(162222y x y x ,解得⎪⎪⎩⎪⎪⎨⎧==76149y x 或⎪⎪⎩⎪⎪⎨⎧-==76149y x .………………11分 ∴73)76()149(2322=+-=-=BD BE r . ∴插入的两个标准圆柱的直径是76cm .……………………………………………13分 20.(本题满分14分)(Ⅰ)证明:用数学归纳法证明:①当n=1时,1)1(11=-+=+a a b a ,命题成立;…………………………………1分 ②假设n=k 时命题成立,即1=+k k b a ,则当n=k+1时,111)1(112221111==-=-+=-+-⋅=+⋅=+++++k kk k kk k k k k k k k k k k k b b a b a a b a b a b a b b a b a . ∴当n=k+1时,命题也成立.综合①、②知,1=+n n b a 对N n ∈恒成立.……………………………………5分 (Ⅱ)解:∵n nnn n n n n n n n a a a a a a b a b a a +=--⋅=-⋅=⋅=++11)1(12211, ∴11111+=+=+nn n n a a a a ,即1111=-+n n a a .③…………………………………8分 ∴数列⎭⎬⎫⎩⎨⎧n a 1是公差为1的等差数列,其首项是a a 111=.∴1)1(11⨯-+=n aa n ,从而a n a a n )1(1-+=.………………………………10分 (Ⅲ)解:∵1112)(+++⋅=⋅=⋅=n n n n n n n n a a b a a b a c ,③式变形为11++-=⋅n n n n a a a a ,∴1+-=n n n a a c ,………………………………………………………………12分 ∴)()()(1322121--++-+-=+++=n n n n a a a a a a c c c Snaaa a a n +-=-=+111.∴ ⎝⎛=⎪⎭⎫+-=→→a na a a S xn n xn 1lim lim .……………………………………………14分 [注:如果学生未证出(Ⅰ),而使用(Ⅰ)的结论正确解答出(Ⅱ)、(Ⅲ),则独立给(Ⅱ)、(Ⅲ)的分数]。
2004年高考数学试题——全国卷II.理科2004年高考数学试题——全国卷II.理科
2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2}(B ){x |x >3} (C ){x |-1<x <2}(D ){x |2<x <3}(2)2212lim 45n x x x x →+-+-=(A )12(B )1 (C )25(D )14(3)设复数ω=-12+2i ,则1+ω=(A )–ω(B )ω2(C )1ω-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1(C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1(5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是(A )-6π(B )6π(C )-12π(D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称(D )与y =e -x 的图象关于坐标原点对称(7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为(A )13(B)3(C )23(D)3(8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量43(,)55e =-,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11O A =λe ,其中λ= (A )115(B )-115(C )2 (D )-2(10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,32π)(B )(π,2π)(C )(32π,52π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51.(Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求(Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明:(Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M .(Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设FB =AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围.(22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x . (1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba )<(b -a )ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB =AD +DB =623tan tan +=+CDB CD A CD ,由AB =3得CD =2+6故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n +1=nn 2+S n (n =1,2,3,…),知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n +1=S n +1-S n (n =1,2,3,…),则S n +1-S n =nn 2+S n (n =1,2,3,…),∴nS n +1=2(n +1)S n , 112n n S n S n++=(n =1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列或低缓的峰巅和峰谷间缠绵试卷试题(II )解:由(I )知,114(2)11n n S S n n n +-=⋅≥+-,于是S n +1=4(n +1)·11n Sn --=4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n +1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1,∵CB =CA 1,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1A 1B 1 又BB 1=1,∴A 1B =2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD =12A 1B =1,CD =CC 1A'C'又DM =12AC 1=2,DM =C 1M ,∴△CDN ≌△CC 1M ,∠CDM =∠CC 1M =90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM ① 一定条件下化学教案(II )设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG =12CD ∴FG =12,FG ⊥BD . 由侧面矩形BB 1A 1A 的对角线的交点为D ,知BD =B 1D =12A 1B =1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(2)2=32. ∴cos ∠B 1GF=2222211113(()222B G FG B FBG FG+-+-==⋅即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B ,0,0),B 1,1,0),A1(0,1,1),D (2,12,12),MCD =,12,12),1A B =,-1,-1), DM =(0,12,-12),10,0,CD A B CD DM ⋅=⋅=∴CD ⊥A 1B ,CD ⊥DM .因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM (II):设BD 中点为G ,连结B 1G,则G 11,),44BD =(-,12,12),1B G =31(,),444--∴10BD BG ⋅=,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与1B G 的夹角θ等于所求二面角的平面角,cos 11||||CD B G CD B G θ⋅==-⋅所以所求二面角的大小为π321.解:(I )C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为y =x -1.将y =x -1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OA OB ⋅=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.诗歌前六句用了什么表现手法?请结合诗句赏析试卷试题(222112||||OA OB x y x y ⋅=+⋅+==cos<,OA OB >=341||||OA OB OA OB ⋅=-⋅所以OA 与OB 夹角的大小为π-arccos41. 解:(II)由题设知FB AF λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即21211(1)(1)(2)x x y y λλ-=-⎧⎨=-⎩由 (2)得y 22=λ2y12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B (λ或B (λ,又F (1,0),得直线l 的方程为(λ-1)y x-1)或(λ-1)yx -1)C.当λ∈[4,9]时,l 在y21λ+-[4,9]上是递减的,∴34≤43≤,-43≤4≤直线l 在y 轴上截距的变化范围是4334[,][,]3443--22.(I)解:函数f (x )的定义域是(-1,∞),'f (x )=111x-+.令'f (x )=0,解得x =0,当-1<x <0时,'f (x )>0,当x >0时,'f (x )<0,又f (0)=0,故当且仅当x =0时,f (x )取得最大值,最大值是0(II)证法一:g (a )+g (b )-2g (2a b +)=a ln a +b ln b -(a +b )ln 2a b +=a 22ln ln a bb a b a b+++.由(I )的结论知ln(1+x )-x <0(x >-1,且x ≠0),由题设0<a <b ,得0,1022b a a ba b-->-<<,因此2ln ln(1)22a b a b a a b a a --=-+>-+,2ln ln(1)22b a b a ba b b b--=-+>-+.所以a 22lnln a b b a b a b +++>-022b a a b---=. 又2,2a a ba b b +<+ a 22ln ln a b b a b a b +++<a 22ln ln ()ln ()ln 2.2a b b bb b a b a b a b a b++=-<-++ 综上0<g (a )+g (b )-2g (2a b+)<(b -a )ln2.(II)证法二:g (x )=x ln x ,'()ln 1g x x =+,设F (x )= g (a )+g (x )-2g (2a x+),则'()'()2[()]'ln ln .22a x a xF x g x g x ++=-==当0<x <a 时'()0,F x <因此F (x )在(0,a )内为减函数当x >a 时'()0,F x >因此F (x )在(a ,+∞)上为增函数x =a 时,F (x )有极小值F (a )因为F (a )=0,b >a ,所以F (b )>0,即0<g (a )+g (b )-2g (2a b+).设G (x )=F (x )-(x -a )ln2,则'()ln lnln 2ln ln().2a xG x x x a x +=--=-+当x >0时,'()0G x <,因此G (x )在(0,+∞)上为减函数,因为G (a )=0,b >a ,所以G (b )<0.即g (a )+g (b )-2g (2a b+)<(b -a )ln2.。
2004高考数学试题(全国2理)及答案
2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形,BA'C'又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =(0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角, cos .331-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y xcos<,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004年普通高等学校招生全国统一考试数学试卷(全国卷Ⅱ.文)
web 试卷生成系统谢谢使用一、填空题(每空? 分,共? 分)1、从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为_______2、设满足约束条件:则的最大值是 .3、设中心在原点的椭圆与双曲线=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是4、下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号)5、已知a 为实数,展开式中的系数是-15,则.6、设满足约束条件:则的最大值是 .7、下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号)二、计算题(每空? 分,共? 分)8、已知锐角三角形ABC 中,(Ⅰ)求证:;(Ⅱ)设AB=3,求AB 边上的高.9、已知等差数列{},(Ⅰ)求{}的通项公式;(Ⅱ)令,求数列的前n 项和S n .10、已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率11、已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设0<a<b,证明0<g(a )+g(b)-2g()<(b-a)ln2.参考答案一、填空题1、0.1,0.6,0.32、53、4、②④5、6、57、②④二、计算题8、(Ⅰ)证明:所以(Ⅱ)解:,即,将代入上式并整理得解得,舍去负值得,设AB边上的高为CD.则AB=AD+DB=由AB=3,得CD=2+. 所以AB边上的高等于2+.9、解:(Ⅰ)设数列的公差为d,依题意得方程组解得所以的通项公式为(Ⅱ)由所以是首项,公式的等比数列.于是得的前n项和10、解;(Ⅰ)解法一:三支弱队在同一组的概率为故有一组恰有两支弱队的概率为解法二:有一组恰有两支弱队的概率(Ⅱ)解法一:A组中至少有两支弱队的概率解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为11、(Ⅰ)解:函数的定义域为.令当当又故当且仅当x=0时,取得最大值,最大值为0.(Ⅱ)证法一:由(Ⅰ)结论知由题设因此所以又综上证法二:设则当在此内为减函数. 当上为增函数.从而,当有极小值因此即设则当因此上为减函数.因为即。
2004高考数学模拟试卷
2004年3+X 全国模拟试卷郑州市数学卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={a ,0},N={x |2x 2-5x<0,x∈z},若M ∩N≠Φ,则a 等于 ( ) A .1 B .2 C .1或2 D .1或25 2.一枚硬币连掷三次至少出现一次正面的概率为 ( ) A .87 B .83 C .81 D .31 3.已知f (x)=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于 ( )A .319 B . 310 C .316 D .3134.已知а、b 是直线,а、β、γ是平面,给出下列命题:①а∥а,а∥β,а∩β=b ,则а∥b;②а⊥γ,β⊥γ,则а∥β;③а⊥а,b ⊥β,а⊥b ,则а⊥β;④а∥β,β∥γ,а⊥а,则а⊥γ,其中错误的命题的序号是 ( )A .① B.② C.③ D.④5.已知双曲线等42x +ky 2=1的离心率e<2,则k 的取值范围是 ( )A .k<0或k>3B .-3<k<0C .-12<k<0D .-8<k<36.若向量 =(COS а,sin а),= (COS β,sin β),则与一定满足 ( ) A .a 与b 的夹角等于а-β B .(a +b )⊥(a -b ) C .a ∥b D .a ⊥b7.下列命题中,使命题M 是命题N 成立的充要条件的一组命题是 ( ) A .M :a>b ; N :ac 2>bc 2B .M :a>b ,c>d ,N :a-d>b-cC .M :a>b>0,c>d>0,N :ac>bdD .M :|a-b|=|a|+|b|,N :ab≤O8.如果一个圆锥中有三条母线两两所成的角均为60°,那么这个圆锥的侧面展开图的圆心角等于( ) A .π B .33 C .332π D .3π 9.圆x 2+y 2-4x-2y+c=0与y 轴交于A 、B 两点,圆心为P ,若∠APB=90°,则c 的值为( ) A .8 B .3 C .-31D .-3 10.数列231,491,6271,…,2n n 31,…的前n 项和为S n ,则lim ∞→n 2nS n的值等于 ( ) A .1 B .0 C .2 D .2111.设f (x)=l+5x-lOx 2+lOx 3-5x 4+x 5,则,f (x)的反函数的解析式是 ( ) A .f 1-(x)=1+5x B .f 1-(x)=1+52-x C .f1-(x)=-1+52-x D .f1-(x)=1-52-x12.拟定从甲地到乙地通话m 分钟的电话费由,f (m)=1.06(O.5·[m]+1)(元)决定,其中 m>O ,[m]是大于或等于m 的最小整数,(如[3]=3,[3.8]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的电话费为 ( )A .3.71元B .3.97元C .4.24元D .4.77元第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上) 13.某高校的某一专业从8名优秀毕业生中选派5名支援中国西部开发建设,某人必须被选派的种数是________________。
苏州中学2004年全国高考数学模拟试卷二
江苏省苏州中学2004年全国高考数学模拟试卷(二)(命题人:王思俭 高三数学组教研组长 特级教师)一.选择题(本大题共有12道小题,每小题5分,计60分)1.设P 、Q 是两个非空集合,定义P*Q={}Q b p a b a ∈∈,|),(,若P={}2,1,0 Q={}4,3,2,1,则P*Q 中元素的个数是…………………………………………………( ) A .4个 B .7个 C .12个 D .16个2.过抛物线y 2=4x 的焦点F 作垂直于x 轴的直线,交抛物线于A 、B 两点,则以F 为圆心,AB 为直径的圆方程是……………………………………………………………………( ) A .(x -1)2+y 2=1 B .(x -1)2+y 2=2C .(x -21)2+y 2=4 D .(x -1)2+y 2=4 3.已知m ,l 是异面直线,给出下列四个命题:①必存在平面α,过m 且与l 都平行;②必存在平面 β,过m 且与l 垂直;③必存在平面r ,与m ,l 都垂直;④必存在平面w, 与m ,l 的距离都相等。
其中正确的结论是………………………………………………………………………( ) A .①② B .①③ C .②③ D .①④ 4.要得到函数y=sin2x 的图象,可以把函数y=sin(2x -4π)的图象…………………( ) A .向左平移8π个单位 B .向右平移8π个单位 C .向左平移 4π个单位 D .向右平移 4π个单位5.已知真命题:“a ≥b ⇒c>d ”和“a<b f e ≤⇔”,那么“c ≤d ”是“e ≤f ”的……( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又必要条件 6.(理)从8盒不同的鲜花中选出4盆摆成一排,其中甲、乙两盆不同时展出的摆法种数为…………………………………………………………………………………………( ) A .1320 B .960 C .600 D .360(文)从8盆不同的鲜花中选出4盆摆成一排,其中甲、乙两盆有且仅有一盆展出的不同摆法种数为…………………………………………………………………………………( ) A .1320 B .960 C .600 D .360 7.设函数f(x)是定义在R 上的以3为周期的奇函数,若f(x)>1,f(2)=132+-a a ,则 ……………………………………………………………………………………………( ) A.a<32 B.a<132-≠a 且 C.a>132-<a 或 D.-1<a<328.已知log 0log log 31212>==+x x x a a a, 0<a<1,则x 1,x 2,x 3的大小关系是………( )A .x 3<x 2< x 1B .x 2<x 1< x 3C .x 1<x 3< x 2D .x 2<x 3< x 19.(文)已知直线y=kx+1与曲线y=x 3+ax+b 切于点(1,3),则b 的值为………( )A .3B .-3C .5D .-5 (理)设曲线y=21x和曲线y=x 1在它们交点处的两切线的夹角为θ,则tan θ的值为…………………………………………………………………………………………( )A .1B .21 C .31 D .3210.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离为……………………( ) A .29 B.3 C. 556 D.2 11.如图,目标函数u =ax -y 的可行域为四边形的OACB (含边界),若(54,32)是该目标函数的最优解,则a 的取值范围是……………………………………………( )A.)125,310(--B.)103,512(-- C.)512,103( D.)103,512(-12.已知βα,为锐角,sin x =α,cos β=y, cos(βα+)=-53,则y 与x 的函数关系式为……………………………………………………………………………………………( )A.y=-)153(541532<<+-x x x B.y=-)10(541532<<+-x x x C.y=-)530(541532<<+-x x x D. y=-)10(541532<<--x x x二.填空题(本大题共有4小题,每小题4分,计16分)13.设f(x)= x 5-5x 4+10x 3-10x 2+5x+1,则f(x)的反函数为 f -1(x)=________。
2004年广东省高考数学模拟试卷(二)
2004年广东省高考数学模拟试卷(二)第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若命题P :B A x ∈,则P ⌝是( )A. B A x ∉ B .B x A x ∉∉或 C .B x ∉∉x A,且 D .B A x ∈2.双曲线1222=-x y 的两个焦点坐标分别是( ) A .(-3, 0),(3,0) B .(0,-3),(0,3)C .(-1,0),(1,0)D .(0,-1),(0,1)3.在等比数列{n a }中,21a a +=1,43a a +=9,那么54a a +等于( )A. 27 B .-27 C .81或-36 D .27或-274.不等式)12(|1|-+x x ≥0的解集是( )A. {x x |≥21} B .{x x |≤-1或x ≥21} C. {x x |=-1或x ≥21} D .{|x -1≤x ≤21} 5.已知向量a 、b 、c ,如果a •b =c 且a 0 ≠,那么( ) A. b =c B .b =λcC .b ⊥cD . b 与c 在a 方向的投影相等6.如果复数i bi 212+- (其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于 ( )A .2B .32C .-32 D .2 7.四面体ABCD 中,BD=DC=CB=2 ,AC=3,AB=AD=1,M 为CD 中点,则异面直线BM 与AC 所成角的余弦值是( )A .32 B. 22 C. 26 D .93 8.抛物线(y -1)2=4x ,经过点P(m ,3),则点P 到抛物线准线的距离等于( )9.若定义在区间(-1,0)内的函数f (x )=log a 2(x +1)满足f (x )>0,则a 的取值范围是 ( )A. (0,21) B .(0,1) C. (21,1) D .(21,+∞) 10.已知向量OA =(2, 2),OB =(4, 1),在x 轴上取一点P ,使AP •BP 有最小值,则P 点的坐标是( )A .(-3,0)B .(3,0) C. (2,0) D .(4,0)11.如图,小圆圈代表网络结点,结点之间的线段表示它们有网线相连,连线上标注的数字表示某信息通过该段网线所需的时间(单位:毫秒),信息由结点A 传递到结点B 所需的最短时间为( )毫秒A. 4.1 B .4.3C. 4.5 D .4.412.西部某厂在国家积极财政政策的推动下,从2001年1月起到2003年12月止的36个月中,月产值不断递增,且构成等比数列{n a },若逐月累计的产值S n =1a +2a +…+n a ,且S n =10n la -36,则该厂的年增长率为(精确至百分位)( )A .12.66%B .12.68%C .12.69%D .12.70%第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.从5名男生和4名女生中选出4名代表,至少有一男一女的概率是______.14.已知1F 、2F 是椭圆42x +2y =1的两个焦点,过椭圆右焦点2F 的直线l 与椭圆相交于A 、 B 两点,则∆AB F 1面积的最大值为________.15.一多面体的棱数为30,面数为12,则它的各面多边形内角和为_________.16.如果函数f (x )在区间D 上是凸函数,则对于区间D 上的任意1x ,2x ,…,n x ,都有nx f x f x f n )()()(21+⋅⋅⋅++≤f (n x x x n +⋅⋅⋅++21),现已知y =sin x 在[0,π]上是凸函数, 那么在∆ABC 中,sin A +sin B +sin C 的最大值为_________.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)“幸运52”知识竞猜电视节目,为每位选手准备5道试题,每道题设“Yes ”与“No ”两个选项,其中只有一个是正确的,选手每答对一题,获得一个商标。
2004年普通高等学校招生全国统一考试:高考模拟试卷[2]参考答案
2004年普通高等学校招生全国统一考试:高考模拟试卷[2]
参考答案
无
【期刊名称】《中学生活页题选:文科综合》
【年(卷),期】2003(000)008
【总页数】4页(P65-68)
【作者】无
【作者单位】无
【正文语种】中文
【中图分类】G632.474
【相关文献】
1.2004年普通高等学校招生全国统一考试:高考模拟试卷[1]参考答案 [J],
2.2004年普通高等学校招生全国统一考试:高考模拟试卷[3]参考答案 [J],
3.2004年普通高等学校招生全国统一考试参考答案——高考模拟试卷[2] [J],
4.2004年普通高等学校招生全国统一考试参考答案——高考模拟试卷[1] [J],
5.2004年普通高等学校招生全国统一考试参考答案——高考模拟试卷[3] [J],因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年高考数学模拟试题2参考答案及评分标准一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分.1.B 2.C 3.A 4.A 5.D 6.C 7.A 8.B 9.D 10.B 11.B 12.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.161-=y 14.1 15.84 16.③④三、解答题17.解(Ⅰ),1||||||===c b a 且a 、b 、c 之间的夹角均为120°, 0120||||120cos ||||)(=-=⋅-⋅=⋅-∴ ocs c b c a c b c a c b a …3分 c b a ⊥-∴)(.…4分(Ⅱ),1||,1||2>++∴>++c b ka c b ka ……………………………………6分1222,1)()(2>⋅+⋅+⋅+⋅+⋅+⋅∴>++⋅++c b c ka b ka c c b b a a k c b ka c b ka …8分,02,21120cos 2>-∴-==⋅=⋅=⋅k k c b c a b a ...10分 .20><∴k k 或 (12)分18.解(Ⅰ)如果第一次出现红灯,则接着又出现红灯的概率是3121⨯;………………2分如果第一次出现绿灯,则接着出现红灯的概率为5321⨯.……………………………4分综上,第二次出现红灯的概率为3121⨯+1575321=⨯.………………………………5分(Ⅱ)由题意,三次发光中,出现一次红灯、两次绿灯的情况共有如下三种方式:①当出现绿、绿、红时的概率为535221⨯⨯;……………………………………7分②当出现绿、红、绿时的概率为325321⨯⨯;……………………………………9分③当出现红、绿、绿时的概率为523221⨯⨯;…………………………………………11分所以三次发光中,出现一次红灯、两次绿灯的概率为535221⨯⨯+325321⨯⨯+523221⨯⨯=.7534………………………………………………12分 19.(甲)解(Ⅰ)建立如图所示的空间直角坐标系,xyz D - ∵∠D=∠DAB=90°,AB=4,CD=1,AD=2, ∴A (2,0,0),C (0,1,0),B (2,4,0).…………………………………2分由PD ⊥平面ABCD ,得∠P AD 为P A 与平面ABCD 所成的角,∴∠P AD=60°.在Rt △P AD 中,由AD=2,得PD=32, ∴)32,0,0(P .…………………………4分 (Ⅱ)),0,3,2(),32,0,2(--=-=BC PA13131340)52()3(0)2(2,cos -=⨯-+-⨯+-⨯>=<∴BC PA ……6分所以P A 与BC 所成的角为1313arccos …………………7分(Ⅲ))3,2,1(,的坐标为中点为M PB M ∴ .)32,4,2(),3,1,1(),3,2,1(-==-=∴ (8)分 0323422)1(=⨯+⨯+⨯-=⋅ ,0)32(324121=-⨯+⨯+⨯=⋅……………………………………………10分PBC PB AMC PB 平面平面⊂⊥∴⊥⊥∴ .,,PBC AMC 平面平面⊥∴.…………………………………………………………12分19.(乙)证(Ⅰ)因为四边形BCC 1B 1是矩形∴BC ⊥BB 1,又∵AB ⊥BC ,∴BC ⊥平面A 1ABB 1,…………………………………………2分∵BC ⊂平面CA 1B ,∴平面CA 1B ⊥平面A 1ABB 1.……………………………3分 解(Ⅱ)过A 1作A 1D ⊥B 1B 于D ,连接DC ,∵BC ⊥平面A 1ABB 1,∴BC ⊥A 1D ∴A 1D ⊥平面BCC 1B 1,故∠A 1CD 为直线A 1C 与平面BCC 1B 1所成的角.……5分 在矩形BCC 1B 1中,DC=13, 因为四边形A 1ABB 1是菱形,∠A 1AB=60°,CB=3, AB=4,∴321=D A , 133921332tan 11===∠∴CD D A CD A .………………7分(Ⅲ)∵B 1C 1∥BC 1, ∴B 1C 1∥平面A 1BC ,∴C 1到平面A 1BC 的距离即为B 1到平面A 1BC 的距离.…………………………9分 连结AB 1 ,AB 1与A 1B 交于点O ,∵四边形A 1ABB 1是菱形,∴B 1O ⊥A 1B.∵平面CA 1B ⊥平面A 1ABB 1,∴ B 1O ⊥平面A 1BC∵B 1O 即为C 1到平面A 1BC 的距离.………………11分 ∵B 1O=32,∴C 1到平面A 1BC 的距离为32.………………………………………………12分20.解(Ⅰ)设012)1(21),,(),,(2222211=-++⎩⎨⎧=++=x x a y ax x y y x B y x A 得由…………2分,,,12,112121OB OA OAPB a x x a x x ⊥∴⎪⎪⎩⎪⎪⎨⎧+-=++-=∴为矩形四边形 0)1)(1(,021212121=+++=+∴x x x x y y x x 即,………………………………4分3,01121111=∴=++-+-+-∴a a a a ……………………………………6分(Ⅱ)设).2,2(),,(),,(),,(2211y x Q OP y x B y x A y x P 的中点则因为A 、B 在椭圆⎪⎩⎪⎨⎧=+=+=+.22,22,222222212122y x y x y x 所以上 相减得2,221212121-=⋅-=++⋅--OP AB k k x x y y x x y y 即……………………………………9分所以.022.221222=-+-=⋅-y y x x y x y 化简得…………………………………………11分).0(022.0,22≠=-+∴≠∴y y y x P y x l 点的轨迹方程为轴不能垂直于 (12)分21.解(Ⅰ)∵第一次释放有害气体3am ,∴第二次释放有害气体后(净化之前),车间内共有有害气体3%)(m ar a +,第三次释放有害气体后(净化之前),车间内共有有害气体3%]%)([m r ar a a ++,…2分……∵6.5小时共释放出6次有害气体,且有害气体的含量逐次递增,∴要使该车间能连续正常生产,在最后一次释放有害气体后(净化之前),车间内有害气体总量不得超过 1.25a m 3,即必须要有a r a r a ar a 25.1%)(%)(%52≤++++ ,即.25.1%1%)(16a r r a ≤--⋅…………4分 ,25.18.012.0112.012.01206==-<--=)(时,当r ∴当r=20时,该车间能连续生产6.5小时.…………………………………6分(Ⅱ))0(2.0%>+=x x r 设满足条件,即要有,25.1)2.0(1)2.0(16≤+-+-x x即.25.1)2.0(6x x ⋅≥+ (*)…8分,)2.0(62.0)2.0(62.0)2.0(56566x x x +>++=+要使(*)成立,只要025.116)2.0(2.056≥-⋅+x x 即可,……………………10分5656)2.0(625.1)2.0(10020,0)2.0(625.1)2.0(-⋅+=∴>-=∴r x 取可取,就可使该车间连续生产6.5小时.………………………………………………………………………12分(Ⅲ)设车间内原有有害气体量为A ,将20分钟的净化过程划分成n 次,则每次的换气量为34000m n. 不防假设换气过程是先放入新鲜空气再释放混合气体,∵净化后残留的有害气体量=净化前残留的有害气体量-被释放混合气体中所含有害气体量,第一次将化后残留的有害气体量为:;2114000400020001nA nn AA a +⋅=⋅+-=第二次净化后残留的有害气体量为:;)211(21140004000200021112nA n a nn a a a +=+⋅=⋅+-=……第n 次净化后残留的有害气体量为:nn nA a )11(+=……………………2分当n 极大时,可将2n看作整数k ,,])11(1[)211(2kn kA nA +=+∴ ,51)5.21(,5.26)2)(1(2)1(11)11(22A A a kk k k k k k k n k <<∴>--+-++=+ ∵20分钟能够将有害气体含量降至原有有害气体含量的20%以下.……………4分 22.解(Ⅰ),23)(2c bx x x f ++='………1分 )0,()(-∞在x f 上是增函数,在[0,2]上是减函数,∴当)(,0x f x 时=取到极大值,.0,0)0(=∴='∴c f ……3分(Ⅱ)).2(4,0)2(+-=∴=b d f ………4分023)(2=+='bx x x f 的两个根分别为,32,021b x x -== ∵函数]2,0[)(在x f 上是减函数,3,2322-≤∴≥-=∴b bx .……………………7分 .2371)2(41)1(≥--=++-=++=∴b b b d b f ……………………………9分(Ⅲ)))(2)(()(,0)(,2,βαβα---==x x x x f x f 可设的三根是方程 ,2)22()2()(23αβαββαβα-+++++-=∴x x x x f⎪⎩⎪⎨⎧-=--=+∴⎩⎨⎧-=---=∴.21,2.2,2d b d b αββααββα…………………………………………12分.16)2()2(8)2(2)2(4)(||2222--=+-+=++=-+=-∴b b b d b αββαβα 3||,3≥-∴-≤βαb .………………………………………………………14分。