存在性问题-中考数学综合专题训练试题
中考数学总复习《二次函数中的特殊四边形存在性问题 》专题训练-附答案
中考数学总复习《二次函数中的特殊四边形存在性问题 》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知抛物线223y x x =+-的图像与坐标轴分别交于、、A B C 三点,连接AC ,点M 是AC 的中点,抛物线的对称轴交x 轴于点F ,作直线FM .(1)直接写出下列各点的坐标:F ______,M ______;(2)若点P 为直线FM 下方抛物线上动点,过点P 作PQ y ∥轴,交直线FM 于点Q ,当PQM 为直角三角形时,求点P 的坐标;(3)若点N 是x 轴上一动点,则在坐标平面内是否存在点E ,使以点F M N E 、、、为顶点的四边形是正方形?若存在,请直接写出点E 的坐标:若不存在,请说明理由.2.如图所示,在平面直角坐标系中,直线3y x =-+交坐标轴于B 、C 两点,抛物线23y ax bx =++经过B 、C 两点,且交x 轴于另一点()1,0A -.点D 为抛物线在第一象限内的一点,过点D 作DQ CO ∥,DQ 交BC 于点P ,交x 轴于点Q .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,在点D 的移动过程中,存在DCP DPC ∠=∠,求出m 值;(3)在抛物线上取点E ,在平面直角坐标系内取点F ,问是否存在以C 、B 、E 、F 为顶点且以CB 为边的矩形?如果存在,请求出点F 的坐标;如果不存在,请说明理由.3.如图,已知抛物线223y x x =--+的顶点为D 点,且与x 轴交于B ,A 两点(B 在A 的左侧),与y 轴交于点C .点E 为抛物线对称轴上的一个动点:(1)当点E 在x 轴上方且CE BD ∥时,求sin DEC ∠的值;(2)若点Р在抛物线上,是否存在以点B ,E ,C ,P 为顶点的四边形是平行四边形﹖请求出点Р的坐标;(3)若抛物线对称轴上有点E ,使得55AE DE +取得最小值,连接AE 并延长交第二象限抛物线为点M ,请直接写出AM 的长度.4.如图,抛物线22y ax bx =++与x 轴交于()1,0A -和()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)如图1,若点D 是第一象限内抛物线上的一个动点,连接AC ,CD ,DB ,试求四边形ABDC 面积的最大值;(3)如图2,点(),1D m m -是第一象限内抛物线上的一点,连接AD ,BD ,点E 是线段AB 上的任意一点(不与点A ,B 重合),过点E 分别作EM AD ∥交BD 于点M ,EN BD ∥交AD 于点N .①判断四边形EMDN 的形状,并证明你的结论;①四边形EMDN 是否能成为正方形?若能,请直接写出点E 的坐标;若不能,请说明理由.5.如图,在平面直角坐标系中,AOC 绕原点O 逆时针旋转90︒得到DOB ,其中1OA =,OC=3.(1)若二次函数经过A 、B 、C 三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l 上是否存在一点P ,使得PA PC +最小?若P 点存在,求出P 点坐标;若P 点不存在,请说明理由.(3)在(1)条件下,若E 为x 轴上一个动点,F 为抛物线上的一个动点,使得B 、C 、E 、F 构成平行四边形时,求E 点坐标.6.如图,在平面直角坐标系中,抛物线234y x bx c =++与直线AB 交于点()0,3A -和()4,0B .(1)求抛物线的函数解析式;(2)点P 是直线AB 下方抛物线上一点,过点P 作y 轴的平行线,交AB 于点E ,过点P 作AB 的垂线,垂足为点F ,求PEF 周长的最大值及此时点P 的坐标;(3)在(2)中PEF 取得最大值的条件下,将该抛物线沿水平方向向左平移3个单位,点Q 为点P 的对应点,点N 为原抛物线对称轴上一点.在平移后抛物线上确定一点M ,使得以点B ,Q ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点M 的坐标,并写出求解点M 的坐标的其中一种情况的过程.7.如图,在平面直角坐标系中,抛物线()230y ax bx a =+-≠与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于C 点.(1)求抛物线的函数表达式;(2)点P 是直线BC 下方抛物上一动点,连接PB ,PC ,求PBC 面积的最大值以及此时点P 的坐标;(3)在(2)中PBC 的面积取得最大值的条件下,将该抛物线沿水平方向向左移动2个单位,平移后的抛物线顶点坐标为Q ,M 为y 轴上一点,在平移后的抛物线上确定一点N ,使得以点P ,Q ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.8.如图,在平面直角坐标系中,抛物线()240y ax bx a =+-≠与x 轴交于()4,0A ,()2,0B -两点,与y 轴交于点C ,连接BC ,y 轴上有一点()0,3D -.(1)求抛物线的函数表达式;(2)点P 是直线AD 下方抛物线上的一个动点,过点P 作PH x ⊥轴于点H ,PH 交直线AD 于点E ,作PF BC 交直线AD 于点F ,求11510PF PH +的最大值,及此时点P 的坐标; (3)在(2)的条件下,将点P 向右平移152个单位长度,再向上平移398个单位长度得到点P ';将抛物线沿着射线BC 方向平移5个单位长度得到一条新抛物线,点M 为新抛物线与y 轴的交点,N 为新抛物线上一点,Q 为新抛物线对称轴上一点,请写出所有使得以点P ',M ,Q ,N 为顶点的四边形是平行四边形的点Q 的坐标,并写出求解点Q 的坐标的其中一种情况的过程.9.如图,抛物线212y x bx c =-++的图象经过点C ,交x 轴于点()1,0A -、()4,0B (A 点在B 点左侧),顶点为D .(1)求抛物线的解析式;(2)点P 在直线BC 上方的抛物线上,过点P 作y 轴的平行线交BC 于点Q ,过点P 作x 轴的平行线交y 轴于点F ,过点Q 作x 轴的平行线交y 轴于点E ,求矩形PQEF 的周长最大值;(3)抛物线的对称轴上是否存在点M ,使45BMC ∠=︒?若存在,请直接写出点M 的纵坐标;若不存在,请说明理由.10.如图1,抛物线232y ax x c =++与x 轴交于点A 、(4,0)B (A 点在B 点左侧),与y 轴交于点(0,6)C ,点P 是抛物线上一个动点,连接,,PB PC BC(1)求抛物线的函数表达式;(2)如图2所示,当点P 在直线BC 上方运动时,连接AC ,求四边形ABPC 面积的最大值,并写出此时P 点坐标.(3)若点M 是x 轴上的一个动点,点N 是抛物线上一动点,P 的横坐标为3.试判断是否存在这样的点M ,使得以点,,,B M N P 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.11.如图,已知抛物线2y x bx c =-++与y 轴交于点C ,与x 轴交于(1,0)A -,(3,0)B 两点.(1)求抛物线的解析式. (2)连接AC ,在抛物线的对称轴上是否存在点P ,使得ACP △的周长最小?若存在,求出点P 的坐标和ACP △的周长的最小值,若不存在,请说明理由.(3)点M 为抛物线上一动点,点N 为x 轴上一动点,当以A ,C ,M ,N 为顶点的四边形为平行四边形时,直接写出点M 的横坐标.12.在平面直角坐标系中,抛物线24y x x c =--+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且点A 的坐标为()5,0-.(1)求点C 的坐标;(2)如图1,若点P 是第二象限内抛物线上一动点,求三角形ACP 面积的最大值;(3)如图2,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使以A ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,抛物线()10A -,,()30B ,和()01C -,三点.(1)求该抛物线的表达式与顶点坐标;(2)点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.14.如图,抛物线2()y a x h k =-+的顶点坐标是19,24⎛⎫ ⎪⎝⎭,与x 轴交于点A 、点()2,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线的对称轴上,点Q 在抛物线上,是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.15.综合与探究如图,抛物线2142y x x =+-与x 轴交于点A 和B ,点A 在点B 的左侧,与y 轴交于点C ,点P 在直线AC 下方的抛物线上运动.(1)求点B 的坐标和直线AC 的解析式;(2)如图1,过点P 作PD y ∥轴交直线AC 于点D ,过点P 作PE AC ⊥,垂足为E ,当PDE △的面积最大时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在x 轴上运动,以点B ,C ,M 和N 为顶点的四边形是平行四边形,借助图2探究,请直接写出符合条件的点M 的坐标.参考答案: 1.(1)(1,0)F - 13(,)22M - (2)点P 的坐标为:1P (210322---,) 21555(,)22P ---- (3)存在,13(,)22E 或3(1,)2E --2.(1)223y x x =-++(2)2m =(3)存在,此时点F 的坐标为()4,1或()5,2--3.(1)55(2)存在 ()2,3P - ()4,5P -- ()2,5P -(3)754AM =4.(1)213222y x x =-++ (2)四边形ABDC 面积的最大值为9(3)①矩形①能,7,03E ⎛⎫ ⎪⎝⎭5.(1)2=23y x x --(2)存在(3)(72,0)-或(72,0)--或(1,0)6.(1)239344y x x =-- (2)365 92,2P ⎛⎫- ⎪⎝⎭ (3)13693,216M ⎛⎫ ⎪⎝⎭ 727,216M ⎛⎫-- ⎪⎝⎭ 333,216M ⎛⎫ ⎪⎝⎭7.(1)2=23y x x --(2)315(,)24P - (3)17(,)24N -或533(,)24N 或57(,)24N --8.(1)2142y x x =-- (2)11510PF PH +最大值为758,此时点P 的坐标为335,28⎛⎫- ⎪⎝⎭ (3)点Q 的坐标为()2,39或()2,29或()2,10-9.(1)213222y x x =-++ (2)9(3)3132+或3912--10.(1)233642y x x =-++ (2)2t =时,ABPC S 四边形有最大值,最大值为24,点P 的坐标为(2,6)(3)存在,点M 的坐标为(0,0)或()14,0-或(14,0)或(8,0)11.(1)223y x x =-++(2)(1,2)P 1032+(3)2或17+或17-12.(1)(0,5)(2)1258(3)存在,点M 的坐标为:()3,8-或()3,16-或(7,16)--13.(1)212133y x x =--,顶点坐标为413⎛⎫- ⎪⎝⎭, (2)()21-,或543⎛⎫ ⎪⎝⎭,或()47-,14.(1)22y x x =-++(2)存在,点Q 的坐标为:35,24Q ⎛⎫ ⎪⎝⎭或37,24⎛⎫-- ⎪⎝⎭或57,24⎛⎫- ⎪⎝⎭15.(1)点B 的坐标为()20,,直线AC 的解析式为4y x =-- (2)()24--,(3)()24--,或()1174--,或()1174-+,;。
中考数学专题复习《勾股定理之折叠问题分类讨论、存在性问题》测试卷(附带答案)
中考数学专题复习《勾股定理之折叠问题分类讨论存在性问题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 ABC 中 90A ∠= 7AB = 24AC = 点D 为边AC 上一点 将ABC 沿BD 折叠后 点A 的对应点A '恰好落在BC 边上 则线段AD 的长为( )A .407B .214C .16825D .3262.如图是一张直角三角形纸片 已知6AC = 10AB = 将纸片沿AD 折叠 使点C 落在AB 边上的点C '处 则折痕AD 长为( ).A .5B .35C .3D .323.已知2OA = 2OB = 将AOB 沿着某直线CD 折叠后如图所示 CD 与x 轴交于点C 与AB 交于点D 则点C 坐标是( )A .()0.4,0B .()0.5,0C .()0.6,0D .()0.7,04.如图 长方形纸片ABCD 中 6AB = 18AD = 将此长方形纸片折叠 使点D 与点B 重合 点C 落在点H 的位置 折痕为EF 则ABE 的面积为( )A .6B .18C .24D .485.如图 在平行四边形ABCD 中 60B ∠=︒ 4AB = 6AD = E 是AB 边的中点 F 是线段BC 上的动点 将EBF 沿EF 所在直线折叠得到EB F ' 连接B D ' 则B D '的最小值是( )A .4B .6C .2D .26.将长方形纸片ABCD 如图折叠 B C 两点恰好重合在AD 边上的同一点P 处折痕分别是MH NG 若90MPN ∠=︒ 3PM = 5MN = 分别记PHM PNG PMN 的面积为1S 2S 3S 则1S 2S 3S 之间的数量关系是 ( )A .312S S S =+B .312322S S S =+C .32155S S S =-D .2123S S S =-7.如图 直角ABC 中 90C ∠=︒ 3AC = 4BC = 将ABC 沿AB 折叠得ABD △ 点C 的对应点为点D 则点D 到BC 的距离为( )A .125B .245C .9625D .125或245 8.如图 在Rt ABC △纸片中 9043A AB AC ∠=︒==,, 将Rt ABC △纸片按图示方式折叠 使点A 恰好落在斜边BC 上的点E 处 BD 为折痕 则下列四个结论:①BD 平分ABC ∠①AD DE = ①DE EC = ①DEC 的周长为4 其中正确的个数有( )A .1B .2C .3D .4二 填空题9.如图 Rt ABC △中 90ACB ∠=︒ 30B ∠=︒ 4AC = 点P 为AB 上一个动点 以PC 为轴折叠APC △得到QPC 点A 的对应点为点Q 当点Q 落在ABC 内部(不包括边)上时 AP 的取值范围为 .10.如图 在平面直角坐标系中 长方形ABCO 的边OC OA 、分别在x 轴 y 轴上 3AB = 点E 在边BC 上 将长方形ABCO 沿AE 折叠 若点B 的对应点F 恰好是边OC 的三等分点 则点E 的坐标是 .11.如图 有一个直角三角形纸片 两直角边18cm AC = 24cm BC = 现将直角边AC 沿直线AD 折叠 使它落在斜边AB 上 且与AE 重合 则BD = cm .12.已知直线l 为长方形ABCD 的对称轴 5AD = 6AB = 点E 为射线DC 上一个动点 把ADE 沿直线AE 折叠 点D 的对应点D 恰好落在对称轴l 上.则点D 到边CD 的距离是 .13.如图 把长方形ABCD 沿直线BD 向上折叠 使点C 落在C '的位置上 BC '交AD 于E 已知4CD = 8BC = 则EC D '的面积为 .三 解答题14.如图是一张直角三角形ABC 纸片 90C ∠=︒ 6AC = 8BC =.(1)在图1中 将直角边AC 沿AD 折叠 使点C 落在斜边AB 上的点E 处 求CD 的长(2)在图2中 将BFG 沿FG 折叠 使点B 与点A 重合 求BF 的长.15.一数学兴趣小组探究勾股定理在折叠中的应用 如图 将一张长方形纸片ABCD 放在平面直角坐标系中 点A 与原点O 重合 顶点B D 分别在x 轴 y 轴上 P 为边CD 上一动点 连接BP 将BCP 沿BP 折叠 点C 落在点C '处.(1)若4AB = 3AD = 如图1 连接BD 当点C '在线段BD 上时 求点P 的坐标.(2)在(1)的条件下如图2 当点P 与点D 重合时 沿BD 将BCD △折叠得BC D '△ DC '与x 轴交于E 点 求BDE 的面积.(3)若8AB = 4BC = 当ADC '为等腰三角形时 求点P 的坐标.16.如图1 ABC 中 90,BAC AB AC ∠=︒= D E 是直线BC 上两动点 且45DAE =︒∠.探究线段BD DE EC 三条线段之间的数量关系:小明的思路是:如图2 将ABD △沿AD 折叠 得ADF △ 连接EF 看能否将三条线段转化到一个三角形中 …请你参照小明的思路 探究并解决下列问题:(1)猜想BD DE EC 三条线段之间的数量关系 并证明(2)如图3 当动点E 在线段BC 上 动点D 运动在线段CB 延长线上时 其它条件不变 (1)中探究的结论是否发生改变?请说明你的猜想并给予证明.17.已知ABC CDE △≌△ 且90B D ∠=∠=︒ 把ABC 和CDE 拼成如图所示的形状 使点B C D 在同一条直线上 若4AB = 3DE =.(1)求AE 的长(2)将ABC 沿AC 折叠 点B 落在点F 处 延长AF 与CE 相交于点G 求FG 的长.18.如图 在ABC 中 90C ∠=︒ 把ABC 沿直线DE 折叠 使ADE 与BDE 重合.(1)若38A ∠=︒ 则CBD ∠的度数为________(2)若6AC = 4BC = 求AD 的长(3)当(0)AB m m ABC =>,△的面积为24m +时 求BCD △的周长.(用含m 的代数式表示)参考答案:1.B2.B3.B4.C5.C6.C7.C8.C9.234AP <<10.25⎛- ⎝⎭或2⎛- ⎝⎭11.1512.1或9/9或113.614.(1)3CD = (2)254BF15.(1)点P 的坐标为5,32⎛⎫ ⎪⎝⎭ (2)7516(3)当ADC '为等腰三角形时 点P 的坐标为()44,或4⎫⎪⎪⎝⎭.16.(1)222DE BD EC =+(2)不变 222DE BD EC =+17.(1)AE =(2)9418.(1)14︒ (2)133AD =(3)BCD △的周长为4m +.。
中考数学总复习《实际问题与二次函数综合存在性问题》专题训练-附答案
中考数学总复习《实际问题与二次函数综合存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.某商场经营某种新型电子产品,购进时的单价为100元/件,连续加价两次后,以240元/件为定价售出,已知第二次加价的增长率比第一次加价的增长率多10%.(1)求第一次加价的增长率;(2)该商场在试销中发现,如果以定价售出,则每天可售出200件,如果售价每降低1元,销售量就可以增加10件,那么当售价为多少元时,该商场每天销售该商品获得的利润最大?最大利润是多少?(3)若商场想每天获得60000元的利润,同时又要减少库存,则该商场应该如何确定该产品的销售单价?2.一场篮球比赛中,小宇跳起投篮,已知球出手时离地面高209,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时到达最大高度4m.设篮球运行的轨迹为抛物线,篮圈中心距离地面3m,按如图所示建立平面直角坐标系.(1)求抛物线表达式并判断此球能否准确投中?(2)假设出手的角度和力度都不变,小宇应该向前走或向后退多少米才能命中篮圈中心?请通过计算说明.3.小林同学是一名羽毛球运动爱好者,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =和 1.55AB =米,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度1(m)y 与水平距离(m)x 近似满足一次函数关系10.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度2(m)y 与水平距离(m)x 近似满足二次函数关系,此时当羽毛球飞行的水平距离是1米时,达到最大高度3.2米.(1)求吊球时羽毛球满足的二次函数的表达式;(2)请通过计算说明两种击球方式是否过网;(3)要使球的落地点到C 点的距离更近,请通过计算判断应该选择哪种击球方式.4.一段长为25m 的墙MN 前有一块矩形ABCD 空地,用90m 长的篱笆围成如图所示的图形(靠墙的一边不用篱笆,篱笆的厚度忽略不计),其中四边形AEFH 和四边形CDHG 是矩形,四边形EBGF 是边长为5m 的正方形,设m CD x .(1)若矩形CDHG 的面积为2125m ,求CD 的长;(2)当CD 的长为多少时,矩形ABCD 的面积最大,最大面积是多少?5.某游乐城销售一种玩具,当售价为50元/件时,每天可以销售40件.现游乐城对该玩具开展酬谢促销活动,通过市场调研发现,该玩具单价每降1元,销量增加4件.若该玩具进价为30元/件.(1)售价为多少元时,每天的利润为864元?(2)售价为多少元时,每天的利润最大,最大利润为多少元?6.某超市销售一种饮料,平均每天可售出100箱,每箱利润为60元.通过调查发现,若每箱降价1元,每天可多售出2箱.(1)若将这种饮料每箱降价x 元,每天可售出______箱;(用含x 的代数式表示)(2)如果要使每天销售饮料的利润w (元)最大,每箱应降价多少元?最大利润是多少?7.某文具店销售一种进价为每件40元的护眼台灯,销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10700y x =-+,在销售过程中销售单价不低于进价,而每件的利润不高于成本价的50%.(1)设文具店每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并求出自变量x 的取值范围;(2)x 在什么范围内,该文具店每月获得利润逐渐增多?在什么范围内,该文具店每月获得利润逐渐减少?8.某农场种植100棵橘子树,平均每棵树结500个橘子,经营一段时间发现市场销量较好,于是准备多种一些橘子树以提高果园产量,但如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结4个橘子,假设果园多种了x 棵橘子树.(1)求出每棵树结的橘子个数y(个)与x之间的关系;(2)若每棵橘子树的产量不能少于460个,果园多种多少棵橘子树时,可使总产量达到最大?最大是多少?9.某商店经营儿童益智玩具,已知成批购进时的单价是20元,调查发现,销售单价是30元时,月销售量是230件,销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元,设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?10.某超市销售一种牛奶,进价为每箱40元,规定售价不低于进价.现在的售价为每箱80元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加2箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?11.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.若设每件衬衫降价x元,商场平均每天盈利y元.(1)若商场平均每天盈利要达到1200元,且让顾客得到实惠,则每件衬衫应降价多少元?(2)若每件衬衫的盈利不少于30元,求每天盈利的最大值?12.“一分钟跳绳”是中考体育考试科目之一,近年来受到社会各界的高度重视.某经销商抓住商机,以每件10元的价格购进一种跳绳,销售时该跳绳的销售单价不低于进价且不高于18元.经过市场调查发现,该跳绳的每天销售数量y(条)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示:销售单价/x元…151617…每天销售数量/y条…302826…(1)从表格可知:销售单价每涨价1元,每天销售数量______(填“增多”或“减少”)______(填数字)条;(2)求y与x之间的函数关系式;(3)设销售这种跳绳每天获利w(元),当销售单价为多少元时,每天获利最大?最大获利是多少元?13.某商店销售某种商品,平均每天可售出20件,每件盈利40元,由于疫情滞销该店采取了降价措施,在每件盈利不少于24元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若该商品经过两次降价后,每件可以获得的利润是32.4元,求这两次降价的平均降价率是多少?(2)经调查,按照(1)的降价方式,无法达到商家盈利的预期.若该商店每天预期销售利润为1232元,则每件商品应降价多少元?(3)该商店应该在每件盈利40元的基础上降价多少元才可以获得最大利润,最大利润是多少?14.某工厂生产的某种产品按质量分为10个档次.第一档次(最低)的产品一天能生产76件,每件利润10元,每提高一个档次,每件利润增加2元,但一天产量减少4件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且110≤≤),求出y与xx之间的函数关系式;(2)若生产第x 档次的产品一天的总利润为1080元,求该产品的质量档次.15.超市销售某商品,每件盈利50元,平均每天可达到30件.为尽快减少库存,现准备降价以促进销售,经调查发现:一件商品每降价1元,平均每天可多售出2件.(1)当一件商品降价5元时,每天销售量可达到 件,每天共盈利 元;(2)在上述条件不变销售正常情况下,每件商品降价多少元时超市每天盈利可达到2100元?(3)在上述条件不变,销售正常情况下,超市每天盈利最高可以多少元?参考答案:1.(1)第一次加价的增长率为50%.(2)当销售单价为180元/个时,该商场每天销售该商品获得的利润最大,最大利润是64000元.(3)当销售单价为160元/个时,每天获得60000元的利润.2.(1)()21449y x =--+,未能命中篮圈中心 (2)小明应该向前走1米才能命中篮圈中心3.(1)()20.41? 3.2y x =--+(2)两种击球方式均能过网(3)吊球的落地点距离C 点更近4.(1)25m CD =(2)当CD 的长20m 时,矩形ABCD 的面积最大,最大面积是2500m .5.(1)售价为48或42元时,每天的利润为864元(2)售价为35元时,每天的利润最大,最大利润为900元6.(1)(1002)x +(2)每箱应降价5元,最大利润6050元7.(1)21011002800(4060)w x x x =-+-≤≤(2)当4055x <<时,该文具店每月获得利润逐渐增多,当5560x <<时,该文具店每月获得利润逐渐减少8.(1)5004y x =-,其中0125x ≤<,且x 为整数;(2)果园多种10棵橘子树时,可使橘子的总产量最大,最大为51600个.9.(1)2101302300y x x =-++;010x <≤且x 为正整数;(2)售价定为32元.10.(1)602y x =+ 40x ≤(2)每箱牛奶定价为75元时,才能使每月销售牛奶的利润最大,最大利润是2450元11.(1)每件衬衫应降价20元(2)每天盈利的最大值1200元12.(1)减少;2条(2)260y x =-+(3)当销售单价为18元时,每天获利最大,最大获利,192元13.(1)这两次降价的平均降价率是10%(2)若该商店每天销售利润为1232元,每件商品可降价12元(3)当每件商品降价15元时,商店可获得最大利润,最大利润为1250元14.(1)28128640y x x =-++;(2)该产品的质量档次为第5档次.15.(1)40,1800;(2)每件商品降价15元或20元时,超市每天盈利可达到2100元;(3)销售正常情况下,超市每天盈利最高可以达到2112.5元.。
中考数学总复习《二次函数中的相似三角形存在性问题》专题训练-附答案
中考数学总复习《二次函数中的相似三角形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系xOy 中,直线AB 的函数表达式为2(0y ax a a =-≠,a 为常数),点A 、B 分别在y 轴和x 轴上,且2OA OB =,点A 关于x 轴的对称点为C ,点B 关于y 轴的对称点为D ,以点C 为顶点的抛物线经过点D .(1)求点,A B 的坐标;(2)求抛物线的解析式;(3)在(2)中拋物线的对称轴上有一点P ,且以点D O P 、、为顶点的三角形与AOB 相似,求出所有满足条件的点P 的坐标.2.已知在平面直角坐标系中,抛物线212y x bx c =-++与x 轴相交于点A ,B ,与y 轴相交于点C ,直线4y x =+经过A ,C 两点(1)求抛物线的表达式;(2)如果点P ,Q 在抛物线上,并与对称轴对称,(P 点在对称轴左边),且2PQ AO =,求P ,Q 的坐标;(3)动点M 在直线4y x =+上,且ABC 与COM 相似,求点M 的坐标.3.已知:抛物线2:3L y x bx =+-交x 轴于(),3,0A B 两点,交y 轴于C .(1)求抛物线的解析式;(2)如图1,点D 在第四象限的抛物线上,DE BC ⊥于点E ,若12DE BE =,求点D 的坐标; (3)如图2,抛物线L 经过平移后得到抛物线21:4H y x =-,直线OP 交抛物线的其中一个点为P ,直线PQ 与抛物线有且只有一个交点P ,且与y 轴不平行,⊥OQ OP 交PQ 于点Q ,求点Q 的纵坐标.4.如图,抛物线22y ax x c =++与x 轴交于1,0A ,B 两点,与y 轴交于点G ,抛物线的对称轴为直线=1x -,交x 轴于点E ,交抛物线于点F ,连接BC .(1)求抛物线的解析式.(2)如图,点P 是线段BC 上一动点,过点P 作PD x ⊥轴,交抛物线于点D ,问当动点P 运动到什么位置时,四边形CEBD 的面积最大?求出四边形CEBD 的最大面积及此时P 点的坐标.(3)坐标轴上是否存在点G ,使得以A ,C ,G 为顶点的三角形与BCF △相似?若存在,请求出点G 的坐标;若不存在,请说明理由.5.如图,抛物线22y ax bx =-+-经过A (4,0),B (1,0)两点.(1)求出抛物线的解析式;(2)P 是抛物线在第一象限上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)若抛物线上有一点Q (点Q 不与点B 重合),使得点Q 与点B 到直线AC 的距离相等,请直接写出点Q 坐标.6.如图,已知二次函数的图象与x 轴交于1,0A 和()3,0B -两点,与y 轴交于点()0,3C -,直线2y x m =-+经过点A ,且与y 轴交于点D ,与抛物线交于点E .(1)求抛物线的解析式;(2)如图1,点M 在AE 下方的抛物线上运动,求AME △的面积最大值;(3)如图2,在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与AOD △相似,若存在,求出点P 的坐标;若不存在,试说明理由.7.如图1,平面直角坐标系中,抛物线2y ax bx c =++交x 轴于1,0A ,()3,0B -两点,交y 轴于点()0,3C ,点M 是线段OB 上一个动点,过点M 作x 轴的垂线,交直线BC 于点F ,交抛物线于点E .(1)求抛物线的解析式; (2)当BCE 面积最大时,求M 点的坐标;(3)如图2,是否存在以点C 、E 、F 为顶点的三角形与ABC 相似,若存在,求点M 的坐标;若不存在,请说明理由.8.如图①,抛物线2y x bx c =-++与x 轴交于两点A ,()4,0B (点A 位于点B 的左侧),与y 轴交于点()0,4C ,拋物线的对称轴l 与x 轴交于点N ,长为2的线段PQ (点P 位于点Q 的上方)在x 轴上方的抛物线对称轴上运动.(1)求抛物线的关系式;(2)在线段PQ 运动过程中,当PC PA +的值最小时,求此时点P 的坐标;(3)如图①过点P 作PM y ⊥轴于点M ,当CPM △和QBN 相似时,求点Q 的坐标.9.如图,已知抛物线2y ax bx c =++与x 轴交于A 、()3,0B 两点,与y 轴交于点C ,顶点为()2,1D -,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;(2)点M 是直线l 上的动点,当以点M 、B 、D 为顶点的三角形与ABC 相似时,求点M 的坐标. 10.如图,抛物线23y ax bx =++经过点于()1,0A -,()3,0B 两点,与y 轴交于点C ,连接AC .(1)求抛物线的解析式;(2)如图①,若点E 是第二象限内抛物线上的一点,直线AE 与BC 相交于点F ,连接CE ,BE ,若BCE 的面积3,求点E 的横坐标;(3)如图①,点D 与点C 关于抛物线的对称轴对称,直线AD 交y 轴于点G ,点P 在平面内,以点B ,C ,P 为顶点的三角形与ACG 相似且∠=∠CBP CAG 时,请直接写出符合条件的点P 的坐标.11.如图,顶点为D 的抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线3y x =-+经过点B ,C .(1)求抛物线的解析式;(2)连接AC ,CD ,BD .求证:ACO DBC ∽△△;(3)点P 为抛物线对称轴上的一个动点,点M 是平面直角坐标系内一点,当以点A ,C ,M ,P 为顶点的四边形是菱形时,请直接写出点P 的坐标.12.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标. 13.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A B C ,,三点.(1)求证:90ACB ∠=︒;(2)点D 是第一象限内抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F .①求255DE BE +的最大值; ①点G 是AC 的中点,若以点C D E ,,为顶点的三角形与AOG 相似,求点D 的坐标.14.如图,抛物线2134y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D ,抛物线的对称轴与x 轴交于点E ,连接AC ,BD .(1)求点A ,B ,C ,D 的坐标;(2)点F 为抛物线对称轴上的动点,且BEF △与AOC 相似,请直接写出符合条件的点F 的坐标;(3)点P 为抛物线上的动点,是否存在这样的点P ,使BDP △是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,已知A (﹣2,0)、B (3,0),抛物线y =ax 2+bx +4经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一动点,点P 的横坐标为m .过点P 作PM ①x 轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN ①BC ,垂足为点N .(1)直接写出抛物线的函数关系式 ;(2)请用含m 的代数式表示线段PN 的长 ;(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得①BCO +2①PCN =90°?若存在,请求出m 的值;若不存在,请说明理由;(4)连接AQ ,若△ACQ 为等腰三角形,请直接写出m 的值 .参考答案:1.(1)()0,4A ()2,0B(2)抛物线的解析式为24y x =-(3)满足条件的点P 的坐标为()0,4或()0,4-或()0,1或()0,1-2.(1)2142y x x =--+(2)775,,3,22P Q ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭ (3)84,33⎛⎫- ⎪⎝⎭或()3,1-3.(1)抛物线解析式为223y x x =--(2)()2,3D -(3)12Q y =-4.(1)223y x x =+-(2)当32m =-,四边形CEBD 的面积最大,最大面积为518,此时点P 的坐标为33,22⎛⎫-- ⎪⎝⎭(3)存在,点G 的坐标为()()10,0,0,,9,03⎛⎫- ⎪⎝⎭5.(1)抛物线的解析式为215222y x x =-+- (2)存在,符合条件的点P 的坐标为(2,1)(3)点Q 的坐标为(3,1)或75(27,)22+-或75(27,)22---6.(1)223y x x =+-;(2)27;(3)存在,点P 的坐标为()0,12或290,2⎛⎫ ⎪⎝⎭.7.(1)223y x x =--+;(2)3,02M ⎛⎫- ⎪⎝⎭; (3)存在, 3,02M ⎛⎫- ⎪⎝⎭或5,03M ⎛⎫- ⎪⎝⎭.8.(1)234y x x =-++(2)35,22P ⎛⎫ ⎪⎝⎭(3)Q 的坐标是35,24⎛⎫ ⎪⎝⎭或3,52⎛⎫ ⎪⎝⎭或3219,22⎛⎫+ ⎪ ⎪⎝⎭9.(1)243y x x =-+(2)点M 的坐标是()2,2或12,3⎛⎫- ⎪⎝⎭.10.(1)223y x x =-++(2)3172- (3)()16,3-P 263,55⎛⎫ ⎪⎝⎭P ()30,9P 4129,55⎛⎫ ⎪⎝⎭P11.(1)223y x x =-++(3)()11,或()16,或()16-,或()10,12.(1)243y x x =-+ ()21-,(2)51351322⎛⎫-- ⎪⎝⎭,或51351322⎛⎫++ ⎪⎝⎭, (3)207,99⎛⎫ ⎪⎝⎭13.(2)①9;①(4,6)D 或25(3,)4D .14.(1)()()2,0,6,0A B - ()0,3C ()2,4D (2)()2,6或()2,6-或82,3⎛⎫ ⎪⎝⎭或82,3⎛⎫- ⎪⎝⎭; (3)()2,0-或()6,12--15.(1)222433y x x =-++(2)22655PN m m =-+(3)存在 74 (4)65或125。
二次函数-存在性问题-备战2023年中考数学考点微专题
考向3.9 二次函数-存在性问题例1、(2021·湖南湘潭·中考真题)如图,一次函数333y x =-图象与坐标轴交于点A 、B ,二次函数233y x bx c =++图象过A 、B 两点. (1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.解:(1)对于33y x =:当x =0时,3y = 当y =0时,3303x -=,妥得,x =3 ∴A (3,0),B (0,3- 把A (3,0),B (0,3-23y bx c ++得: 33+3+=03b c c ⎧⎪⎨=-⎪⎩解得,233b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为:23233y =-(2)抛物线的对称轴为直线23312323b x a -=-=-=⨯故设P (1,p ),Q (m ,n ) ①当BC 为菱形对角线时,如图,∵B ,C 关于对称没对称,且对称轴与x 轴垂直, ∴∴BC 与对称轴垂直,且BC //x 轴 ∵在菱形BQCP 中,BC ⊥PQ ∴PQ ⊥x 轴 ∵点P 在x =1上, ∴点Q 也在x =1上, 当x =1时,232343113=333y =⨯-⨯--∴Q (1,433-); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,∴BC //PQ ,且BC =PQ ∵BC //x 轴,∴令3y =23233=3y解得,120,2x x == ∴(2,3)C - ∴PQ =BC =2 ∵22(3)12+= ∴PB =BC =2 ∴迠P 在x 轴上, ∴P (1,0) ∴Q (3,0);若点Q 在点P 的左侧,如图,同理可得,Q (-1,0) 综上所述,Q 点坐标为(1,433-)或(3,0)或(-1,0)1、存在性问题的解题思路:假设存在,推理论证,得出结论;2、解決线段存在性问题的方法:将军饮马问题、垂线段问题、三角形三边关系、函数最值等;3、本题考查的知识点有用待定系数法求出二次函数的解析式,菱形的性质和判定,解一元二次方程,主要考查学生综合运用这些性质进行计算和推理的能力.同时注意用分类讨论思想解决问题。
2024年九年级中考数学专题复习训练平行四边形的存在性问题
1.如图,已知抛物线y=x22x+3与x轴交于A、B两点(点A在点B的左侧),与 y轴交于点C,顶点为P.若以A、
C、P、M为顶点的四边形是平行四边形,求点M的坐标.
2.在平面直角坐标系中,已知抛物线y=x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.
4.如图,抛物线y= 54x 2+bx+c 与y 轴交于点A(0,1),过点A 的直线与抛物线交于另一点B (3,5
2),过点B 作BC ⊥x 轴,垂足为C.
(1)求抛物线的表达式.
(2)点P 是x 轴正半轴上的一动点,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛 物线于点N ,设OP 的长度为m.连接CM 、BN,当m 为何值时,四边形BCMN 为平行四边形?
9.如图所示,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),顶点D的坐标为(1,4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q 的坐标;若不存在,请说明理由.。
中考二次函数存在性问题综合运用(等腰三角形存在性问题、直角三角形存在性问题、平行四边形存在性问题)
中考数学二次函数存在性问题综合运用一.填空题(共3小题)1.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=5,ON=12,点P、Q分别在边OB、OA 上,则MP+PQ+QN的最小值是.2.如图,∠AOB=60°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA 上,则MP+PQ+QN的最小值是.3.如图,∠BAC=30°,M为AC上一点,AM=2,点P是AB上的一动点,PQ⊥AC,垂足为点Q,则PM+PQ的最小值为.二.解答题4.问题背景:如图1,点E、F在直线l的同侧,要在直线l上找一点K,使KE与KF的距离之和最小.我们可以作出点E关于l的对称点E′,连接FE′交直线L于点K,则点K即为所求.(1)实践运用:抛物线y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,﹣3).如图2.①求该抛物线的解析式;②在抛物线的对称轴上找一点P,使PA+PC的值最小,并求出此时点P的坐标及PA+PC的最小值.(2)知识拓展:在对称轴上找一点Q,使|QA﹣QC|的值最大,并求出此时点Q的坐标.5.如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线对称轴上,使得MD+MC的值最小,并求出点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.6.如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)①在x轴上方的抛物线上,是否存在一点P,使四边形OBEP是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由;②在抛物线的对称轴上,是否存在上点Q,使得△BEQ的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.7.如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,(1)求该抛物线的解析式;(2)点M是抛物线对称轴上的一个动点,当MA+MC的值最小时,求点M的坐标及最小值;(3)在直线BC上方的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.8.如图,抛物线y=ax2+bx﹣2(a≠0)过点A(﹣1,0),B(4,0),与y轴交与点C,顶点为D.(1)求抛物线的解析式与顶点D的坐标;(2)点E从A点出发,沿x轴向B点运动并到点B停止(点E与点A,B不重合)过点E作直线l 平行BD,交直线AD于点F,设AE的长为m,连接DE,求△DEF面积的最大值及此时点E到BD的距离;(3)试探究:①在抛物线的对称轴上是否存在点M,使得MA+MC的值最小?若存在请求出M的坐标,若不存在,请说明理由;②在抛物线的对称轴上是否存在点N,使丨NA﹣NC丨的值最大?若存在请求出N的坐标,若不存在,请说明理由.9.如图,在平面直角坐标系xOy中,A、B、C三点分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由.(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|为最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.10.如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E 两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标;(3)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标.11.如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.(4)点P为抛物线上一动点,点Q为x轴上是动点,是否存在以A、C、P、Q为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,说明理由.12.如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B、C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大?若存在,求m的值和△BNC的面积;若不存在,说明理由.13.如图,已知抛物线y=x2+3x﹣8的图象与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C.(1)求直线BC的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,在抛物线的对称轴上找一点P,使得△BFP的周长最小,请求出点F的坐标和点P的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.14.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.15.如图,(1)求二次函数的解析式.(2)设二次函数与x轴的另一个交点为D,并在抛物线的对称轴上找一点P,使三角形PBD的周长最小,求出点D和点P的坐标.(3)在直线CD下方的抛物线上是否存在一点E,使得△DCE的面积最大,若有求出点E坐标及面积的最大值.16.如图,抛物线y=ax2+bx+c(a≠0),经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;=S△ABC时,求N点的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x 轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出PM+PQ+QN和的最小值.17.如图,抛物线y=ax2+bx+c(a≠0),经过点A(﹣1,0),B(3,0),C(0,﹣3)三点.(1)求抛物线的解析式及顶点M的坐标;=S△ABC时,求N点的坐标;(2)连接AC、BC,N为抛物线上的点且在第一象限,当S△NBC(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,﹣3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出PM+PQ+QN和的最小值.18.如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=a(x﹣h)2的顶点为A,且经过点B.(1)求该抛物线对应的函数解析式;(2)若点C(m,﹣)在该抛物线上,求m的值;(3)请在抛物线的对称轴上找一点P,使PO+PB的值最小,求出点P的坐标.19.已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.20.如图,点A在x轴上,OA=8,将线段OA绕点O顺时针旋转120°,使点A与点B重合.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求出点P的坐标:若不存在,请说明理由.21.如图,对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于B,C两点,其中B点坐标为(1,0),与y轴交于点A,A点坐标为(0,3)(1)求此抛物线的解析式.(2)求点B到直线AC的距离.(3)在此抛物线的对称轴上,是否存在点P使得以点P,A,B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.22.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式及抛物线顶点D的坐标.(2)抛物线的对称轴找一点M,使MA+MC的值最小,求出M点的坐标和此时△ACM的周长值.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.23.如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.24.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△ABP是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,说明理由.25.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△ABP是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,说明理由.(3)在抛物线上求一点Q,使得△ACQ为等腰三角形,并写出Q点的坐标;(4)除(3)中所求的Q点外,在抛物线上是否还存在其它的点Q使得△ACQ为等腰三角形?若存在,请求出一共有几个满足条件的点Q(要求简要说明理由,但不证明);若不存在这样的点Q,请说明理由.26.如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,D两点(D点在E点右方).(1)求点E,D的坐标;(2)求过B,C,D三点的抛物线的函数关系式;(3)过B,C,D三点的抛物线上是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.27.如图,在平面直角坐标系中,已知点A的坐标是(4,0),且OA=OC=4OB,动点P在过A,B,C 三点的抛物线上.(1)求抛物线的表达式;(2)在抛物线上是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.(1)求抛物线的解析式;(2)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标;(3)在抛物线上是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.。
中考数学总复习《二次函数中的平行四边形存在性问题》专题训练-附答案
中考数学总复习《二次函数中的平行四边形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,三角形ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图象与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图象上,且该二次函数图象上存在一点D 使四边形ABCD 能构成平行四边形.(1)求B 、D 坐标,并写出该二次函数表达式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问: ①当P 运动到何处时,有PQ AC ⊥?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?2.如图,二次函数()24y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求抛物线的对称轴;(2)在平面直角坐标系内是否存在一点P ,使以P 、A 、O 、B 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,二次函数()24y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求点A B 、的坐标; (2)求抛物线的对称轴;(3)平面内是否存在一点P ,使以P A O B 、、、为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.4.如图,已知二次函数2y x bx c =-++的图像交x 轴于点()10A -,和()50B ,,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B 出发,以每秒2个单位长度的速度沿线段BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒()05t <<.当t 为何值时,BMN 的面积最大?最大面积是多少?(3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,求点Q 坐标;若不存在,请说明理由. 5.已知二次函数213442y x x =--与x 数轴交于点A 、B (A 在B 的左侧),与y 轴交于点C ,连接BC . 发现:点A 的坐标为__________,求出直线BC 的解析式;拓展:如图1,点P 是直线BC 下方抛物线上一点,连接PB 、PC ,当PBC 面积最大时,求出P 点的坐标; 探究:如图2,抛物线顶点为D ,抛物线对称轴交BC 于点E ,M 是线段BC 上一动点(M 不与B 、C 两点重合),连接PM ,设M 点的横坐标为()08<<m m ,当m 为何值时,四边形PMED 为平行四边形?6.解答题如图,在平面直角坐标系中,二次函数24y ax bx =+-的图像交坐标轴于()1,0A -、()4,0B 两点,点P 是抛物线上的一个动点.(1)求这个二次函数的解析式;(2)若点P 在直线BC 下方,P 运动到什么位置时,四边形PBOC 面积最大?求出此时点P 的坐标和四边形PBOC 的最大面积;(3)直线BC 上是否存在一点Q ,使得以点A B P Q 、、、组成的四边形是平行四边形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.7.如图,二次函数23y ax bx =++的图象与x 轴交于点()30A -,和()4,0B ,点A 在点B 的左侧,与y 轴交于点C .(1)求二次函数的函数解析式;(2)如图,点P 在直线BC 上方的抛物线上运动,过点P 作PD AC ∥交BC 于点D ,作PE x ⊥轴交BC 于点E ,求724PD PE +的最大值及此时点P 的坐标;(3)在(2)中724PD PE +取最大值的条件下,将抛物线沿水平方向向右平移4个单位,再沿竖直方向向上平移3个单位,点Q 为点P 的对应点,平移后的抛物线与y 轴交于点G ,M 为平移后的抛物线的对称轴上一点,在平移后的抛物线上确定一点N ,使得以点Q 、G 、M 、N 为顶点的叫边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程. 8.如图,二次函数234y x bx c =++的图象与x 轴交于点A 和B ,点B 的坐标是(4,0),与y 轴交于点C (0,-3),点D 在抛物线上运动.(1)求抛物线的表达式;(2)当点E 在x 轴上运动时,探究以点B ,C ,D ,E 为顶点的四边形是平行四边形,并直接写出点E 的坐标. 9.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于(30)A -,,()1,0B 两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q ,为顶点的四边形是平行四边形?若存在,直接写出M 的坐标;若不存在,说明理由. 10.如图,直线122y x =+分别与x 轴、y 轴交于C ,D 两点,二次函数2y x bx c =-++的图像经过点D ,与直线相交于点E ,且:4:3CD DE =.(1)求点E 的坐标和二次函数表达式. (2)过点D 的直线交x 轴于点M .①当DM 与x 轴的夹角等于2DCO ∠时,请直接写出点M 的坐标;①当DM CD ⊥时,过抛物线上一动点P (不与点D ,E 重合),作DM 的平行线交直线CD 于点Q ,若以D ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.11.如图,在平面直角坐标系中,二次函数的图像交坐标轴于()()1,04,0A B C -、、三点,且OB OC =,点P 是抛物线上的一个动点.(1)求这个二次函数的解析式;(2)若点P 在直线BC 下方,P 运动到什么位置时,四边形PBOC 面积最大?求出此时点P 的坐标和四边形PBOC 的最大面积;(3)直线BC 上是否存在一点Q ,使得以点A B P Q 、、、组成的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.12.已知二次函数220y ax x c a =++≠()的图像与x 轴交于10()A B 、,两点,与y 轴交于点(03)C -,.(1)求二次函数的表达式;(2)D 是二次函数图像上位于第三象限内的点,求ACD 的面积最大时点D 的坐标;(3)M 是二次函数图像对称轴上的点,在二次函数图像上是否存在点N ,使以M N B O 、、、为顶点的四边形是平行四边形?若有,请写出点N 的坐标.(不写求解过程)13.在平面直角坐标系中,二次函数22y ax bx =++的图像与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C . (1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.14.如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求二次函数的解析式;(2)点P 为二次函数第一象限图象上一点,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数y kx =(k >0)的图象与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线1:l y x b k=-+交线段OC 于点M (不与O 、C 重合),过点T 作直线TN //y 轴交OC 于点N ,若在点T 运动的过程中,2ON OM =常数m ,求m 、k 的值. 15.如图,在平面直角坐标系中,二次函数214y x bx c =-++的图象与坐标轴交于、、A B C 三点,其中点A的坐标为()0,8,点B 的坐标为()4,0-.(1)求该二次函数的表达式及点C 的坐标;(2)点D 为该二次函数在第一象限内图象上的动点,连接AC CD 、,以AC CD 、为邻边作平行四边形ACDE ,设平行四边形ACDE 的面积为.S ①求S 的最大值;①当S 取最大值时,Р为该二次函数对称轴上--点,当点D 关于直线CP 的对称点E 落在y 轴上时,求点Р的坐标.参考答案1.【答案】(1)()4,0B - ()8,3D 211384y x x =--(2)当点P 运动到距离点52A 个单位处时,四边形PDCQ 面积最小,最小值为8182.【答案】(1)4x =-(2)()4,16或()4,16--或()4,16-3.【答案】(1)()4,0A - ()0,16B (2)4x =-(3)()4,16或()4,16-或()4,16--. 4.【答案】(1)245y x x =-++(2)当52t =时,BMN 的面积最大,最大面积是258(3)存在,Q 的坐标为()712-,或()72-,或()14,或()23, 5.【答案】发现:()2,0-,直线BC 的解析式为1y x 42=-;拓展:()4,6P -;探究:当5m =时,四边形PMED 为平行四边形6.【答案】(1)234y x x =--(2)当P 点坐标为(2,6)-时,16(3)Q 的坐标为(2,6)--或(10,6)7.【答案】(1)211344y x x =-++(2)724PD PE +的最大值为12,此时522⎛⎫ ⎪⎝⎭,(3)1611632N ⎛⎫ ⎪⎝⎭, 2471632N ⎛⎫-- ⎪⎝⎭,32147216N ⎛⎫- ⎪⎝⎭,.8.【答案】(1)239344y x x =--(2)(1,0)或(7,0)或41502⎛⎫+- ⎪ ⎪⎝⎭,或41502⎛⎫- ⎪ ⎪⎝⎭, 9.【答案】(1)224233y x x =--+(2)存在,点M 的坐标为(2,2)-或---,(172)或(17,2)-+-10.【答案】(1)2722y x x =-++(2)①302⎛⎫- ⎪⎝⎭,或302⎛⎫⎪⎝⎭,;①3192-或3192+ 11.【答案】(1)234y x x =--(2)(2,6)P -,四边形PBOC 的最大面积为16(3)存在,Q 的坐标为(2,6)--或(10,6) 12.【答案】(1)223y x x =+-(2)315(,)24D --(3)存在,点N 的坐标为(2,5)或(0,3)-或(2,3)--13.【答案】(1)224233y x x =--+;(2)35(,)22P -(3)存在 12(1,0),(5,0)Q Q -- 34(27,0),(27,0)+-Q Q .14.【答案】(1)22y x x =-;(2)点P 的坐标(15,4)+或(13,2)+;(3)554m =12k =.15.【答案】(1)y =-14x 2+x +8,C 点坐标为(8,0);(2)①32;①P (2,2)或(2,6)。
中考数学 存在性问题
存在性问题1.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N在,求出N 点的坐标;若不存在,说明理由.4.已知抛物线y=-x2+mx-m+2.(1)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB m的值;(2)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC 的面积等于27,试求m的值.的图象交于点A,且与x轴交于点B.如图,已知一次函数y=-x+7与正比例函数y=x3(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O﹣C﹣A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.5.答案:1. (1)由题意,可设抛物线的解析式为2(2)1y a x =-+,∵抛物线过原点,∴2(02)10a -+=, 14a =-. ∴抛物线的解析式为21(2)14y x =--+214x x =-+.(2)AOB △和所求MOB △同底不等高,3MOBAOB S S =△△且,∴MOB △的高是AOB △高的3倍,即M 点的纵坐标是3-. ∴2134x x -=-+,即24120x x --=.解之,得 16x =,22x =-. ∴满足条件的点有两个:1(63)M -,,2(23)M --,. (3)不存在.由抛物线的对称性,知AO AB =,AOB ABO ∠=∠.如图,若OBN △与OAB △相似,必有BON BOA BNO ∠=∠=∠.设ON 交抛物线的对称轴于A '点,显然(21)A '-,. ∴直线ON 的解析式为12y x =-.由21124x x x -=-+,得10x =,26x =∴ (63)N -,.过N 作NE x ⊥轴,垂足为E .在Rt BEN△中,2BE =,3NE=,∴NB ==.又OB =4,∴NB OB ≠,BON BNO ∠≠∠,OBN △与OAB △不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N 点.所以在该抛物线上不存在点N ,使OBN △与OAB △相似.2. 解答:解:(1)∵OB=OC=3,∴B (3,0),C (0,3)∴⎩⎨⎧=++-=c cb 3390,解得⎩⎨⎧==32c b ∴二次函数的解析式为y=-x 2+2x+3; (2)∵y=-x 2+2x+3=-(x-1)2+4,∴M (1,4)设直线MB 的解析式为y=kx+n ,则有⎩⎨⎧+=+=n k nk 304解得⎩⎨⎧=-=62c k ∴直线MB 的解析式为y=-2x+6∵PD ⊥x 轴,OD=m ,∴点P 的坐标为(m ,-2m+6) S 三角形PCD =21×(-2m+6)•m=-m 2+3m (1≤m≤3); (3)∵若∠PDC 是直角,则点C 在x 轴上,由函数图象可知点C 在y 轴的正半轴上,∴∠PDC≠90°,在△PCD 中,当∠DPC=90°时,当CP ∥AB 时,∵PD ⊥AB ,∴CP ⊥PD ,∴PD=OC=3,∴P 点纵坐标为:3,代入y=-2x+6,∴x=23,此时P (23,3).∴线段BM 上存在点P (23,3)使 △PCD 为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′, 即9+m 2=3(-2m+6),∴m 2+6m-9=0,(1) 3. 解:分别把A (1,0)、B (3,0)两点坐标代入y=x 2+bx+c 得到关于b 、c 的方程组,解之得:b=-4,c=3,∴抛物线的对称轴为:直线x=2;4. 解: (1)A(x 1,0),B(x 2,0) . 则x 1 ,x 2是方程 x 2-mx +m -2=0的两根. ∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即m <2 ;又AB =∣x 1 — x 2∣==∴m 2-4m +3=0 解得:m=1或m=3(舍去) , ∴m 的值为1 .(2)M(a ,b),则N(-a ,-b) . ∵M 、N 是抛物线上的两点∴222,2.a ma m b a ma m b ⎧-+-+=⎪⎨---+=-⎪⎩①②①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2 .∴当m <2时,才存在满足条件中的两点M 、N.∴a = .这时M 、N 到y又点C 坐标为(0,2-m ),而S △M N C = 27 ,∴2×12×(2-m ∴解得m=-7 .。
中考数学存在性问题综合测试卷(含答案)
中考数学存在性问题综合测试卷一、单选题(共6道,每道15分)1.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),(1)当t为何值时,PQ∥BC?()A. B.C. D.答案:D试题难度:三颗星知识点:存在性问题2.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),(2)设△AQP的面积为y(cm2),则y与t之间的函数关系式为(),在某一时刻t,线段PQ恰好把Rt△ACB的面积平分,则此时t的值为()A. B.C. D.答案:A试题难度:三颗星知识点:存在性问题3.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),(3)连接PC,并把△PQC沿QC翻折,得到四边形,那么是否存在某一时刻t,使四边形为菱形?若存在,此时t的值为( )A.存在,B.存在,2C.存在,D.不存在答案:C试题难度:三颗星知识点:存在性问题4.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x轴的正半轴上,点B坐标为(,1),以OB所在直线为对称轴将△OAB作轴对称变换得△OCB.现有动点P从点O出发,沿线段OA向点A运动,动点Q从点C出发,沿线段CO向点O运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)∠AOC的度数为( )A. B.C. D.答案:C试题难度:三颗星知识点:存在性问题5.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x轴的正半轴上,点B坐标为(,1),以OB所在直线为对称轴将△OAB作轴对称变换得△OCB.现有动点P从点O出发,沿线段OA向点A运动,动点Q从点C出发,沿线段CO向点O运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(2)若四边形BCQP的面积为S(平方单位),则S与t之间的函数关系式为( )A. B.C. D.答案:A试题难度:三颗星知识点:存在性问题6.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x轴的正半轴上,点B坐标为(,1),以OB所在直线为对称轴将△OAB作轴对称变换得△OCB.现有动点P从点O出发,沿线段OA向点A运动,动点Q从点C出发,沿线段CO向点O运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(3)设PQ与OB交于点M,是否存在某时刻t使得△OMQ 为等腰三角形?若存在则t的值为()A.存在,1B.存在,C.存在,D.不存在答案:C试题难度:三颗星知识点:存在性问题。
中考数学函数图象中的存在性问题30题必练
函数圄象申的存在性问题30题本专题的制作目的是提高学生在图象中的存在性问题这一部分的解题能力。
分了四个模块:①函数与三角形综合:存在等腰三角形(5题);②函数与三角形综合:存在直角三角形(5题);③函数与三角形综合:存在性之全等与相似(10题);④函数与四边形综合:存在性之平行四边形(10题);共30题。
先仔细研究方法总结、易错总结,再进行巩固练习。
重要的不是题目的数量,而是题目的质量把所有题目都做“过’一遍不是你最大的收获最大的收获应该是当做过无数题目后回过头,发现过去的岁月不是为了走过一次次坑而是为了填上无数个洞模块-函数与三角形综合:存在等腰三角形�1.(1)数形结合,注意使用等腰三角形的性质与判定.(2)函数问题离不开方程,注意方程与方程组的使用.(3)找动点使之与已知两点构成等腰三角形的方法:问题| 作圄|求点坐标等|| |”万能法”民他扣、去腰|/ B I ,,--'r<-----\ 抬别表示出点A,B ,P lt 乍等腰三角形底三I A/ 1 tAili1阳坐标,再表示出线段阳的高,用勾股角|11鸟飞----�::川、马·�B I B P I A P 的长度,战相似建立等量形|己知点A,B 和直|嘀圆一垂”阳快系l,在l上求点P ,t:,.PA B 为等腰三形2.在平面内使构成等腰三角形的三个点中3动点个数大于或等于两个.解决问题的万法:让三个点轮流做顶角顶点,进行分类讨论.3.在具体题目中高时不仅要找出符合题意的点,还要计算出此点的坐标,计算点坐标的方法可以参考以下几种:1.全等或相似(找相等线段或成比例线段); 2.勾股定理;3.锐角三角函数;4.面积法;5.方程或方程组.四军事E@如图,在平面直角坐标系中,已知点A的坐标为(3,1),点B的坐标为(6,日,点C 的坐标为(0,日,某二次函数的图像经过A、B、C 三点.( 1 )求这个二次函数的解中斤式.( 2)假如点Q在该二次函数图像的对称轴上,_§今ACQ是等腰三角形,请直接写出点Q的坐标.\Y \Y。
中考数学专题复习《三角形中的分类讨论、存在性问题》测试卷(带答案)
中考数学专题复习《三角形中的分类讨论 存在性问题》测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 EF 是ABC 的中位线 BD 平分ABC ∠交EF 于点D 若31AE DF ==, 则边BC 的长为( )A .7B .8C .9D .102.如图 三个村庄A B C 构成ABC 供奶站须到三个村庄的距离都相等 则供奶站应建在( )A .三条边的垂直平分线的交点B .三个角的角平分线的交点C .三角形三条高的交点D .三角形三条中线的交点3.若等腰三角形一个外角等于100︒ 则与它不相邻的两个内角的度数分别为( ) A .40,40︒︒ B .80,20︒︒ C .50,50︒︒ D .80,20︒︒或50,50︒︒ 4.一根30 m 长的绳子 折成三段 围成一个三角形 其中一条边的长度比较短边长7m 比较长边短1m 则它是( )A .钝角三角形B .直角三角形C .锐角三角形D .无法判断 5.如图 在ABCD 中 点M N 分别是,AB AD 上的点 且BN DM = 其交点为P 设,CPB CPD αβ∠=∠= 则( ).A .αβ>B .αβ=C .αβ<D .不能确定 6.如图 ACB A CB ''△≌△ 30BCB '∠=︒ 则ACA ∠'的度数为( )A .20︒B .30︒C .35︒D .40︒二 填空题7.如图 长为8cm 的橡皮筋放置在x 轴上 固定两端A 和B 然后把中点C 向上拉升3cm 到D 则橡皮筋被拉长了 cm .8.如图 已知AD 为ABC 的中线 10cm 7cm AB AC ==, ACD 的周长为20cm 则ABD △的周长为 cm .9.在ABC 中 9068C AC BC ∠=︒==,, 则AB 边上的中线CD = .10.如图 ABC 是一张直角三角形的纸片 90C ∠=︒ 6AC = 8BC = 现将ABC 折叠 使点B 与点A 重合 折痕为DE 则DE 的长为 .11.如图 在三角形ABC 中 ,AB AC AD BC ⊥⊥ 垂足为D 3,4,5AB AC BC === 则AD = .12.如图 已知ABC 是等边三角形 6AB = BD AC ⊥ 延长BC 到点E 使CE CD = 则BE 的长为 .三 解答题13.如图 DE AB ⊥于E DF AC ⊥于F 若BD CD = BE CF =(1)求证:AD 平分BAC ∠(2)已知20AC = 4BE = 求AB 的长.14.如图 已知△ABD CAE ≌ A E D 在同一直线上 试探究当BD CE ∥时 AD 与EC 的位置关系 并证明.15.将ABC 沿BC 方向平移 得到DEF .(1)若74,26B F ∠=︒∠=︒ 求A ∠的度数(2)若 4.5cm, 3.5cm BC EC == 求ABC 平移的距离. 16.如图 AB 交CD 于点O 在AOC 与BOD 中 有下列三个条件:△OC OD = △AC BD = △A B ∠=∠.请你在上述三个条件中选择两个为条件 另一个能作为这两个条件推出来的结论 并证明你的结论.(只要求写出一种正确的选法)(1)你选的条件为________ ________ 结论为________(2)试说明你的结论.17.如图 在四边形ABCD 中 已知90B 30ACB ∠=︒ 3AB = 10AD = 8CD =.(1)求证:ACD 是直角三角形(2)求四边形ABCD 的面积.18.如图 在四边形ABCD 中 90B 2AB BC == 1AD = 3CD =.(1)求DAB∠的度数(2)求四边形ABCD的面积.参考答案:1.B2.A3.D4.B5.B6.B7.28.239.510.15 411.12 512.9 13.(2)12AD EC⊥15.(1)80°(2)1cm 16.(1)△ △ △17.(2)932418.(1)135︒(2)2+。
中考数学压轴题专题--函数图象中点的存在性问题(很好的一个专题训练并有试题详细解析及参考答案)
中考数学压轴题专题--函数图象中点的存在性问题(很好的⼀个专题训练并有试题详细解析及参考答案)1、如图1,在平⾯直⾓坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的⼤⼩;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1.详细解析及参考答案:(1)如图2,过点A 作AH ⊥y 轴,垂⾜为H .在Rt △AOH 中,AO =2,∠AOH =30°,所以AH =1,OH 3A (13)-.因为抛物线与x 轴交于O 、B (2,0)两点,设y =ax (x -2),代⼊点A (13)-,可得3a =.图2 所以抛物线的表达式为23323(2)y x x =-=.(2)由22323331)y x x ==- 得抛物线的顶点M 的坐标为3(1,.所以3tan BOM ∠=.所以∠BOM =30°.所以∠AOM =150°.(3)由A (13)-、B (2,0)、M 3(1,,得3tan 3ABO ∠=,23AB =233OM =.所以∠ABO =30°,3OAOM=因此当点C 在点B 右侧时,∠ABC =∠AOM =150°.△ABC 与△AOM 相似,存在两种情况:①如图3,当BA OABC OM ==时,2BC ===.此时C (4,0).②如图4,当BC OABA OM==时,6BC ===.此时C (8,0).图3 图4考点伸展:在本题情境下,如果△ABC 与△BOM 相似,求点C 的坐标.如图5,因为△BOM 是30°底⾓的等腰三⾓形,∠ABO =30°,因此△ABC 也是底⾓为30°的等腰三⾓形,AB =AC ,根据对称性,点C 的坐标为(-4,0).图52、如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(⽤含b 的代数式表⽰);(2)请你探索在第⼀象限内是否存在点P ,使得四边形PCOB 的⾯积等于2b ,且△PBC 是以点P 为直⾓顶点的等腰直⾓三⾓形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进⼀步探索在第⼀象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三⾓形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1详细解析及参考答案:(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ).(2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂⾜分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ??+??==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3 (3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA .当BA QA QA OA =,即2QA BA OA =?时,△BQA ∽△QOA .所以2()14bb =-.解得8b =±Q 为(1,2.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
存在性问题-中考数学综合专题训练试题
第四节存在性问题这类问题是近几年来各地中考的“热点".解决存在性问题就是:假设存在→推理论证→得出结论.若能导出合理的结果,就作出“存在”的判断,导出矛盾,就作出不存在的判断.尤其以二次函数中的是否存在相似三角形、三角形的面积相等、等腰(直角)三角形、平行四边形作为考查对象是中考命题热点.这类题型对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对知识、能力的一次全面的考查.,中考重难点突破)【例1】(汇川中考模拟)抛物线y=错误!x2-错误!x+2与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t s(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,错误!+错误!的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【解析】(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到错误!=错误!,即错误!=错误!,求得错误!+错误!有最小值1,即可求得结果;②存在,求得抛物线y=错误!x2-错误!x+2的对称轴为直线x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定律列方程即可求得结果.【答案】解:(1)在抛物线的解析式中,令y=0,得错误!x2-错误!x+2=0,解得x1=2,x2=4.∵O A〈OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意,得O P=2t,O E=t.∵DE∥OB,∴△CDE∽△CBO,∴错误!=错误!,即错误!=错误!,∴DE=4-2t,∴错误!+错误!=错误!+错误!=错误!=错误!,∵0<t〈2,1-(t-1)2始终为正数,且t=1时,1-(t-1)2有最大值1,∴t=1时,11-(t-12)有最小值1,即t =1时,错误!+错误!有最小值1, 此时OP =2,OE =1, ∴E (0,1),P (2,0);②存在.F 的坐标为(3,2)或(3,7).【规律总结】这类问题一般是对结论作出肯定的假设,然后由肯定的假设出发,结合已知条件建立方程,解出方程的解的情况和结合题目的已知条件确定“存在与否”.解题的方法主要是建立方程模型,由方程有无符合条件的解来肯定“存在与否"的问题.◆模拟题区1.(汇川升学二模)在平面直角坐标系中,抛物线y =x 2+(k -1)x -k 与直线y =kx +1交于A,B 两点,点A 在点B 的左侧.(1)如图①,当k =1时,写出A,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图②,抛物线y =x 2+(k -1)x -k (k>0)与x 轴交于点C ,D 两点(点C 在点D 的左侧),在直线y =kx +1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.解:(1)当k =1时,抛物线的解析式为y =x 2-1, 直线的解析式为y =x +1.联立两个解析式, 得x 2-1=x +1,解得x =-1或x =2, 当x =-1时,y =x +1=0; 当x =2时,y =x +1=3, ∴A(-1,0),B (2,3);(2)设P (x ,x 2-1).如图①所示,过点P 作PF∥y 轴,交直线AB 于点F,则F(x ,x +1). ∴PF =(x +1)-(x 2-1)=-x 2+x +2.S △ABP =S △PFA +S △PFB =错误!PF (x F -x A )+错误!PF (x B -x F )=错误!PF (x B -x A )=错误!PF , ∴S △ABP =错误!(-x 2+x +2)=-错误!错误!错误!+错误!, 当x =错误!时,y P =x 2-1=-错误!。
数学:存在性问题综合测试(一 九年级训练考试卷)
学生做题前请先回答以下问题
问题1:如何解决函数与几何综合的问题?
问题2:函数与几何综合问题的分析思路是什么?
问题3:研究二次函数时需要关注哪些信息,如何研究二次函数背景?
问题4:试题2中谁是定点、谁是动点?
问题5:定点和动点怎么用?分类标准是什么?
问题6:由分类标准,依据平行四边形的哪一个判定确定点M,N的位置?如何操作?
存在性问题综合测试(一)
一、单选题(共4道,每道25分)
1.如图,抛物线与x轴交于A,B两点,与y轴交于点C,点P(1,k)在
直线BC:y=x3上,已知点M在x轴上,点N在抛物线上,若以A,M,N,P为顶点的四边形为平行四边形,
则满足条件的点M有( )个.
A.2
B.3
C.4
D.5
2.如图,抛物线与x轴交于A,B两点(点A在点B的左侧),点C(4,3)在抛物线上.若M为抛物线上一点,N为x轴上一点,且以B,C,M,N为顶点的四边形是平行四边形,则点M 的坐标为( )
A.
B.
C.
D.
3.已知抛物线交y轴于点A,点A关于抛物线对称轴的对称点为B(3,-4),直线
与抛物线在第一象限的交点为C,连接OB.点P在直线OC上运动,点Q在抛物线上运动,在点P,Q运动的过程中,当以O,B,P,Q为顶点的四边形是平行四边形时,点P的坐标为( )
A.
B.
C.
D.
4.在平面直角坐标系中,抛物线与y轴交于点,与x轴交于
A,B两点,点A在点B的左侧,,且.若点M是抛物线上的动点,点N是x轴上一动点,使得以B,C,M,N为顶点的四边形是平行四边形,则点M的坐标为( )
A.
B.
C.
D.。
中考数学专题训练 存在性问题及答案
第二节 存在性问题【例题经典】 条件探索性问题例1 如图,AB ⊥BC 于B ,DC ⊥BC 于C . (1)当AB=4,DC=1,BC=4时,在线段BC 上是否存在点P ,使AP ⊥PD .•若存在,•求线段BP 的长;如果不存在,请说明理由.(2)设AB=a ,DC=b ,AD=c ,那么当a ,b ,c 之间满足什么关系时,在直线BC 上存在点P ,使AP ⊥PD .【分析】(1)假设AP ⊥PD ,有△APB ∽△PDC ,进而求出BP .(2)方法如(1),•但相比之下,添了分类思想.【点评】本例为条件探索型,此类题的解法类似于分析法,假设结论成立,•逐步探索其成立的条件.存在探索性问题例2 (浙江省)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,)两点,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D . (1)求直线AB 的解析式; (2)若S 梯形OBCD =,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P ,O ,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由. 【评析】本题是一道存在探索性问题的题型,(1)、(2)两问是常规题,•容易解决.(3)问较难,要分不同情况考虑,首先画出符合题意的图形,•然后结合图形进行计算或推理,若能推导出符合条件的结论或计算出某些未知数的值,则表示存在;•若推出矛盾结论或求不出未知数的值,则所求的点就不存在.3【考点精练】1.如图,在平面直角坐标系中,点A 是动点且纵坐标为4,点B 是线段OA 上的一个动点.过点B 作直线MN 平行于x 轴,设MN 分别交射线OA 与X•轴所形成的两个角的平分线于点E 、F .(1)求证:EB=BF ; (2)当为何值时,四边形AEOF 是矩形?并证明你的结论; (3)是否存在点A 、B ,使四边形AEOF 为正方形.若存在,求点A 与点B 的坐标;• 若不存在,请说明理由.2.(辽宁省)如图,Rt △OAC 是一张放在平面直角坐标系中的直角三角形纸片,点O 与原点重合,点A 在x 轴上,点C 在y 轴上,CAO=30°,将Rt △OAC•折叠,•使OC 边落在AC 边上,点O 与点D 重合,折痕为CE . (1)求折痕CE 所在直线的解析式; (2)求点D 的坐标;(3)设点M 为直线CE 上的一点,过点M 作AC 的平行线,交y 轴于点N ,是否存在这样的点M ,使得以M 、N 、D 、C 为顶点的四边形是平行四边形?若存在,请求出符合条件的点M 的坐标;若不存在,请说明理由.OBOA3.如图所示的平面直角坐标系中,有一条抛物线y=ax2+bx+c交x轴于A、B两点,交y 轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).(1)求二次函数y=ax2+bx+c的解析式;(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由.4.如图,AB是⊙O的直径,MN是⊙O的切线,C为切点,AC=6cm,AB=10cm.(1)试猜想∠ACM与∠B的大小有什么关系?并说明理由.(2)在切线MN上是否存在一点D,使得以A、C、D为顶点的三角形与△ABC相似?若存在,请确定点D的位置;若不存在,请说明理由.B5.(龙岩市)如图,抛物线y=ax +bx 过点A (4,0),正方形OABC 的边BC•与抛物线的一个交点为D ,点D 的横坐标为3,点M 在y 轴负半轴上,直线L 过D 、M•两点且与抛物线的对称轴交于点H ,tan ∠OMD=. (1)写出a ,b 的值:a=_____,b=______,并写出点H 的坐标(______,______).(2)如果点Q 是抛物线对称轴上的一个动点,那么是否存在点Q ,使得以点O ,M ,•Q ,H 为顶点的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.6.(莆田市)已知:如图,抛物线经过A (-3,0),B (0,4)和C (4,0)三点. (1)求抛物线的解析式;(2)已知AD=AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1•个单位长度的速度移动;同时..另一动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?•若存在,请求出点M 的坐标;若不存在,请说明理由.(注:抛物线y=ax 2+bx+c 的对称 轴为x=-)132ba7.如图,已知抛物线L1:y=x-4的图像与x轴交于A、C两点.(1)若抛物线L1与L2关于x轴对称,求L2的解析式;(2)若点B是抛物线L1上的一个动点(B不与A、C重合),以AC为对角线,A、B、C•三点为顶点的平行四边形的第四个顶点定为D,求证:点D在L2上;(3)探索:当点B分别位于L1在x轴上、下两部分的图像上时,平行四边形ABCD 的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,•并求出它的面积;若不存在,请说明理由.8.(无锡市)如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm,点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由.答案:例题经典 例1.(1)如果存在点P ,使AP ⊥PD ,那么∠APD=90°,∴∠APB+•∠CPD=90°,∵AB ⊥BC ,DC ⊥BC ,∴∠B=∠C=90°,∴∠APB+∠BAP=90°.∴∠BAP=∠CPD ,∴△APB ∽△PDC ,∴. 设BP=x ,则PC=4-x ,∴,解得x=2, ∴在线段BC 上存在点P ,使AP•⊥PD ,此时,BP=2.(2)如果在直线BC 上存在点P ,使AP ⊥PD ,那么点P 在以AD 为直径的圆上,且圆的半径为c , 取AD 的中点O ,过点O 作OE ⊥BC ,垂足为E . ∵∠B=∠OEC=∠C=90°,∴AB ∥OE ∥DC .∵AO=DO ,∴BE=CE ,∴OE=(AB+DC )=(a+b ), 当OE<c ,即a+b<c 时,以AD•为直径的圆与直线BC 相交,此时,存在⊙O 和直线BC 的交点P 1、P 2,使AP 1⊥P 1D ,AP 2⊥P 2D , •当OE=c ,即a+b=c 时,以AD 为直径的圆与直线BC 相切. 此时,存在切点P ,使AP ⊥PD . ∴当OE>c 时,即a+b>c 时,以AD 为直径的圆与直线BC 相离. 此时,在直线BC 上不存在点P ,•使AP ⊥PD .综上,当a+b ≤c 时,在直线BC 上存在点P ,使AP ⊥PD . 例2.(1)直线AB 解析式为:(2)设点C 坐标为(x ,,那么OD=x ,∴S 梯形OBCD ==-x 2AB BPPC CD =441xx =-121212121212()2OB CD OD +⨯6由题意:2x1=2,x2=4(舍去),∴(2.(3)当∠OBP=Rt∠时,如图:①若△BOP∽△OBA,则∠BOP=∠OBA=60°,,∴P1(3①③②若△BPO∽△OBA,则∠POB=∠BAO=30°,,∴P2(1.当∠OPB=Rt∠时③过点O作OP⊥BC于点P(如图),此时△PBO∽△OBA,∠BOP=∠BAO=30°,过点P作PM⊥OA于点M.在Rt△PBO中,BP=.∵在Rt△PMO中,∠OPM=30°,∴OM=OP=;,∴P3()④若△POB∽△OBA(如图),则∠OBP=∠BAO=30°,∠POM=30°,∴P4((由对称性也可得到点P4的坐标).当∠OPB=Rt∠时,点P在x轴上,不符合要求,综合得,•符合条件的点有四个,分别是:P1(3,P2(1,P3(,),P4(,).考点精练1.解:(1)如图①,∵OF是角平分线,∴∠1=∠2,∵MN平行于x轴,∴∠3=∠1,∴∠2=∠3,∴BO=BF.同理可证BO=BE,∴BE=BF.123212343434344344(2)当=时,四边形AEOF 是矩形,∵=, ∴OB=AB .又∵BE=BF ,∴四边形AEOF 是平行四边形,∵OE 、OF 是角平分线,∴∠EOF=90°,∴四边形AEOF 是矩形. (3)如图②,∵MN 平行于x 轴,∴当A 点在y 轴时,即A 点坐标为(0,4)时,有OA ⊥EF ,• 此时,取OA 的中点,由(2)知四边形AEOF 是矩形, ∴四边形AEOF 是正方形, ∴存在点A (0,4),B (0,2),使四边形AEOF 为正方形. 2.(1)直线CE 的解析式为(2)D ((3)(若此点在第四象限)M 1(,-),(•若此点在第二象限)M 2(-,)3.(1)y=x 2-2x-3(2)在抛物线对称轴上存在一点P ,使点P 到B 、C•两点的距离之差最大.作直线AC 交抛物线对称轴于点P ,连结PB ,∵对称轴x=1是线段AB•的垂直平分线,∴PB=PA , ∴PB-PC=PA-PC=AC .(线段AC 为差值最大值), 设直线AC 的解析式为y=•kx+b .把A (-1,0),C (0,-3)代入上式,得,∴k=-3,b=-3,∴直线AC 的解析式为:y=-3x 1-3,•当x=1时,y=-3×1-3=-6, ∴点P 的坐标为(1,-6).4.(1)∠ACM=∠B ,连结OC ,利用圆的切线性质和等腰三角形的性质可证得结论.OB OA 12OB OA 123232232203k b b -+=⎧⎨=-⎩(2)存在两个点D 1、D 2,使得以A 、C 、D 为顶点的三角形与△ABC 相似.过点A 作AD 1⊥MN 于D 1,过点A 作AD 2⊥AC 交MN 于D 2. 由相似三角形对应边成比例可分别求得CD 1和CD 2的长. 5.(1)a=-,b=,H (2,1)(2)答:存在这样的点Q ,使得点O 、M 、Q 、H 为顶点的四边形为平行四边形.由题意可知,△MDC 是直角三角形,CD=3,OC=4,∵tan ∠OMD=, ∴=,•∴CM=9,∴OM=9-4=5. ①要使OMQH 是平行四边形,由题意知OM ∥HQ ,只须OM=OQ , ∵点H•的坐标是1,∴点Q 1(2,-4)②要使OMHQ 是平行四边形,由题意知OM ∥HQ ,只须OM=HQ ,• ∵点H 的坐标是1,∴点Q 2(2,6).6.解:设抛物线的解析式为y=ax 2+bx+c (a ≠0),根据题意得:c=4,且,∴所求的抛物线的解析式为y=-x 2+x+4.4316313CD CM 13193403,1644013a a b a b b ⎧=-⎪-+=⎧⎪⎨⎨++=⎩⎪=⎪⎩解得1313(2)连结DQ .在Rt △AOB 中,,∴AD=AB=•5,•∵AC=AO+CO=3+4=7,∴CD=AC-AD=7-5=2. ∵BD 垂直平分PQ ,∴PD=QD ,PQ ⊥BD ,∴∠PDB=∠QDB , ∵AD=AB ,∴∠ABD=∠ADB ,∵∠ABD=∠QDB ,∴DQ ∥AB , ∴∠CQD=∠CBA ,∠CDQ=•∠CAB ,∴△CDQ ∽△CAB ,∴. ∴AP=AD-DP=AD-DQ=5-=,t=÷1=(秒), ∴t 的值为秒.(3)答:对称轴上存在一点M ,使MQ+MC 的值最小.理由:∵抛物线的对称轴为:x=-=,• ∴A (-3,0),C (4,0)两点关于直线x=对称.连结AQ 交直线x=于点M ,则MQ+MC 的值最小.•过点Q 作QE ⊥x 轴,垂足为E ,∴∠QED=∠BOA=90°, ∵DQ ∥AB ,∴∠BAO=∠QDE ,∴△DQE ∽△ABO ,∴, ∴QE=,DE=,OE=OD+DE=2+=,∴Q (,),设直线AQ 的解析式为y=kx+m (k ≠0),则, 210,577DQ CD DQ DQ AB CA ===即1072572572572572b a 121212107453QE DQ DE QE DE BO AB AO ====即:8767672072078782084177243041k k m k m m ⎧=⎧⎪+=⎪⎪⎨⎨⎪⎪-+==⎩⎪⎩得∴直线AQ 的解析式为y=, ∴M (,),则:在对称轴上存在点M (,),使MQ+MC 值最小. 7.解:设L 2的解析式为y=a (x-h )2+k ,∵L 1与x 轴的交点A (-2,0),C (2,0),顶点坐标是(0,-4),L 1与L 2关于x 轴对称,∴L 2过A (-2,0),C (2,0),顶点坐标是(0,4), ∴y=ax 2+4,∴0=4a+a 得a=-1,∴L 2的解析式为y=-x 2+4.(2)设B (x 1,y 1),∵点B 在L 1上,∴B (x 1,x 12-4),∵四边形ABCD 是平行四边形,A 、C 关于0对称,∴B 、D 关于0对称, ∴D (-x 1,-x 12+4),将D (-x 1,-x 12+4)的坐标代入L 2:y=-x 2+4,∴左边=右边, ∴点D 在L 2上.(3)设平行四边形ABCD 的面积为S ,则S=2×S △ABC =AC ×│y 1│=4│y 1│,a .当点B 在x 轴上方时,y 1>0,∴S=4y 1,•它是关于y 1的正比例函数且S 随y 1的增大而增大,∴S 既无最大值也无最小值.b .当点B 在x•轴下方时,-4≤y 1<0,∴S=-4y 1,它是关于y 1的正比例函数且S 随y 1的增大而减小,∴当y 1=-4时,•S 有最大值16,但它没有最小值.此时B (0,-4)在y 轴上,它的对称点D 也在y 轴上,∴AC ⊥BD ,∴平行四边形ABCD 是菱形,此时S 最大=16.8.解:(1)过D 作DE ⊥AB 于E ,过C 作CF ⊥AB 于F ,如图1,∵ABCD 是等腰梯形,•∴四边形CDEF 是矩形,∴DE=CD .又∵AD=BC ,∴Rt △ADE ≌Rt △BCF ,AE=BF .又CD=2cm ,AB=8cm ,∴EF=CD=cm ,AE=AF=(8-2)=3cm . 若四边形APQD 是直角梯形,则四边形DEPQ 为知形,∵CQ=t ,∴DQ=EP=2-t ,∵AP=AE+EP ,∴2t=3+2-t ,∴t=秒. 1182422,824284141414141x x x y x y ⎧⎧==⎪⎪⎪⎪+⎨⎨⎪⎪=+=⎪⎪⎩⎩联立得1228411228411253(2)在Rt △ADE 中,cm ),S 梯形ABCD=(8+2)×cm 2). 当S 四边形PBCQ=S 梯形ABCD 时,①如图2,若点Q•在CD 上,即0≤t ≤2,则CQ=t ,BP=8-2t .S 四边形PBCQ =(t+8-2t )×.解之得t=3(舍去). ②如图3,若点Q 在AD 上,即2<t ≤4,过点Q 作HG ⊥AB 于G ,交CD 的延长线于H .由图1知:sin ∠ADE=,∴∠ADE=30°,则∠A=60°. 在Rt △ADG 中,AQ=8-t ,QG=AQ ·sin60°=, 在Rt△QDH 中,∠QDH=60°,DQ=t-2,QH=DQ·sin60°=. 由题意知,S 四边形PBCQ =S △APQ +S △CDQ =×2t ×+×2×, 即t 2-9t+17=0,•解之得t 1(不合题意,舍去),t 2. 答:存在t=,使四边形PBCQ 的面积是梯形ABCD•面积的一半.12121212AE AD =)2t -121292。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 存在性问题
这类问题是近几年来各地中考的“热点”.解决存在性问题就是:假设存在→推理论证→得出结论.若能导出合理的结果,就作出“存在”的判断,导出矛盾,就作出不存在的判断.尤其以二次函数中的是否存在相似三角形、三角形的面积相等、等腰(直角)三角形、平行四边形作为考查对象是中考命题热点.这类题型对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对知识、能力的一次全面的考查.
,中考重难点突破)
【例1】(汇川中考模拟)抛物线y =14x 2-32
x +2与x 轴交于A ,B 两点(OA<OB),与y 轴交于点C. (1)求点A ,B ,C 的坐标;
(2)点P 从点O 出发,以每秒2个单位长度的速度向点B 运动,同时点E 也从点O 出发,以每秒1个单位长度的速度向点C 运动,设点P 的运动时间为t s (0<t<2).
①过点E 作x 轴的平行线,与BC 相交于点D(如图所示),当t 为何值时,1OP +1ED
的值最小,求出这个最小值并写出此时点E ,P 的坐标;
②在满足①的条件下,抛物线的对称轴上是否存在点F ,使△EFP 为直角三角形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.
【解析】(1)在抛物线的解析式中,令y =0,令x =0,解方程即可得到结果;(2)①由题意得:OP =2t ,OE =
t ,通过△CDE∽△CBO 得到CE CO =ED OB ,即2-t 2=DE 4,求得1OP +1ED
有最小值1,即可求得结果;②存在,求得抛物线y =14x 2-32
x +2的对称轴为直线x =3,设F(3,m),当△EFP 为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定律列方程即可求得结果.
【答案】解:(1)在抛物线的解析式中,令y =0,
得14x 2-32
x +2=0,解得x 1=2,x 2=4. ∵O A<OB ,∴A(2,0),B(4,0),
在抛物线的解析式中,令x =0,得y =2,∴C(0,2); (2)①由题意,得O P =2t ,O E =t.
∵DE ∥OB ,∴△CDE ∽△CBO ,
∴CE CO =ED OB ,即2-t 2=DE 4
, ∴DE =4-2t ,
∴1OP +1ED =12t +14-2t =1-t 2+2t =11-(t -1)2, ∵0<t<2,1-(t -1)2始终为正数,
且t =1时,1-(t -1)2
有最大值1,
∴t =1时,11-(t -1)2有最小值1, 即t =1时,1OP +1ED
有最小值1, 此时OP =2,OE =1,
∴E(0,1),P(2,0);
②存在.F 的坐标为(3,2)或(3,7).
【规律总结】这类问题一般是对结论作出肯定的假设,然后由肯定的假设出发,结合已知条件建立方程,解出方程的解的情况和结合题目的已知条件确定“存在与否”.解题的方法主要是建立方程模型,由方程有无符合条件的解来肯定“存在与否”的问题.
◆模拟题区
1.(汇川升学二模)在平面直角坐标系中,抛物线y =x 2+(k -1)x -k 与直线y =kx +1交于A ,B 两点,点A 在点B 的左侧.
(1)如图①,当k =1时,写出A ,B 两点的坐标;
(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;
(3)如图②,抛物线y =x 2+(k -1)x -k(k>0)与x 轴交于点C ,D 两点(点C 在点D 的左侧),在直线y =kx +1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.
解:(1)当k =1时,抛物线的解析式为y =x 2-1,
直线的解析式为y =x +1.联立两个解析式,
得x 2-1=x +1,解得x =-1或x =2,
当x =-1时,y =x +1=0;
当x =2时,y =x +1=3,
∴A(-1,0),B(2,3);
(2)设P(x ,x 2-1).如图①所示,
过点P 作PF∥y 轴,交直线AB 于点F ,则F(x ,x +1).
∴PF =(x +1)-(x 2-1)=-x 2+x +2.
S △ABP =S △PFA +S △PFB =12PF(x F -x A )+12PF(x B -x F )=12PF(x B -x A )=32
PF , ∴S △ABP =32(-x 2+x +2)=-32⎝ ⎛⎭⎪⎫x -122+278,
当x =12时,y P =x 2-1=-34
. ∴△ABP 面积最大值为278
, 此时点P 坐标为⎝ ⎛⎭⎪⎫12
,-34; (3)存在,理由如下:设直线AB :y =kx +1与x 轴,y 轴分别交于点E ,F ,
则E ⎝ ⎛⎭
⎪⎫-1k ,0,F(0,1),OE =1k ,OF =1. 在Rt △EOF 中,由勾股定理得:
EF =
⎝ ⎛⎭⎪⎫1k 2+1=1+k 2k . 令y =x 2+(k -1)x -k =0,即(x +k)(x -1)=0,
解得x =-k 或x =1,
∴C(-k ,0),OC =k.
设以OC 为直径的圆与直线AB 相切于点Q ,
根据圆周角定理,此时∠OQC=90°.
设点N 为OC 中点,连接NQ ,如图②所示,
则NQ⊥EF,NQ =CN =ON =k 2
, ∴EN =OE -ON =1k -k 2
. ∵∠NEQ =∠FEO,∠EQN =∠EOF=90°, ∴△EQN ∽△EOF ,
∴NQ OF =EN EF
, 即k 21=1k -k 21+k
2k
,∴k =±255. ∵k>0,
∴k =255
, ∴当k
=255
时,存在唯一一点Q , 使得∠OQC=90°.
◆中考真题区
2.(黔东南中考)如图,在平面直角坐标系xOy 中,抛物线y =-16
x 2+bx +c 过点A(0,4)和C(8,0),P(t ,0)是x 轴正半轴上的一个动点,M 是线段AP 的中点,将线段MP 绕点P 顺时针旋转90°得线段PB.过点B 作x 轴的垂线,过点A 作y 轴的垂线,两直线相交于点D.
(1)求b ,c 的值;
(2)当t 为何值时,点D 落在抛物线上;
(3)是否存在t ,使得以A ,B ,D 为顶点的三角形与△AOP 相似?若存在,求此时t 的值;若不存在,请说明理由.
解:(1)∵A(0,4),C(8,0)在抛物线上,
∴⎩⎪⎨⎪⎧c =4,0=-16×82+8b +c ,解得⎩⎪⎨⎪⎧b =56,c =4;
(2)∵∠AOP=∠PEB=90°,
∠OAP =90°-∠APO=∠EPB,
∴△AOP ∽△PEB ,∴AO PE =AP PB
, ∵AO =4,AP =2MP =2PB ,
∴PE =2,OE =OP +PE =t +2,
又∵DE=OA =4,
∴点D 的坐标为(t +2,4),
当点D 落在抛物线上时,
有-16(t +2)2+56
(t +2)+4=4, 解得t =3或t =-2,
∵t >0,
∴t =3,故当t 为3时,点D 落在抛物线上;
(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似.
理由如下:①当0<t <8时,若△POA∽△ADB,
则PO AD =AO BD ,即t t +2=44-12t 整理,得t 2+16=0, ∴t 无解;
若△POA∽△BDA, 同理,解得t =-2±25(负值舍去);
②当t >8时,若△POA∽△ADB,则PO AD =AO BD
, 即t t +2=44-12t , 解得t =8±45(负值舍去);
若△POA∽△BDA,同理,解得t 无解.
综上所述,当t =-2+25或8+45时,
以A,B,D为顶点的三角形与△AOP相似.。