【中考12年】北京市2002-中考数学试题分类解析 专题04 图形的变换

合集下载

北京市各区2012年初三第一学期期末试题分类(四)图形变换

北京市各区2012年初三第一学期期末试题分类(四)图形变换

图形变换(朝阳)1. 下列图形是中心对称图形的是A. B. C. D.(东城)2.下列图形中,是中心对称图形的是A B C D(海淀)2.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A B C 3.对于反比例函数2y x=,下列说法正确的是 A .图象经过点(2,-1) B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x (朝阳)7. △ABC 在平面直角坐标系中的位置如图所示, 其中A (1, 2),B (1, 1),C (3, 1),将△ABC 绕原点O 顺时针旋转90后得到△'''C B A ,则点A 旋转到点'A 所经过的路线长为A .π25B .π45C . π25D . (第7题图)(房山)18. 如图,在Rt OAB △中,90OAB ∠=,且点B 的坐标为(4,2). (1)画出OAB △绕点O 逆时针旋转90后的11OA B △;(2)求点A 旋转到点1A 所经过的路线长. 解:(1)(平谷)19.如图,在平面直角坐标系中,点A B C P ,,,的坐标分别为(02)(32)(23)(11),,,,,,,.(1)请在图中画出A B C '''△,使得A B C '''△与ABC △关于 点P 成中心对称;(2)直接写出(1)中A B C '''△的三个顶点坐标. 解:(燕山)19. 如图,在由小正方形组成的12×10的网格中,点O 、M 和四边形ABCD 的顶点都在格点上.(1)画出与四边形ABCD 关于直线CD 对称的图形;(2)平移四边形ABCD ,使其顶点B 与点M 重合,画出平移后的图形; (3)把四边形ABCD 绕点O 逆时针旋转90°,画出旋转后的图形.(西城北)11.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4 .以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转α角 (0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点 的对应点分别记为E ,F ,EF 与AB 的交点为G ,此时α等于° ,△DEG 的面积为 .(西城南)16.如图,三角形纸片ABC 中,∠BCA =90°,∠A =30°,AB =6, 在AC 上取一点 E ,沿BE 将该纸片折叠,使AB 一部分 与BC 重合,点A 与BC 延长线上的点D DE 的长.A B D C O M· ·· · · ·(大兴)17.已知:如图,将正方形ABCD 纸片折叠,使顶点A 落在边CDC 、D 不重合),点B 落在点Q 处,折痕为EF ,PQ 与BC 交于点G . 求证:△PCG ∽△ED P .(西城北)19.如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标; (2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.(燕山)24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD上(其中点N 不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处. (1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少? (3)点M 能是AB 边上任意一点吗?请求出AM 的取值范围.E B CCMNAD·θAA 'CBB '30︒B 'A 'CB A(东城)16.在平面直角坐标系xoy 中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴ 画出ABC △;⑵ 画出ABC △绕点A 顺时针旋转90后得到的11AB C △,并求出1CC 的长..(朝阳)9. 如图,△ABC 为等边三角形,D 是△ABC 内一点,且AD =3,将△ABD 绕点A 旋转到△ACE 的位置,连接DE ,则DE 的长为 .(石景山)23.如图1,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转30°,得到△A ′B ′C .联结A ′A 、B ′B ,设△ACA ′和△BCB ′的面积分别为S △ACA ′ 和S △BC B′. (1)直接写出S △ACA ′ ︰S △BC B′ 的值 ;(2)如图2,当旋转角为θ(0°<θ<180°)时,S △ACA ′ 与S △BC B′ 的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含θ的代数式表示).图1 图2(昌平)22.已知正方形纸片ABCD .如图1,将正方形纸片折叠,使顶点A 落在边CD 上的点P 处(点P 与C 、D 不重合),折痕为EF ,折叠后AB 边落在PQ 的位置,PQ 与BC 交于点G .(1)请你找到一个与EDP △相似的三角形,并证明你的结论;(2)当AB =2,点P 位于CD 中点时,请借助图2画出折叠后的示意图,并求CG 的长.(海淀)22. 已知△ABC 的面积为a ,O 、D 分别是边AC 、BC 的中点.(1)画图:在图1中将点D 绕点O 旋转180 得到点E , 连接AE 、CE . 填空:四边形ADCE 的面积为 ;(2)在(1)的条件下,若F 1是AB 的中点,F 2是AF 1的中点, F 3是AF 2的中点,…,F n 是AF n -1的中点 (n 为大于1的整数), 则△F 2CE 的面积为 ; △F n CE 的面积为 .解: (1)画图:图1填空:四边形ADCE 的面积为 .(2)△F 2CE 的面积为 ;△F n CE 的面积为 .备用图(东城)24.已知△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,点F 为BE 中点,连结DF 、CF .(1)如图1, 当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF 、CF 的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE 绕点A 顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE 绕点A 顺时针旋转90°时,若AD =1,AC =求此时线段CF 的长(直接写出结果).PGQ F E D C B A A B C D 图2图1(海淀)24. 已知在□ABCD 中,AE ⊥BC 于E ,DF 平分∠ADC 交线段AE 于F .(1)如图1,若AE =AD ,∠ADC =60︒, 请直接写出线段CD 与AF +BE 之间所满足的等量关系;(2)如图2, 若AE =AD ,你在(1)中得到的结论是否仍然成立, 若成立,对你的结论 加以证明, 若不成立, 请说明理由;(3)如图3, 若AE : AD =a : b ,试探究线段CD 、AF 、BE 之间所满足的等量关系, 请直接写出你的结论.解: (1)线段CD 与AF +BE 之间所满足的等量关系为:.(2) 图1图2图3 (3)线段CD 、AF 、BE 之间所满足的等量关系为:.(怀柔)24. 把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中,将它绕点C 顺时针旋转α角,旋转后的矩形记为矩形EDCF .在旋转过程中,D A F C EB A B EC DFB E CD A F(1)如图①,当点E在射线CB上时,E点坐标为;∆是等边三角形时,旋转角α的度数是(α为锐角时);(2)当CBD(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.α= 时,请判断矩形EDCF的对称中心H是否在以C为顶点,(4) 如图③,当旋转角90且经过点A的抛物线上.图①图②图③。

【中考12年】北京市2002-中考数学试题分类解析 专题02 代数式和因式分解

【中考12年】北京市2002-中考数学试题分类解析 专题02 代数式和因式分解

【2013版中考12年】北京市2002-2013年中考数学试题分类解析 专题02 代数式和因式分解一、选择题1. (2002年北京市4分)下列等式中,一定成立的是【 】A .()111x x 1x x 1+=++ B .22x x -=-() C .()a b c a b c --=-+ D .()222xy 1x y 1+=+2. (2002年北京市4分)根据如图所示的程序计算函数值.若输入的x 值为-1,则输出的结果为【 】3. (2002年北京市4分)已知x 、y 是实数,()2y 6y 90-+=,若a x y 3x y -=,则实数a 的值是【 】A .14B .14-C .74D .74-4. (2003年北京市4分)计算34a a ⋅的结果是【 】A. a 12B. aC. a 7D. 2a 35. (2004年北京市4分)下列运算中正确的是【 】(A )a 2·a 3=a 5 (B )(a 2)3=a 5 (C )a 6÷a 2=a 3 (D )a 5+a 5=2a 106. (2004年北京市4分)计算214m 2m 4++-的结果是【 】 (A )m +2 (B )m -2 (C )1m 2+ (D )1m 2-7. (2005年北京市4分)下列运算中,正确的是【 】A 、42=B 、263-=-C 、22(ab)ab =D 、23a 2a 5a +=8. (2006年北京市大纲4分)下列运算中,正确的是【 】A 、39±=B 、236(a )a =C 、3a 2a 6a ⋅=D 、632-=-9. (2006年北京市课标4分)把代数式2xy 9x -分解因式,结果正确的是【 】 A.()2x y 9-B.()2x y 3+ C.()()x y 3y 3+- D.()()x y 9y 9+-10. (2007年北京市4分)若2m 2(n 1)0++-=,则m+2n 的值为【 】A .-4B .-1C .0D .411. (2007年北京市4分)把代数式2ax 4ax 4a -+分解因式,下列结果中正确的是【 】A .2a(x 2)-B .2a(x 2)+C .2a(x 4)-D .a(x 2)(x 2)+-12. (2008年北京市4分)若x 20++,则xy 的值为【 】A .-8B .-6C .5D .613. (2009年北京市4分)把322x 2x y xy -+分解因式,结果正确的是【 】A.()()x x y x y x +-B.()22x x 2xy y -+C.()2x x y +D.()2x x y -二、填空题1. (2002年北京市4分)分解因式:22m 4n 4n 1-+- = ▲ .2. (2006年北京市大纲4分)化简22a b a b a b-=-- ▲ 。

【中考12年】上海市2002中考数学试题分类解析 专题4 图形的变换

【中考12年】上海市2002中考数学试题分类解析 专题4 图形的变换

【2013版中考12年】上海市2002-2013年中考数学试题分类解析专题4 图形的变换一、选择题二、填空题1.(上海市2002年2分)在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于▲ 度.【答案】30。

【考点】翻折变换(折叠问题),线段垂直平分线的性质,直角三角形斜边上的中线性质。

【分析】根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,从而求得答案:在Rt△AB C中,∠A<∠B,CM是斜边AB上的中线,∴∠A=∠ACM。

将△ACM沿直线CM折叠,点A落在点D处,设∠A=∠ACM=x度,∴∠A+∠ACM=∠CMB。

∴∠CMB=2x。

又根据折叠的性质可知∠MCG =∠ACM=x,如果CD恰好与AB垂直,则在Rt△CMG中,∠MCG+∠CMB=90°,即3x=90°,x=30°,即∠A等于30°。

2.(上海市2003年2分)正方形ABCD的边长为1。

如果将线段BD绕着点B旋转后,点D 落在BC延长线上的点D’处,那么tg∠BAD’=▲ 。

【考点】正方形的性质,勾股定理,旋转的性质,锐角三角函数的定义。

【分析】根据题意画出图形.根据勾股定理求出BD 的长,由旋转的性质求出BD′的长,再运用三角函数的定义解答即可:∵正方形ABCD 的边长为1,则对角线BD AB3.(上海市2004年2分)如图所示,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长为 ▲ 。

【考点】正方形的性质,旋转的性质,解直角三角形。

【分析】连接CH ,得:△CFH≌△CDH(HL )。

∴∠DCH=12∠DCF=12(90°-30°)=30°。

在Rt△CDH 中,CD=34.(上海市2005年3分)在三角形纸片ABC 中,∠C=90°,∠A=30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图),折痕DE 的长为 ▲【答案】1。

【中考12年】江苏省苏州市2002-中考数学试题分类解析 专题04 图形的变换

【中考12年】江苏省苏州市2002-中考数学试题分类解析 专题04 图形的变换

【2013版中考12年】江苏省苏州市2002-2013年中考数学试题分类解析 专题04 图形的变换一、选择题1. (江苏省2009年3分)如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是【 】A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格2.(江苏省苏州市2005年3分)下图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是【 】A .︒90B .︒60C .︒45D .︒303. (江苏省苏州市2006年3分)下列图形中,旋转600后可以和原图形重合的是【 】 A.正六边形 B.正五边形 C.正方形 D.正三角形4. (江苏省苏州市2006年3分)对左下方的几何体变换位置或视角,则可以得到的几何体是【】5. (江苏省苏州市2007年3分)下列图形中,不能..表示长方体平面展开图的是【】6. (江苏省苏州市2007年3分)下图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合【 】A .60° B.90° C.120° D.180°7. (江苏省2009年3分)下面四个几何体中,左视图是四边形的几何体共有【 】A .1个B .2个C .3个D .4个8. (江苏省苏州市2003年3分)如图,已知△ABC 中,AB=AC ,∠BAC=900,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论: (1)AE=CF ;(2)△EPF 是等腰直角三角形;(3)ABC AEPF 1S =S 2四形边;(4)EF =AP 。

当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有【 】A. 1个B. 2个C. 3个D. 4个 【答案】C 。

中考数学试题分类解析专题04图形的变换_1.docx

中考数学试题分类解析专题04图形的变换_1.docx

【中考12年】浙江省衢州市2001-2012年中考数学试题分类解析专题04 图形的变换一、选择题1. (2001年浙江金华、衢州5分)圆柱形油桶的底面半径为0.8m,高为1m,那么这个油桶的侧面积为【】A.1.6πm2 B.1.2πm2 C.0.64πm2 D.0.8πm22. (2002年浙江金华、衢州4分)圆锥的轴截面是【】(A)梯形(B)等腰三角形 (C)矩形(D)圆3. (2003年浙江金华、衢州4分)在下列几何体中,轴截面是等腰梯形的是【】A.圆锥B.圆台C.圆柱D.球4. (2003年浙江金华、衢州4分)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是【】A.B.C.D.【答案】B。

【考点】简单几何体的三视图。

【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加,高为两个立方体,在中间且有两个立方体叠加。

故选B。

5. (2004年浙江衢州4分)把长和宽分别为6cm和4cm的矩形纸片卷成一个圆柱状,则这个圆柱的底面半径为【】A、2cmπB、3cmπC、cm3πD、2cmπ或3cmπ6. (2005年浙江衢州4分)如图,圆柱的高线长为10cm,轴截面的面积为240cm2,则圆柱的侧面积是【】A、240B、240πC、480D、480π7. (2006年浙江衢州4分)某种物体的三视图是如下的三个图,那么该物体的形状是【】A.圆柱体 B.圆锥体 C.立方体 D.长方体【答案】A。

【考点】由三视图判断几何体。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为矩形可得此几何体为圆柱。

故选A。

8. (2006年浙江衢州4分)如图所示,把一张矩形纸片二次对折后沿虚线剪下,则所得图形是【】A. B. C. D.9. (2007年浙江衢州4分)下列各图是左边直三棱柱的主视图的是【】A. B. C. D.【答案】A。

【中考12年】北京市2002-中考数学试题分类解析 专题08 平面几何基础

【中考12年】北京市2002-中考数学试题分类解析 专题08 平面几何基础

【2013版中考12年】北京市2002-2013年中考数学试题分类解析专题08 平面几何基础一、选择题1. (2002年北京市4分)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是【】A.等腰三角形 B.正三角形 C.等腰梯形 D.菱形2. (2003年北京市4分)下列图形中,不是中心对称图形的是【】A. 菱形B. 矩形C. 正方形D. 等边三角形3. (2004年北京市4分)下列图形中,既是轴对称图形又是中心对称图形的是【】(A)等边三角形(B)等腰梯形(C)正方形(D)平行四边形4. (2005年北京市4分)下列图形中,不是中心对称图形的是【】A、圆B、菱形C、矩形D、等边三角形5. (2006年北京市大纲4分)在下列图形中,既是中心对称图形,又是轴对称图形,且对称轴只有两条的是【】A、等腰梯形B、平行四边形C、菱形D、正方形6. (2006年北京市大纲4分)如果正n边形的一个内角等于一个外角的2倍,那么n的值是【】A、4B、5C、6D、77. (2006年北京市课标4分)如图,AD∥BC,点E在BD的延长线上,若∠ADE=1550,则∠DBC的度数为【】A.1550B.500C.450D.2508. (2007年北京市4分)如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为【】A.35°B.45°C.55°D.65°9. (2008年北京市4分)若一个多边形的内角和等于7200,则这个多边形的边数是【】A.5 B.6 C.7 D.810. (2009年北京市4分)若一个正多边形的一个外角是400,则这个正多边形的边数是【】A.10B.9C.8D.611. (2011年北京市4分)下列图形中,即是中心对称又是轴对称图形的是【】A、等边三角形B、平行四边形C、梯形D、矩形12. (2012年北京市4分)正十边形的每个外角等于【】A.18︒B.36︒C.45︒D.60︒13. (2012年北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM等于【】A.38︒B.104︒C.142︒D.144︒14.(2013年北京市4分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于【】A. 40°B. 50°C. 70°D. 80°15.(2013年北京市4分)下列图形中,是中心对称图形但不是轴对称图形的是【】二、填空题1. (2005年北京市4分)如果正多边形的一个外角为72°,那么它的边数是▲ .三、解答题1. (2006年北京市课标4分)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)2. (2009年北京市4分)阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA 的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果).。

北京市各区2012年初三第一学期期末试题按题型分类(二)图形变换型命题

北京市各区2012年初三第一学期期末试题按题型分类(二)图形变换型命题

图形变换型命题(西城北)6.如图,以点D 为位似中心,作△ABC 的一个位似三角形A 1B 1C 1,A ,B ,C 的对应点分别为A 1,B 1,C 1,DA 1与DA 的比值为k ,若两个三角形的顶点及点D 均在如图所示的格点上,则k 的值和点C 1的坐标分别为A .2,(2,8)B .4,(2,8)C .2,(2,4)D .2,(4,4)(通县)12.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到DEF △.如果8cm AB =,6cm,4cm BE DH ==, 则图中阴影部分面积为 2cm .(昌平)12.如图,点A 1,A 2 ,A 3 ,…,点B 1,B 2 ,B 3 ,…,分别在射线OM ,ON 上.OA 1=1,A 1B 1=2O A 1, A 1 A 2=2O A 1,A 2A 3=3OA 1,A 3 A 4=4OA 1,….A 1B 1∥A 2B 2∥A 3B 3∥A 4B 4∥….则A 2B 2= ,A nB n = (n 为正整数).(朝阳)16.(本小题满分4分)如图,在平面直角坐标系中,△ABC 和△'''C B A 是以 坐标原点O 为位似中心的位似图形,且点B (3,1), B ′(6,2). (1)若点A (25,3),则A ′的坐标为 ; (2)若△ABC 的面积为m ,则△A ′B ′C ′的面积= .(海淀) 16. 如图, 在正方形网格中,△ABC 的顶点和O 点都在格点上.(1)在图1中画出与△ABC 关于点O 对称的△A ′B ′C ′;(2)在图2中以点O 为位似中心,将△ABC 放大为原来的2倍(只需画出一种即可). 解:4NMA 1A 2A 3A 4321QPNMOC BA(大兴)23. 已知:在ABC△中,AB AC=,点D为BC边的中点,点F在AB上,连结DF 并延长到点E,使BAE BDF∠=∠,点M在线段DF上,且ABE DBM∠=∠.(1)如图1,当45ABC∠=°时,求证:AE=;(2)如图2,当60ABC∠=°时,则线段AE MD、之间的数量关系为;(3)在(2)的条件下,延长BM到P,使MP BM=连接CP,若7AB AE==,tan EAB∠的值.(东城)12.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM、ON分别交CA、CB于点P、Q,∠MON绕点O任意旋转.当12OAOB=时,OPOQ的值为;当1OAOB n=时,OPOQ的值为 .(用含n的式子表示)(朝阳)24. 已知,在△ABC中,∠BAC=90°,AB=AC,BC=22,点D、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.(1)请在图①中找出两对相似但不全等的三角形,写在横线上,;(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;(3)如图②,当BE=CD时,求DE的长;(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.FED CBA图① 图② 备用图(丰台)24.在Rt △ABC 中,∠ACB =90,AC =BC ,CD ⊥AB 于点D ,点E 为AC 边上一点,联结BE 交CD 于点F ,过点E 作EG ⊥BE 交AB 于点G ,(1) 如图1,当点E 为AC 中点时,线段EF 与EG 的数量关系是 ;(2) 如图2,当12CE AE =,探究线段EF 与EG 的数量关系并且证明; (3) 如图3,当nAE CE 1=,线段EF 与EG 的数量关系是.图1 图2 图3(大兴)12. 如图所示,长为4cm ,宽为3cm 的长方形木板在桌面上做 无滑动的翻滚(顺时针方向),木板上点A 位置变化为12A A A →→,由12A A 翻滚到时被桌面上一小木块挡住,此时长方形木板的边2A C 与桌面成30°角,则点A 翻滚到A 2位置时所经过的路径总长度为 cm.(延庆)7.如图,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于 A .π6 B .π4 C .π3 D. π2(西城北)19.如图所示,在平面直角坐标系xOy 中,正方形x轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标;(2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.(平谷)22. 如图,Rt △OAB 中,∠OA B =90°,O 为坐标原点, 边OA 在x 轴上,OA =AB =1个单位长度.把Rt △OAB 沿x 轴正方向平移1个单位长度后得△11AA B . (1)求以A 为顶点,且经过点1B 的抛物线的解析式; (2)若(1)中的抛物线与OB 交于点C ,与y 轴交于 点D ,求点D 、C 的坐标.(丰台)22.小明喜欢研究问题,他将一把三角板的直角顶点放在平面直角坐标系的原点O 处,两条直角边与抛物线2(0)y ax a =<交于A 、B 两点. (1)如图1,当2OA OB ==时,则a = ;(2)对同一条抛物线,当小明将三角板绕点O 旋转到如图2所示的位置时,过点B 作BC x ⊥轴于点C ,测得1OC =,求出此时点A 的坐标;(3)对于同一条抛物线,当小明将三角板绕点O 旋转任意角度时,他惊奇地发现,若三角板的两条直角边与抛物线有交点,则线段A B 总经过一个定点,请直接写出该定点的坐标.(丰台)25.在平面直角坐标系xOy 中,已知抛物线C 1:212.y x x =-+(1)将抛物线C 1先向右平移2个单位,再向上平移1个单位,得到抛物线C 2,求抛物线C 2的顶点P 的坐标及它的解析式.(2)如果x 轴上有一动点M ,那么在两条抛物线C 1、C 2上是否存在点N ,使得以点O 、P 、M 、N 为顶点的四边形是平行四边形(OP 为一边)?若存在,求出点N 的坐标;若不存在,请说明理由.(房山)25. 已知抛物线y=﹣x 2+bx+c 的对称轴为直线x=1,最小值为3,此抛物线与y 轴交于点A ,顶点为B ,对称轴BC 与x 轴交于点C . (1)求抛物线的解析式.(2)如图1.求点A 的坐标及线段OC 的长; (3)点P 在抛物线上,直线PQ ∥BC 交x 轴于点Q ,连接BQ . ①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C 重合,直角顶点D 在BQ 上,另一 个顶点E 在PQ 上.求直线BQ 的函数解析式; ②若含30°角的直角三角板一个顶点与点C 重合,直角顶点D 在直线BQ 上,另一个顶点E 在PQ 上,求点P 的坐标.(东城)25.在平面直角坐标系xOy 中,抛物线235y mx x m =+++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C (0 , 4),D 为OC 的中点.(1)求m 的值;y x12345678–1–2123–1–2–3–4–5O(2)抛物线的对称轴与 x 轴交于点E ,在直线AD 上是否存在点F ,使得以点A 、B 、F 为顶点的三角形与ADE ∆ 相似?若存在,请求出点F 的坐标,若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点G ,使△GBC 中BC求出点G 的坐标;若不存在,请说明理由.(燕山)25. 在直角坐标系xOy 中,已知某二次函数的图象经过A (-4,0)、B (0,-3),与x 轴的正半轴相交于点C ,若△AOB ∽△BOC (相似比不为1). (1)求这个二次函数的解析式; (2)求△ABC 的外接圆半径r ;(3)在线段AC 上是否存在点M (m ,0),使得以线段BM 为直径的圆与线段AB 交于N 点,且以点O 、A 、N为顶点的三角形是等腰三角形?若存在,求出m 的值;若不存在,请说明理由. (海淀)23. 已知二次函数y =ax 2+bx +c 的图象与反比例函数xa y 4+=的图象交于点A (a , -3),与 y 轴交于点B .(1)试确定反比例函数的解析式;(2)若∠ABO =135︒, 试确定二次函数的解析式;(3)在(2)的条件下,将二次函数y =ax 2 + bx + c 的图象先沿x 轴翻折, 再向右平移到与反比例函数xa y 4+=的图象交于点P (x 0, 6) . 当x 0 ≤x ≤3时, 求平移后的二 次函数y 的取值范围.(大兴)25.已知二次函数21342y x x =-+. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,如图所示,设平移后的抛物线的顶点为M ,与x 轴、y 轴的交点分别为A 、B 、C 三点,连结AC 、BC,若∠ACB =90°. ①求此时抛物线的解析式;②以AB 为直径作圆,试判断直线CM 与此圆的位置关系,并说明理由.(燕山)24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD 上(其中点N 不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处. (1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少? (3)点M 能是AB 边上任意一点吗?请求出AM 的取值范围.(东城)16.在平面直角坐标系xoy 中,已知ABC △三个顶点的坐标分别为 ()()()1,2,3,4,2,9.A B C --- ⑴ 画出ABC △;⑵ 画出ABC △绕点A 顺时针旋转90后得到的11AB C △,并求出1CC 的长.(朝阳)9. 如图,△ABC 为等边三角形,D 是△ABC 内一点,且AD =3,将△ABD 绕点A 旋转到△ACE 的位置,连接DE ,则DE 的长为 .θAA 'CBB '30︒B 'A 'CB A(石景山)23.如图1,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转30°,得到△A ′B ′C .联结A ′A 、B ′B ,设△ACA ′和△BCB ′的面积分别为S △ACA ′ 和S △BCB ′. (1)直接写出S △ACA ′ ︰S △BCB ′ 的值 ;(2)如图2,当旋转角为θ(0°<θ<180°)时,S △ACA ′ 与S △BCB ′ 的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含θ的代数式表示).图1 图2(昌平)22.已知正方形纸片ABCD .如图1,将正方形纸片折叠,使顶点A 落在边CD 上的点P 处(点P 与C 、D 不重合),折痕为EF ,折叠后AB 边落在PQ 的位置,PQ 与BC 交于点G .(1)请你找到一个与EDP △相似的三角形,并证明你的结论;(2)当AB =2,点P 位于CD 中点时,请借助图2画出折叠后的示意图,并求CG 的长.(海淀)22. 已知△ABC 的面积为a ,O 、D 分别是边AC 、BC 的中点.(1)画图:在图1中将点D 绕点O 旋转180︒得到点E , 连接AE 、CE . 填空:四边形ADCE 的面积为 ;(2)在(1)的条件下,若F 1是AB 的中点,F 2是AF 1的中点, F 3是AF 2的中点,…,F n 是AF n -1的中点 (n 为大于1的整数), 则△F 2CE 的面积为 ; △F n CE 的面积为 .解: (1)画图:图1 备用图 填空:四边形ADCE 的面积为 .(2)△F 2CE 的面积为 ;P G QF E D C B A A B C D 图2图1图1FE DCBA图2ABCDE F图3ABCDEF△F n CE 的面积为 .(东城)24.已知△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,点F 为BE 中点,连结DF 、CF .(1)如图1, 当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF 、CF 的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE 绕点A 顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE 绕点A 顺时针旋转90°时,若AD =1,AC=求此时线段CF 的长(直接写出结果).(海淀)24. 已知在□ABCD 中,AE ⊥BC 于E ,DF 平分∠ADC 交线段AE 于F .(1)如图1,若AE =AD ,∠ADC =60︒, 请直接写出线段CD 与AF +BE 之间所满足的等量关系;(2)如图2, 若AE =AD ,你在(1)中得到的结论是否仍然成立, 若成立,对你的结论 加以证明, 若不成立, 请说明理由;(3)如图3, 若AE : AD =a : b ,试探究线段CD 、AF 、BE 之间所满足的等量关系, 请直接写出你的结论.解: (1)线段CD 与AF +BE 之间所满足的等量关系为:.(2) 图1图2(3)线段CD 、AF 、BE 之间所满足的等量关系为: D A F C E B A B ECDFDAF.图3(怀柔)24. 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转α角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;∆是等边三角形时,旋转角α的度数是(α为锐角时);(2)当CBD(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.α= 时,请判断矩形EDCF的对称中心H是否在以C为顶点,(4) 如图③,当旋转角90且经过点A的抛物线上.图①图②图③。

2012-2023北京中考真题数学汇编:旋转变换

2012-2023北京中考真题数学汇编:旋转变换

2012-2023北京中考真题数学汇编旋转变换一、证明题1.(2023北京中考真题)在ABC 中、()045B C αα∠=∠=︒<<︒,AM BC ⊥于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF DC =,连接AE ,EF ,直接写出AEF ∠的大小,并证明.2.(2021北京中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明;(2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.3.(2013北京中考真题)在△ABC 中,AB =AC ,∠BAC =α(060α︒︒<<),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE =150°,∠ABE =60°,判断△ABE 的形状并加以证明;(3)在(2)的条件下,连接DE ,若∠DEC =45°,求α的值.二、作图题①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM =(2)O 的半径为1,M 是O 上一点,点N 在线段点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出示).5.(2019北京中考真题)已知30AOB ∠=︒,H 为射线6.(2012北京中考真题)在ABC 中,BA BC BAC α=∠=,,M 是AC 的中点,P 是线段线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若60α=︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.(1)如图,点112233,,,,,,A B C B C B C 的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点求t 的值;(3)在ABC 中,1,2AB AC ==.若值,以及相应的BC 长.参考答案1.(1)见解析(2)90AEF ∠=︒,证明见解析【分析】(1)由旋转的性质得DM DE =,2MDE α∠=,利用三角形外角的性质求出C DEC α∠=∠=,可得DE DC =,等量代换得到DM DC =即可;(2)延长FE 到H 使FE EH =,连接CH ,AH ,可得DE 是FCH V 的中位线,然后求出B ACH ∠∠=,设DM DE m ==,CD n =,求出2BF m CH ==,证明()SAS ABF ACH ≅ ,得到AF AH =,再根据等腰三角形三线合一证明AE FH ⊥即可.【详解】(1)证明:由旋转的性质得:DM DE =,2MDE α∠=,∵C α∠=,∴D DEC M E C α∠-∠∠==,∴C DEC ∠=∠,∴DE DC =,∴DM DC =,即D 是MC 的中点;(2)90AEF ∠=︒;证明:如图2,延长FE 到H 使FE EH =,连接CH ,AH ,∵DF DC =,∴DE 是FCH V 的中位线,∴DE CH ∥,2CH DE =,由旋转的性质得:DM DE =,2MDE α∠=,∴2FCH α∠=,∵B C α∠=∠=,∴ACH α∠=,ABC 是等腰三角形,∴B ACH ∠∠=,AB AC =,设DM DE m ==,CD n =,则2CH m =,CM m n =+,∴DF CD n ==,∴FM DF DM n m =-=-,∵AM BC ⊥,∴BM CM m n ==+,∴()2BF BM FM m n n m m =-=+--=,∴CH BF =,在ABF △和ACH 中,AB AC B ACH BF CH =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABF ACH ≅ ,∴AF AH =,∵FE EH =,∴AE FH ⊥,即90AEF ∠=︒.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.2.(1)BAE CAD ∠=∠,BM BE MD =+,理由见详解;(2)DN EN =,理由见详解.【分析】(1)由题意及旋转的性质易得BAC EAD α∠=∠=,AE AD =,然后可证ABE ACD ≌,进而问题可求解;(2)过点E 作EH ⊥AB ,垂足为点Q ,交AB 于点H ,由(1)可得ABE ACD ∠=∠,BE CD =,易证BH BE CD ==,进而可得HM DM =,然后可得DMN DHE ∽,最后根据相似三角形的性质可求证.【详解】(1)证明:∵BAC EAD α∠=∠=,∴BAE BAD BAD CAD α∠+∠=∠+∠=,∴BAE CAD ∠=∠,由旋转的性质可得AE AD =,∵AB AC =,∴()SAS ABE ACD ≌△△,∴BE CD =,∵点M 为BC 的中点,∴BM CM =,∵CM MD CD MD BE =+=+,∴BM BE MD =+;(2)证明:DN EN =,理由如下:过点E 作EH ⊥AB ,垂足为点Q ,交BC 于点H ,如图所示:(3)∵∠BCD =60°,∠BCE ∴1506090DCE ︒-︒∠==︒.又∵∠DEC =45°,∴△DCE 为等腰直角三角形.②证明:如图延长ON 至点()3,3A ,连接AQ ∵//AQ OP ,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.【点睛】本题考查点的平移,对称的性质,全等三角形的判定,两点间距离,中位线的性质及线段的最值问题,第2问难度较大,根据题意,画出点Q 和点P'的轨迹是解题的关键.5.(1)如图所示见解析;(2)见解析;(3)OP=2.证明见解析.【分析】(1)根据题意画出图形即可.(2)由旋转可得∠MPN=150°,故∠OPN=150°-∠OPM ;由∠AOB=30°和三角形内角和180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM ,得证.(3)根据题意画出图形,以ON=QP 为已知条件反推OP 的长度.由(2)的结论∠OMP=∠OPN 联想到其补角相等,又因为旋转有PM=PN ,已具备一边一角相等,过点N 作NC ⊥OB 于点C ,过点P 作PD ⊥OA 于点D ,即可构造出△PDM ≌△NCP ,进而得PD=NC ,DM=CP .此时加上ON=QP ,则易证得△OCN ≌△QDP ,所以OC=QD .再设DM=CP=x ,所以OC=OP+PC=2+x ,MH=MD+DH=x+1,由于点M 、Q 关于点H 对称,得出DQ=DH+HQ=1+x+1=2+x ,得出OC=DQ ,再利用SAS 得出△OCN ≌△QDP 即可【详解】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM 绕点P 顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN-∠OPM=150°-α∵∠AOB=30°∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP ,证明如下:过点N 作NC ⊥OB 于点C ,过点P 作PD ⊥OA 于点D ,如图2(2)∠CDB =90°-α(3)45°<α<60°.【分析】(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ 是等边三角形,即可得出答案:(2)首先由已知得出△APD ≌△CPD ,从而得出∠PAD +∠PQD =∠PQC +∠PQD =180°,即可求出;(3)由点P 不与点B ,M 重合,得到∠BAD >∠PAD >∠MAD ,由此求解即可.【详解】(1)解:补全图形如下:∵BA =BC ,点M 是AC 的中点,∴AC ⊥BD ,AM =CM∴∠CMD =90°,∴2120AMQ α∠==︒,∴∠CMQ =60°,由旋转的性质可得AM =QM =CM ,∴△CMQ 是等边三角形,∴∠DCM =60°∴∠CDB =30°.(2)解:作线段CQ 的延长线交射线BM 于点D ,连接PC ,AD ,∵AB =BC ,M 是AC 的中点,通过观察图象可得:线段22B C 能绕点得到;故答案为22B C ;(2)由题意可得:当BC 是O 的以点1,当点A 在y 轴的正半轴上时,如图所示:设B C ''与y 轴的交点为D ,连接OB ',易得∴12B D DC ''==,∴2232OD OB B D ''=-=,AD AB =∴3OA =,∴3t =;当点A 在y 轴的正半轴上时,如图所示:同理可得此时的3OA =,∴t 3=-;(3)由BC 是O 的以点A 为中心的“关联线段则有当以B '为圆心,1为半径作圆,然后以点示:由运动轨迹可得当点A 也在O 上时为最小,最小值为∴90AB C ''∠=︒,∴30AC B ''∠=︒,∴cos303BC B C AC '''==⋅︒=;由以上情况可知当点,,A B O '三点共线时,连接,OC B C ''',过点C '作C P OA '⊥于点P ∴1,2OC AC OA ''===,设OP x =,则有2AP x =-,。

【中考12年】浙江省杭州市-中考数学试题分类解析 专题4 图形的变换

【中考12年】浙江省杭州市-中考数学试题分类解析 专题4 图形的变换

【中考12年】浙江省杭州市-中考数学试题分类解析专题4 图形的变换一、选择题1. (年浙江杭州3分)在时刻8∶30,时钟上的时针和分针之间的夹角为【】.(A)85°(B)75°(C)70°(D)60°【答案】B。

【考点】钟面角。

【分析】∵时针走一圈(3600)要12小时,即速度为003603600.5/121260==⨯分小分钟时钟;分针走一圈(3600)要1小时,即速度为000 3603606/160==分小分钟时钟。

∴时针从数字8开始到8点30分,走过的角度为30×0.50=150,即时针在8点30分的位置离开数字6的角度为300×2+15=750 (钟面360度被分成了12等份,每份是300)。

又∵分针从8点(数字12)开始到8点30分时,分针指向数字6,所以8点30分时,时钟上时针和分针夹角750。

故选B。

2. (年浙江杭州3分)为解决四个村庄用电问题,政府在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是【】.(A)19.5 (B)20.5 (C)21.5 (D)25.5【答案】B。

3. (年浙江杭州大纲卷3分)边长为4的正方形绕一条边旋转一周,所得几何体的侧面积等于【】A.16 B.16πC.32πD.64π【答案】C。

【考点】圆柱的计算。

【分析】边长为4的正方形绕一条边旋转一周,所得几何体是圆柱体,根据圆柱的侧面积公式圆柱侧面积=底面周长×高可得:π×4×2×4=32π。

故选C。

4. (年浙江杭州大纲卷3分)如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=2,则此三角形移动的距离PP′是【】A.12B2C.1 D21-【答案】D。

【2013版中考12年】北京市2002-2013年中考数学试题分类解析 专题04 图形的变换

【2013版中考12年】北京市2002-2013年中考数学试题分类解析 专题04 图形的变换

【2013版中考12年】北京市2002-2013年中考数学试题分类解析 专题04 图形的变换一、选择题1. (2003年北京市4分)如果圆柱的底面半径为4cm ,底面为5cm ,那么它的侧面积等于【 】A. 220cm πB. 240cm πC. 20cm 2D. 40cm 22. (2004年北京市4分)如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于【 】(A )24πcm 2 (B )12πcm 2 (C )12cm 2 (D )6πcm 23. (2006年北京市课标4分)将如图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是【 】4. (2007年北京市4分)下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是【】5. (2008年北京市4分)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如左图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是【】6. (2009年北京市4分)若下图是某几何体的三视图,则这个几何体是【】A.圆柱B.正方体C.球D.圆锥7. (2010年北京市4分)美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个....符合上述要求,那么这个示意图是【】8. (2012年北京市4分)下图是某个几何体的三视图,该几何体是【】二、填空题1. (2002年北京市4分)如果圆锥母线长为6cm,底面直径为6cm,那么这个圆锥的侧面积是▲ cm2.2. (2002年北京市4分)一种圆筒状包装的保鲜膜,如图所示,其规格为20cm×60m,经测量这筒保鲜膜的内径Φ1、外径Φ的长分别为3.2cm,4.0cm,则该种保鲜膜的厚度约为▲ cm(π取3.14,结果保留两位有效数字).3. (2006年北京市大纲4分)如图,圆锥的底面半径为2cm,母线长为4cm,那么它的侧面积等于▲ cm2。

2012中考数学试题及答案分类汇编:图形的变换(1)

2012中考数学试题及答案分类汇编:图形的变换(1)

2012中考数学试题及答案分类汇编:图形的变换一、选择题1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形C、梯形D、矩形【答案】D。

【考点】中心对称和轴对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。

故选D。

2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是【答案】A。

【考点】中心对称图形。

【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。

3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。

【考点】几何体的三视图。

【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。

故选A。

4.(河北省2分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A、面CDHEB、面BCEFC、面ABFGD、面ADHG【答案】A。

【考点】展开图折叠成几何体。

【分析】由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE。

故选A。

5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是【答案】A。

【考点】剪纸问题。

【分析】严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论。

【版中考12年】浙江省嘉兴市、舟山市2002中考数学试题分类解析 专题04 图形的变换

【版中考12年】浙江省嘉兴市、舟山市2002中考数学试题分类解析 专题04 图形的变换

【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析专题04 图形的变换一、选择题1. (2002年浙江舟山、嘉兴4分)圆台的轴截面是一个上、下底边长分别为2cm,4cm,腰长为3cm的等腰梯形,这个圆台的侧面积是【】A.9πcm2B.18πcm2C.24πcm2D.36πcm2【答案】A。

【考点】圆台的计算。

2. (2003年浙江舟山、嘉兴4分)如果圆柱的轴截面是一个边长为4cm的正方形,那么圆柱的侧面积为【】A .16πcm2 B.18πcm2 C.20πcm2 D .24πcm2【答案】A。

【考点】圆柱的计算。

3. (2004年浙江舟山、嘉兴4分)已知圆锥底面半径为3,高为4,则圆锥侧面积为【】A.10πB.12πC.15πD.20π【答案】B。

【考点】圆锥和扇形的计算。

4. (2005年浙江舟山、嘉兴4分)圆锥的轴截面是【】A .等腰三角形 B.矩形 C .圆 D.弓形【答案】A。

【考点】圆锥的轴截面。

5. (2006年浙江舟山、嘉兴4分)已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为【】.A.15πcm2 B.20πcm2 C.12πcm2 D.30πcm2【答案】A。

【考点】圆锥和扇形的计算。

6. (2006年浙江舟山、嘉兴4分)假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,•从一间蜂房爬到右边相邻的蜂房中去.例如.蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法【】.A.7 B.8 C.9 D.10【答案】B。

【考点】探索规律题(图形的变化类),分类思想的应用。

7. (2010年浙江舟山、嘉兴4分)已知一个几何体的三视图如图所示,则该几何体是【】A.棱柱 B.圆柱 C.圆锥 D.球【答案】B。

【考点】由三视图判断几何体。

【中考12年】浙江省台州市2002-中考数学试题分类解析 专题04 图形的变换

【中考12年】浙江省台州市2002-中考数学试题分类解析 专题04 图形的变换

台州市2002-2013年中考数学试题分类解析 专题04:图形的变换一、选择题1. (2002年浙江台州4分)一个圆锥的底面半径长为4cm ,母线长为5cm ,则圆锥的侧面积为【 】(A )20cm 2(B )40cm2(C )20πcm2(D )40πcm 22. (2003年浙江台州4分)若圆锥的底面半径为3㎝,母线长为5㎝,则圆锥的侧面积是【 】A 、15㎝2B 、30㎝2C 、15π㎝2D 、30π㎝2【答案】C 。

【考点】圆锥和扇形的计算。

【分析】∵圆锥的底面半径长为3cm ,,∴圆锥的底面周长为6πcm 。

又∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据扇形的面积公式,圆锥的侧面积即侧面展开后所得扇形的面积为()2165=15cm 2ππ⋅⋅。

故选C 。

3. (2004年浙江温州、台州4分)如图,点B 在圆锥母线VA 上,且VB=31VA ,过点B 作平行与底面的平面截得一个小圆锥的侧面积为S 1,原圆锥的侧面积为S ,则下列判断中正确的是【 】(A) 1S S 13= (B) 1S S 14= (C) 1S S 16= (D) 1S S 19=4. (2007年浙江台州4分)下图几何体的主视图是【 】【答案】C 。

【考点】简单组合体的三视图。

【分析】找到从正面看所得到的图形即可:从正面看易得有两层,上层左边有1个正方形,下层有3个正方形。

故选C 。

5. (2007年浙江台州4分)如图,若正六边形ABCDEF 绕着中心O 旋转角α得到的图形与原来的图形重合,则α最小值为【 】A.180°B.120°C.90°D.60°6. (2007年浙江台州4分)一个几何体的展开图如图所示,则该几何体的顶点有【】A.10个B.8个C.6个D.4个【答案】C。

【考点】几何体的展开图。

【分析】由展开图知,该几何体是三棱柱,顶点有6个。

故选C。

7. (2008年浙江台州4分)左图是由四个小正方体叠成的一个立体图形,那么它的俯视图是【】A.B.C.D.【答案】B。

北京中考数学试题(2002-2012试题分类及答案)

北京中考数学试题(2002-2012试题分类及答案)

北京中考数学试题(2002-2012试题分类及答案)目 录一、选择题……………………… 二、填空题……………………… 三、解答题:1.计算题…………………………2.化简、求值……………………3.解方程、不等式(组)………4.列方程…………………………5.直线型证明……………………6.直线型计算……………………7.圆的证明与计算………………8.函数基础………………………9.统计…………………………… 10.材料题、新定义题………… 11.代数综合…………………… 12.几何综合…………………… 13.代几综合…………………… △其它……………………………一、选择题【02】选择题 1. -13的倒数是( ) A.13B. 3C. -13D. -32. 某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A. 等腰三角形 B. 正三角形C. 等腰梯形D. 菱形3. 下列等式中,一定成立的是( ) A.11111xx x x ++=+()B. ()-=-x x 22 C. a b c a b c --=-+() D. ()xy x y +=+112224. 若a b -<0,则下列各式中一定正确的是( ) A. a b >B. ab >0C.a b<0D. ->-a b5. 在∆A B C 中,∠=︒C 90,若∠=∠B A 2,则ctgB 等于( ) A. 3 B.33C.32D.126. 根据下图所示的程序计算函数值.若输入的x 值为32,则输出的结果为( )输入x 值y=x+2(-2≤x ≤-1)y=x 2(-1<x ≤1)y=-x+2(1<x ≤2)输入y 值A.72B.94C.12D.92【03】选择题1. -3的相反数是( ) A. -13B. -3C. 3D. -||32. 计算()π-30的结果是( ) A. 0B. 1C. 3-πD. π-3 3. 若∠=︒α30,则∠α的补角为( ) A. 30︒B. 60︒C. 120︒D. 150︒4. 羊年话“羊”,“羊”字象征着美好和吉祥,下列图案都与“羊”字有关,其中是轴对称图形的个数是( )A. 1B. 2C. 3D. 45. 函数y x =-3的自变量x 的取值范围是( ) A. x ≥3 B. x >3C . x ≠3D . x ≤3 6. 2003年5月19日,国家邮政局特别发行“万众一心 抗击‘非典’”邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票发行量为12500000枚,用科学记数法表示正确的是( )A. 125105.⨯枚 B. 125106.⨯枚 C. 125107.⨯枚D.125108.⨯枚7. 如图,在∆ABC 中,D 、E 分别是AB 、AC 边上的中点,若DE =4,则BC 等于( )A. 2B. 4C. 8D. 128. 用换元法解方程()()x xx x+-+=2212,设y x x=+2,则原方程可化为( )A. yy 210--=B. y y 210++= C. y y 210+-= D. yy 210-+=9. 如图,直线c 与直线a 、b 相交,且a//b ,则下列结论:(1)∠=∠12;(2)∠=∠13;(3)∠=∠32中正确的个数为( ) A. 0B. 1C. 2D. 310. 点P ()-23,关于x 轴对称的点的坐标为( ) A.()-23, B.()23, C.()23,- D.()--23,11. 下列各式中正确的是( ) A. 242-=- B. ()33325= C.12121-=+ D. x xx 842÷=12. 若两圆相交,则这两圆的公切线( ) A. 只有一条 B. 有两条 C. 有三条D. 有四条13. 如图,四边形ABCD 内接于⊙O ,E 在BC 延长线上,若∠=︒A 50,则∠D C E 等于( )A. 40︒B. 50︒C. 70︒D. 130︒14. 不等式组26053x x -<+>-⎧⎨⎩的解集是( )A. 23<<xB. -<<-83xC. -<<83xD. x <-8或x >315. 在下列二次根式中与2是同类二次根式的是( ) A. 8 B. 10C. 12D.2716. 在∆ABC 中,∠=︒∠=∠C B A 902,,则cosA 等于( ) A. 32B.12C.3D.3317. 方程xx 220-+=根的情况是( )A. 只有一个实数根B. 有两个相等的实数根C.有两个不相等的实数根D. 没有实数根18. 已知反比例函数y k x=的图象经过点(1,2),则函数y kx =-可确定为( )A. y x =-2B. y x =-12C. y x =12D. y x =219. 如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是( )A. <1>和<2>B. <2>和<3>C. <2>和<4>D. <1>和<4>20. 若yy x y 24410++++-=,则xy 的值等于( ) A. -6B. -2C. 2D. 621. 如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是( )A. 102cmB. 102πcmC. 202cmD. 202πcm22. 二次函数y ax bx c =++2的图象如图所示,则下列结论正确的是( )A. a b c ><>000,,B. a b c <<>000,,C. a b c <><000,,D. a b c <>>000,,23. 如图,PA 切⊙O 于点A ,PO 交⊙O 于点B ,若PA =6,BP =4,则⊙O 的半径为( )A.54B.52C. 2D. 524. 某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体请你根据上述数据分析判断,水银柱的长度l (mm )与体温计的读数t (℃)(3542≤≤t )之间存在的函数关系是( ) A. l t =-110662B. l t =11370C. l t =-63072D. l t=3955225. 如图,把∆ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠+∠12之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A. ∠=∠+∠A 12B. 212∠=∠+∠AC. 3212∠=∠+∠AD. 3212∠=∠+∠A ()26. 甲、乙两同学约定游泳比赛规则:甲先游自由泳到泳道中点后改为蛙泳,而乙则是先游蛙泳到泳道中点后改为自由泳,两人同时从泳道起点出发,最后两人同时游到泳道终点。

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题04 图形的变换

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题04 图形的变换

某某市2002-2013年中考数学试题分类解析专题04 图形的变换一、选择题1. (2003年某某某某3分)图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是【】(A)25 (B)66 (C)91 (D)1202. (2006年某某某某课标卷3分)如图,水平放置的圆柱形物体,中间有一细棒,则此几何体的左视图是【】A. B. C. D.3. (2006年某某某某课标卷3分)如图,为保持原图案的模式,应在空白处补上【 】4. (2006年某某某某课标卷3分)如图,直角梯形ABCD 中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC 绕点D 逆时针方向旋转90°至DE ,连接AE ,则△ADE 的面积是【 】∴CG=BC-BG=5-3=2。

∴EF=2。

∴ADE 11S AD EF 32322∆=⨯⨯=⨯⨯=。

故选C 。

5. (2007年某某某某3分)与如图所示的三视图对应的几何体是【 】6. (2008年某某某某3分)已知圆锥的母线长为5,底面半径为3,则圆锥的表面积...为【】A.15π B.24πC.30π D.39π7. (2008年某某某某3分)由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是【】A.8 B.7 C.6 D.58. (2009年某某某某3分)如图是由4个立方块组成的立体图形,它的俯视图是【】A.B.C.D.9. (2010年某某某某3分)骰子是一种特的数字立方体(见图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是【】10. (2011年某某某某3分)如图所示的物体的俯视图是【】(A) (B) (C) (D)11. (2011年某某某某3分)如图,Rt△ABC中,∠ACB=90°,AC=BC=22Rt△绕边AB所在直线旋转一周,则所得几何体的表面积为【】12. (2012年某某某某3分)如图是某物体的三视图,则这个物体的形状是【】A.四面体B.直三棱柱C.直四棱柱D.直五棱柱13. (2012年某某某某3分)如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是【】14. (2012年某某某某3分)如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是【】15.(2013年某某某某3分)下列四X正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是【】二、填空题1. (2002年某某某某3分)如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形,2. (2003年某某某某3分)如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:3. (2004年某某某某3分)仔细观察下列图案,并按规律在横线上画出合适的图形.4. (2005年某某某某3分)已知一个底面直径为10cm,母线长为8cm的圆锥形漏斗,它的侧面积是▲ cm2.5. (2005年某某某某3分)矩形纸片ABCD中,AD=4cm ,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE= ▲ cm.6. (2006年某某某某大纲卷3分)如图,将Rt△ABC 绕点C 按顺时针方向旋转90°到△A′B′C 的位置,已知斜边AB=10cm ,BC=6cm ,设A′B′的中点是M ,连接AM ,则AM= ▲ cm .【答案】41。

【中考12年】湖北省黄冈市2002中考数学试题分类解析 专题04 图形的变换

【中考12年】湖北省黄冈市2002中考数学试题分类解析 专题04 图形的变换

【2013版中考12年】湖北省黄冈市2002-2013年中考数学试题分类解析专题04 图形的变换一、选择题1. (湖北省黄冈市课标卷2006年3分)一个无盖的正方体纸盒,将它展开成平面图形,可能的情形共有【】A、11种B、9种C、8种D、7种【答案】C。

【考点】正方体的展开图【分析】由平面图形的折叠及正方体的展开图解题:正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图。

故选C。

2. (湖北省黄冈市2007年3分)在下面的四个几何体中,它们各自的左视图与主视图不一样的是【】【答案】D。

【考点】简单几何体的三视图。

3. (湖北省黄冈市2008年3分)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是【】A.长方体B.圆柱体C.球体D.三棱柱【答案】C。

【考点】简单几何体的三视图。

【分析】长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形。

故选C。

4. (湖北省黄冈市2009年3分)如图,△ABC与△A`B`C`关于直线l对称,且∠A=78°,∠C`=48°,则∠B的度数为【】A.48°B.54°C.74°D.78°【答案】B。

【考点】轴对称的性质,三角形内角和定理。

【分析】∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°-78°-48°=54°。

∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°。

故选B。

5. (湖北省黄冈市2011年3分)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为【】A、2πB、12C、4πD、8π【答案】C。

【中考12年】上海市2002-中考数学试题分类解析 专题4 图形的变换

【中考12年】上海市2002-中考数学试题分类解析 专题4 图形的变换

【2013版中考12年】上海市2002-2013年中考数学试题分类解析专题4 图形的变换一、选择题二、填空题1.(上海市2002年2分)在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于▲ 度.【答案】30。

【考点】翻折变换(折叠问题),线段垂直平分线的性质,直角三角形斜边上的中线性质。

【分析】根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,从而求得答案:在Rt△AB C中,∠A<∠B,CM是斜边AB上的中线,∴∠A=∠ACM。

将△ACM沿直线CM折叠,点A落在点D处,设∠A=∠ACM=x度,∴∠A+∠ACM=∠CMB。

∴∠CMB=2x。

又根据折叠的性质可知∠MCG =∠ACM=x,如果CD恰好与AB垂直,则在Rt△CMG中,∠MCG+∠CMB=90°,即3x=90°,x=30°,即∠A等于30°。

2.(上海市2003年2分)正方形ABCD的边长为1。

如果将线段BD绕着点B旋转后,点D 落在BC延长线上的点D’处,那么tg∠BAD’=▲ 。

【考点】正方形的性质,勾股定理,旋转的性质,锐角三角函数的定义。

【分析】根据题意画出图形.根据勾股定理求出BD 的长,由旋转的性质求出BD′的长,再运用三角函数的定义解答即可:∵正方形ABCD 的边长为1,则对角线。

∴tan∠BAD′=BD AB。

3.(上海市2004年2分)如图所示,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长为 ▲ 。

【考点】正方形的性质,旋转的性质,解直角三角形。

【分析】连接CH ,得:△CFH≌△CDH(HL )。

∴∠DCH=12∠DCF=12(90°-30°)=30°。

【中考12年】江苏省南京市2002中考数学试题分类解析 专题4 图形的变换

【中考12年】江苏省南京市2002中考数学试题分类解析 专题4 图形的变换

【2013版中考12年】江苏省南京市2002-2013年中考数学试题分类解析专题4 图形的变换一、选择题1. (江苏省南京市2002年2分)圆锥的侧面展开图是【】A、三角形B、矩形C、圆D、扇形2.(江苏省南京市2003年2分)如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD 的长与宽之比,则a∶b等于【】.3. (江苏省南京市2005年2分)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是【】A、球B、圆柱C、三棱柱D、圆锥【答案】A。

【考点】全等图形,简单几何体的三视图【分析】主视图、左视图、俯视图是分别从物体正面、正面和上面看,所得到的图形。

因此,A、球的三视图是相等圆形,符合题意;B、圆柱的三视图分别为长方形,长方形,圆,不符合题意;C、三棱柱三视图分别为长方形,长方形,三角形,不符合题意;D、圆锥的三视图分别为三角形,三角形,圆及圆心,不符合题意。

故选A。

4. (江苏省南京市2007年2分)下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是【】A.球体B.长方体C.圆锥体D.圆柱体5. (江苏省2009年3分)下面四个几何体中,左视图是四边形的几何体共有【】6. (江苏省南京市2011年2分)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【】【答案】B。

【考点】图形的展开与折叠。

【分析】根据三棱柱及其表面展开图的特点.三棱柱上、下两底面都是三角形得:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱。

故选B。

7. (2012江苏南京2分)如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’F CD时,CFFD的值为【】∴CF x FD y ==。

【中考12年】北京市2002-中考数学试题分类解析 专题12 押轴题

【中考12年】北京市2002-中考数学试题分类解析 专题12 押轴题

【2013版中考12年】北京市2002-2013年中考数学试题分类解析专题12 押轴题一、选择题1. (2002年北京市4分)如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE:EF:FB为【】A.1:2:3 B.2:1:3 C.3:2:1 D.3:1:22. (2003年北京市4分)三峡工程在6月1日于6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h(米)随时间t(天)变化的是【】3. (2004年北京市4分)如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是【】(A)a>b>c (B)a=b=c (C)c>a>b (D)b>c>a4. (2005年北京市4分)如下图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化.在下列图象中,能正确反映y与x的函数关系的是【】5. (2006年北京市大纲4分)如图,在梯形ABCD 中,AD∥BC,∠B=90°,AD=1,AB=23,BC=2, P 是BC 边上的一个动点(点P 与点B 不重合),DE⊥AP 于点E 。

设AP=x ,DE=y 。

在下列图象中,能正确反映y 与x 的函数关系的是【 】6. (2006年北京市课标4分)将如图所示的圆心角为90的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是【】7. (2007年北京市4分)下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是【】8. (2008年北京市4分)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如左图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是【】9. (2009年北京市4分)如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是【】10. (2010年北京市4分)美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个....符合上述要求,那么这个示意图是【】11.(2011年北京市4分)如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB 边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是【】12. (2012年北京市4分)小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的【】13.(2013年北京市4分)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的为x,△APO面积为y,则下列图象中,能表示y与x的函数关系的图象大致是【】二、填空题1. (2002年北京市4分)一种圆筒状包装的保鲜膜,如图所示,其规格为20cm×60m,经测量这筒保鲜膜的内径Φ1、外径Φ的长分别为3.2cm,4.0cm,则该种保鲜膜的厚度约为▲ cm(π取3.14,结果保留两位有效数字).2. (2003年北京市4分)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41…猜想:第n个等式(n为正整数)应为▲ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2013版中考12年】北京市2002-2013年中考数学试题分类解析 专题04 图形的变换一、选择题1. (2003年北京市4分)如果圆柱的底面半径为4cm ,底面为5cm ,那么它的侧面积等于【 】A. 220cm πB. 240cm πC. 20cm 2D. 40cm 22. (2004年北京市4分)如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于【 】(A )24πcm 2 (B )12πcm 2 (C )12cm 2 (D )6πcm 23. (2006年北京市课标4分)将如图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是【 】4. (2007年北京市4分)下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是【】5. (2008年北京市4分)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如左图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是【】6. (2009年北京市4分)若下图是某几何体的三视图,则这个几何体是【】A.圆柱B.正方体C.球D.圆锥7. (2010年北京市4分)美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个....符合上述要求,那么这个示意图是【】8. (2012年北京市4分)下图是某个几何体的三视图,该几何体是【】二、填空题1. (2002年北京市4分)如果圆锥母线长为6cm,底面直径为6cm,那么这个圆锥的侧面积是▲ cm2.2. (2002年北京市4分)一种圆筒状包装的保鲜膜,如图所示,其规格为20cm×60m,经测量这筒保鲜膜的内径Φ1、外径Φ的长分别为3.2cm,4.0cm,则该种保鲜膜的厚度约为▲ cm(π取3.14,结果保留两位有效数字).3. (2006年北京市大纲4分)如图,圆锥的底面半径为2cm,母线长为4cm,那么它的侧面积等于▲ cm2。

4. (2007年北京市4分)下图是对称中心为点O的正六边形。

如果用一个含30°角的直角三角板的角,借助点O(使角的顶点落在点O处),把这个正六边形的面积n等分,那么n 的所有可能的值是▲ 。

5. (2009年北京市4分)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N 分别是AD、, BC边的中点,则A′N=▲ ; 若M、N分别是AD、BC边的上距DC最近的n等分点(n2且n为整数),则A′N=▲ (用含有n的式子表示)6. (2011年北京市4分)若下图是某几何体的表面展开图,则这个几何体是▲ .7. (2012年北京市4分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是▲ ;当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示.)三、解答题1. (2004年北京市8分)已知:如图1,∠ACG=900,AC=2,点B为CG边上的一个动点,连结AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.⑴ 当BC时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;⑵ 如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连结AH,当∠CAB=∠BAD=∠DAH时,求BC的长.2.(2006年北京市大纲8分)已知:AB是半圆O 的直径,点C在BA的延长线上运动(点C 与点A不重合),以OC为直径的半圆M与半圆O交于点D,∠DCB的平分线与半圆M交于点E。

(1)求证:CD是半圆O的切线(图①);(2)作EF⊥AB于点F(图②),猜想EF与已有的哪条线段的一半相等,并加以证明;(3)在上述条件下,过点E作CB的平行线CD于点N,当NA与半圆O相切时(图③),求∠EOC的正切值。

3. (2008年北京市4分)已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D 作DG∥BC交AC于点G.DE⊥BC于点E,过点G作GF⊥BC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A′,B′,C′处.若点A′,B′,C′在矩形DEFG内或其边上,且互不重合,此时我们称△A′B′C′(即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A′B′C′的面积;(2)实验探究:设AD的长为m,若重叠三角形A′B′C′存在.试用含m的代数式表示重叠三角形A′B′C′的面积,并写出m的取值范围.4. (2008年北京市8分)请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及PGPC的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及PGPC的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD 的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).5. (2009年北京市8分)在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转090得到线段EF(如图1)(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转090得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转090得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=43,AE=1,在①的条件下,设CP1=x,S11P FC=y,求y与x之间的函数关系式,并写出自变量x的取值范围.6. (2010年北京市5分)阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,AD=8cm ,BA=6cm.现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P 点碰到BC 边,沿着与BC 边夹角为45°的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45°的方向作直线运动,…,如图1所示,问P 点第一次与D 点重合前...与边相碰几次,P 点第一次与D 点重合时...所经过的路径总长是多少. 小贝的思考是这样开始的:如图2,将矩形ABCD 沿直线CD 折叠,得到矩形11A B CD .由轴对称的知识,发现232P P P E =,11P A P E =.请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前...与边相碰_______次;P 点从A 点出发到第一次与D 点重合时...所经过的路径的总长是_______cm ;(2)进一步探究:改变矩形ABCD中AD、AB的长,且满足AD>AB,动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上,若P点第一次与B点重合前...与边相碰7次,则AB:AD的值为______.7. (2010年北京市7分)问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当∠BAC=900时,依问题中的条件补全下图.观察图形,AB与AC的数量关系为________________;当推出∠DAC=150时,可进一步推出∠DBC的度数为_________;可得到∠DBC与∠ABC度数的比值为_______________.(2)当∠BAC≠900时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.8. (2011年北京市5分)阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD 中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC的三条中线分别为AD,BE,CF.(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于34.9. (2012年北京市7分)在ABC △中,BA=BC BAC ∠=α,,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ 。

(1) 若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2) 在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3) 对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ=QD ,请直接写出α的范围。

相关文档
最新文档