大学物理化学经典课件6-1-界面现象

合集下载

物理化学(第二版)第六章 胶体和界面化学

物理化学(第二版)第六章 胶体和界面化学

比表面(specific surface area)与分散度
比表面--通常用来表示物质分散的程度,有两 种常用的表示方法: 一种是单位质量的固体所具有的表面积; 另一种是单位体积固体所具有的表面积。
S SV V
S SW W
式中,W 和V分别为固体的质量和体积,S为其表面 积。目前常用的测定表面积的方法有BET法和色谱法。 分散度--把物质分散成细小微粒的程度称为分散 度。物质分割得越小,分散度越高,比表面也越大。
r
弯曲液体表面上的蒸汽压
液体(T , pl ) === 饱和蒸汽( T , pg )
Gm (l) Gm (g)
Gm (g) Gm (l) dpg dpl pg T pl T
Vm (l)dpl Vm (g)dpg RTd ln pg
弯曲液体表面的附加压力
p凸 p0 p
(3)在凹面上:
p凹 p0 p
附加压力与曲率半径的关系
(忽略重力的影响)反抗压力 pi 移动活塞液滴体积增加 dV,对液 体所做的功为 pidV ; 液滴克服 pe 的压力增大体积 dV 对环境做 功 pedV,同时表面积增大dA付出表面功 σdA 。
比表面与分散度
把边长为1cm的立方体逐渐分割成小立方体的情况: 边长l/m 1×10-2 1×10-3 1×10-5 1×10-7 1×10-9 立方体数 1 103 109 1015 1021 比表面S/(m2/m3) 6 ×102 6 ×103 6 ×105 6 ×107 6 ×109
从表上可以看出,当将边长为10-2m的立方体分 割成10-9m的小立方体时,比表面增长了一千万倍。 可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相催 化方面的研究热点。

物理化学 界面现象

物理化学 界面现象

最简单的例子是液体及其蒸气组成的表面。
表面张力(surface tension): 在两相(特别是气-液)界面上,处处存在 着一种张力,它可看成是引起液体表面收缩的单 位长度上的力,方向与液体表面相切。 把作用于单位边界线上的这种力称为表面 张力,用g 表示,单位是N· m-1。
F 2g l
物理化学
第十章
界面现象
Interface Phenomenon
第一节 界面张力
1、 液体的表面张力、表面功和表面吉布斯函数
2、 表面热力学基本方程 3、 影响界面张力的因素 第二节 弯曲液面的附加压力与毛细现象 1、 弯曲液面的附加压力 2、 毛细现象 第三节 开尔文公式和亚稳状态
1、 微小液滴的饱和蒸气压 — 卡尔文公式


界面 (interface) 是指两相的接触面。一般常
把与气体接触的界面称为表面(surface)。界面并
不是两相接触的几何面,Байду номын сангаас有时又将界面称为界 面相。 严格讲表面应是液体和固体与其饱和蒸气之
间的界面,但习惯上把液体或固体与空气的界面
称为液体或固体的表面。
常见的界面有: 1.气-液界面
2.气-固界面
所必须对体系做的可逆非膨胀功,故γ 也称表面功。
表面自由能:
G g ( )T , p As
δW g dAs dGT,P
'
保持温度、压力和组成不变,每增加单位表 面积时,Gibbs自由能的增加值称为表面Gibbs自
由能,或简称表面自由能或表面能,用符号 g
表示,单位为J· m-2。 表面张力、单位面积的表面功、单位面积的表面吉 布斯函数的数值和量纲是等同的。
dG g dAs

《界面现象和吸附》课件

《界面现象和吸附》课件
《界面现象和吸附》PPT
课件
本课件将介绍界面现象和吸附的基本概念、影响因素、公式和应用案例。了
解界面现象和吸附,我们能更深入了解科学研究和应用的意义。
什么是界面现象?
1
定义
2
分类
3
影响因素
界面现象是指液体和固
界面现象可分为表面张
影响界面现象的因素包
体或两种不同液体之间
力现象和毛细现象。
括温度、表面特性和液
3
影响因素
影响吸附等温线的因素包括吸附剂和吸附物质的性质,以及温度和压力。
应用案例
1
界面现象在工业界
的应用
2
吸附现象在生物学
上的应用
3
基于界面现象和吸吸附现象在膜分离技术、
金属腐蚀和油水分离等
酶和抗体的纯化等方面
通过研究界面现象和吸
领域发挥着重要作用。
有广泛应用。
请参阅以下文献和网站链接,以了解更多关于界面现象和吸附的内容。
附特性,开发出具有特
殊功能的新材料,如吸
附剂和催化剂等。
结论
1
界面现象和吸附对科学研究和应用的意义
了解界面现象和吸附有助于深入研究材料性质、液体流动和分离技术等领域。
2
未来发展方向和挑战
继续探索界面现象和吸附的新现象、新机制和新材料,并解决实际应用中的问题。
参考文献
1
相关的文献资料与网站链接
的大小来计算。
吸附现象
1
定义
2
种类
3
影响因素
吸附现象是指分子或原
吸附现象可分为化学吸
影响吸附现象的因素包
子从气体或溶液中被吸
附和物理吸附。
括温度、压力和固体表

大学物理化学经典课件6-6-界面现象

大学物理化学经典课件6-6-界面现象
增溶作用增溶作用加入表面活性剂要求其浓度达到或超过cmc以形成胶束能促使原来难溶于水的液体如苯等非极性的ch化合物在另一液体如水中易于溶解的现象称为表面活性剂的增溶作用
第六章 界面现象
界 面 现 象
雨后的荷叶
(lotus flower after rain)
上一内容
下一内容
回主目录
返回
6.5.4.2 Gibbs吸附等温式
2 2 T
bp a 2 , 2 bp 1
RT a2 T
p正吸附 1 0, 2 0 * a2 T V ( p p) V c 0, 2 0 负吸附 7.Gibbs吸附公式 a2 T
返回
上一内容
下一内容
回主目录
返回
上一内容
下一内容
回主目录
返回
上一内容
下一内容
回主目录
返回
LB膜
上一内容
下一内容
回主目录
返回
L-B膜的应用
分子组装技术 如:L-B膜有较好的介电性能,隧道穿越导电性 能以及跳跃导电性能,发光性能等。L-B膜的 这些独特的性能在电子元件及集成电路中有重 要应用。 理论研究模型
上一内容
下一内容
回主目录
返回

上一内容
下一内容
回主目录
返回

上一内容
下一内容
回主目录
返回

上一内容
下一内容
回主目录
返回
本章小结
1.表面吉布斯自由能和表面张力
G A T , p ,nB
2.开尔文公式
ln
Pr

界面现象PPT课件

界面现象PPT课件

c.气体分子溶于液相 ↓
一般:p↑10atm, ↓1mN/m,例:
1atm 10atm
H2O = 72.8 mN/m H2O = 71.8 mN/m
13
§10.2 弯曲液面的附加压力及其后果 1. 弯曲液面的附加压力——Laplace方程
pg
一般情况下,液体表面是水
pl
平的,水平液面下液体所受压力
即为外界压力。
Δp = p内-p外
弯曲液面的附加压力
14
球形液滴(凸液面),附加压力为: p p 内 p 外 p l p g
液体中的气泡(凹液面),附加压力:
p p 内 p 外 p g p l
这样定义的p总是一个正值,方向指向凹面曲 率半径中心。
15
弯曲液面附加压力Δp 与液面曲率半径之间关系的推导:
当系统作表面功时,G 还是面积A的函数,若系 统内只有一个相界面,且两相T、p相同 ,
G f( T ,p ,A s,n B ,n C )
d G S d T V d p B ( ) d n B ( ) d A s B
G U H A
A s T , p , n B ( ) A s S , V , n B ( ) A s S , p , n B ( ) A s T , V , n B ( )
:引起表面收缩的单位长度上的力,单位:N·m-1。
7
(2)表面功
当用外力F 使皂膜面积增 大dA时,需克服表面张 力作可逆表面功。
W F d x 2 ld x d A
即:
W r dAs
:使系统增加单位表面所需的可逆功 ,称为表面功。
单位:J·m-2。 (IUPAC以此来定义表面张力)
8
分为1018个

物理化学中的界面现象

物理化学中的界面现象

物理化学中的界面现象物理化学作为研究物质和能量相互作用的学科,广泛关注物质的界面现象。

界面现象是指不同相(例如气相、液相、固相)之间的交界处所表现出的一系列特殊性质和现象。

本文将对物理化学中的界面现象进行探讨,包括界面张力、胶溶体和表面活性剂等方面。

首先,我们来讨论界面张力。

界面张力是界面上单位长度所具有的能量。

液体的界面张力是由分子间吸引力和排斥力所引起的。

分子间吸引力导致液体分子之间靠近,而分子间排斥力使液体分子远离界面。

这种分子间的不均匀排布导致了界面张力的存在。

界面张力使得水滴在平面上形成球状,也使得液体能够在毛细管中上升。

接下来,我们将讨论胶溶体。

胶溶体是由固体分散在液体中形成的混合物。

在胶溶体中,固体颗粒通过与液体分子的相互作用形成一个三维网络结构。

这种网络结构赋予了胶溶体特殊的物理性质,如黏度的增加和凝胶的形成。

在生活中,我们可以看到许多胶溶体的运用,比如胶水、果冻和凝胶电池等。

最后,我们来探讨表面活性剂。

表面活性剂是一类具有亲水性头部和疏水性尾部的分子。

在液体表面,表面活性剂的头部与水分子相互作用,而尾部则与空气或其他非极性物质相互作用。

这种分子的不均匀性导致表面活性剂在液体表面形成一个稳定的单分子层,称为胶束。

表面活性剂的存在使液体的表面张力减小,也可以使油与水相溶。

这种特性使得表面活性剂广泛应用于洗涤剂、乳化剂和泡沫剂等领域。

总而言之,物理化学中的界面现象涵盖了界面张力、胶溶体和表面活性剂等方面。

这些现象的研究不仅可以深化我们对物质相互作用的理解,也为许多实际应用提供了基础。

通过进一步研究和探索界面现象,我们可以更好地理解和应用物理化学的知识。

界面现象

界面现象

太原理工大学物理化学第八章界面现象界面是指相互接触的两相的交界面。

自然界中的物质一般以三种聚集状态存在,三种相态相互接触可 以形成五种界面:液-气、固-气、液-固、液-液和固-固界面。

习惯上将液-气和固-气界面称为表面;而其余 的相界面都称为界面。

由于历史的原因, “表面”和“界面”这两个词经常混用。

界面并不是一个几何平 面,它是从一个相到另一个相的过渡层,有一定的厚度,通常称为界面相或界面层,与界面层相邻的两相 称为体相。

界面现象就是在相界面上所发生的物理化学现象。

许多自然现象、生理现象、工农业生产以至日常生 活上的许多问题都与界面现象有密切的关系,如:液滴呈球形、活性炭能脱色、粉尘容易爆炸等都与界面 现象有关。

产生界面现象的根本原因是由于界面相中的分子与体相中的分子所处的力场不同,因此界面相 的性质和两个体相的性质就会不一样。

在一般情况下,系统所具有的比表面积相当小,表面上的物质、能 量都比体相小得多, 故表面的特殊性质可不考虑。

但当系统的表面积很大时,表面分子所占的比例就很大, 它的特殊性质就成为矛盾的主要方面而表现出各种界面现象。

为了便于比较不同物质的表面性质,提出了比表面积的概念。

比表面积(as)是指单位质量或单位体 积的物质所具有的表面积,用公式表示为: as = As / m 或 as = As / V通常用比表面积来表示物质的分散程度,即分散度。

比表面积越大,分散度越高,表面效应就越明显, 这必然对系统的物理化学性质产生影响,此时就必须考虑界面的特殊性。

这种特殊性反映出的宏观现象就 是人们观察到的界面现象,其具体体现就是界面张力。

§ 8.11.液体的表面吉布斯函数和表面功界面张力界面现象产生的根本原因是由于两相界面上的分子与体相分子所 处环境不同引起的,以液-气界面为例说明之。

如图 8.1.1 所示,处于液 体内部的分子,受周围各分子对它的作用力是对称的,可以相互抵消, 这些分子在液体内部运动时无须对它做功。

界面现象-物理化学-课件-13

界面现象-物理化学-课件-13
第十二章 界面现象
§12.1 序言
一、界面与界面科学
界面:紧密接触的两相之间的过渡区 域,几个分子的厚度(并非几何 学中没有厚度概念的平面或曲 面)。
界面科学:
• 研究界面的性质及其随物质本性而变 化的规律,即界面性质随两相中物质 性质的变化而变化的规律。 • 目前已有发展较系统的学科分支: “表面化学”、“表面物理” 等等。
G G G ( )T,P,ni ( )T,P,ni ( )T,P,ni A A A
b s
由于 T, P, ni 不变,所以体系的内部分子 状态不变,则:
G ( )T,P ,ni 0 A
b
G G ( )T,P,ni ( )T,P,ni A A
s
即:表面功 可称为:“单位面积表面 (额外)自由能”,简称 “表面自 由能”。

则此过程液滴表面自由能的变化:
表面功:在恒温恒压(组成不变)下可逆 地使表面积增加dA所需对体系做
的功叫表面功(可逆非体积功)。

环境对体系作功:
W = dA (1)
:增加单位面积表面时需对体系作的 表面功。

环境对体系作功:
W = dA

(1)
恒温恒压可逆过程:
W = (dG ) T, P (2)


因此,在研究 “表面层上发生的行为” 或 “界面面积很大的多相高分散体系的性质” 时,必须考虑界面分子的特性不同于体 相分子。
五、比表面(A0)

常用比表面(A0)来表示多相的分散体系 的分散程度。
A (单位体积物质所 1 A0 (m ) V 具有的表面积)
对于立 方体形 边长 比表面 A0 6×109(m-1) 0.1m 6×107(m-1) 1 nm 胶体体 系范围

物理化学第10章界面现象ppt课件

物理化学第10章界面现象ppt课件
他还导出了联系吸附量和界面张力随体相浓度变化 的普遍关系式即著名的吉布斯吸附等温式。1859年, 开尔文(Kelvin)将界面扩展时伴随的热效应与界 面张力随温度的变化联系起来。后来,他又导出蒸 汽压随界面曲率的变化的方程即著名的开尔文方程。
在1913—1942年期间,美国科学家Langmuir在界面 科学领域做出了杰出的贡献,特别是对吸附、单分 子膜的研究尤为突出。他于1932年获诺贝尔奖,被 誉为界面化学的开拓者。 界面化学的统计力学研 究是从范德华开始的。1893年,范德华认识到在界 面层中密度实际上是连续变化的。他应用了局部
与一般体系相比,小颗粒的分散体系有很大的表 面积,它对系统性质的影响绝对不可忽略。
首 页 刚看的页 上一页 下一页 结 束
物质的分散度用比表面积 as 表示,它的定义为 物质的表面
积 As 与质量 m 的比:
as
As m
10.0.1 单位:m2·kg-1
对于以上水滴的例子,若近似认为其在室温下密度为 1g ·cm-3,则以上两种情况,比表面积 as 分别约为:6 cm2 ·g1 及600 m2 ·g-1 。
αB
4.2.7
首 页 刚看的页 上一页 下一页 结 束
dU TdS pdV μB (α)dnB (α) 4.2.8
αB
dH TdS Vdp μB (α)dnB (α) 4.2.9
αB
dA SdT pdV μB (α)dnB (α) 4.2.10
αB
当体系作表面功时,G 还是面积A的函数
界面现象是自然界普遍存在的现象。胶体指的是 具有很大比表面的分散体系。对胶体和界面现象 的研究是物理化学基本原理的拓展和应用。从历 史角度看,界面化学是胶体化学的一个最重要的 分支,两者间关系密切。而随着科学的发展,现 今界面化学已独立成一门科学,有关“界面现象” 或“胶体与界面现象”的专著在国内外已有多种 版本。本课程主要介绍与界面现象有关的物理化 学原理及应用。它包括各种相界面和表面活性剂 的相关特性,界面上的各种物理化学作用,实验 的和理论的研究方法及其重要应用。对于准备考 研的同学,还应将其作为物理化学课程的一部分。

物理化学中的界面现象

物理化学中的界面现象

物理化学中的界面现象物理化学是研究物质结构和性质,探究物质变化和反应机理的学科。

在复杂化学结构中,界面现象是一个重要的研究领域。

界面现象在物理化学中有着广泛的应用,教育学者用来解释液体物理现象、悬浮液体、乳液的形成及表面活性剂现象。

本文将深入探讨物理化学中的界面现象。

一、界面现象概述界面现象是物理化学中的一个重要概念,指两种物质之间的界面区域,具有独特的物理化学特性。

例如,液体与气体之间的表面产生的现象,或者两种液体或固液之间的接触面。

形成界面是由于不同物质间的接触,形成一个分界面,具有独特的能量和化学特性。

物理化学中常常以界面和晶界为结合点,展示物质结构和性质方面的共通性和特殊性。

界面现象对于物质的粘度、湿润、流变性质、变形行为等方面产生重要影响。

因此,研究界面现象对于理解物质的特性和属性,以及探究物质结构、能量转移和反应机理是至关重要的。

二、界面现象的分类物理化学中的界面现象可以分为气液界面、液液界面、液固界面、气固界面四个类别。

下面将分别进行讲解。

1. 气液界面气液界面是指气体与液体之间的界面现象。

这种界面现象常常被观察到,例如许多常见的液滴、气泡和泡沫。

气液界面有着重要的物理和化学特性,包括表面张力、液体湿润性、表面活性剂和胶体等。

2. 液液界面液液界面指两种不同液体之间的界面现象。

例如,油和水的混合物中的液液界面。

液液界面的特性包括表面张力、液体改成、液体分离等,这些特性在工业和科学上有着广泛的应用。

3. 液固界面液固界面指液体和固体之间的界面现象。

例如:在某些材料的表面,吸附了液体,所形成的界面。

在液固界面上的特性包括表面张力、液体吸附、电位差和化学反应等。

4. 气固界面气固界面指气体和固体之间的界面现象。

例如,气体在固体表面的吸附现象。

气固界面影响着固体材料表面的化学反应,对于分子分布和传输行为有着重要的影响。

三、界面现象在物理化学中的应用界面现象在物理化学中有着广泛的应用。

下面将进行列举。

名校物理化学界面现象的课件精讲PPT60页

名校物理化学界面现象的课件精讲PPT60页
名校物理化学界面现象的课件精讲
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的Байду номын сангаас人才能 所向披 靡。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!

《物理化学教学课件》第十章界面现象

《物理化学教学课件》第十章界面现象

界面现象的基本原理
表面张力
表面张力是物质表面分子或离子间的吸引力,使得物质表 面尽可能收缩。表面张力的大小与物质种类和温度有关。
润湿
润湿是指液体在固体表面铺展或被固体表面吸附的现象。 润湿与固体的表面能、液体的表面张力以及固体与液体之 间的相互作用力有关。
吸附
吸附是指物质在界面上的富集现象。吸附可以分为物理吸 附和化学吸附,物理吸附主要与物质在界面上的范德华力 有关,化学吸附则涉及到化学键的形成。
润湿是指液体在固体表面铺展并覆盖住表面的现象,而不润湿则是指液体不能在固体表面 铺展的现象。
润湿与不润湿产生的原因
润湿与不润湿现象的产生与液体和固体表面的分子间相互作用有关,当液体分子与固体表 面分子间的相互作用力大于液体分子间的内聚力时,就会产生润湿现象;反之则产生不润 湿现象。
润湿与不润湿的应用
能源
能源的储存与转化过程中涉及大量界面现象,如电池、燃料电池等,深入研究 界面现象有助于提高能源利用效率和降低环境污染。
环保
污水处理、大气污染控制等领域涉及大量界面现象,通过优化界面现象可实现 更高效的环保技术。
THANKS
感谢观看
毛细现象
毛细现象定义
毛细现象是指由于液体的表面张力作用,使得液体会在细管中上 升或下降的现象。
毛细现象产生的原因
由于液体的表面张力作用,使得液体会在细管中产生向上的附加压 力,从而使液体在细管中上升。
毛细现象的应用
毛细现象在自然界和日常生活中广泛存在,如植物的吸水、毛细血 管等。
润湿与不润湿
润湿与不润湿定义
04
界面现象的实验研究方法
表面张力测量方法
表面张力是液体表面所受到的垂 直于表面方向的力与表面每单位

第九章 界面现象.

第九章  界面现象.
第九章 界面现象
在讲界面现象之前,让我们先看看日常生活的有关现象:
荷叶上的水珠会自动成球形。 荷
叶 上

璃 上
毛细现象
物理化学 课件
第九章 界面现象
微小液滴易挥发(小颗粒晶体易溶解)
活性碳脱色 橘子皮为什么可除去冰箱中的臭味 金属粉末在空气中可自燃 。粉尘爆炸。 纳米材料为什么会呈现强烈的表面效应等等。 以上现象皆与物质的界(表)面有关。
地保墑。 墑情好的土壤中存在丰富的毛细管,
锄地可以切断地面的毛细管,防止土壤
中的水分沿毛细管上升到表面而挥发;
物理化学 课件
第九章 界面现象
§9.2 弯曲液面的附加压力及其后果 另一方面,由于液态水在毛细管中呈凹面,饱和蒸地表和土壤深处毛细管的同时, 还有利于大气中水汽在土壤毛细管中凝结,增加土壤水分,这就是 锄地保墑的科学原理。 此外,硅胶作为干燥剂同样是利用毛细管现象,请读者自己理
通过毛细管与位于管端的半径为r的
小液滴相连接。 液滴所承受的外压为p0和弯曲液面的附加压力p之和p+ p0, 平面液面上活塞施加的压力为p。
物理化学 课件
第九章 界面现象
§9.2 弯曲液面的附加压力及其后果 例9.2 已知20℃时水的表面张力为0.0728Nm-1,如果把水分散成小 水珠,试计算当水珠半径分别为1.00×10-3、1.00×10-4、1.00×10-5 cm时, 曲面下的附加压力为多少?
由图可知,毛细管半径R与弯曲液面的
曲率半径R的关系为R=Rcos,结合上式可
得液体在毛细管中上升的高度为
2 cos θ h R( - ) g
(9 - 20)
由上式可知,在一定的温度下,毛细管越细,液体对毛细管润

《界面现象》课件

《界面现象》课件

界面现象在其他领域的应用
界面现象在其他领域也具有广泛的应 用,如能源、材料和电子等。在能源 领域中,利用界面现象可以提高燃料 的燃烧效率和减少污染物排放。
VS
在材料领域中,利用界面现象可以制 备功能材料和复合材料,提高材料的 性能和功能。在电子领域中,利用界 面现象可以制备电子器件和集成电路 ,实现电子设备的微型化和高效化。
分子模拟方法
总结词
利用计算机模拟分子间的相互作用和运动, 预测界面现象。
详细描述
分子模拟方法是利用计算机模拟分子间的相 互作用和运动,从而预测界面现象的一种方 法。这种方法可以对分子间的相互作用进行 详细的模拟,从而深入理解界面现象的微观 机制。分子模拟方法需要具备较高的计算机 编程和数值计算能力,并且需要选择合适的 模拟算法和力场参数。
表面能
表面能是表面分子所具有的能量 ,它反映了表面分子间的相互吸
引力。
表面能的大小决定了物质表面的 稳定性,如液体的蒸发速度、晶
体表面的生长速度等。
表面能的应用包括表面改性、涂 层技术、纳米材料制备等领域。
表面活性剂
表面活性剂是一种能够显著降低 表面张力或界面张力的物质。
表面活性剂分子通常具有亲水基 团和疏水基团,能够在界面上形
计算机仿真方法
总结词
通过模拟系统整体行为,预测界面现象。
详细描述
计算机仿真方法是利用计算机模拟系统的整体行为,从而预测界面现象的一种方法。这 种方法可以对系统整体行为进行模拟,从而提供对界面现象的整体认识。计算机仿真方 法需要建立合理的仿真模型,选择合适的仿真算法和参数,并对仿真结果进行科学分析

交叉学科
此外,界面现象还与生物学、医学、环境科学等交叉学科密切相关。通 过跨学科的研究,可以拓展界面现象的应用领域,推动相关领域的发展 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一内容
下一内容
回主目录
返回
结论:
1.同一种物质, 质量相同, 界面积不同, 性 质不同。 2.分散度很大时, 界面对体系性质的影响 不可忽略。
界面:两相接触的约几个分子厚度的过渡区; 表面:若其中一相为气体,则该界面称表面。
上一内容
下一内容
回主目录
返回
常见的界面
上一内容
下一内容
返回
上一内容
下一内容
回主目录
dG dA Ad
讨论2:
A一定, dA = 0, dG = A dσ
d σ < 0, d G < 0; 说明: 体系σ减小的过程为自发过程。 宏观表现: 吸附现象
上一内容 下一内容 回主目录
返回
例: 气相 (gas) 被吸附原子 (adsorbed atom)
上一内容 下一内容 回主目录
A T , p , nB
返回
若T、P及组成一定:
不定积分:
dG dA G A G0
G G0 G表 A
-----界面能的热力学定义 由此可以讨论一系列界面现象
上一内容 下一内容 回主目录
返回
6.1.2.2界面现象的一般热力学分析
上一内容 下一内容 回主目录
返回
6.1.2 界面能与界面张力
界面功 由于表面层分子的受力情况与本体中不同,因此如 果要把分子从内部移到界面,或可逆的增加表面积,就 必须克服体系内部分子之间的作用力,对体系做功。
温度、压力和组成恒定时,可逆使界面积增加dA所 需要对体系作的功,称界(表)面功。
上一内容 下一内容 回主目录
返回
课前指导
3. 本章的重点和难点
重点:表面张力和表面吉布斯函数,拉普拉斯方 程;开尔文公式; Gibbs吸附公式;固体表面的 吸附;吸附等温线的类型;Langmuir吸附等温式 ;吸附等温式。 难点:表面张力和附加压力;表面活性剂类型, 表面活性剂的重要作用;吸附等温线;吸附等压 线;吸附等量线;BET公式。
上一内容
下一内容
回主目录
返回
8.1 界面热化学
界面分子的特殊性 界面能与界面张力 分散度与自由能的关系1 界面分子的特殊性 表面原子受力不均匀
上一内容
下一内容
回主目录
返回
结论
• 界面分子受力不均匀,合力垂直于液面而指向 液体内部。 • 所有液体都有收缩其表面积的自发趋势。
B
dA dA
B
dH TdS Vdp B dnB dA
B
dF SdT pdV B dnB
B
dA
上一内容
下一内容
回主目录
返回
由上式可以得到σ 的定义 狭义定义: G
广义定义:
U H A S ,V , nB A S , P , nB F G A T ,V , nB A T , P ,nB
上一内容
下一内容
回主目录
返回
前言
考察一个多相体系:
上一内容
下一内容
回主目录
返回


1.相界面对体系性质是否有影响? 2.如果有,为什么前面几章没有考虑界面的影响?
例1. r =1cm的水珠中水分子个数:1.4×1023 表面上(水-空气界面)水分子个数:1.3 ×1016 表面分子数/总分子数=1千万分之一
上一内容
下一内容
回主目录
返回
例. V=1cm3的物质分为边长不同的立方体微粒
边长/cm 1 微粒数 1 总面积/cm2 6
10-1
10 -2
10 3
10 6
60
600

10 -7

10 21

6000m2
从表上可以看出,当将边长为1cm的立方体分割成 10-9m的小立方体时,表面积增长了一千万倍。
上一内容
下一内容
回主目录
返回
课前指导
2. 本章的教学要求
理解表面张力及表面吉布斯函数的概念。 理解接触角、润湿、附加压力的概念及其与表面张力 的关系。 理解拉普拉斯公式及开尔文公式的应用。 理解亚稳状态与新相生成的关系。 理解物理吸附与化学吸附的含义和区别。 了解兰格缪尔单分子层吸附理论,理解兰格缪尔吸附 等温式。 了解溶液界面的吸附及表面活性物质的作用与应用。 理解吉布斯吸附公式的含义和应用。
第六章 界面现象
界 面 现 象
雨后的荷叶
(lotus flower after rain)
上一内容
下一内容
回主目录
返回
课前指导
1. 本章的主要内容
表面吉布斯自由能和表面张力;弯曲表面下的附加
压力与蒸气压;开尔文公式;液体界面的性质;
Gibbs吸附公式;液-固界面现象;表面活性剂及其应 用;固体表面的吸附;吸附等温线的类型;Langmuir 吸附等温式,BET公式,物理吸附和化学吸附。
界面能: 温度、压力和组成恒定时,界面分子比内部分子多 出的一部分能量,又称为界(表)面Gibbs自由能。
上一内容 下一内容 回主目录
返回
6.1.2.1 热力学定义
在一定T、P下,对一定的液体来说,扩 展界面所作的界面功应与所增加的界面 面积成正比,即:
W ' A
微分式: 写成等式:
表面原 子 (surface atom)
上一内容 下一内容
固体(solid)
固体吸附气体(adsorption)
回主目录
返回
对于单组分体系,这种特性主要来自于同一物质 在不同相中的密度不同;对于多组分体系,则特性来 自于界面层的组成与任一相的组成均不相同。
上一内容
下一内容
回主目录
返回
举例
上一内容
下一内容
回主目录
返回
小麦叶上的露珠
( dewdrop on wheat leaf )
雨后的荷叶
(lotus flower after rain)
Iijima S, Nature, 354, 56 (1991).
表 面 效 应
表面积大,表面原子数多
上一内容 下一内容 回主目录
返回
固体催化剂
• 衡量固体催化剂的催化活性,其质量(或体积) 表面的大小是重要指标之一,如活性炭的质量 表面可高于106m2.kg-1,硅胶或活性氧化铝的质 量表面也可达5×105 m2.kg-1;纳米级超细颗粒 的活性氧化锌由于其巨大的质量表面而可作为 隐型飞机的表面涂层。
结论: 分散度越大的体系,越是热力学不稳定体系。
上一内容 下一内容 回主目录
返回
举例
• Eg1 : 粉状煤自燃 • Eg2 : 烟道灰爆炸 • Eg3 : 粉尘爆炸 1982年10月18日,法,摩泽尔河畔的梅斯 新港,7座粮仓,4座发生爆炸,内装面粉。 1987年3月15日,我国,哈尔滨轧麻厂, 发生厂房爆炸,原因:粉尘超标。
回主目录
返回
常见的界面
上一内容
下一内容
回主目录
返回
上一内容
下一内容
回主目录
返回
上一内容
下一内容
回主目录
返回
界面现象
• 研究对象:界面效应显著的体系。 • 研究任务:介绍有代表性的界面现象, 它们的实质及其热力学规律。 • 界面现象应用:材料材料(纳米胶束、易清洗领 带、隐形飞机)、仿生学、食品药 物、表面活性剂等。 • 研究方法:宏观热力学。
G A
dG dA Ad
讨论1: 一定, dσ=0, dG =σdA σ
dA < 0, dG < 0; 体系减小界面积的过程为自发过程。 说明:
上一内容
下一内容
回主目录
返回
dA > 0, dG > 0。
说明:体系增加界面积的过程为非自发过程。
A , G , 体系稳定性 。
超细微粒
可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相 催化方面的研究热点。
上一内容
下一内容
回主目录
返回
溶解度
溶解度( solubility )增大
上一内容
下一内容
回主目录
返回
碳纳米管 (carbon nanotube) [1]
[1]
W ' dA W ' dA
若扩展界面为可逆过程,则:
W ' dGT , P dA
因此: dG dA
上一内容 下一内容 回主目录
返回
高度分散系统的热力学基本方程
dG SdT Vdp B dnB
dU TdS pdV B dnB
上一内容 下一内容 回主目录
返回
1 nm Fe
1 cm3
边长
(arris)
表面积(surface
area)
表面原子%
(surface atom)
1 cm
6 cm2
3 10-8
1 m
1 nm
上一内容 下一内容
6 104 cm2
6 107 cm2 10
返回
30
99 99
回主目录
相关文档
最新文档