2016年浙江省温州市高一上学期数学期末试卷

合集下载

浙江省温州市高一数学上学期期末联考试题

浙江省温州市高一数学上学期期末联考试题

2016学年第一学期温州“十校联合体”期末考试联考高一联考数学学科 试题考生须知:1.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.2.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上. 3.选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净.4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,答案写在本试题卷上无效.选择题部分一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若角α的始边是x 轴正半轴,终边过点()34-,P ,则αcos 的值是 A .4B .-3C .54D .53-2.已知集合{}0P y y =≥,若P Q Q =I ,则集合Q 不可能是....A .{}R x x y y ∈=,|2B .{}R x y y x∈=,2|C . {}0,lg |>=x x y yD .∅3.函数()02sin >+=a x a y 的单调递增区间是A.⎪⎭⎫ ⎝⎛-2,2ππ B.⎪⎭⎫ ⎝⎛--2,ππ C .⎪⎭⎫ ⎝⎛ππ,2 D .⎪⎭⎫⎝⎛ππ2,234.已知向量a 、b 不共线,若=AB a+2b ,=BC 4-a-b ,=D C 5-a-3b , 则四边形ABCD 是A.梯形B. 平行四边形C . 矩形D .菱形5.已知⎥⎦⎤⎢⎣⎡∈ππθ,2,则()⎪⎭⎫ ⎝⎛-++θπθπ2sin sin 21= A.θθcos sin -B .θθsin cos -C . ()θθcos sin -±D .θθcos sin +6.已知()b a b ab a y xyx<<+≤+--1,则A.0≥+y xB. 0≤+y x C . 0≤-y x D .0≥-y x 7.已知函数()()0ln ≠=a ax x f ,()x xx g sin 3+=-,则A.()()f x g x +是偶函数B. ()()f x g x ⋅是偶函数 C . ()()f x g x +是奇函数 D. ()()f x g x ⋅是奇函数8.设实数1x 、2x 是函数()xx x f ⎪⎭⎫⎝⎛-=21ln 的两个零点,则A.021<x xB. 1021<<x x C . 121=x x D.121>x x 9.已知函数()()12sin ϕ+=x x f ,()()22,4cos 212πϕπϕϕ≤≤+=,x x g命题①:若直线ϕ=x 是函数()x f 和()x g 的对称轴,则直线()Z k k x ∈+=ϕπ21是函数()x g 的对称轴;命题②:若点()0,ϕP 是函数()x f 和()x g 的对称中心,则点()Z k k Q ∈⎪⎭⎫ ⎝⎛+04 ,ϕπ是函数()x f 的中心对称.A. 命题①②都正确B. 命题①②都不正确 C . 命题①正确,命题②不正确 D. 命题①不正确,命题②正确10. 已知函数()()t t x x f t --=2,R ∈t ,设⎩⎨⎧≥<=)()(),()()(),()(x f x f x f x f x f x f x f b a b b a a , 若b a <<0,则A. ()()b f x f ≥ 且当0>x 时()()x b f x b f +≥-B. ()()b f x f ≥ 且当0>x 时()()x b f x b f +≤- C .()()a f x f ≥ 且当0>x 时()()x a f x a f +≥- D.()()a f x f ≥ 且当0>x 时()()x a f x a f +≤-非选择题部分 (共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

浙江省温州市第二外国语学校2015-2016学年高一上学期期末考试数学试题解析(解析版)

浙江省温州市第二外国语学校2015-2016学年高一上学期期末考试数学试题解析(解析版)

浙江省温州市第二外国语学校2015-2016学年高一上学期期末考试数学试题( 命题时间:2016.1)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数4)1()(22--=x x x f 的零点个数是( ) A.1 B.2 C. 3 D.4 【答案】D 【解析】试题分析:由题4)1()(22--=x x x f ,求零点得:20(x =-,得:20(0x =-= ,零点为:1,23,41,2x x =±=±,有4个.考点:零点的定义及解方程. 2.下列等式一定成立的是( )A.AB AC BC +=B. AB AC BC -=C. AB AC CB +=D. AB AC CB -=【答案】D 【解析】试题分析:由向量加法法则:AB AC AD +=,(D 为平行四边形的顶点)A 与C 不成立。

由向量减法法则:AB AC CB -=(共起点,连终点,指向被减向量) D 成立.考点:向量的加减法运算法则.3.若(0,)2πα∈,4cos()25πα+=-,则3sin()2πα-的值是( ) A.45- B. 45 C. 35- D.35【答案】C 【解析】试题分析:由题;4cos()sin 25παα+=-=-,又,3sin()cos 2παα-=- 则:(0,)2πα∈,43sin ,cos 55αα== 。

34sin()25πα-=-.考点:同角三角函数的平方关系及诱导公式的运用.4.计算9log 32162)23(log--+=( )A.1 B .1- C.1-- D.1-+【答案】C 【解析】试题分析:由题,1==-164log 9log 3log 222===则:16log 921-=--考点:对数的运算性质.5.定义在R 上的函数()f x 满足2log (4),0()(1)(2),0x x f x f x f x x -≤⎧=⎨--->⎩ ,则(3)f 的值为( ) A.-1B. -2C.1D.2 【答案】B 【解析】试题分析:由题()(1)(2),0f x f x f x x =--->,得:(3)(2)(1)(1)(0)(1)(0)f f f f f f f =-=--= 2(0)log (40)2f =-=, (0)2f -=- 考点:分段函数及函数符号的准确理解.6.要得到函数1sin 23y x π⎛⎫=-⎪⎝⎭的图象,只要将函数1cos 2y x =的图象 ( )A.向左平行移动53π个单位B.向左平行移动56π个单位C.向右平行移动53π个单位D.向右平行移动56π个单位【答案】C 【解析】试题分析:由题11cossin()222y x x π==+,要得:1sin 23y x π⎛⎫=- ⎪⎝⎭的图像, 则:115,22233x x πππϕϕ++=-=考点:诱导公式及三角函数的图像变换规律.7.函数xe xy cos =的图像大致是( )【答案】A 【解析】试题分析:由题:()cos ,()cos x xf x x e f x x e -=⋅-=⋅,可知函数无奇偶性。

浙江省温州市高一数学上学期期末试卷(含解析)

浙江省温州市高一数学上学期期末试卷(含解析)

2015-2016学年浙江省温州市高一(上)期末数学试卷一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣23.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x34.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x6.下列函数中,值域为C.(﹣∞,﹣2) D.(﹣∞,﹣2]18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= .20.函数f(x)=2的单调递增区间为.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈,使得f(x1)=g(x2),则实数a的取值范围是.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈时,都有g(x)≤3成立,且当x∈时,g(x)=2k(x﹣1)+1,求实数k的取值范围.2015-2016学年浙江省温州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】利用诱导公式把要求的式子化为﹣cos60°,从而求得结果.【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于基础题.2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣2【考点】元素与集合关系的判断.【专题】集合思想;定义法;集合.【分析】根据元素和集合的关系,解不等式组即可得到结论.【解答】解:∵1∉A,2∈A,∴,解得﹣4<a≤﹣2,故选:D.【点评】本题主要考查元素和集合关系的应用,根据条件解不等式是解决本题的关键,比较基础.3.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x3【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;函数的性质及应用.【分析】利用幂函数的形式设出f(x),将点的坐标代入求出函数的解析式.【解答】解:∵f(x)是幂函数设f(x)=xα∴图象经过点(,3),∴3=,∴α=﹣1∴f(x)=x﹣1故选:A.【点评】本题考查利用待定系数法求知函数模型的解析式.4.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c【考点】对数值大小的比较.【专题】计算题;转化思想;函数的性质及应用.【分析】利用对数函数、指数函数性质求解.【解答】解:∵0=log31<a=log32<log33=1,b=log2<log21=0,c=2>20=1,∴c>a>b.故选:A.【点评】本题考查三个数大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数性质的合理运用.5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂性质、运算法则求解.【解答】解:在A中,﹣=﹣≠(﹣x),故A错误;在B中,x=≠﹣,故B错误;在C中,(﹣x)=x,故C正确;在D中,x=±x≠,故D错误.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意根式与分数指数幂性质的合理运用.6.下列函数中,值域为=﹣sin(α+)=﹣.故选:C.【点评】本题主要考查了诱导公式的应用,属于基础题.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大【考点】扇形面积公式.【专题】计算题;转化思想;数形结合法;三角函数的求值.【分析】由已知利用弧长公式,扇形面积公式求出值比较大小即可.【解答】解:∵△AOB为顶角为120°、腰长为2的等腰三角形,∴A=B=30°=,AM=AN=1,AD=2,∴方案一中扇形的周长=2=4+,方案二中扇形的周长=1+1+1×=2+,方案一中扇形的面积=2×=,方案二中扇形的周长==,故选:A.【点评】本题主要考查了弧长公式,扇形面积公式的应用,考查了计算能力,属于基础题.16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】设降价百分率为x%,由题意知5000(1﹣x%)2=2560,由此能够求出这种手机平均每次降价的百分率.【解答】解:设降价百分率为x%,∴5000(1﹣x%)3=2560,解得x=20.故选:D.【点评】本题考查数列的性质和应用,解题时要注意挖掘隐含条件,寻找数量关系,建立方程.17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1) B.(﹣∞,﹣1] C.(﹣∞,﹣2) D.(﹣∞,﹣2]【考点】函数恒成立问题.【专题】函数思想;转化思想;函数的性质及应用.【分析】根据函数f(x)的解析式判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系将不等式进行转化,利用参数分离法转化为求函数的最值即可.【解答】解:f(x)=x|x|=,则函数f(x)在定义域为增函数,且f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x),则函数f(x)为奇函数,则若对任意的x≤1有f(x+m)+f(x)<0恒成立,等价为若对任意的x≤1有f(x+m)<﹣f(x)=f(﹣x),即x+m<﹣x恒成立,即m<﹣2x恒成立,∵x≤1,∴﹣2x≥﹣2,则m<﹣2,故选:C【点评】本题主要考查不等式恒成立问题,根据条件判断函数的奇偶性和单调性是解决本题的关键.利用参数分离法是解决不等式恒成立问题的常用方法.18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x【考点】函数的对应法则;函数的概念及其构成要素.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】在A、B中,分别取x=±1,由函数性质能排除选项A和B;令|x+1|=t,t≥0,则x2+2x=t2﹣1,求出f(x)=x2﹣1,能排除选项C.【解答】解:在A中,取x=1,则f(1)=1,取x=﹣1,则f(1)=﹣1,不成立;在B中,令|x|=t,t≥0,x=±t,取x=1,则f(1)=3,取x=﹣1,则f(1)=﹣1,不成立;在C中,令|x+1|=t,t≥0,则x2+2x=t2﹣1,∴f(t)=t2﹣1,即f(x)=x2﹣1,故C不成立,D成立.故选:D.【点评】本题考查抽象函数的性质,是中档题,解题时要认真审题,注意函数性质的合理运用.二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= 2 .【考点】对数的运算性质.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据换底公式计算即可.【解答】解:(log23)•(log34)=•=2,故答案为:2.【点评】本题考查了换底公式,属于基础题.20.函数f(x)=2的单调递增区间为,使得f(x1)=g(x2),则实数a的取值范围是∪.【考点】对数函数的图象与性质.【专题】函数思想;分类法;函数的性质及应用.【分析】分别求出f(x1)和g(x2)的值域,令f(x1)的值域为g(x2)的值域的子集列出不等式解出a.【解答】解:∵x1∈上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为,∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为,∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为,∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为,∴,解得a<2.综上,a的取值范围是∪∪(0,2﹣)∪(,2)=∪.故答案为∪.【点评】本题考查了二次函数的值域,对数函数的单调性与值域,集合间的关系,分类讨论思想,属于中档题.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.【考点】交、并、补集的混合运算;并集及其运算;交集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】(Ⅰ)先求出A=(),由a=2便可求出B=,然后进行并集、交集的运算即可;(Ⅱ)根据条件便有B⊆C R A,可求出,可讨论B是否为空集:B=∅时会得到a<0;而B≠∅时得到a≥0,且B={x|﹣a≤x≤a},这样便可得到,这两种情况下得到的a的范围求并集便可得出a的取值范围.【解答】解:(Ⅰ)A=;a=2时,B=;∴A∪B=时,都有g(x)≤3成立,且当x∈时,g(x)=2k(x﹣1)+1,求实数k的取值范围.【考点】抽象函数及其应用.【专题】综合题;新定义;分类讨论;分析法;函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)由对称性可得f(1+x)+f(1﹣x)=2b,化简整理,即可得到b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,对k讨论,当k=0,k>0,k<0,结合对称性和单调性,要使g(x)≤3,只需g(x)max≤3,运用单调性求得最大值,解不等式即可得到所求范围.【解答】解:(Ⅰ)函数f(x)=的图象关于点(1,b)成中心对称,可得f(1+x)+f(1﹣x)=2b,即有+=4=2b,解得b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,当k=0时,g(x)=2(0≤x≤1),又g(x)关于(1,2)对称,可得g(x)=2(0≤x≤2),显然g(x)≤3恒成立;当k>0时,g(x)=2k(x﹣1)+1在递增,又g(x)关于点(1,2)对称,可得g(x)在递增,g(x)≤3,只需g(x)max=g(2)≤3,又g(2)+g(0)=4,则g(0)≥1即21﹣k≥1,即有0≤k≤1;当k<0时,g(x)=2k(x﹣1)+1在递减,又g(x)关于(1,2)对称,可得g(x)在递减,要使g(x)≤3,只需g(x)max=g(0)≤3,即21﹣k≤3,解得1﹣log23≤k<0.综上可得,1﹣log23≤k≤1.【点评】本题考查函数的对称性和运用,同时考查函数的单调性的运用,以及不等式恒成立问题的解法,考查运算能力,属于中档题.11。

浙江省温州市高一数学上学期期末试卷(含解析)

浙江省温州市高一数学上学期期末试卷(含解析)

2015-2016学年浙江省温州市高一(上)期末数学试卷一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣23.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x34.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x6.下列函数中,值域为[1,+∞)的是()A.y=2x+1B.y=C.y=+1 D.y=x+7.下列函数中,与函数y=2x表示同一函数的是()A.y=B.y=C.y=()2D.y=log24x8.已知函数f(x)=,则f(﹣1)+f(0)=()A.3 B.4 C.5 D.69.函数f(x)=x﹣2+lnx的零点所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)10.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b 的图象是()A.B.C.D.11.已知函数f(x)=e x﹣e﹣x,e为自然对数的底,则下列结论正确的是()A.f(x)为奇函数,且在R上单调递增B.f(x)为偶函数,且在R上单调递增C.f(x)为奇函数,且在R上单调递减D.f(x)为偶函数,且在R上单调递减12.已知sinα=3cosα,则sinα•cosα的值为()A.B.C.D.13.已知定义在R上的函数f(x)满足:对任意x1,x2∈R(x1≠x2),均有>0,e为自然对数的底,则()A.f()<f()<f(e) B.f(e)<f()<f() C.f(e)<f()<f()D.f()<f()<f(e)14.设<α<π,若sin(α+)=,则cos(+α)=()A.﹣B.C.﹣D.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1) B.(﹣∞,﹣1] C.(﹣∞,﹣2) D.(﹣∞,﹣2]18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= .20.函数f(x)=2的单调递增区间为.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2k(x﹣1)+1,求实数k的取值范围.2015-2016学年浙江省温州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】利用诱导公式把要求的式子化为﹣cos60°,从而求得结果.【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于基础题.2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣2【考点】元素与集合关系的判断.【专题】集合思想;定义法;集合.【分析】根据元素和集合的关系,解不等式组即可得到结论.【解答】解:∵1∉A,2∈A,∴,解得﹣4<a≤﹣2,故选:D.【点评】本题主要考查元素和集合关系的应用,根据条件解不等式是解决本题的关键,比较基础.3.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x3【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;函数的性质及应用.【分析】利用幂函数的形式设出f(x),将点的坐标代入求出函数的解析式.【解答】解:∵f(x)是幂函数设f(x)=xα∴图象经过点(,3),∴3=,∴α=﹣1∴f(x)=x﹣1故选:A.【点评】本题考查利用待定系数法求知函数模型的解析式.4.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c【考点】对数值大小的比较.【专题】计算题;转化思想;函数的性质及应用.【分析】利用对数函数、指数函数性质求解.【解答】解:∵0=log31<a=log32<log33=1,b=log2<log21=0,c=2>20=1,∴c>a>b.故选:A.【点评】本题考查三个数大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数性质的合理运用.5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂性质、运算法则求解.【解答】解:在A中,﹣=﹣≠(﹣x),故A错误;在B中,x=≠﹣,故B错误;在C中,(﹣x)=x,故C正确;在D中,x=±x≠,故D错误.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意根式与分数指数幂性质的合理运用.6.下列函数中,值域为[1,+∞)的是()A.y=2x+1B.y=C.y=+1 D.y=x+【考点】函数的值域.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】前三项都可由解析式看出值域:y=2x+1>0,y=,y=,从而判断出这三项不正确,对于D,先得到,两个不等式相加便可得到,这样便可得出该函数的值域,即得出D正确.【解答】解:A.2x+1>0,∴y=2x+1的值域为(0,+∞),∴该选项错误;B.,∴的值域为[0,+∞),∴该选项错误;C.|x|>0;∴;∴;∴的值域为(1,+∞),∴该选项错误;D.x﹣1≥0;∴;∴;即y≥1;∴的值域为[1,+∞),∴该选项正确.故选:D.【点评】考查函数值域的概念,指数函数的值域,以及反比例函数的值域,一次函数的值域,根据不等式的性质求值域的方法.7.下列函数中,与函数y=2x表示同一函数的是()A.y=B.y=C.y=()2D.y=log24x【考点】判断两个函数是否为同一函数.【专题】对应思想;定义法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,y==2x(x≠0)与y=2x(x∈R)的定义域不同,∴不是同一函数;对于B,y==2|x|(x∈R)与y=2x(x∈R)的解析式不同,∴不是同一函数;对于C,y==2x(x≥0)与y=x(x∈R)的定义域不同,∴C是同一函数;对于D,y=log24x=log222x=2x(x∈R)与y=2x(x∈R)的定义域相同,对应关系也相同,∴是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.8.已知函数f(x)=,则f(﹣1)+f(0)=()A.3 B.4 C.5 D.6【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数的表达式求出f(﹣1)和f(0)的值,求和即可.【解答】解:∴函数f(x)=,∴f(﹣1)=1+2=3,f(0)=1,∴f(﹣1)+f(0)=3+1=4,故选:B.【点评】本题考察了求函数值问题,考察分段函数,是一道基础题.9.函数f(x)=x﹣2+lnx的零点所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理;二分法求方程的近似解.【专题】计算题;函数的性质及应用.【分析】由题意,函数f(x)=x﹣2+lnx在定义域上单调递增,再求端点函数值即可【解答】解:函数f(x)=x﹣2+lnx在定义域上单调递增,f(1)=1﹣2<0,f(2)=2+ln2﹣2>0,故函数f(x)=x﹣2+lnx的零点所在区间是(1,2);故选B.【点评】本题考查了函数的零点的判断,属于基础题.10.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b 的图象是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】先由函数f(x)的图象判断a,b的范围,再根据指数函数的图象和性质即可得到答案.【解答】解:由函数的图象可知,﹣1<b<0,a>1,则g(x)=a x+b为增函数,当x=0时,y=1+b>0,且过定点(0,1+b),故选:C【点评】本题考查了指数函数和二次函数的图象和性质,属于基础题.11.已知函数f(x)=e x﹣e﹣x,e为自然对数的底,则下列结论正确的是()A.f(x)为奇函数,且在R上单调递增B.f(x)为偶函数,且在R上单调递增C.f(x)为奇函数,且在R上单调递减D.f(x)为偶函数,且在R上单调递减【考点】函数奇偶性的判断;函数单调性的判断与证明.【专题】函数思想;综合法;函数的性质及应用.【分析】可先得出f(x)的定义域为R,求f(﹣x)=﹣f(x),从而得出f(x)为奇函数,根据指数函数的单调性便可看出x增大时,f(x)增大,从而得到f(x)在R上单调递增,这样便可找出正确选项.【解答】解:f(x)的定义域为R;f(﹣x)=e﹣x﹣e x=﹣f(x);∴f(x)为奇函数;x增加时,e﹣x减小,﹣e﹣x增加,且e x增加,∴f(x)增加;∴f(x)在R上单调递增.故选A.【点评】考查奇函数的定义,判断一个函数为奇函数的方法和过程,以及增函数的定义,指数函数的单调性.12.已知sinα=3cosα,则sinα•cosα的值为()A.B.C.D.【考点】同角三角函数基本关系的运用.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用本题主要考查同角三角函数的基本关系,求得要求式子的值.【解答】解:∵sinα=3cosα,∴tanα=3,则sinα•cosα===,故选:B.【点评】本题主要考查同角三角函数的基本关系的应用,属于基础题.13.已知定义在R上的函数f(x)满足:对任意x1,x2∈R(x1≠x2),均有>0,e为自然对数的底,则()A.f()<f()<f(e) B.f(e)<f()<f() C.f(e)<f()<f()D.f()<f()<f(e)【考点】函数单调性的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】根据条件及增函数的定义容易判断出f(x)在R上单调递增,从而比较这三个数的大小便可得出对应的函数值的大小,从而找出正确选项.【解答】解:∵;∴对任意的x1,x2∈R,x1<x2时,会得到f(x1)<f(x2);∴f(x)在R上为增函数;又;∴.故选:A.【点评】考查增函数的定义,根据增函数的定义比较函数值大小的方法,清楚这三个数的大小关系.14.设<α<π,若sin(α+)=,则cos(+α)=()A.﹣B.C.﹣D.【考点】运用诱导公式化简求值.【专题】计算题;转化思想;三角函数的求值.【分析】利用角的范围可确定三角函数值的符号,利用诱导公式即可求值.【解答】解:∵<α<π,<α+<,sin(α+)=>0,∴<α+<π,可得:<+α<,∴cos(+α)=cos[(α+)+]=﹣sin(α+)=﹣.故选:C.【点评】本题主要考查了诱导公式的应用,属于基础题.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大【考点】扇形面积公式.【专题】计算题;转化思想;数形结合法;三角函数的求值.【分析】由已知利用弧长公式,扇形面积公式求出值比较大小即可.【解答】解:∵△AOB为顶角为120°、腰长为2的等腰三角形,∴A=B=30°=,AM=AN=1,AD=2,∴方案一中扇形的周长=2=4+,方案二中扇形的周长=1+1+1×=2+,方案一中扇形的面积=2×=,方案二中扇形的周长==,故选:A.【点评】本题主要考查了弧长公式,扇形面积公式的应用,考查了计算能力,属于基础题.16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】设降价百分率为x%,由题意知5000(1﹣x%)2=2560,由此能够求出这种手机平均每次降价的百分率.【解答】解:设降价百分率为x%,∴5000(1﹣x%)3=2560,解得x=20.故选:D.【点评】本题考查数列的性质和应用,解题时要注意挖掘隐含条件,寻找数量关系,建立方程.17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1) B.(﹣∞,﹣1] C.(﹣∞,﹣2) D.(﹣∞,﹣2]【考点】函数恒成立问题.【专题】函数思想;转化思想;函数的性质及应用.【分析】根据函数f(x)的解析式判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系将不等式进行转化,利用参数分离法转化为求函数的最值即可.【解答】解:f(x)=x|x|=,则函数f(x)在定义域为增函数,且f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x),则函数f(x)为奇函数,则若对任意的x≤1有f(x+m)+f(x)<0恒成立,等价为若对任意的x≤1有f(x+m)<﹣f(x)=f(﹣x),即x+m<﹣x恒成立,即m<﹣2x恒成立,∵x≤1,∴﹣2x≥﹣2,则m<﹣2,故选:C【点评】本题主要考查不等式恒成立问题,根据条件判断函数的奇偶性和单调性是解决本题的关键.利用参数分离法是解决不等式恒成立问题的常用方法.18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x【考点】函数的对应法则;函数的概念及其构成要素.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】在A、B中,分别取x=±1,由函数性质能排除选项A和B;令|x+1|=t,t≥0,则x2+2x=t2﹣1,求出f(x)=x2﹣1,能排除选项C.【解答】解:在A中,取x=1,则f(1)=1,取x=﹣1,则f(1)=﹣1,不成立;在B中,令|x|=t,t≥0,x=±t,取x=1,则f(1)=3,取x=﹣1,则f(1)=﹣1,不成立;在C中,令|x+1|=t,t≥0,则x2+2x=t2﹣1,∴f(t)=t2﹣1,即f(x)=x2﹣1,故C不成立,D成立.故选:D.【点评】本题考查抽象函数的性质,是中档题,解题时要认真审题,注意函数性质的合理运用.二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= 2 .【考点】对数的运算性质.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据换底公式计算即可.【解答】解:(log23)•(log34)=•=2,故答案为:2.【点评】本题考查了换底公式,属于基础题.20.函数f(x)=2的单调递增区间为[0,+∞).【考点】复合函数的单调性.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得,本题即求函数t=x2﹣1的增区间,再利用二次函数的性质可得结论.【解答】解:函数f(x)=2的单调递增区间,即函数t=x2﹣1的增区间,再利用二次函数的性质可得函数t=x2﹣1的增区间为[0,+∞),故答案为:[0,+∞).【点评】本题主要考查指数函数、二次函数的性质,复合函数的单调性,属于中档题.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.【考点】函数的最值及其几何意义.【专题】计算题;分类讨论;分析法;函数的性质及应用.【分析】讨论当|x+1|≥x+2,|x+1|<x+2时,求出f(x)的解析式,由单调性可得最小值.【解答】解:当|x+1|≥x+2,即x+1≥x+2或x+1≤﹣x﹣2,解得x≤﹣时,f(x)=|x+1|,递减,则f(x)的最小值为f(﹣)=|﹣+1|=;当|x+1|<x+2,可得x>﹣时,f(x)=x+2,递增,即有f(x)>,综上可得f(x)的最小值为.故答案为:.【点评】本题考查函数的最值的求法,考查绝对值不等式的解法,注意运用分类讨论的思想方法,以及函数的单调性,属于中档题.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是[﹣1,2﹣]∪[,3] .【考点】对数函数的图象与性质.【专题】函数思想;分类法;函数的性质及应用.【分析】分别求出f(x1)和g(x2)的值域,令f(x1)的值域为g(x2)的值域的子集列出不等式解出a.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].【点评】本题考查了二次函数的值域,对数函数的单调性与值域,集合间的关系,分类讨论思想,属于中档题.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.【考点】交、并、补集的混合运算;并集及其运算;交集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】(Ⅰ)先求出A=(),由a=2便可求出B=[﹣2,2],然后进行并集、交集的运算即可;(Ⅱ)根据条件便有B⊆C R A,可求出,可讨论B是否为空集:B=∅时会得到a<0;而B≠∅时得到a≥0,且B={x|﹣a≤x≤a},这样便可得到,这两种情况下得到的a的范围求并集便可得出a的取值范围.【解答】解:(Ⅰ)A=;a=2时,B=[﹣2,2];∴A∪B=[﹣2,+∞),;(Ⅱ)∵(C R A)∪B=C R A;∴B⊆C R A;;①当B=∅时,a<0;②当B≠∅时,B={x|﹣a≤x≤a}(a≥0);∴,且a≥0;∴;综上得,a的取值范围为.【点评】考查函数定义域的概念及求法,对数的真数大于0,绝对值不等式的解法,交集、并集的运算,以及子集、补集的概念,不要漏了B=∅的情况.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.【考点】三角函数中的恒等变换应用;三角函数的化简求值.【专题】函数思想;综合法;三角函数的求值.【分析】(Ⅰ)由三角形内角和以及诱导公式化简可得原式=cosA;(Ⅱ)由sinA+cosA=和sin2A+cos2A=1,联立可解得sinA=,cosA=﹣,可得(i)△ABC 是钝角三角形;(ii) tanA==﹣【解答】解:(Ⅰ)由题意化简可得:==cosA;(Ⅱ)∵sinA+cosA=,又sin2A+cos2A=1,结合sinA应为正数,联立可解得sinA=,cosA=﹣,∴A为钝角,故可得(i)△ABC是钝角三角形;(ii) tanA==﹣【点评】本题考查三角函数恒等变换,涉及三角函数化简求值和同角三角函数基本关系,属基础题.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2k(x﹣1)+1,求实数k的取值范围.【考点】抽象函数及其应用.【专题】综合题;新定义;分类讨论;分析法;函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)由对称性可得f(1+x)+f(1﹣x)=2b,化简整理,即可得到b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,对k讨论,当k=0,k>0,k<0,结合对称性和单调性,要使g(x)≤3,只需g(x)max≤3,运用单调性求得最大值,解不等式即可得到所求范围.【解答】解:(Ⅰ)函数f(x)=的图象关于点(1,b)成中心对称,可得f(1+x)+f(1﹣x)=2b,即有+=4=2b,解得b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,当k=0时,g(x)=2(0≤x≤1),又g(x)关于(1,2)对称,可得g(x)=2(0≤x≤2),显然g(x)≤3恒成立;当k>0时,g(x)=2k(x﹣1)+1在[0,1]递增,又g(x)关于点(1,2)对称,可得g(x)在[0,2]递增,g(x)≤3,只需g(x)max=g(2)≤3,又g(2)+g(0)=4,则g(0)≥1即21﹣k≥1,即有0≤k≤1;当k<0时,g(x)=2k(x﹣1)+1在[0,1]递减,又g(x)关于(1,2)对称,可得g(x)在[0,2]递减,要使g(x)≤3,只需g(x)max=g(0)≤3,即21﹣k≤3,解得1﹣log23≤k<0.综上可得,1﹣log23≤k≤1.【点评】本题考查函数的对称性和运用,同时考查函数的单调性的运用,以及不等式恒成立问题的解法,考查运算能力,属于中档题.。

浙江省2016-2017学年高一上学期期末考试数学试题 Word版含答案

浙江省2016-2017学年高一上学期期末考试数学试题 Word版含答案

浙江省2016-2017学年高一上学期期末考试数学试题满分100分 考试时间80分钟一、选择题:(共18小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求) 1. 若全集{}3,2,1,0=U ,{}2,1,0=A ,{}3,2,0=B ,则()U A C B ⋃=A. φB. {}1C. {}2,1,0D. {}3,22. 已知集合{|13},{1,2}M x Z x N =∈-≤≤=,则M C N 等于A. {}1,2B. {}1,0,3-C. {}0,3D. {}1,0,1- 3. 函数)13lg(11++-=x xy 的定义域是 A. ),31(+∞- B. )1,31(- C. )31,31(- D. )31,(--∞4. 函数1(0)()0(0)1(0)x x f x x x x ->⎧⎪==⎨⎪+<⎩,则1[()]2f f 的值是 A.12 B. 12- C. 32 D. 32-5. 函数2()1log f x x =-的零点是A. (1,1)B. 1C. (2,0)D. 2 6. cos35cos 25sin145cos65-的值为A. -21 B. cos10︒ C. 21D. -cos10︒ 7. 若函数满足)2()(+-=x f x f ,则与)100(f 一定相等的是A. )1(fB. )2(fC. )3(fD. )4(f 8. 已知2tan -=α,其中α是第二象限角,则 =αcosA. 55-B. 55C. 55±D. 552- 9. 设函数R x x x f ∈-=),22sin()(π,则)(x f 是A .最小正周期为π的奇函数B .最小正周期为2π的偶函数C .最小正周期为2π的奇函数 D .最小正周期为π的偶函数10. 如图的曲线是幂函数n x y =在第一象限内的图像, 已知n 分别取21,2±±四个值,与曲线4321,,,c c c c 对应 的n 依次为A. 2,21,21-,2- B. 2,21,2-,21- C. 21-,2-,2,21 D. 2-,21-,21,2 (第10题)11. 若函数()y f x =的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图象则()y f x =是A. 1sin(2)122y x π=++B. 1sin(2)122y x π=-+C. 1sin(2)124y x π=++D. 1sin(2)124y x π=-+12. 函数||log 33x y =的图象是函数ax f x1131)(+-=是奇函数,则a 的值为 13.A. 1B. 2C. 3D. 414. 函数f (x ) =)32(log 221-+x x 的单调增区间是A. (),3-∞-B.(],3-∞-C. (),1-∞-D. ()3,1--15. 已知函数31()()log 5xf x x =-,若实数0x 是方程()0f x =的解,且01x x <,则1()f x 的值A. 等于零B. 恒为负C. 恒为正D. 不大于零 16. 同时具有性质:“①最小正周期是π;②图象关于直线3π=x 对称;③在]3,6[ππ-上是增函数”的一个函数是 A. sin()26x y π=+B. cos(2)3y x π=+C. sin(2)6y x π=-D. sin(2)6y x π=+17.()f x 是定义在区间[],c c -上的奇函数,其图象如图所示,令()(),g x af x b =+则下列关于函数g()x 的叙述正确的是A. 若0a <,则函数g()x 的图象关于原点对称B. 若1,02a b =<< ,则方程g()0x =有大于2的实根C. 若2,0a b =-=,则函数g()x 的图象关于y 轴对称D. 若0,2a b ≠=,则方程g()0x =有三个实根 (第17题)18. 若对,a b R ∈,记{},max ,,a a ba b b a b ≥⎧=⎨<⎩,则函{}()max |1|,|2|,f x x x x R =+-∈的最小值是 A. 0 B.12 C. 32D. 3 二、填空题:(每空3分,共15分.请将答案填在答卷对应题号的位置上,答错位置,书写不清,模棱两可均不得分)19. 已知,54sin ),π,2π(=∈θθ则cos θ=___▲___;πsin(3θ+=___▲___. 20. 已知1sin cos ,(0,),5θθθπ+=∈则tan θ=___▲____. 21. 给出下列命题:(1)函数3()xy x R =∈与函数x y 3log = )0(>x 的图象关于直线y x = 对称;(2)函数sin y x =的最小正周期2T π=; (3)函数)32tan(π+=x y 的图象关于点)0,6(π-成中心对称图形;(4)函数[]12sin(),2,232y x x πππ=-∈-的单调递减区间是5,33ππ⎡⎤-⎢⎥⎣⎦. 其中正确的命题序号是 ▲ .22. 已知()f x 是定义在[2,2]-上的函数,且对任意实数1212,()x x x x ≠,恒有1212()()0f x f x x x ->-,且()f x 的最大值为1,则不等式2(log )1f x <的解集为 ▲ .三、解答题:(共31分.解答应写出文字说明、证明过程或演算步骤.)23.(本题满分10分)已知2()cos cos f x x x x =-(Ⅰ)求函数()f x 的最小值并求函数取得最小值时自变量x 的值; (Ⅱ)求函数()f x 的单调增区间.24. (本题满分10分)已知函数2()1f x x mx =+-,m R ∈(Ⅰ)若关于x 的不等式()0f x <的解集是{}|2x x n -<<,求实数m ,n 的值; (Ⅱ)若对于任意[],1x m m ∈+,都有()0f x <成立,求实数m 的取值范围.25. (本小题满分11分)已知函数2()log (21)x f x =-(Ⅰ) 求函数()f x 的单调区间;(Ⅱ) 若函数2()log (21)x g x =+,且关于x 的方程()()g x m f x =+在区间[1,2]上有解,求实数m 的取值范围.浙江省2016-2017学年高一上学期期末考试数学试题参考答案1~18题CBBAD CDADA BABAB CBC19. 35-, 410- 20. 43- 21. (1) (3)(4) 22. 1[,4)423. (本题满分10分)已知2()cos cos f x x x x =-(Ⅰ)求函数()f x 的最小值并求函数取得最小值时自变量x 的值; (Ⅱ)求函数()f x 的单调增区间.解:(Ⅰ)1cos 2()22x f x x +=-1sin(2)62x π=-- - ---------3分令22,62x k k Z πππ-=-∈ ,解得,6x k k Z ππ=-∈故当|,6x x x k k Z ππ⎧⎫∈=-∈⎨⎬⎩⎭时,函数()f x 的最小值为32- ----2分(Ⅱ) 令26t x π=-,函数sin y t =的单调增区间为[2,2]22k k ππππ-++, ---7分由222262k x k πππππ-+≤-≤+,得63k x k ππππ-+≤≤+1sin(2)62y x π∴=--的单调增区间为[,]()63k k k Z ππππ-++∈ ------10分24.(本小题满分10分)已知函数2()1f x x mx =+-,m R ∈(Ⅰ)若关于x 的不等式()0f x <的解集是{}|2x x n -<<,求实数m ,n 的值; (Ⅱ)若对于任意[],1x m m ∈+,都有()0f x <成立,求实数m 的取值范围. 24. (本题满分10分)解:(Ⅰ)由题意可知:2,n -是方程210x mx +-=的两根, --------2分 故由韦达定理得221n mn -+=-⎧⎨-⋅=-⎩解得3212m n ⎧=⎪⎪⎨⎪=⎪⎩ -------------4分(Ⅱ)由题意可知:()0(1)0f m f m <⎧⎨+<⎩,即22210230m m m ⎧-<⎨+<⎩ ------7分解得22302m m ⎧-<<⎪⎪⎨⎪-<<⎪⎩,即02m -<< -------10分25. (本小题满分11分)已知函数2()log (21)x f x =-(Ⅰ) 求函数()f x 的单调区间;(Ⅱ) 若函数2()log (21)x g x =+,且关于x 的方程()()g x m f x =+在区间[1,2]上有解,求实数m 的取值范围.解:(Ⅰ)函数2()log (21)x f x =-的定义域为(0,)+∞ ┄┄1分 令221,log x t y t =-=当(0,)x ∈+∞时,函数21xt =-单调递增,当(0,)t ∈+∞时,函数2log y t =单调递增┄┄3分所以函数()f x 的单调递增区间为(0,)+∞ ┄┄4分(Ⅱ)方程()()g x mf x =+在区间[1,2]上有解,即()()mg x f x =-在区间[1,2]上有解 ┄┄6分令221()()()log 21x x h x g x f x ⎛⎫+=-= ⎪-⎝⎭,令21212121x x xt +==+--当[1,2]x ∈时,5,33t ⎡⎤∈⎢⎥⎣⎦,所以225()log ,log 33h x ⎡⎤∈⎢⎥⎣⎦┄┄9分 所以225log ,log 33m ⎡⎤∈⎢⎥⎣⎦┄┄11分。

浙江省温州市高一上学期数学期末考试试卷

浙江省温州市高一上学期数学期末考试试卷

浙江省温州市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共15分)1. (1分) (2017高一上·苏州期中) 已知集合A={﹣1,0,1,2},B={﹣2,1,2},则A∩B=________.2. (1分)函数f(x)=sinxcosx+ cos2x的最小正周期和振幅分别是________.3. (1分) (2019高一上·仁寿期中) 函数的定义域为________.4. (1分) (2015高二上·怀仁期末) 已知a>0,b>0,ab=8,则当a的值为________时,取得最大值.5. (2分) (2015高二下·湖州期中) 设全集U=R,集合A={x|﹣1<x<4},B={y|y=x+1,x∈A},则A∩B=________;(∁UA)∩(∁UB)=________.6. (1分) (2016高三上·朝阳期中) 设平面向量 =(1,2), =(﹣2,y),若∥ ,则y=________.7. (1分) (2017高一上·丰台期末) 设函数如果f(1)=1,那么a的取值范围是________.8. (1分) (2017高二上·阳高月考) 给出下列四个命题:①函数的一条对称轴是;②函数的图象关于点( ,0)对称;③函数的最小值为;④若,则,其中;以上四个命题中正确的有________(填写正确命题前面的序号).9. (1分)设a=()x , b=()x﹣1 , c=x,若x>1,则a,b,c的大小关系为________10. (1分)已知α,β为锐角,且sinα﹣sinβ=﹣,cosα﹣cosβ= ,则tan(α﹣β)=________.11. (1分) (2017·江门模拟) 偶函数f(x)在(0,+∞)单调递减,f(1)=0,不等式f(x)>0的解集为________.12. (1分)(2020·南京模拟) 已知是的垂心(三角形三条高所在直线的交点),,则的值为________.13. (1分)函数f(x)=2x﹣log2(x+4)零点的个数为________14. (1分)已知函数f(x)=x+1(0≤x<1),g(x)=2x﹣(x≥1),函数h(x)= .若方程h(x)﹣k=0,k∈[ ,2)有两个不同的实根m,n(m>n≥0),则n•g(m)的取值范围为________.二、解答题 (共6题;共65分)15. (10分)已知α∈(,π),且sin +cos = .(1)求tan(α+ )的值;(2)若sin(α﹣β)=﹣,β∈(,π),求cos β的值.16. (10分) (2016高二上·青浦期中) 在△ABC中,角A,B,C所对的边分别为a,b,c且b=c,∠A的平分线为AD,若 =m • .(1)当m=2时,求cosA(2)当∈(1,)时,求实数m的取值范围.17. (10分) (2017高二下·新余期末) 设函数f(x)=x3﹣3ax+b.(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值.(2)在(1)的条件下求函数f(x)的单调区间与极值点.18. (10分) (2017高三上·同心期中) 下图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆弧AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F 在圆弧AB上,G,H在弦AB上).过O作,交AB 于M,交EF于N,交圆弧AB于P,已知(单位:m),记通风窗EFGH的面积为S(单位:)(1)按下列要求建立函数关系式:(i)设,将S表示成的函数;(ii)设,将S表示成的函数;(2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大?19. (10分)(2017·闵行模拟) 若函数y=f(x)对定义域的每一个值x1 ,在其定义域均存在唯一的x2 ,满足f(x1)f(x2)=1,则称该函数为“依赖函数”.(1)判断,y=2x是否为“依赖函数”;(2)若函数y=a+sinx(a>1),为依赖函数,求a的值,并给出证明.20. (15分)已知函数f(x)= 且f(x)>0的解集为(﹣1,0)∪(0,2).(1)求k的值;(2)如果实数t同时满足下列两个命题;①∀x∈(,1),t﹣1<f(x)恒成立;②∃x0∈(﹣5,0),t﹣1<f(x0)成立,求实数t的取值范围;(3)若关于x的方程lnf(x)+2lnx=ln(3﹣ax)仅有一解,求实数a的取值范围.参考答案一、填空题 (共14题;共15分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题 (共6题;共65分)15-1、15-2、16-1、16-2、17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、20-3、。

浙江省温州中学2015-2016学年高一上学期期末考试数学试题和答案

浙江省温州中学2015-2016学年高一上学期期末考试数学试题和答案

温州中学2015学年第一学期期末考试高一数学试卷一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知平面向量(1,2)a = ,且//a b,则b 可能是( )A .(2,1)B .(2,1)--C .(4,2)-D .(1,2)--2. 已知函数()()21,02log 2,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎝⎭⎨⎪+>⎩,若()02f x =,则0x =( )A . 2或1-B .2C . 1-D .2或1 3.已知函数()sin(2)4f x x π=+,为了得到函数g()sin 2x x =的图象,只要将()y f x =的图象( )A. 向左平移8π个单位长度 B. 向右平移8π个单位长度 C. 向左平移4π个单位长度 D. 向右平移4π个单位长度4.已知()cos πα+=,且,02πα⎛⎫∈- ⎪⎝⎭,则tan α的值为()A. 3-B. 3C. 2D. 2- 5.已知点P 在正ABC ∆所确定的平面上,且满足PA PB PC AB ++=,则ABP ∆的面积与BCP ∆的面积之比为( )A .1:1B .1:2C .1:3D .1:46.已知函数21log ()2a y x ax =-+,对任意的[)12,1,x x ∈+∞,且12x x ≠时,满足2121()()0f x f x x x ->-,则实数a 的取值范围是( ) A .3(1,)2B .3,2⎛⎤+∞⎥⎝⎦C .(]1,2D .[)2,+∞7.已知函数()y f x =对任意的x R ∈,恒有()()()()sin cos 0f x x f x x --=成立,则下列关于函数()y f x =的说法正确的是( ) A .最小正周期是2πB .值域是[]1,1-C .是奇函数或是偶函数D .以上都不对8.已知函数⎩⎨⎧<++≥--=012)(22x c bx x x x ax x f 为偶函数,方程()f x m =有四个不同的实数解,则实数m 的取值范围是( ) A .(3,1)--B .(2,1)--C .(1,0)-D .)2,1(9.已知函数()()()sin 2,tan 4f g x x g x x π⎛⎫==+ ⎪⎝⎭,则1()7f -=( )A .43 B .43- C .2425- D .247- 10. 设R k ∈,对任意的向量a ,b 和实数[]0,1x ∈,如果满足a k a b =- ,则有a xb a bλ-≤-成立,那么实数λ的最小值为( ) A .1 B .k C .2|1|1-++k k D .2|1|1--+k k二、填空题(本大题共5小题,每小题4分,共20分) 11. 求值:cos75cos15sin 75sin15-= ▲ .12. 定义在R 上的函数()f x 满足(2)(2)f x f x +=-,若当()0,2x ∈时,x x f 2)(=,则(3)f =▲.13.已知ω为正整数,若函数()()sin f x x ω=在区间(,)63ππ上不单调,则最小的正整数ω=▲. 14.设α为锐角,若3sin 65πα⎛⎫+= ⎪⎝⎭,则cos 212πα⎛⎫+ ⎪⎝⎭的值为▲.15. 已知集合(){,1M a b a =≤-,且 }0b m <≤,其中m R ∈.若任意(,)a b M ∈,均有2log 30a b b a ⋅--≥,求实数m 的最大值▲.三、解答题(本大题共4小题,共40分,解答应写出文字说明、证明过程或演算步骤)16.设函数()2()lg 3f x x x =-的定义域为集合A ,函数()g x =定义域为集合B (其中a R ∈,且0a >). (1)当1=a 时,求集合B ;(2)若A B ≠∅ ,求实数a 的取值范围.17.在等腰直角ABC ∆中,,12A AB AC π∠===,M 是斜边BC 上的点,满足3BC BM =(1)试用向量,AB AC来表示向量AM ;(2)若点P 满足1AP = ,求AP BM ⋅ 的取值范围.18.已知函数()2sin cos cos f x a x x x =,(a 为常数且0a >).(1)若函数的定义域为0,2π⎡⎤⎢⎥⎣⎦,值域为0,12⎡⎤⎛⎫+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦,求a 的值; (2)在(1)的条件下,定义区间()[](][),,,,,,,m n m n m n m n 的长度为n m -,其中n m >,若不等式()0f x b +>,[]0,x π∈的解集构成的各区间的长度和超过3π,求b 的取值范围.19.设函数2()f x x ax b =++,,a b R ∈.(1)若3a b +=,当[1,2]x ∈时,0)(≥x f 恒成立,求实数a 的取值范围;(2)是否存在实数对(,)a b ,使得不等式()2f x >在区间[]1,5上无解,若存在,试求出所有满足条件的实数对(,)a b ;若不存在,请说明理由.温州中学2014学年高一第一学期期末考试数学答案一、选择题(本大题共10小题,每小题4分,共40分。

2015-2016学年浙江省温州市第二外国语学校高一(上)数学期末试卷 及解析

2015-2016学年浙江省温州市第二外国语学校高一(上)数学期末试卷 及解析

2. (5.00 分)下列等式一定成立的是( A. 【解答】解:A. B. C. D.. ﹣ + ﹣ = ≠ = ≠ B. C. ,不正确; ,因此不正确;
三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演 算步骤. 16. (15.00 分) 在△ABC 中, 角 A, B, C 的对边分别是 a, b, c, 且满足 a2+b2=2c2, sinAcosB=2cosAsinB. (Ⅰ)求 cosC 的值; (Ⅱ)若 ,求△ABC 的面积.
2015-2016 学年浙江省温州市第二外国语学校高一(上)期末数 学试卷
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1. (5.00 分)函数 A.1 B.2 C.3 D.4 ) D. , 则 的值是 ( ) 的零点个数是( )
二、填空题: (本大题共 7 小题,前 4 小题每题 6 分,后 3 小题每题 4 分,共 36 分) . 9. (6.00 分)①设 A={x|x2﹣3x+2<0},B={x|x<a},若 A⊆B,则实数 a 的取值 范围是 ②函数 , 的定义域是 .
10. (6.00 分)①扇形的周长为 8cm,面积为 4cm2,则扇形的圆心角(正角)的 弧度数是 . .
2. (5.00 分)下列等式一定成立的是( A. 3. (5.00 分) 若 A. B. C. D. B. , C.
4. (5.00 分)计算 A. B. C. D.
=(
)ห้องสมุดไป่ตู้
5. (5.00 分)定义在 R 上的函数 f(x)满足 f(x)= f(3)的值为( ) D.2 的图象,只要将函数

温州市高一上期末数学试卷(附答案)

温州市高一上期末数学试卷(附答案)

人教版高一上学期期末考试试卷
数学参考答案
1 2 3 4 5 6 7 8 9 10 A A C B D C D ACA 11 12 13 14 15 16 17 18 BCACBBDC
19.2, 4
3
20.1 或 1
21.
±
4
√4 5
5
22. −4
23.
(1) 由图可知:A = 2, 1 T = 2π − π = 3π ,
2
1 个单位后得到函数 y = g (x) 的图象,则 ( )
3 A.
g (x)
( = 2 sin x +
1
)
( C. g (x) = sin πx −
3 1
)
3
( B. g (x) = 2 sin x −
( D. g (x) = sin πx −
π)
3 π
)
3
18. 已知函数
f
(x)
=
2x+1 21−x
6 7π ⩽ x ⩽ kπ +

π
6 ,
k

} Z
12
12
{ B. x|kπ −

⩽ x ⩽ kπ +
π
,k

} Z
D.
{ x|2kπ
+
6 π

x

2kπ
6 + 5π
,
k

} Z
6
6
9. 已知定义在 R 上的奇函数 y = f (x) + x2,满足 f (1) = 3,则 f (−1) = ( )
(2) 讨论函数 g (x) = x + log3 f (x) 的零点个数.

2015-2016学年浙江省温州中学高一(上)期末数学试卷

2015-2016学年浙江省温州中学高一(上)期末数学试卷

2015-2016学年浙江省温州中学高一(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知平面向量a →=(1,2),且a → // b →,则b →可能是( ) A.(−2, −1) B.(2, 1) C.(−1, −2) D.(4, −2)2. 已知函数f(x)={(12)x ,x ≤0log 2(x +2),x >0,若f(x 0)=2,则x 0=( )A.2B.2或−1C.−1D.2或13. 已知函数f(x)=sin (2x +π4),为了得到函数g(x)=sin 2x 的图象,只需将函数y =f(x)的图象( ) A.向右平移π4个单位长度 B.向右平移π8个单位长度 C.向左平移π4个单位长度 D.向左平移π8个单位长度4. 已知cos (π+α)=−√105,且α∈(−π2,0),则tan α的值为( )A.√63 B.−√63C.−√62D.√625. 已知点P 在正△ABC 所确定的平面上,且满足PA →+PB →+PC →=AB →,则△ABP 的面积与△BCP 的面积之比为( ) A.1:2 B.1:1 C.1:4 D.1:36. 已知函数y =log a (x 2−ax +12),对任意的x 1,x 2∈[1, +∞),且x 1≠x 2时,满足f(x 2)−f(x 1)x 2−x 1>0,则实数a的取值范围是( ) A.(32,+∞] B.(1,32)C.[2, +∞)D.(1, 2]7. 已知函数y =f(x)对任意x ∈R ,恒有(f(x)−sin x)(f(x)−cos x)=0成立,则下列关于函数y =f(x)的说法正确的是( ) A.值域是[−1, 1]B.最小正周期是2πC.以上都不对D.是奇函数或是偶函数8. 已知函数f(x)={ax 2−2x −1,x ≥0,x 2+bx +c ,x <0,为偶函数,方程f(x)=m 有四个不同的实数解,则实数m 的取值范围是( )A.(−2, −1)B.(−3, −1)C.(1, 2)D.(−1, 0)9. 已知函数f(g(x))=sin 2x,g(x)=tan (x +π4),则f(−17)=( ) A.−43 B.43C.−247D.−242510. 设k ∈R ,对任意的向量a →,b →和实数x ∈[0, 1],如果满足|a →|=k|a →−b →|,则有|a →−xb →|≤λ|a →−b →|成立,那么实数λ的最小值为( ) A.kB.1C.k+1+|k−1|2D.k+1−|k−1|2二、填空题(本大题共5小题,每小题4分,共20分)求值:cos 75∘cos 15∘−sin 75∘sin 15∘=________.定义在R 上的函数f(x)满足f(2+x)=f(2−x),若当x ∈(0, 2)时,f(x)=2x ,则f(3)=________.已知ω为正整数,若函数f(x)=sin (ωx)在区间(π6,π3)上不单调,则最小的正整数ω=________.设α为锐角,若sin (α+π6)=35,则cos (2α+π12)的值为________.已知集合M ={(a, b)|a ≤−1, 且0<b ≤m},其中m ∈R .若任意(a, b)∈M ,均有a log 2b −b −3a ≥0,求实数m 的最大值________.三、解答题(本大题共4小题,共40分,解答应写出文字说明、证明过程或演算步骤)设函数f(x)=lg (x 2−3x)的定义域为集合A ,函数g(x)=√−x 2+4ax −3a 2的定义域为集合B (其中a ∈R ,且a >0). (1)当a =1时,求集合B ;(2)若A ∩B ≠⌀,求实数a 的取值范围.在等腰直角△ABC 中,∠A =π2,AB =AC =1,M 是斜边BC 上的点,满足BC →=3BM →(1)试用向量AB →,AC →来表示向量AM →;(2)若点P 满足|AP →|=1,求AP →⋅BM →的取值范围.已知函数f(x)=a sin x cos x +√3a cos 2x ,(a 为常数且a >0). (1)若函数的定义域为[0,π2],值域为[0,(√32+1)],求a 的值;(2)在(1)的条件下,定义区间(m, n),[m, n],(m, n],[m, n)的长度为n −m ,其中n >m ,若不等式f(x)+b >0,x ∈[0, π]的解集构成的各区间的长度和超过π3,求b 的取值范围.设函数f(x)=x 2+ax +b ,a ,b ∈R .(1)若a +b =3,当x ∈[1, 2]时,f(x)≥0恒成立,求实数a 的取值范围;(2)是否存在实数对(a, b),使得不等式|f(x)|>2在区间[1, 5]上无解,若存在,试求出所有满足条件的实数对(a, b);若不存在,请说明理由.参考答案与试题解析2015-2016学年浙江省温州中学高一(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】此题暂无答案【考点】平面水因共线(平行)的坐似表阻【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】函使的以值【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】函数y射Asi过(ω复非φ)的图象变换【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】运用诱导于式化虫求值【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】向量加根法的应盖向量三减弧合引算及码几何意义向都指减家及雨几何意义向量的明角轮法则向明的月响分其几何意义向量验我何表示向量的物明背钾与概念【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】对数函数表础象与性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】正弦射可的图象余弦明数杂图象【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】分段水正的应用函数根助点与驶还根的关系函数奇明性研性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】三角函表的综简求值【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】向量的明角轮法则【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共5小题,每小题4分,共20分)【答案】此题暂无答案【考点】两角和与射的三题函数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函使的以值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】正弦射可的图象【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】求二三度的余弦【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】对数都北算性质【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共4小题,共40分,解答应写出文字说明、证明过程或演算步骤)【答案】此题暂无答案【考点】集合体包某关峡纯断及应用交集根助运算函数的定较域熔其求法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平面向量三量积州运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角根隐色树恒等变换应用正弦射可的图象【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次明数织性质【解析】此题暂无解析【解答】此题暂无解答。

浙江省温州中学2015-2016学年高一数学上学期期末试卷(含解析)

浙江省温州中学2015-2016学年高一数学上学期期末试卷(含解析)

2015-2016学年浙江省温州中学高一(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知平面向量,且,则可能是()A.(2,1)B.(﹣2,﹣1)C.(4,﹣2)D.(﹣1,﹣2)2.已知函数,若f(x0)=2,则x0=()A.2或﹣1 B.2 C.﹣1 D.2或13.已知函数f(x)=sin(2x+),为了得到函数g(x)=sin2x的图象,只需将函数y=f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度4.已知,且,则tanα的值为()A.B.C.D.﹣5.已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1 B.1:2 C.1:3 D.1:46.已知函数,对任意的x1,x2∈ D.C.是奇函数或是偶函数D.以上都不对8.已知函数f(x)=为偶函数,方程f(x)=m有四个不同的实数解,则实数m的取值范围是()A.(﹣3,﹣1)B.(﹣2,﹣1)C.(﹣1,0)D.(1,2)9.已知函数,则=()A .B .C .D .10.设k ∈R ,对任意的向量,和实数x ∈,如果满足,则有成立,那么实数λ的最小值为( )A .1B .kC .D .二、填空题(本大题共5小题,每小题4分,共20分) 11.求值:cos75°cos15°﹣sin75°sin15°= .12.定义在R 上的函数f (x )满足f (2+x )=f (2﹣x ),若当x ∈(0,2)时,f (x )=2x,则f (3)= .13.已知ω为正整数,若函数f (x )=sin (ωx )在区间上不单调,则最小的正整数ω= .14.设α为锐角,若,则的值为 .15.已知集合M={(a ,b )|a≤﹣1,且 0<b≤m},其中m ∈R .若任意(a ,b )∈M ,均有alog 2b ﹣b ﹣3a≥0,求实数m 的最大值 .三、解答题(本大题共4小题,共40分,解答应写出文字说明、证明过程或演算步骤)16.设函数f (x )=lg (x 2﹣3x )的定义域为集合A ,函数的定义域为集合B (其中a ∈R ,且a >0). (1)当a=1时,求集合B ;(2)若A∩B≠∅,求实数a 的取值范围.17.在等腰直角△ABC 中,,M 是斜边BC 上的点,满足(1)试用向量来表示向量;(2)若点P 满足,求的取值范围.18.已知函数,(a 为常数且a >0).(1)若函数的定义域为,值域为,求a 的值;(2)在(1)的条件下,定义区间(m,n),,(m,n],的解集构成的各区间的长度和超过,求b的取值范围.19.设函数f(x)=x2+ax+b,a,b∈R.(1)若a+b=3,当x∈时,f(x)≥0恒成立,求实数a的取值范围;(2)是否存在实数对(a,b),使得不等式|f(x)|>2在区间上无解,若存在,试求出所有满足条件的实数对(a,b);若不存在,请说明理由.2015-2016学年浙江省温州中学高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知平面向量,且,则可能是()A.(2,1)B.(﹣2,﹣1)C.(4,﹣2)D.(﹣1,﹣2)【考点】平面向量共线(平行)的坐标表示.【分析】利用向量共线定理的坐标运算性质即可得出.【解答】解:设=(x,y),∵,∴2x﹣y=0,经过验证只有D满足上式.∴可能为(﹣1,﹣2).故选:D.2.已知函数,若f(x0)=2,则x0=()A.2或﹣1 B.2 C.﹣1 D.2或1【考点】函数的值.【分析】利用分段函数性质求解.【解答】解:∵函数,f (x0)=2,∴x0≤0时,,解得x0=﹣1;x0>0时,f(x0)=log2(x0+2)=2,解得x0=2.∴x0的值为2或﹣1.3.已知函数f(x)=sin(2x+),为了得到函数g(x)=sin2x的图象,只需将函数y=f (x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:把函数f(x)=sin(2x+)=sin2(x+)的图象向右平移个单位长度,可得函数g(x)=sin2(x﹣+)=sin2x的图象,故选:A.4.已知,且,则tanα的值为()A.B.C.D.﹣【考点】运用诱导公式化简求值.【分析】已知等式左边利用诱导公式化简,求出cosα的值,再由α的范围,利用同角三角函数间的基本关系求出sinα的值,即可求出tanα的值.【解答】解:∵cos(π+α)=﹣cosα=﹣,∴cosα=,∵α∈(﹣,0),∴sinα=﹣=﹣,则tanα===﹣,5.已知点P在正△ABC所确定的平面上,且满足,则△ABP 的面积与△BCP的面积之比为()A.1:1 B.1:2 C.1:3 D.1:4【考点】向量的加法及其几何意义.【分析】由,可得=2,即点P为线段AC的靠近点A的三等分点,即可得出.【解答】解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.6.已知函数,对任意的x1,x2∈D.C.是奇函数或是偶函数D.以上都不对【考点】正弦函数的图象;余弦函数的图象.【分析】因为f(x)=sinx,或f(x)=cosx,所以他不是周期函数,也不是奇函数或偶函数,故排除A、C;通过举反例可得B不对,从而得出结论.【解答】解:由(f(x)﹣sinx)(f(x)﹣cosx)=0恒成立,可得f(x)=sinx,或f(x)=cosx,故函数f(x)不是周期函数,也不是奇函数或偶函数,故排除A、C.假设当x=kπ,k∈z时,f(x)=sinx;当x=kπ+π,k∈z时,f(x)=cosx,那么f(x)的值域就不是,因为它永远不能取到±1,故选项B不对,故选:D.8.已知函数f (x )=为偶函数,方程f (x )=m 有四个不同的实数解,则实数m 的取值范围是( ) A .(﹣3,﹣1) B .(﹣2,﹣1) C .(﹣1,0) D .(1,2)【考点】函数奇偶性的性质.【分析】本题可以先根据函数的奇偶性求出参数a 、b 、c 的值,再通过函数图象特征的研究得到m 的取值范围,得到本题结论.【解答】解:∵函数f (x )=为偶函数,∴当x <0时,﹣x >0,f (x )=f (﹣x )=a (﹣x )2+2x ﹣1=ax 2+2x ﹣1. ∵当x <0时, f (x )=x 2+bx+c , ∴a=1,b=2,c=﹣1.∴f(x )=,当x=0时,f (x )=﹣1, 当x=1时,f (1)=﹣2,∵方程f (x )=m 有四个不同的实数解, ∴﹣2<m <﹣1. 故选B . 9.已知函数,则=( )A .B .C .D .【考点】三角函数的化简求值.【分析】由题意得到tan (x+)=,展开后求得tanx ,代入万能公式得答案.【解答】解:由tan (x+)=,得,解得tanx=.∴=sin2x=.故选:C .10.设k ∈R ,对任意的向量,和实数x ∈,如果满足,则有成立,那么实数λ的最小值为( )A .1B .kC .D .【考点】向量的三角形法则.【分析】当向量=时,可得向量,均为零向量,不等式成立;由k=0,可得x||≤λ||,即有λ≥x 恒成立,由x≤1,可得λ≥1;再由绝对值和向量的模的性质,可得≤1,则有≥1,即λ≥k.即可得到结论.【解答】解:当向量=时,可得向量,均为零向量,不等式成立;当k=0时,即有=,则有,即为x||≤λ||,即有λ≥x 恒成立,由x≤1,可得λ≥1;当k≠0时,≠,由题意可得有=||,当k >1时,>|﹣|,由|﹣x|≤|﹣|<||,可得:≤1,则有≥1,即λ≥k.即有λ的最小值为.故选:C.二、填空题(本大题共5小题,每小题4分,共20分)11.求值:cos75°cos15°﹣sin75°sin15°=0 .【考点】两角和与差的余弦函数.【分析】根据题意,利用余弦的和差公式可得cos75°cos15°﹣sin75°sin15°=cos90°,利用特殊角的三角函数值可得答案.【解答】解:根据题意,原式=cos75°cos15°﹣sin75°sin15°=cos90°=0,故答案为:0.12.定义在R上的函数f(x)满足f(2+x)=f(2﹣x),若当x∈(0,2)时,f(x)=2x,则f(3)= 2 .【考点】函数的值.【分析】化简f(3)=f(2+1)=f(1),从而解得.【解答】解:f(3)=f(2+1)=f(2﹣1)=f(1)=21=2,故答案为:2.13.已知ω为正整数,若函数f(x)=sin(ωx)在区间上不单调,则最小的正整数ω= 2 .【考点】正弦函数的图象.【分析】由题意可得ω•<,且ω•>,由此求得最小正整数ω的值.【解答】解:∵ω为正整数,函数f(x)=sin(ωx)在区间上不单调,∴ω•<,ω•>,∴<ω<3,则最小的正整数ω=2,故答案为:2.14.设α为锐角,若,则的值为.【考点】二倍角的余弦.【分析】先设β=α+,根据sinβ求出cosβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到cos(2α+)的值.【解答】解:设β=α+,α为锐角,β=α+∈(,),∵sinβ=<=sin,可得β为锐角,可求cosβ=,sin2β=2sinβcosβ=,cos2β=1﹣2sin2β=,∴cos(2α+)=cos(2α+﹣)=cos(2β﹣)=cos2βcos+sin2βsin=.故答案为:.15.已知集合M={(a,b)|a≤﹣1,且 0<b≤m},其中m∈R.若任意(a,b)∈M,均有alog2b ﹣b﹣3a≥0,求实数m的最大值 2 .【考点】对数的运算性质.【分析】如图所示,由alog2b﹣b﹣3a≥0,化为:.由于≥﹣m,b≤m时,可得log2m≤3﹣m.结合图形即可得出.【解答】解:如图所示,由alog2b﹣b﹣3a≥0,化为:.∵≥﹣m,b≤m时,∴log2m≤3﹣m.当m=2时取等号,∴实数m的最大值为2.三、解答题(本大题共4小题,共40分,解答应写出文字说明、证明过程或演算步骤)16.设函数f(x)=lg(x2﹣3x)的定义域为集合A,函数的定义域为集合B(其中a∈R,且a>0).(1)当a=1时,求集合B;(2)若A∩B≠∅,求实数a的取值范围.【考点】集合的包含关系判断及应用;交集及其运算;函数的定义域及其求法.【分析】(1)函数=,令﹣x2+4x﹣3≥0,解出其定义域为集合B=.(2)当a>0时,由﹣x2+4ax﹣3a2≥0,化为x2﹣4ax+3a2≤0,解得B=.函数f(x)=lg(x2﹣3x),由x2﹣3x>0,解得定义域为集合A=(﹣∞,0)∪(3,+∞),利用A∩B≠∅,即可得出.【解答】解:(1)函数=,令﹣x2+4x﹣3≥0,化为x2﹣4x+3≤0,解得1≤x≤3,其定义域为集合B=.(2)当a>0时,由﹣x2+4ax﹣3a2≥0,化为x2﹣4ax+3a2≤0,解得a≤x≤3a.∴B=.函数f(x)=lg(x2﹣3x),由x2﹣3x>0,解得x<0,或x>3,可得定义域为集合A=(﹣∞,0)∪(3,+∞),∵A∩B≠∅,所以3a>3,解得a>1.17.在等腰直角△ABC中,,M是斜边BC上的点,满足(1)试用向量来表示向量;(2)若点P满足,求的取值范围.【考点】平面向量数量积的运算.【分析】(1)由题意画出图形,直接利用向量加法的三角形法则得答案;(2)设,由题意求得,然后直接展开向量数量积求得的取值范围.【解答】解:(1)如图,∵,∴==;(2)设,∵,∴,则.18.已知函数,(a为常数且a>0).(1)若函数的定义域为,值域为,求a的值;(2)在(1)的条件下,定义区间(m,n),,(m,n],的解集构成的各区间的长度和超过,求b的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数公式化简可得f(x)=a[+sin(2x+)],由已知函数的值域可得a值.(2)由题意可得要使解集构成的各区间的长度和超过,需,解不等式可得.【解答】解:(1)由三角函数公式化简可得:f(x)=a(sinxcosx++cos2x)=a(sin2x++cos2x)=a[+sin(2x+)],∵x∈,∴2x+∈[,],∴sin(2x+)∈,∴+sin(2x+)∈,∵由已知可得函数值域为,∴a=1;(2)由题意可得,即要使解集构成的各区间的长度和超过,需,解得19.设函数f(x)=x2+ax+b,a,b∈R.(1)若a+b=3,当x∈时,f(x)≥0恒成立,求实数a的取值范围;(2)是否存在实数对(a,b),使得不等式|f(x)|>2在区间上无解,若存在,试求出所有满足条件的实数对(a,b);若不存在,请说明理由.【考点】二次函数的性质.【分析】(1)分离参数得到,结合基本不等式的性质得到a的范围即可;(2)根据二次函数的性质得到关于a的不等式组,解出即可.【解答】解:(1)由f(x)≥0,即a(x﹣1)≥﹣(x2+3).当x=1时,恒成立;当x∈(1,2]时,得,令t=x﹣1∈(0,1],≤﹣7 综上:有a≥﹣7.(2)要使|f(x)|>2在区间上无解,必须满足,即由,相加得:﹣4≤8+2a≤4⇒﹣6≤a≤2再由,相加得:﹣4≤16+2a≤4⇒﹣10≤a≤﹣6可以解得:a=﹣6,代入不等式组,得到b=7.检验a=﹣6,时,|f(x)|≤2在区间上恒成立所以满足题意的是实数对(a,b)只有一对:(﹣6,7).。

浙江省2016-2017学年高一上学期期末数学试卷 Word版含解析

浙江省2016-2017学年高一上学期期末数学试卷 Word版含解析

浙江省2016-2017学年高一上学期期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩(∁R B )=( ) A .{x|x >1}B .{x|x ≥1}C .{x|1<x ≤2}D .{x|1≤x ≤2}2.函数f (x )=|cosx|的最小正周期为( )A .2πB .πC .D .3.若a=20.5,b=log π3,c=log 2,则有( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a4.函数f (x )=sin (2x+φ)|φ|<)的图象向左平移个单位后关于原点对称,则φ等于( )A .B .﹣C .D .5.在平面内,已知,则=( )A .3B .C .D .6.已知sin α=m (|m|<1),,那么tan α=( )A .B .C .D .7.已知函数f (x )是奇函数,且当x >0时,f (x )=x 2+,则f (﹣1)=( ) A .﹣2 B .0C .1D .28.设二次函数f (x )=x 2﹣bx+a (a ,b ∈R )的部分图象如图所示,则函数g (x )=lnx+2x ﹣b 的零点所在的区间( )A .B .C .D .(2,3)二、填空题:(本大题有7小题,每小题4分,共28分,请将答案填在答题卷中的横线上.)9.向量=(2,3),=(﹣1,2),若m+与﹣2平行,则m等于.10.在△ABC中,D是BC的中点,向量=a,向量=b,则向量= .(用向量a,b表示)11.函数y=sin2x+2cosx在R上的值域是.12.已知弧长为πcm的弧所对的圆心角为,则这条弧所在的扇形面积为cm2.13.已知a>0且a≠1,若函数f(x)=,在[﹣2,2]的最大值为2,则f[f(﹣1)]= ,a= .14.已知向量=(1,),=(3,m),若向量的夹角为,则实数m= .15.已知函数满足:对于实数a的某些值,可以找到相应正数b,使得f(x)的定义域与值域相同,那么符合条件的实数a的个数是.三、解答题:(本大题有5小题,共48分,解答题应写出文字说明,证明过程或演算步骤.)16.设角,求的值;(Ⅱ)已知,求值:.17.(8分)如图,图1是定义在R上的指数函数g(x)的图象,图2是定义在(0,+∞)上的对数函数h(x)的图象,设f(x)=h(g(x)﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)求方程f(x)﹣x+1=0的解;(Ⅲ)求不等式f(x)<2成立的x的取值范围.18.(10分)已知函数f (x )=Asin (ωx+φ),x ∈R (其中A >0,ω>0,)的周期为π,且图象上一个最低点为.(Ⅰ)求f (x )的解析式; (Ⅱ)求f (x )的单调区间;(Ⅲ)当,求f (x )的值域.19.(10分)设非零向量向量=,=,已知||=2||,( +)⊥.(1)求与的夹角;(2)在如图所示的直角坐标系xOy 中,设B (1,0),已知M (,),=λ1+λ2(λ1,λ2∈R ),求λ1+λ2的值.20.(12分)已知二次函数f (x )=ax 2+bx+c (a ,b ,c ∈R ),f (﹣2)=f (0)=0,f (x )的最小值为﹣1.(1)求函数f (x )的解析式;(2)设g (x )=f (﹣x )﹣λf (x )+1,若g (x )在[﹣1,1]上是减函数,求实数λ的取值范围;(3)设函数h (x )=log 2[p ﹣f (x )],若此函数在定义域范围内不存在零点,求实数p 的取值范围.浙江省2016-2017学年高一上学期期末数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={x|﹣1≤x≤2},B={x|x<1},则A∩(∁B)=()RA.{x|x>1} B.{x|x≥1} C.{x|1<x≤2} D.{x|1≤x≤2}【考点】交、并、补集的混合运算.【分析】由集合B,求出集合B的补集,然后求出集合A和集合B补集的交集即可.【解答】解:由B={x|x<1},B={x|x≥1},得到CR又集合A={x|﹣1≤x≤2},B)={x|1≤x≤2}.则A∩(CR故选:D.【点评】此题考查学生会进行补集及交集的运算,是一道基础题.学生在求补集时注意全集的范围.2.函数f(x)=|cosx|的最小正周期为()A.2π B.πC.D.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的图象与性质,画出函数f(x)的图象,即可得出f(x)的最小正周期.【解答】解:根据余弦函数的图象与性质,画出函数f(x)=|cosx|的图象,如图所示,则函数f(x)的最小正周期为π.故选:B .【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.3.若a=20.5,b=log π3,c=log 2,则有( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a 【考点】对数值大小的比较.【分析】利用对数和指数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=log π3<log ππ=1,<log 21=0.∴a >b >c . 故选:A .【点评】本题考查了对数和指数函数的单调性,属于基础题.4.函数f (x )=sin (2x+φ)|φ|<)的图象向左平移个单位后关于原点对称,则φ等于( )A .B .﹣C .D .【考点】函数y=Asin (ωx+φ)的图象变换.【分析】由条件根据函数y=Asin (ωx+φ)的图象变换规律,正弦函数的图象的对称性可得+φ=k π,k ∈z ,由此根据|φ|<求得φ的值.【解答】解:函数f (x )=sin (2x+φ)φ|<)的图象向左平移个单位后,得到函数y=sin[2(x+)+φ]=sin (2x++φ)的图象,再根据所得图象关于原点对称,可得+φ=k π,k ∈z ,∴φ=﹣,故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.5.在平面内,已知,则=( )A.3 B.C.D.【考点】向量在几何中的应用;两向量的和或差的模的最值;平面向量数量积的坐标表示、模、夹角;平面向量数量积的运算.【分析】利用向量模平方等于向量的平方列出等式;利用向量的数量积公式用模夹角余弦表示数量积,求出向量的模.【解答】解:∵=1+2 +16=13故故选B.【点评】本题考查向量模的平方等于向量的平方;向量的数量积公式.6.已知sinα=m(|m|<1),,那么tanα=()A.B.C.D.【考点】同角三角函数基本关系的运用.【分析】由sinα的值及α的范围,利用同角三角函数间的基本关系求出cosα的值,即可确定出tanα的值.【解答】解:∵sinα=m,<α<π,∴cosα=﹣=﹣,则tanα=.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.7.已知函数f(x)是奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【考点】函数奇偶性的性质.【分析】由奇函数定义得,f(﹣1)=﹣f(1),根据x>0的解析式,求出f(1),从而得到f(﹣1).【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),f(﹣1)=﹣f(1),又当x>0时,f(x)=x2+,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选:A.【点评】本题考查函数的奇偶性及运用,主要是奇函数的定义及运用,解题时要注意自变量的范围,正确应用解析式求函数值,本题属于基础题.8.设二次函数f(x)=x2﹣bx+a(a,b∈R)的部分图象如图所示,则函数g(x)=lnx+2x﹣b 的零点所在的区间()A.B.C.D.(2,3)【考点】函数的零点与方程根的关系.【分析】由二次函数的图象确定出b的范围,计算出g()和g(1)的值的符号,从而确定零点所在的区间.【解答】解:结合二次函数f(x)=x2﹣bx+a的图象知,f(0)=a∈(0,1),f(1)=1﹣b+a=0,∴b=a+1,∴b∈(1,2),∵g(x)=lnx+2x﹣b在(0,+∞)上单调递增且连续,g()=ln+1﹣b<0,g(1)=ln1+2﹣b=2﹣b>0,∴函数g(x)的零点所在的区间是(,1);故选:A.【点评】本题考查了二次函数的图象与性质以及函数零点的应用,解题的关键是确定b 的范围.二、填空题:(本大题有7小题,每小题4分,共28分,请将答案填在答题卷中的横线上.)9.向量=(2,3),=(﹣1,2),若m +与﹣2平行,则m 等于 .【考点】平面向量共线(平行)的坐标表示.【分析】由已知向量的坐标求得m +与﹣2的坐标,再由向量平行的坐标表示列式求得m 的值.【解答】解:∵ =(2,3),=(﹣1,2),∴m +=m (2,3)+(﹣1,2)=(2m ﹣1,3m+2),﹣2=(2,3)﹣2(﹣1,2)=(4,﹣1).又m +与﹣2平行,∴(2m ﹣1)•(﹣1)﹣4(3m+2)=0,解得:m=﹣.故答案为:.【点评】平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若=(a 1,a 2),=(b 1,b 2),则⊥⇔a 1a 2+b 1b 2=0,∥⇔a 1b 2﹣a 2b 1=0,是基础题.10.在△ABC 中,D 是BC 的中点,向量=a ,向量=b ,则向量=(+) .(用向量a ,b 表示)【考点】向量加减混合运算及其几何意义.【分析】直接利用向量的加法的平行四边形法则,求出结果即可【解答】解:因为D 是△ABC 的边BC 上的中点,向量=,向量=,所以=(+)=(+),故答案为:(+)【点评】本题考查向量的四边形法则的应用,考查计算能力.11.函数y=sin 2x+2cosx 在R 上的值域是 [﹣2,2] .【考点】函数的值域.【分析】根据同角三角函数关系,将函数的解析式化为y=1﹣cos2x+2cosx,结合函数的cosx 为[﹣1,1],将问题转化为二次函数在定区间上的值域问题,结合余弦函数及二次函数的性质,即可得到答案.【解答】解:y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2,∵cosx∈[﹣1,1],cosx﹣1∈[﹣2,0],∴﹣(cosx﹣1)2∈[﹣4,0],∴﹣(cosx﹣1)2+2∈[﹣2,2].∴y∈[﹣2,2].故答案为:[﹣2,2].【点评】本题考查的知识点是正弦函数的定义域和值域,考查二次函数在定区间上的最值问题,是解答本题的关键.12.已知弧长为πcm的弧所对的圆心角为,则这条弧所在的扇形面积为2πcm2.【考点】扇形面积公式.【分析】根据弧长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【解答】解:∵弧长为πcm的弧所对的圆心角为,∴半径r=,∴这条弧所在的扇形面积为S=cm2.故答案为:2π【点评】本题主要考查扇形的面积公式和弧长公式,要求熟练掌握相应的公式,比较基础.13.已知a>0且a≠1,若函数f(x)=,在[﹣2,2]的最大值为2,则f[f(﹣1)]= 0 ,a= .【考点】分段函数的应用.【分析】对a讨论,a>1,0<a<1时,由指数函数和对数函数的单调性可得最值,判断a>1不成立,计算即可得到a,再求f(﹣1),进而得到f[f(﹣1)].【解答】解:当a>1时,y=a x+1在[﹣2,1)递增,无最大值,y=log2x在[1,2]上递增,则最大值为log22=1,与题意不符,则舍去;当0<a<1时,y=a x+1在[﹣2,1)上递减,则最大值为a﹣1=2,即a=,f(﹣1)=()0=1,f[f(﹣1)]=f(1)=log21=0,故答案为:0,.【点评】本题考查分段函数的运用:求函数值,考查指数函数和对数函数的单调性的运用,考查分类讨论的思想方法,考查运算能力,属于中档题和易错题.14.已知向量=(1,),=(3,m),若向量的夹角为,则实数m= .【考点】数量积表示两个向量的夹角.【分析】利用两个向量的数量积的定义以及两个向量的数量积公式,求得实数m的值.【解答】解:∵向量=(1,),=(3,m),若向量的夹角为,则=||•||•cos,即 3+m=2••,求得m=,故答案为:.【点评】本题主要考查两个向量的数量积的定义以及两个向量的数量积公式,属于基础题.15.已知函数满足:对于实数a的某些值,可以找到相应正数b,使得f(x)的定义域与值域相同,那么符合条件的实数a的个数是 2 .【考点】函数的值域;函数的定义域及其求法.【分析】由于函数解析式中,被开方式是一个类一元二次式,故我们可分a=0,a>0和a<0,三种情况,分别分析是否存在正实数b,使函数f(x)的定义域和值域相同,进而综合讨论结果,即可得到答案.【解答】解:(1)若a=0,则对于每个正数b,f(x)=的定义域和值域都是[0,+∞)故a=0满足条件.(2)若a>0,则对于正数b,的定义域为D=(﹣∞,﹣]∪[0,+∞),但f(x)的值域A⊆[0,+∞),故D≠A,即a>0不合条件;=,(3)若a<0,则对正数b,定义域D=[0,﹣],(f(x))maxf(x)的值域为[0,],则﹣=⇔.综上所述:a的值为0或﹣4.故答案为2.【点评】本题考查的知识点是函数的定义域及其求法,函数的值域,二次函数的图象和性质,其中熟练掌握一次函数和二次函数的图象和性质是解答本题的关键,解答中易忽略a=0时,也满足条件,而错解为a=﹣4.三、解答题:(本大题有5小题,共48分,解答题应写出文字说明,证明过程或演算步骤.)16.(Ⅰ)设角,求的值;(Ⅱ)已知,求值:.【考点】三角函数的化简求值;同角三角函数基本关系的运用.【分析】(Ⅰ)利用诱导公式化简,再结合特殊角的三角函数值得答案;(Ⅱ)由已知求得tanα,再把转化为正切求值.【解答】解:(Ⅰ)∵,∴===;(Ⅱ)由,得tanα=3.∴==.【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式及诱导公式的应用,是基础题.17.如图,图1是定义在R上的指数函数g(x)的图象,图2是定义在(0,+∞)上的对数函数h(x)的图象,设f(x)=h(g(x)﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)求方程f(x)﹣x+1=0的解;(Ⅲ)求不等式f(x)<2成立的x的取值范围.【考点】指、对数不等式的解法.【分析】(Ⅰ)由图象求出g(x)和h(x)的解析式,代入f(x)=h(g(x)﹣1)化简;(Ⅱ)由(Ⅰ)化简方程,利用指对互化和指数的运算求出方程的根;(Ⅲ)由(Ⅰ)化简不等式,由对数函数的性质、运算法则,指数函数的性质求出不等式的解集.【解答】解:(Ⅰ)由图知g(x)、h(x)的图象分别过(1,2)、(2,1)两点,∴g(x)=2x,h(x)=,∴f(x)=h(g(x)﹣1)=h(2x﹣1)=;(Ⅱ)由(Ⅰ)得,方程f(x)﹣x+1=0是:﹣x+1=0,∴=x﹣1,则2x﹣1=2x﹣1=,即2x=2,解得x=1,∴方程f(x)﹣x+1=0的根是1;(Ⅲ)由(Ⅰ)得,不等式f(x)<2是:<2,∴<,∵函数h(x)=在(0,+∞)上是增函数,∴,解得,∴不等式的解集是(0,).【点评】本题考查指数函数、对数函数的解析式、图象与性质,指数、对数的运算性质的应用,以及有关对数、指数的方程、不等式的求解,注意对数的定义域的限定.18.(10分)(2015秋•西湖区期末)已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,)的周期为π,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)的单调区间;(Ⅲ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)根据函数的周期,最值过定点,求出A,ω和φ的值即可,(Ⅱ)结合三角函数的单调性进行求解即可.(Ⅲ)求出角的范围结合三角函数的单调性求出函数的最值即可求出函数的值域.【解答】解:(Ⅰ)∵函数的最小正周期为π,最小值为﹣2,∴A=2,T=,即ω=2,则函数f(x)=2sin(2x+φ),∵图象上一个最低点为.∴2sin(2×+φ)=﹣2,即sin(+φ)=﹣1,则+φ=+2kπ,k∈Z,则φ=+2kπ,k∈Z,∵,∴当k=0时,φ=,即f (x )的解析式为f (x )=2sin (2x+);(Ⅱ)由2k π+≤2x+≤2k π+,k ∈Z ,得k π+≤x ≤k π+,k ∈Z ,即函数的单调递减区间为为.由2k π﹣≤2x+≤2k π+,k ∈Z ,得k π﹣≤x ≤k π+,k ∈Z ,即函数的单调递增区间为[k π﹣,k π+],k ∈Z ;(Ⅲ)当时,2x ∈[0,],则2x+∈[,],则sin (2x+)=sin =,sin (2x+)=sin=,则≤f (x )≤2×,即1≤f (x )≤,即f (x )的值域为[1,].【点评】本题主要考查三角函数解析式的求解以及函数单调性和值域的求解,结合条件求出A ,ω和φ的值是解决本题的关键.19.(10分)(2015秋•西湖区期末)设非零向量向量=, =,已知||=2||,( +)⊥.(1)求与的夹角;(2)在如图所示的直角坐标系xOy 中,设B (1,0),已知M (,),=λ1+λ2(λ1,λ2∈R ),求λ1+λ2的值.【考点】平面向量数量积的运算;平面向量的基本定理及其意义.【分析】(1)由(+)⊥.可得.又||=2||,利用向量夹角公式可得=.即可得出.(2)利用向量的线性运算及其相等即可得出.【解答】解:(1)∵(+)⊥.∴(+)•=+=0,∴.又||=2||,∴===﹣.∴与的夹角为;(2)由已知及(1)得A ,∵=λ1+λ2,∴(,)=+λ2(1,0)=,∴,解得λ1=,λ2=.∴λ1+λ2=.【点评】本题考查了数量积运算性质、向量夹角公式、向量基本定理,考查了推理能力与计算能力,属于中档题.20.(12分)(2010秋•杭州期末)已知二次函数f(x)=ax2+bx+c(a,b,c∈R),f(﹣2)=f(0)=0,f(x)的最小值为﹣1.(1)求函数f(x)的解析式;(2)设g(x)=f(﹣x)﹣λf(x)+1,若g(x)在[﹣1,1]上是减函数,求实数λ的取值范围;[p﹣f(x)],若此函数在定义域范围内不存在零点,求实数p的取(3)设函数h(x)=log2值范围.【考点】二次函数的性质;对数函数的单调性与特殊点.【分析】(1)由已知中二次函数f(x)=ax2+bx+c(a,b,c∈R),f(﹣2)=f(0)=0,f (x)的最小值为﹣1.我们易根据出关于系数a,b,c的方程组,解方程组求出a,b,c值后,即可得到函数f(x)的解析式;(2)由(1)的结论及g(x)=f(﹣x)﹣λf(x)+1,我们可以得到g(x)的表达式,由于其解析式为类二次函数的形式,故要对二次项系数进行分类讨论,最后综合讨论结果即可得到实数λ的取值范围;[p﹣f(x)]在定义域内不存在零点,则根据真数必须大于0,1的对(3)由函数h(x)=log2数等于0的法则,我们可以构造出一个关于p的不等式组,解不等式组,即可得到答案.【解答】解:(1)设f(x)=ax(x+2),又a>0,f(﹣1)=﹣1,∴a=1,∴f(x)=x2+2x.(2)∵g(x)=f(﹣x)﹣λf(x)+1,∴g(x)=(1﹣λ)x2﹣2(1+λ)x+1,①当λ=1时,g(x)=﹣4x=1在[﹣1,1]上是减函数,满足要求;②当λ≠1时,对称轴方程为:x=.ⅰ)当λ<1时,1﹣λ>0,所以≥1,解得0≤λ<1;ⅱ)当λ>1时,1﹣λ<0,所以≤﹣1,解得λ>1.综上,λ≥0.(7分)[p﹣f(x)]在定义域内不存在零点,必须且只须有(3)函数h(x)=log2p﹣f(x)>0有解,且p﹣f(x)=1无解.即[p﹣f(x)]max>0,且1不在[p﹣f(x)]的值域内.f(x)的最小值为﹣1,∴函数y=p﹣f(x)的值域为(﹣∞,p+1].∴,解得﹣1<p<0.∴p的取值范围为(﹣1,0).(10分)【点评】本题考查的知识点是二次函数的性质,对数函数的单调性与特殊点,其中根据已知条件确定出函数f(x)的解析式是解答本题的切入点和关键.。

温州市十校联合体高一上期末数学试卷有答案-原创

温州市十校联合体高一上期末数学试卷有答案-原创

2016-2017学年温州市十校联合体高一(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣2.(4分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R} B.{y|y=2x,x∈R} C.{y|y=lgx,x>0} D.∅3.(4分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣) C.(,π)D.(,2π)4.(4分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD 是()A.梯形B.平行四边形 C.矩形D.菱形5.(4分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ6.(4分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥07.(4分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数8.(4分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>19.(4分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈)是函数g(x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈)是函数f(x)的中心对称.()A.命题①② 都正确B.命题①② 都不正确C.命题 ①正确,命题 ②不正确D.命题 ①不正确,命题 ②正确(x)=(x﹣t)2﹣t,t∈R,设f(x)=,10.(4分)已知函数ft若0<a<b,则()A.f(x)≥f(b)且当x>0时f(b﹣x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b ﹣x)≤f(b+x)C.f(x)≥f(a)且当x>0时f(a﹣x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a ﹣x)≤f(a+x)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)若幂函数f(x)=x a的图象过点(2,),则a= .12.(4分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是cm,这条弧所在的扇形面积是cm2.13.(6分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω= ,ϕ= .14.(6分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.15.(6分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是.16.(6分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|= ,此时λ= .17.(4分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n (A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁UB);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.19.(15分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.20.(15分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.21.(15分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.22.(15分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.2016-2017学年浙江省温州市十校联合体高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣【解答】解:由题意可得x=4,y=﹣3,∴r=5,∴cosα==,故选C.2.(4分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R} B.{y|y=2x,x∈R} C.{y|y=lgx,x>0} D.∅【解答】解:∵集合P={y|y≥0},P∩Q=Q,∴Q⊆P∵A={y|y=x2,x∈R}={y|y≥0},满足要求B={y|y=2x,x∈R}={y|y>0},满足要求C={y|y=lgx,x>0}=R,不满足要求D=∅,满足要求故选C3.(4分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣) C.(,π)D.(,2π)【解答】解:在坐标系中画出函数y=a|sinx|+2(a>0)的图象:根据图象得到函数的一个增区间是:(﹣π,﹣),故选:B4.(4分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD 是()A.梯形B.平行四边形 C.矩形D.菱形【解答】解:根据题意,向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则向量=++=﹣8﹣2,分析可得:=2,即直线AD与BC平行,而向量与不共线,即直线AB与CD不平行,故四边形ABCD是梯形;故选:A.5.(4分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ【解答】解:由,===|sinθ﹣cosθ|=sinθ﹣cosθ,故选:A.6.(4分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥0【解答】解:∵a x+b y≤a﹣x+b﹣y,∴a x﹣a﹣x≤b﹣y﹣b y,令f(x)=a x﹣a﹣x,g(y)=b﹣y﹣b y,∵1<a<b,则f(x)为增函数,g(y)为减函数,且f(0)=g(0)=0,故x≤0,且y≤0,即x+y≤0时,a x﹣a﹣x≤b﹣y﹣b y恒成立,故选:B.7.(4分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数【解答】解:函数f(x)=ln|ax|(a≠0),由ln|﹣ax|=ln|ax|,可得f(x)为偶函数;g(x)=x﹣3+sinx,由(﹣x)﹣3+sin(﹣x)=﹣(x﹣3+sinx),可得g(x)为奇函数.设F(x)=f(x)g(x),由F(﹣x)=f(﹣x)g(﹣x)=f(x)(﹣g(x))=﹣F(x),可得F(x)为奇函数.故选:D.8.(4分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>1【解答】解:令f(x)=0,∴|lnx|=()x;∴函数f(x)的零点便是上面方程的解,即是函数y=|lnx|和函数y=()x的交点,画出这两个函数图象如下:由图看出<﹣lnx1<1,﹣1<lnx1<0,0<lnx2<;∴﹣1<lnx1+lnx2<0;∴﹣1<lnx1x2<0;∴0<<x1x2<1故选:B.9.(4分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈)是函数g(x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈)是函数f(x)的中心对称.()A.命题①② 都正确B.命题①② 都不正确C.命题 ①正确,命题 ②不正确D.命题 ①不正确,命题 ②正确【解答】解:∵函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤;∴函数f(x)的对称轴为2x+φ1=kπ+,即x=kπ+﹣φ1,k∈,令2x+φ1=kπ,解得x=kπ﹣φ1,∴f(x)对称中心为(kπ﹣φ1,0),k∈;函数g(x)的对称轴为4x+φ2=kπ,即x=kπ﹣φ2,k∈,令4x+φ2=kπ+,解得x=kπ+﹣φ2,对称中心为(kπ+﹣φ2,0),k∈;∵直线x=φ是函数f(x)和g(x)的对称轴,∴直线x=kπ+φ(k∈)是函数g(x)的对称轴,命题①正确;∵点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈)不一定是函数f(x)的中心对称,命题②错误.故选:C.10.(4分)已知函数ft(x)=(x﹣t)2﹣t,t∈R,设f(x)=,若0<a<b,则()A.f(x)≥f(b)且当x>0时f(b﹣x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b ﹣x)≤f(b+x)C.f(x)≥f(a)且当x>0时f(a﹣x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a ﹣x)≤f(a+x)【解答】解:作函数f(x)的图象,且解方程fa (x)=fb(x)得,(x﹣a)2﹣a=(x﹣b)2﹣b,解得x=,f a (x)=(x﹣a)2﹣a≥﹣a,fb(x)=(x﹣b)2﹣b≥﹣b,且﹣b<﹣af(x)≥f(b)且当x>0时f(b﹣x)≤f(b+x),故选:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)若幂函数f(x)=x a的图象过点(2,),则a= .【解答】解:∵幂函数y=x a的图象过点(2,),∴2a=,解得a=,故答案为:.12.(4分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是8 cm,这条弧所在的扇形面积是2πcm2.【解答】解:∵弧长为πcm的弧所对的圆心角为,∴半径r=4cm,直径是8cm,∴这条弧所在的扇形面积为S==2πcm2.故答案为8,2π.13.(6分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω= 2 ,ϕ= ﹣.【解答】解:函数f(x)=2tan(ωx+ϕ)的最小正周期为,∴=,解得ω=2;又,即2tan(2×+φ)=﹣2,∴2tanφ=﹣2,即tanφ=﹣1;又|φ|<,∴φ=﹣.故答案为:2,.14.(6分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.【解答】解:f(x)=cos2x+sinx﹣1=(1﹣sin2x)+sinx﹣1=﹣sin2x+sinx,设sinx=t,t∈[0,1],∴f(x)=﹣t2+t=﹣t(t﹣1),当t=,即sinx=,x=时函数f(x)取得最大值为,当t=0,即sinx=0时,函数f(x)取得最小值为0.∴f(x)值域是,f(x)的单调递增区间是.故答案为:,.15.(6分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是(﹣,0).【解答】解:f(x)的图象如图所示∵f(x)在上既有最大值又有最小值,∴,解得﹣<a<0,故a的取值范围为(﹣,0),故答案为:(﹣,0),16.(6分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|=1或,此时λ= .【解答】解:不妨设=(1,0),=(cosθ,sinθ),θ∈[0,2π).则===≥=|sinθ|=,∴θ=,,,.=,或=.则|AB|=1或.此时λ=cosθ=.故答案分别为:1或,.17.(4分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.【解答】解:由于(x2+ax)(x2+ax+2)=0等价于x2+ax=0 ①或x2+ax+2=0 ②,又由A={1,2},且m(A,B)=1,∴集合B要么是单元素集合,要么是三元素集合,1°集合B是单元素集合,则方程①有两相等实根,②无实数根,∴a=0;2°集合B是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即,解得a=±2,综上所述a=0或a=±2,∵a>0,∴a=,故答案为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁UB);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.【解答】解:(1)根据题意,﹣3≤x﹣1≤2⇒﹣2≤x≤3,则B={x|﹣3≤x﹣1≤2}={x|﹣2≤x≤3},故A∩B={x|1<x≤3},(∁U A)∪(∁UB)=∁U(A∩B)={x|x≤1,或x>3};(2)若{x|2k﹣1≤x≤2k+1}⊆A,则必有2k﹣1>1或2k+1<﹣4,解可得:k>1或.19.(15分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.【解答】解:(Ⅰ),∵f(0)=sinφ=,,∴φ=,(Ⅱ)由(1)可得f(x)=sin(2x+),∵x∈[0,],∴2x+∈[,],∴函数y=f(x)的最小值为﹣20.(15分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.【解答】解:(1),,…(2分)…(3分)由0≤α≤π,∴…(7分)(2)证明:∵m<1,若|cosθ|≠1,则,…(9分)∴,m(|cosθ|﹣1)>﹣1,m|cosθ|>m﹣1,又|cosθ|=1时左式也成立,∴m|cosθ|>m﹣1…(11分)由(1)知,,在x∈R上为增函数,且为奇函数,…(13分)∴f(m|cosθ|)>f(m﹣1)∴f(m|cosθ|)+f(1﹣m)>0…(15分)21.(15分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.【解答】解(Ⅰ)令t=log3x+m,∵,∴t∈[m﹣1,m+1],从而y=f(t)=t2﹣2t+3=(t﹣1)2+2,t∈[m﹣1,m+1]当m+1≤1,即m≤0时,,解得m=﹣1或m=1(舍去),当m﹣1<1<m+1,即0<m<2时,ymin=f(1)=2,不合题意,当m﹣1≥1,即m≥2时,,解得m=3或m=1(舍去),综上得,m=﹣1或m=3,(Ⅱ)不妨设x1<x2,易知f(x)在(2,4)上是增函数,故f(x1)<f(x2),故|f(x1)﹣f(x2)|<k|x1﹣x2|可化为f(x2)﹣f(x1)<kx2﹣kx1,即f(x2)﹣kx2<f(x1)﹣kx1(*),令g(x)=f(x)﹣kx,x∈(2,4),即g(x)=x2﹣(2+k)x+3,x∈(2,4),则(*)式可化为g(x2)<g(x1),即g(x)在(2,4)上是减函数,故,得k≥6,故k的取值范围为[6,+∞)22.(15分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.【解答】解:(Ⅰ)当时,….(2分)所以f(x)的单调递增区间是(0,1],(﹣∞,﹣1],单调递减区间是[1,+∞),[﹣1,0)….(6分)(Ⅱ)由得,∴①当0<x<1时,,∴…(8分)∵∴a≥1…(10分)②当x>1时,,∴…(12分)∵,∴….…(14分)综上所述,a的取值范围是.…(15分)。

2016-2017学年温州市十校联合体高一上期末数学试卷(有答案)

2016-2017学年温州市十校联合体高一上期末数学试卷(有答案)

2016-2017学年温州市十校联合体高一(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣2.(4分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R}B.{y|y=2x,x∈R}C.{y|y=lgx,x>0} D.∅3.(4分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣)C.(,π)D.(,2π)4.(4分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD 是()A.梯形B.平行四边形C.矩形D.菱形5.(4分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ6.(4分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥07.(4分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数8.(4分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>19.(4分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈Z)是函数g (x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈Z)是函数f(x)的中心对称.()A.命题①②•‚都正确B.命题①②•‚都不正确C.命题 ①正确,命题‚②不正确D.命题 ①不正确,命题‚②正确10.(4分)已知函数f t(x)=(x﹣t)2﹣t,t∈R,设f(x)=,若0<a<b,则()A.f(x)≥f(b)且当x>0时f(b﹣x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b ﹣x)≤f(b+x)C.f(x)≥f(a)且当x>0时f(a﹣x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a﹣x)≤f(a+x)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)若幂函数f(x)=x a的图象过点(2,),则a=.12.(4分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是cm,这条弧所在的扇形面积是cm2.13.(6分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω=,ϕ=.14.(6分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.15.(6分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是.16.(6分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|=,此时λ=.17.(4分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁U B);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.19.(15分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.20.(15分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.21.(15分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.22.(15分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.2016-2017学年浙江省温州市十校联合体高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣【解答】解:由题意可得x=4,y=﹣3,∴r=5,∴cosα==,故选C.2.(4分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R}B.{y|y=2x,x∈R}C.{y|y=lgx,x>0} D.∅【解答】解:∵集合P={y|y≥0},P∩Q=Q,∴Q⊆P∵A={y|y=x2,x∈R}={y|y≥0},满足要求B={y|y=2x,x∈R}={y|y>0},满足要求C={y|y=lgx,x>0}=R,不满足要求D=∅,满足要求故选C3.(4分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣)C.(,π)D.(,2π)【解答】解:在坐标系中画出函数y=a|sinx|+2(a>0)的图象:根据图象得到函数的一个增区间是:(﹣π,﹣),故选:B4.(4分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD 是()A.梯形B.平行四边形C.矩形D.菱形【解答】解:根据题意,向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则向量=++=﹣8﹣2,分析可得:=2,即直线AD与BC平行,而向量与不共线,即直线AB与CD不平行,故四边形ABCD是梯形;故选:A.5.(4分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ【解答】解:由,===|sinθ﹣cosθ|=sinθ﹣cosθ,故选:A.6.(4分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥0【解答】解:∵a x+b y≤a﹣x+b﹣y,∴a x﹣a﹣x≤b﹣y﹣b y,令f(x)=a x﹣a﹣x,g(y)=b﹣y﹣b y,∵1<a<b,则f(x)为增函数,g(y)为减函数,且f(0)=g(0)=0,故x≤0,且y≤0,即x+y≤0时,a x﹣a﹣x≤b﹣y﹣b y恒成立,故选:B.7.(4分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数【解答】解:函数f(x)=ln|ax|(a≠0),由ln|﹣ax|=ln|ax|,可得f(x)为偶函数;g(x)=x﹣3+sinx,由(﹣x)﹣3+sin(﹣x)=﹣(x﹣3+sinx),可得g(x)为奇函数.设F(x)=f(x)g(x),由F(﹣x)=f(﹣x)g(﹣x)=f(x)(﹣g(x))=﹣F(x),可得F(x)为奇函数.故选:D.8.(4分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>1【解答】解:令f(x)=0,∴|lnx|=()x;∴函数f(x)的零点便是上面方程的解,即是函数y=|lnx|和函数y=()x的交点,画出这两个函数图象如下:由图看出<﹣lnx1<1,﹣1<lnx1<0,0<lnx2<;∴﹣1<lnx1+lnx2<0;∴﹣1<lnx1x2<0;∴0<<x1x2<1故选:B.9.(4分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈Z)是函数g (x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈Z)是函数f(x)的中心对称.()A.命题①②•‚都正确B.命题①②•‚都不正确C.命题 ①正确,命题‚②不正确D.命题 ①不正确,命题‚②正确【解答】解:∵函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤;∴函数f(x)的对称轴为2x+φ1=kπ+,即x=kπ+﹣φ1,k∈Z,令2x+φ1=kπ,解得x=kπ﹣φ1,∴f(x)对称中心为(kπ﹣φ1,0),k∈Z;函数g(x)的对称轴为4x+φ2=kπ,即x=kπ﹣φ2,k∈Z,令4x+φ2=kπ+,解得x=kπ+﹣φ2,对称中心为(kπ+﹣φ2,0),k∈Z;∵直线x=φ是函数f(x)和g(x)的对称轴,∴直线x=kπ+φ(k∈Z)是函数g(x)的对称轴,命题①正确;∵点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈Z)不一定是函数f(x)的中心对称,命题②错误.故选:C.10.(4分)已知函数f t(x)=(x﹣t)2﹣t,t∈R,设f(x)=,若0<a<b,则()A.f(x)≥f(b)且当x>0时f(b﹣x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b ﹣x)≤f(b+x)C.f(x)≥f(a)且当x>0时f(a﹣x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a﹣x)≤f(a+x)【解答】解:作函数f(x)的图象,且解方程f a(x)=f b(x)得,(x﹣a)2﹣a=(x﹣b)2﹣b,解得x=,f a(x)=(x﹣a)2﹣a≥﹣a,f b(x)=(x﹣b)2﹣b≥﹣b,且﹣b<﹣af(x)≥f(b)且当x>0时f(b﹣x)≤f(b+x),故选:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)若幂函数f(x)=x a的图象过点(2,),则a=.【解答】解:∵幂函数y=x a的图象过点(2,),∴2a=,解得a=,故答案为:.12.(4分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是8cm,这条弧所在的扇形面积是2πcm2.【解答】解:∵弧长为πcm的弧所对的圆心角为,∴半径r=4cm,直径是8cm,∴这条弧所在的扇形面积为S==2πcm2.故答案为8,2π.13.(6分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω=2,ϕ=﹣.【解答】解:函数f(x)=2tan(ωx+ϕ)的最小正周期为,∴=,解得ω=2;又,即2tan(2×+φ)=﹣2,∴2tanφ=﹣2,即tanφ=﹣1;又|φ|<,∴φ=﹣.故答案为:2,.14.(6分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.【解答】解:f(x)=cos2x+sinx﹣1=(1﹣sin2x)+sinx﹣1=﹣sin2x+sinx,设sinx=t,t∈[0,1],∴f(x)=﹣t2+t=﹣t(t﹣1),当t=,即sinx=,x=时函数f(x)取得最大值为,当t=0,即sinx=0时,函数f(x)取得最小值为0.∴f(x)值域是,f(x)的单调递增区间是.故答案为:,.15.(6分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是(﹣,0).【解答】解:f(x)的图象如图所示∵f(x)在上既有最大值又有最小值,∴,解得﹣<a<0,故a的取值范围为(﹣,0),故答案为:(﹣,0),16.(6分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|=1或,此时λ=.【解答】解:不妨设=(1,0),=(cosθ,sinθ),θ∈[0,2π).则===≥=|sinθ|=,∴θ=,,,.=,或=.则|AB|=1或.此时λ=cosθ=.故答案分别为:1或,.17.(4分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.【解答】解:由于(x2+ax)(x2+ax+2)=0等价于x2+ax=0 ①或x2+ax+2=0 ②,又由A={1,2},且m(A,B)=1,∴集合B要么是单元素集合,要么是三元素集合,1°集合B是单元素集合,则方程①有两相等实根,②无实数根,∴a=0;2°集合B是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即,解得a=±2,综上所述a=0或a=±2,∵a>0,∴a=,故答案为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁U B);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.【解答】解:(1)根据题意,﹣3≤x﹣1≤2⇒﹣2≤x≤3,则B={x|﹣3≤x﹣1≤2}={x|﹣2≤x ≤3},故A∩B={x|1<x≤3},(∁U A)∪(∁U B)=∁U(A∩B)={x|x≤1,或x>3};(2)若{x|2k﹣1≤x≤2k+1}⊆A,则必有2k﹣1>1或2k+1<﹣4,解可得:k>1或.19.(15分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.【解答】解:(Ⅰ),∵f(0)=sinφ=,,∴φ=,(Ⅱ)由(1)可得f(x)=sin(2x+),∵x∈[0,],∴2x+∈[,],∴函数y=f(x)的最小值为﹣20.(15分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.【解答】解:(1),,…(2分)…(3分)由0≤α≤π,∴…(7分)(2)证明:∵m<1,若|cosθ|≠1,则,…(9分)∴,m(|cosθ|﹣1)>﹣1,m|cosθ|>m﹣1,又|cosθ|=1时左式也成立,∴m|cosθ|>m﹣1…(11分)由(1)知,,在x∈R上为增函数,且为奇函数,…(13分)∴f(m|cosθ|)>f(m﹣1)∴f(m|cosθ|)+f(1﹣m)>0…(15分)21.(15分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.【解答】解(Ⅰ)令t=log3x+m,∵,∴t∈[m﹣1,m+1],从而y=f(t)=t2﹣2t+3=(t﹣1)2+2,t∈[m﹣1,m+1]当m+1≤1,即m≤0时,,解得m=﹣1或m=1(舍去),当m﹣1<1<m+1,即0<m<2时,y min=f(1)=2,不合题意,当m﹣1≥1,即m≥2时,,解得m=3或m=1(舍去),综上得,m=﹣1或m=3,(Ⅱ)不妨设x1<x2,易知f(x)在(2,4)上是增函数,故f(x1)<f(x2),故|f(x1)﹣f(x2)|<k|x1﹣x2|可化为f(x2)﹣f(x1)<kx2﹣kx1,即f(x2)﹣kx2<f(x1)﹣kx1(*),令g(x)=f(x)﹣kx,x∈(2,4),即g(x)=x2﹣(2+k)x+3,x∈(2,4),则(*)式可化为g(x2)<g(x1),即g(x)在(2,4)上是减函数,故,得k≥6,故k的取值范围为[6,+∞)22.(15分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.【解答】解:(Ⅰ)当时,….(2分)所以f(x)的单调递增区间是(0,1],(﹣∞,﹣1],单调递减区间是[1,+∞),[﹣1,0)….(6分)(Ⅱ)由得,∴①当0<x<1时,,∴…(8分)∵∴a≥1…(10分)②当x>1时,,∴…(12分)∵,∴….…(14分)综上所述,a的取值范围是.…(15分)。

[推荐]温州市十校联合体高一上期末数学试卷有答案

[推荐]温州市十校联合体高一上期末数学试卷有答案

2016-2017学年温州市十校联合体高一(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣2.(4分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R} B.{y|y=2x,x∈R} C.{y|y=lgx,x>0} D.∅3.(4分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣) C.(,π)D.(,2π)4.(4分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD 是()A.梯形B.平行四边形 C.矩形D.菱形5.(4分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ6.(4分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥07.(4分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数8.(4分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>19.(4分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈)是函数g(x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k ∈)是函数f(x)的中心对称.()A.命题①② 都正确B.命题①② 都不正确C.命题 ①正确,命题 ②不正确D.命题 ①不正确,命题 ②正确(x)=(x﹣t)2﹣t,t∈R,设f(x)=,10.(4分)已知函数ft若0<a<b,则()A.f(x)≥f(b)且当x>0时f(b﹣x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b ﹣x)≤f(b+x)C.f(x)≥f(a)且当x>0时f(a﹣x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a ﹣x)≤f(a+x)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)若幂函数f(x)=x a的图象过点(2,),则a= .12.(4分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是cm,这条弧所在的扇形面积是cm2.13.(6分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω=,ϕ= .14.(6分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.15.(6分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是.16.(6分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|= ,此时λ=.17.(4分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁UB);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.19.(15分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.20.(15分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.21.(15分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.22.(15分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.2016-2017学年浙江省温州市十校联合体高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣【解答】解:由题意可得x=4,y=﹣3,∴r=5,∴cosα==,故选C.2.(4分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R} B.{y|y=2x,x∈R} C.{y|y=lgx,x>0} D.∅【解答】解:∵集合P={y|y≥0},P∩Q=Q,∴Q⊆P∵A={y|y=x2,x∈R}={y|y≥0},满足要求B={y|y=2x,x∈R}={y|y>0},满足要求C={y|y=lgx,x>0}=R,不满足要求D=∅,满足要求故选C3.(4分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣) C.(,π)D.(,2π)【解答】解:在坐标系中画出函数y=a|sinx|+2(a>0)的图象:根据图象得到函数的一个增区间是:(﹣π,﹣),故选:B4.(4分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD 是()A.梯形B.平行四边形 C.矩形D.菱形【解答】解:根据题意,向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则向量=++=﹣8﹣2,分析可得:=2,即直线AD与BC平行,而向量与不共线,即直线AB与CD不平行,故四边形ABCD是梯形;故选:A.5.(4分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ【解答】解:由,===|sinθ﹣cosθ|=sinθ﹣cosθ,故选:A.6.(4分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥0【解答】解:∵a x+b y≤a﹣x+b﹣y,∴a x﹣a﹣x≤b﹣y﹣b y,令f(x)=a x﹣a﹣x,g(y)=b﹣y﹣b y,∵1<a<b,则f(x)为增函数,g(y)为减函数,且f(0)=g(0)=0,故x≤0,且y≤0,即x+y≤0时,a x﹣a﹣x≤b﹣y﹣b y恒成立,故选:B.7.(4分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数【解答】解:函数f(x)=ln|ax|(a≠0),由ln|﹣ax|=ln|ax|,可得f(x)为偶函数;g(x)=x﹣3+sinx,由(﹣x)﹣3+sin(﹣x)=﹣(x﹣3+sinx),可得g(x)为奇函数.设F(x)=f(x)g(x),由F(﹣x)=f(﹣x)g(﹣x)=f(x)(﹣g(x))=﹣F(x),可得F(x)为奇函数.故选:D.8.(4分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>1【解答】解:令f(x)=0,∴|lnx|=()x;∴函数f(x)的零点便是上面方程的解,即是函数y=|lnx|和函数y=()x的交点,画出这两个函数图象如下:由图看出<﹣lnx1<1,﹣1<lnx1<0,0<lnx2<;∴﹣1<lnx1+lnx2<0;∴﹣1<lnx1x2<0;∴0<<x1x2<1故选:B.9.(4分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈)是函数g(x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k ∈)是函数f(x)的中心对称.()A.命题①② 都正确B.命题①② 都不正确C.命题 ①正确,命题 ②不正确D.命题 ①不正确,命题 ②正确【解答】解:∵函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤;∴函数f (x )的对称轴为2x+φ1=kπ+,即x=kπ+﹣φ1,k ∈,令2x+φ1=kπ,解得x=kπ﹣φ1,∴f (x )对称中心为(kπ﹣φ1,0),k ∈;函数g (x )的对称轴为4x+φ2=kπ,即x=kπ﹣φ2,k ∈, 令4x+φ2=kπ+,解得x=kπ+﹣φ2,对称中心为(kπ+﹣φ2,0),k ∈;∵直线x=φ是函数f (x )和g (x )的对称轴,∴直线x=kπ+φ(k ∈)是函数g (x )的对称轴,命题①正确; ∵点P (φ,0)是函数f (x )和g (x )的对称中心, 则点Q (+φ,0)(k ∈)不一定是函数f (x )的中心对称,命题②错误.故选:C .10.(4分)已知函数f t (x )=(x ﹣t )2﹣t ,t ∈R ,设f (x )=,若0<a <b ,则( )A .f (x )≥f (b )且当x >0时f (b ﹣x )≥f (b+x )B .f (x )≥f (b )且当x >0时f (b ﹣x )≤f (b+x )C .f (x )≥f (a )且当x >0时f (a ﹣x )≥f (a+x )D .f (x )≥f (a )且当x >0时f (a ﹣x )≤f (a+x )【解答】解:作函数f (x )的图象,且解方程f a (x )=f b (x )得, (x ﹣a )2﹣a=(x ﹣b )2﹣b ,解得x=,f a (x )=(x ﹣a )2﹣a ≥﹣a ,f b (x )=(x ﹣b )2﹣b ≥﹣b ,且﹣b <﹣a f (x )≥f (b )且当x >0时f (b ﹣x )≤f (b+x ),故选:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)若幂函数f(x)=x a的图象过点(2,),则a= .【解答】解:∵幂函数y=x a的图象过点(2,),∴2a=,解得a=,故答案为:.12.(4分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是8 cm,这条弧所在的扇形面积是2πcm2.【解答】解:∵弧长为πcm的弧所对的圆心角为,∴半径r=4cm,直径是8cm,∴这条弧所在的扇形面积为S==2πcm2.故答案为8,2π.13.(6分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω= 2 ,ϕ= ﹣.【解答】解:函数f(x)=2tan(ωx+ϕ)的最小正周期为,∴=,解得ω=2;又,即2tan(2×+φ)=﹣2,∴2tanφ=﹣2,即tanφ=﹣1;又|φ|<,∴φ=﹣.故答案为:2,.14.(6分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.【解答】解:f(x)=cos2x+sinx﹣1=(1﹣sin2x)+sinx﹣1=﹣sin2x+sinx,设sinx=t,t∈[0,1],∴f(x)=﹣t2+t=﹣t(t﹣1),当t=,即sinx=,x=时函数f(x)取得最大值为,当t=0,即sinx=0时,函数f(x)取得最小值为0.∴f(x)值域是,f(x)的单调递增区间是.故答案为:,.15.(6分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是(﹣,0).【解答】解:f(x)的图象如图所示∵f(x)在上既有最大值又有最小值,∴,解得﹣<a<0,故a的取值范围为(﹣,0),故答案为:(﹣,0),16.(6分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|=1或,此时λ=.【解答】解:不妨设=(1,0),=(cosθ,sinθ),θ∈[0,2π).则===≥=|sinθ|=,∴θ=,,,.=,或=.则|AB|=1或.此时λ=cosθ=.故答案分别为:1或,.17.(4分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.【解答】解:由于(x2+ax)(x2+ax+2)=0等价于x2+ax=0 ①或x2+ax+2=0 ②,又由A={1,2},且m(A,B)=1,∴集合B要么是单元素集合,要么是三元素集合,1°集合B是单元素集合,则方程①有两相等实根,②无实数根,∴a=0;2°集合B是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即,解得a=±2,综上所述a=0或a=±2,∵a>0,∴a=,故答案为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁UB);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.【解答】解:(1)根据题意,﹣3≤x﹣1≤2⇒﹣2≤x≤3,则B={x|﹣3≤x﹣1≤2}={x|﹣2≤x≤3},故A∩B={x|1<x≤3},(∁U A)∪(∁UB)=∁U(A∩B)={x|x≤1,或x>3};(2)若{x|2k﹣1≤x≤2k+1}⊆A,则必有2k﹣1>1或2k+1<﹣4,解可得:k>1或.19.(15分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.【解答】解:(Ⅰ),∵f(0)=sinφ=,,∴φ=,(Ⅱ)由(1)可得f(x)=sin(2x+),∵x∈[0,],∴2x+∈[,],∴函数y=f(x)的最小值为﹣20.(15分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.【解答】解:(1),,…(2分)…(3分)由0≤α≤π,∴…(7分)(2)证明:∵m<1,若|cosθ|≠1,则,…(9分)∴,m(|cosθ|﹣1)>﹣1,m|cosθ|>m﹣1,又|cosθ|=1时左式也成立,∴m|cosθ|>m﹣1…(11分)由(1)知,,在x∈R上为增函数,且为奇函数,…(13分)∴f(m|cosθ|)>f(m﹣1)∴f(m|cosθ|)+f(1﹣m)>0…(15分)21.(15分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.【解答】解(Ⅰ)令t=log3x+m,∵,∴t∈[m﹣1,m+1],从而y=f(t)=t2﹣2t+3=(t﹣1)2+2,t∈[m﹣1,m+1]当m+1≤1,即m≤0时,,解得m=﹣1或m=1(舍去),当m﹣1<1<m+1,即0<m<2时,ymin=f(1)=2,不合题意,当m﹣1≥1,即m≥2时,,解得m=3或m=1(舍去),综上得,m=﹣1或m=3,(Ⅱ)不妨设x1<x2,易知f(x)在(2,4)上是增函数,故f(x1)<f(x2),故|f(x1)﹣f(x2)|<k|x1﹣x2|可化为f(x2)﹣f(x1)<kx2﹣kx1,即f(x2)﹣kx2<f(x1)﹣kx1(*),令g(x)=f(x)﹣kx,x∈(2,4),即g(x)=x2﹣(2+k)x+3,x∈(2,4),则(*)式可化为g(x2)<g(x1),即g(x)在(2,4)上是减函数,故,得k≥6,故k的取值范围为[6,+∞)22.(15分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.【解答】解:(Ⅰ)当时,….(2分)所以f(x)的单调递增区间是(0,1],(﹣∞,﹣1],单调递减区间是[1,+∞),[﹣1,0)….(6分)(Ⅱ)由得,∴①当0<x<1时,,∴…(8分)∵∴a≥1…(10分)②当x>1时,,∴…(12分)∵,∴….…(14分)综上所述,a的取值范围是.…(15分)。

温州市十校联合体高一上期末数学试卷有答案-精编

温州市十校联合体高一上期末数学试卷有答案-精编

2016-2017学年温州市十校联合体高一(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣2.(4分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R} B.{y|y=2x,x∈R} C.{y|y=lgx,x>0} D.∅3.(4分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣) C.(,π)D.(,2π)4.(4分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD 是()A.梯形B.平行四边形 C.矩形D.菱形5.(4分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ6.(4分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥07.(4分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数8.(4分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>19.(4分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈)是函数g(x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k ∈)是函数f(x)的中心对称.()A.命题①② 都正确B.命题①② 都不正确C.命题 ①正确,命题 ②不正确D.命题 ①不正确,命题 ②正确10.(4分)已知函数f(x)=(x﹣t)2﹣t,t∈R,设f(x)=,t若0<a<b,则()A.f(x)≥f(b)且当x>0时f(b﹣x)≥f(b+x) B.f(x)≥f(b)且当x>0时f(b ﹣x)≤f(b+x)C.f(x)≥f(a)且当x>0时f(a﹣x)≥f(a+x) D.f(x)≥f(a)且当x>0时f(a ﹣x)≤f(a+x)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)若幂函数f(x)=x a的图象过点(2,),则a= .12.(4分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是cm,这条弧所在的扇形面积是cm2.13.(6分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω=,ϕ= .14.(6分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.15.(6分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是.16.(6分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|= ,此时λ=.17.(4分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁UB);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.19.(15分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.20.(15分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.21.(15分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.22.(15分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.2016-2017学年浙江省温州市十校联合体高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣【解答】解:由题意可得x=4,y=﹣3,∴r=5,∴cosα==,故选C.2.(4分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R} B.{y|y=2x,x∈R} C.{y|y=lgx,x>0} D.∅【解答】解:∵集合P={y|y≥0},P∩Q=Q,∴Q⊆P∵A={y|y=x2,x∈R}={y|y≥0},满足要求B={y|y=2x,x∈R}={y|y>0},满足要求C={y|y=lgx,x>0}=R,不满足要求D=∅,满足要求故选C3.(4分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣) C.(,π)D.(,2π)【解答】解:在坐标系中画出函数y=a|sinx|+2(a>0)的图象:根据图象得到函数的一个增区间是:(﹣π,﹣),故选:B4.(4分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD 是()A.梯形B.平行四边形 C.矩形D.菱形【解答】解:根据题意,向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则向量=++=﹣8﹣2,分析可得:=2,即直线AD与BC平行,而向量与不共线,即直线AB与CD不平行,故四边形ABCD是梯形;故选:A.5.(4分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ【解答】解:由,===|sinθ﹣cosθ|=sinθ﹣cosθ,故选:A.6.(4分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥0【解答】解:∵a x+b y≤a﹣x+b﹣y,∴a x﹣a﹣x≤b﹣y﹣b y,令f(x)=a x﹣a﹣x,g(y)=b﹣y﹣b y,∵1<a<b,则f(x)为增函数,g(y)为减函数,且f(0)=g(0)=0,故x≤0,且y≤0,即x+y≤0时,a x﹣a﹣x≤b﹣y﹣b y恒成立,故选:B.7.(4分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数【解答】解:函数f(x)=ln|ax|(a≠0),由ln|﹣ax|=ln|ax|,可得f(x)为偶函数;g(x)=x﹣3+sinx,由(﹣x)﹣3+sin(﹣x)=﹣(x﹣3+sinx),可得g(x)为奇函数.设F(x)=f(x)g(x),由F(﹣x)=f(﹣x)g(﹣x)=f(x)(﹣g(x))=﹣F(x),可得F(x)为奇函数.故选:D.8.(4分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>1【解答】解:令f(x)=0,∴|lnx|=()x;∴函数f(x)的零点便是上面方程的解,即是函数y=|lnx|和函数y=()x的交点,画出这两个函数图象如下:由图看出<﹣lnx1<1,﹣1<lnx1<0,0<lnx2<;∴﹣1<lnx1+lnx2<0;∴﹣1<lnx1x2<0;∴0<<x1x2<1故选:B.9.(4分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈)是函数g(x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k ∈)是函数f(x)的中心对称.()A.命题①② 都正确B.命题①② 都不正确C.命题 ①正确,命题 ②不正确D.命题 ①不正确,命题 ②正确【解答】解:∵函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤;∴函数f(x)的对称轴为2x+φ1=kπ+,即x=kπ+﹣φ1,k∈,令2x+φ1=kπ,解得x=kπ﹣φ1,∴f (x )对称中心为(kπ﹣φ1,0),k ∈;函数g (x )的对称轴为4x+φ2=kπ,即x=kπ﹣φ2,k ∈, 令4x+φ2=kπ+,解得x=kπ+﹣φ2,对称中心为(kπ+﹣φ2,0),k ∈;∵直线x=φ是函数f (x )和g (x )的对称轴,∴直线x=kπ+φ(k ∈)是函数g (x )的对称轴,命题①正确; ∵点P (φ,0)是函数f (x )和g (x )的对称中心, 则点Q (+φ,0)(k ∈)不一定是函数f (x )的中心对称,命题②错误.故选:C .10.(4分)已知函数f t (x )=(x ﹣t )2﹣t ,t ∈R ,设f (x )=,若0<a <b ,则( )A .f (x )≥f (b )且当x >0时f (b ﹣x )≥f (b+x )B .f (x )≥f (b )且当x >0时f (b ﹣x )≤f (b+x )C .f (x )≥f (a )且当x >0时f (a ﹣x )≥f (a+x )D .f (x )≥f (a )且当x >0时f (a ﹣x )≤f (a+x )【解答】解:作函数f (x )的图象,且解方程f a (x )=f b (x )得, (x ﹣a )2﹣a=(x ﹣b )2﹣b ,解得x=,f a (x )=(x ﹣a )2﹣a ≥﹣a ,f b (x )=(x ﹣b )2﹣b ≥﹣b ,且﹣b <﹣a f (x )≥f (b )且当x >0时f (b ﹣x )≤f (b+x ),故选:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)若幂函数f(x)=x a的图象过点(2,),则a= .【解答】解:∵幂函数y=x a的图象过点(2,),∴2a=,解得a=,故答案为:.12.(4分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是8 cm,这条弧所在的扇形面积是2πcm2.【解答】解:∵弧长为πcm的弧所对的圆心角为,∴半径r=4cm,直径是8cm,∴这条弧所在的扇形面积为S==2πcm2.故答案为8,2π.13.(6分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω= 2 ,ϕ= ﹣.【解答】解:函数f(x)=2tan(ωx+ϕ)的最小正周期为,∴=,解得ω=2;又,即2tan(2×+φ)=﹣2,∴2tanφ=﹣2,即tanφ=﹣1;又|φ|<,∴φ=﹣.故答案为:2,.14.(6分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.【解答】解:f(x)=cos2x+sinx﹣1=(1﹣sin2x)+sinx﹣1=﹣sin2x+sinx,设sinx=t,t∈[0,1],∴f(x)=﹣t2+t=﹣t(t﹣1),当t=,即sinx=,x=时函数f(x)取得最大值为,当t=0,即sinx=0时,函数f(x)取得最小值为0.∴f(x)值域是,f(x)的单调递增区间是.故答案为:,.15.(6分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是(﹣,0).【解答】解:f(x)的图象如图所示∵f(x)在上既有最大值又有最小值,∴,解得﹣<a<0,故a的取值范围为(﹣,0),故答案为:(﹣,0),16.(6分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|=1或,此时λ=.【解答】解:不妨设=(1,0),=(cosθ,sinθ),θ∈[0,2π).则===≥=|sinθ|=,∴θ=,,,.=,或=.则|AB|=1或.此时λ=cosθ=.故答案分别为:1或,.17.(4分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.【解答】解:由于(x2+ax)(x2+ax+2)=0等价于x2+ax=0 ①或x2+ax+2=0 ②,又由A={1,2},且m(A,B)=1,∴集合B要么是单元素集合,要么是三元素集合,1°集合B是单元素集合,则方程①有两相等实根,②无实数根,∴a=0;2°集合B是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即,解得a=±2,综上所述a=0或a=±2,∵a>0,∴a=,故答案为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁UB);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.【解答】解:(1)根据题意,﹣3≤x﹣1≤2⇒﹣2≤x≤3,则B={x|﹣3≤x﹣1≤2}={x|﹣2≤x≤3},故A∩B={x|1<x≤3},(∁U A)∪(∁UB)=∁U(A∩B)={x|x≤1,或x>3};(2)若{x|2k﹣1≤x≤2k+1}⊆A,则必有2k﹣1>1或2k+1<﹣4,解可得:k>1或.19.(15分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.【解答】解:(Ⅰ),∵f(0)=sinφ=,,∴φ=,(Ⅱ)由(1)可得f(x)=sin(2x+),∵x∈[0,],∴2x+∈[,],∴函数y=f(x)的最小值为﹣20.(15分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.【解答】解:(1),,…(2分)…(3分)由0≤α≤π,∴…(7分)(2)证明:∵m<1,若|cosθ|≠1,则,…(9分)∴,m(|cosθ|﹣1)>﹣1,m|cosθ|>m﹣1,又|cosθ|=1时左式也成立,∴m|cosθ|>m﹣1…(11分)由(1)知,,在x∈R上为增函数,且为奇函数,…(13分)∴f(m|cosθ|)>f(m﹣1)∴f(m|cosθ|)+f(1﹣m)>0…(15分)21.(15分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.【解答】解(Ⅰ)令t=log3x+m,∵,∴t∈[m﹣1,m+1],从而y=f(t)=t2﹣2t+3=(t﹣1)2+2,t∈[m﹣1,m+1]当m+1≤1,即m≤0时,,解得m=﹣1或m=1(舍去),当m﹣1<1<m+1,即0<m<2时,ymin=f(1)=2,不合题意,当m﹣1≥1,即m≥2时,,解得m=3或m=1(舍去),综上得,m=﹣1或m=3,(Ⅱ)不妨设x1<x2,易知f(x)在(2,4)上是增函数,故f(x1)<f(x2),故|f(x1)﹣f(x2)|<k|x1﹣x2|可化为f(x2)﹣f(x1)<kx2﹣kx1,即f(x2)﹣kx2<f(x1)﹣kx1(*),令g(x)=f(x)﹣kx,x∈(2,4),即g(x)=x2﹣(2+k)x+3,x∈(2,4),则(*)式可化为g(x2)<g(x1),即g(x)在(2,4)上是减函数,故,得k≥6,故k的取值范围为[6,+∞)22.(15分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.【解答】解:(Ⅰ)当时,….(2分)所以f(x)的单调递增区间是(0,1],(﹣∞,﹣1],单调递减区间是[1,+∞),[﹣1,0)….(6分)(Ⅱ)由得,∴①当0<x<1时,,∴…(8分)∵∴a≥1…(10分)②当x>1时,,∴…(12分)∵,∴….…(14分)综上所述,a的取值范围是.…(15分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江省温州市高一上学期数学期末试卷
一、选择题(共18小题;共90分)
1. 设集合,则
A. B. C. D.
2. 下列幂函数中图象不过原点的是
A. B. C. D.
3. 与角终边相同的角是
A. B. C. D.
4. 式子可化简为
A. B. C. D.
5. 函数的定义域是
A. B. C. D.
6. 下列算式正确的是
A. B. C. D.
7. 的值是
A. B. C. D.
8. 下列四个函数中,在上单调递增的是
A. B. C. D.
9. 已知函数,,则下列说法正确的是
A. 有最大值,最小值
B. 有最大值,最小值
C. 有最大值,最小值
D. 有最大值,最小值
10. 函数的一个单调递增区间是
A. B. C. D.
11. 已知函数是奇函数,当时,,若,则
A. B. C. 或 D. 或
12. 已知,则
A. B. C. D.
13. 下列各项值比大的是
A. B. C. D.
14. 盐酸溶液具有挥发性,随着时间会挥发而浓度降低,一杯盐酸溶液刚开始的浓度为,经过小
时后浓度与时间的关系式为:,一杯浓度为的盐酸溶液,经过小时后浓度变为,若要求浓度变为,则还需要经过
A. 小时
B. 小时
C. 小时
D. 小时
15. 函数的图象大致为
A. B.
C. D.
16. 角终边上的点在函数,的图象上,则的取值范围是
A. B. C. D.
17. 已知函数,对函数的判断,下列说法错误的是
A. 对任意的,有
B. 对任意的,不等式恒成立
C. 对任意的,不等式恒成立
D. 在区间上既有最大值又有最小值
18. 已知函数在上有零点,且,记的最小值为,则
的取值范围是
A. B.
C. D.
二、填空题(共4小题;共20分)
19. 已知集合,,则;

20. 半径为的圆中,圆心角所对的弧长为,则.
21. 已知函数,则.
22. 已知,函数在区间上有且仅有个零点,则的取值范围
是.
三、解答题(共3小题;共39分)
23. 已知,.
(1)求的值;
(2)求的值.
24. 已知函数.
(1)判断函数的奇偶性并说明原因;
(2)求函数的值域.
25. 已知函数.
(1)若函数在区间上单调,求的取值范围;
(2)对于任意的,不等式恒成立,求的取值范围.
答案
第一部分
1. C
2. A
3. D
4. C
5. B
6. B
7. D 【解析】.
8. D 9. B 10. C
11. D 12. C 13. B 14. B 15. A
【解析】.
当时,且随着的增大而增大,
故且随着的增大而减小,
即函数在上恒大于且单调递减.
故选A.
16. B 17. D 18. A
第二部分
19. ,
20.
21.
22.
第三部分
23. (1)由条件得,
得.
(2)因为,且;
所以,
所以.
24. (1)由,得或,
即函数的定义域为,
因为,且定义域关于原点对称,所以函数是奇函数.
(2)令,
则,且,
所以,
所以,
所以,
所以,
所以函数的值域是.
25. (1)在上任取,且,
因为,,
所以当时,,即函数在区间上单调递减;当时,
,即函数在区间上单调递增.
综上,若函数在区间上单调,则实数的取值范围是.(2)
其中,
令,
因为,所以,
则原命题等价于:对任意的,不等式恒成立.
即恒成立.
令,则,所以或.
函数的对称轴为,
因为,对称轴不在区间上,所以欲使命题成立只需使,且.
由得,得或,
综上,实数的取值范围是.
法二:对任意的,恒成立,即恒成立,得:,即或,即,
所以或.。

相关文档
最新文档