Synthesis of amorphous calcium phosphate using various types of cyclodextrins

合集下载

固体超强酸催化α-蒎烯合成龙脑的研究

固体超强酸催化α-蒎烯合成龙脑的研究

固体超强酸催化α-蒎烯合成龙脑的研究下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!固体超强酸催化α-蒎烯合成龙脑的研究引言龙脑是一种广泛应用于药物、香料和化妆品等领域的重要化合物,其合成一直是有机化学领域的研究热点之一。

玫瑰花状多孔碱式碳酸镁微球的合成_英文_

玫瑰花状多孔碱式碳酸镁微球的合成_英文_

收稿日期:2010-08-24。

收修改稿日期:2011-01-21。

上海市自然科学基金(09ZR147900),中央高校基本科研业务费专项基金,教育部新世纪优秀人才计划(NCET -08-0776)和上海市重点学科建设(No.B506)资助项目。

*通讯联系人。

E -mail :xfsong@玫瑰花状多孔碱式碳酸镁微球的合成宋兴福*杨晨汪瑾孙淑英于建国(国家盐湖资源综合利用工程技术研究中心华东理工大学,上海200237)摘要:介绍了一种便利的玫瑰花状多孔碱式碳酸镁(4MgCO 3·Mg(OH)2·4H 2O)微球的合成方法,该方法分为三水碳酸镁(MgCO 3·3H 2O)前驱物合成与其在水中的热解制备过程。

采用搅拌诱导结晶辅助陈化的方法合成前驱物,得到长约115μm ,长径比约10.4的均一微棒,将微棒在353.2K 的水中热解,即可得到由弯曲的纳米片组成的具有“卡片箱”结构(house of cards )的玫瑰花状多孔碱式碳酸镁微球,微球直径为30~60μm ,平均约40μm ,具有良好分散性。

研究了热解过程中的形貌转变和相转移过程,采用XRD ,FTIR 及SEM 表征样品的结构和形貌。

结果表明:MgCO 3·3H 2O 在较高温度下因不稳定而溶解,形成局部过饱和,生成无定形颗粒,并在微棒上成核结晶为4MgCO 3·Mg(OH)2·4H 2O 纳米片。

纳米片由与微棒附着部位向外生长,形成玫瑰花状微球,微球长大伴随微棒的消溶,生长在棒上不同部位的颗粒在微观结构上将留有不同痕迹。

分析认为热解转变过程是(MgCO 3·3H 2O)溶解-无定形物生成-(4MgCO 3·Mg(OH)2·4H 2O)结晶的过程。

关键词:三水碳酸镁;碱式碳酸镁;形貌;热解中图分类号:O614.22;TQ132.2文献标识码:A文章编号:1001-4861(2011)05-1008-07Synthesis of Porous Hydromagnesite Microspheres with Rosette -Like MorphologySONG Xing -Fu *YANG Chen WANG JinSUN Shu -YingYU Jian -Guo(National Engineering Research Center for Integrated Utilization of Salt Lake Resource,East China University of Science and Technology,Shanghai 200237,China )Abstract :Porous hydromagnesite (4MgCO 3·Mg(OH)2·4H 2O)microspheres with rosette -like morphology weresynthesized by a facile pathway.The procedure involved the synthesis of nesquehonite (MgCO 3·3H 2O)precursorand its pyrogenation in water.MgCO 3·3H 2O precursors were synthesized via a stirring -induced crystallization method assisted by aging.Uniform rod -like precursor could be obtained with a length of about 115μm and aspect ratio of about 10.4.4MgCO 3·Mg (OH)2·4H 2O porous microspheres with “house of cards ”structure composed of curly nano -sheets crystals were obtained via the pyrogenation of MgCO 3·3H 2O in water at 353.2K.The diameter of hydromagnesite spheres is in the range of 30~60μm and 40μm in average with well dispersity.Shape evolution and phase transfer during the transformation were studied by time -evolution experiments.Thesynthesized samples were characterized by XRD and FTIR as well as SEM.The results show that MgCO 3·3H 2O dissolves and local supersaturation is formed.Amorphous particles are produced and crystallized into 4MgCO 3·Mg(OH)2·4H 2O nanosheets on the microrods.Hydromagnesite nano -sheets grow outward from the attachment site forming porous rosette -like microspheres.A mechanism form MgCO 3·3H 2O microrods to 4MgCO 3·Mg(OH)2·4H 2Omicrospheres is suggested to be (MgCO 3·3H 2O)dissolution -amorphous particles formation -(4MgCO 3·Mg(OH)2·4H 2O)crystallization.Key words :nesquehonite;hydromagnesite;morphology;pyrogenation第27卷第5期2011年5月Vol .27No .51008-1014无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRY第5期宋兴福等:玫瑰花状多孔碱式碳酸镁微球的合成0IntroductionThe properties of particles are often closely cor-related to their shapes[1~4].Functional inorganic mate-rials with diverse morphologies are utilized in many fields[5~8].There have been increasing interests in de-signing and fabricating desirable micro-and meso-in-organic materials[9~12].Hydromagnesite or basic magnesium carbonate 4MgCO3·Mg(OH)2·4H2O,as one of the most important minerals in geology and planetlogy[13],can be used as fire retardant as well as the carrier and precursor for other magnesium-based chemicals.Moreover,it is widely used in the area of food,pharmaceutical,pig-ments and daily necessities[14].As a monoclinic crystal, 4MgCO3·Mg(OH)2·4H2O exhibits hexagonal plate-shaped characteristics.However,due to its self-as-sembly properties,plate-like microcrystal will gather together.The form of spherical,rose-like,nest-like, tubular particles and other forms are the results of self-assembled hydromagnesite nano-sheets.Hydromagnesite morphology is varies with syn-thesis ways.Du et al.[15]used Mg(NO3)2with pH value of7.5and Na2CO3as raw materials to react at353.2 K to obtain4MgCO3·Mg(OH)2·4H2O micro-rods with a surface of“house of cards”structure.Mitsuhashi and co-workers[16]synthesized needle-like MgCO3·3H2O at 318K,and obtained tubular4MgCO3·Mg(OH)2·4H2O crystals with a“house of cards”structure by con-trolling the operation conditions.They also prepared petaloid hydromagnesite microspheres under ultrasonic irradiation[17].Zhang et al.[18]prepared basic magnesium carbonate by double carbonation under atmospheric pressure and studied the influences of different pyro-genation temperatures and different additives on the crystal morphology.Cheng et al.and Li et al.[19-20]e-valuated the effects of supersaturation and temperature on the preparation of magnesium carbonate hydrates. Recently,the synthesis of spherical or nest-like4Mg-CO3·Mg(OH)2·4H2O is mainly conducted through the reaction crystallization method[21]or hydrothermal method[22~24]by mixing soluble magnesium salt and carbonate salt under certain conditions.Direct precipitation method will result in a close packing“stack”structure constructed by nanosheets. While porous“house of cards”structure can only be obtained through rod-like nesquehonite transformation and high purity hydromagnesite will be obtained with pre-washed rods as the precursor.Among the factors affecting the morphology of hydromagnesite,the pre-cursors size is particularly rger particles can provide enough supersaturation and growth mate-rial to form a complete spherical shape.If the precur-sor particles are very small,only aggregates consisted of few flakes can be obtained.We report here a facile pathway to synthesize4MgCO3·Mg(OH)2·4H2O by py-rogenation process as well as a method to prepare suitable nesquehonite precursor.1ExperimentalAll chemicals used were analytical grade(Shang-hai Lingfeng Chemical Reagent Co.,Ltd.)and used without further purification.Water used was deionized water.The MgCO3·3H2O precursor was prepared by mixing MgCl2with Na2CO3solution at293.2K and then taken as the reagent.MgCl2solution(0.50mol·L-1,160mL)was placed in a glass jacket crystalliza-tion reactor at293.2K.Subsequently,Na2CO3solution (0.50mol·L-1,160mL)was rapidly added into the vigorously stirred crystallization reactor within3~4s. The mixture was further stirred for15min with con-stant mechanical stirring rate and the temperature was maintained at293.2K for6h under static conditions. The white precipitate was collected and filtered off, washed with ethanol for several times and then placed in an oven at333.2~353.2K for about5h to give the nesquehonite precursor.The spherical hydromagnesite was obtained from nesquehonite via pyrogenation pro-cess.At this stage,100mL deionized water was heat-ed to353.2K.Then1.0g MgCO3·3H2O synthesized was added into the deionized water under stirring. Soon afterwards,the agitation was stopped rapidly. The sample dispersed at the bottom of the reactor and the temperature was maintained at353.2K for3h. After that,the precipitate was collected and filtered off,washed with ethanol for several times and then1009第27卷无机化学学报dried in an oven at 353.2K overnight to obtain the target product hydromagnesite.XRD patterns were recorded on a D/MAX 2550VB/PC,using Cu K αradiation ,λ=0.15418nm,oper -ating at 40kV,100mA and scanning rate at 12°·min -1from 5°to 75°.The fourier transform infrared spectra (FTIR)were recoded on Nicolet 6700(KBr Pellets method).The morphology and particle size of the as -synthesized samples were examined by a scan -ning electron microscopy (SEM,JEOL -JSM -6700F,15kV.).Particle size was obtained from counting 100particles observed in SEM images.2Results and discussionThe XRD pattern of synthesized rod -like hydrat -ed magnesium carbonate at 293.2K is shown in Fig.1(a).All the peaks can be indexed to the monocliniccrystalline phase of MgCO 3·3H 2O,which is in good a -greement with reference data(PDF 20-0669).The reaction followed by mixing MgCl 2andNa 2CO 3is a complex reactive crystallization process.The precipitation takes place and generates a large amount of primary nanoparticles initially.With the continuous stirring and the increase of reaction time up to about 14min,a small number of micrometer -sized rod -like crystals or aggregates appear in the slurry serving as MgCO 3·3H 2O seeds.Under continu -ous stirring,there is no flocculation observed under microscope after 34min,and it can be considered that it has been completely transferred into rod -like crys -tals.If the stirring ceases after 15min,the system will no longer produce new seeds.A large quantity of pri -mary nanoparticles exist in the system,which are gradually transferred into crystalline MgCO 3·3H 2O in the later aging time,grow onto the existing crystal particles to complete the ordering process and eventu -ally grow into larger size rod -like MgCO 3·3H 2O.The detail of the synthesis method was described in ref.[26].Fig.2(a)shows the SEM images of synthesized MgCO 3·3H 2O.It is obvious that the microrods are well crys -tallized with a length of 60~150μm (the average length is 115μm)and aspect ratio of 8.3~11.7(the average aspect ratio is 10.4).The stability of nesquehonite is between that of amorphous magnesium carbonate and hydromagnesite.Nesquehonite will transfer into hydromagnesite in aqueous solutions.The XRD pattern of the final spherical product is shown in Fig.1(d).All the peaks in this Figure can be indexed to the monoclinic crys -talline phase of 4MgCO 3·Mg(OH)2·4H 2O in agreementwith reference data(PDF 25-0513).As shown in Fig.2(h),the final product is porous rosette -like,and most of them are composed of several spherical crystals growing together.If sunken parts and some incomplete growth areas appear on the sur -face,a “nest -like ”shape will be presented.The actual morphology of hydromagnesite polycrystal is assem -bled by numberless two -dimensional slightly curly nano -sheets to make up of a structure as “house of cards ”.In order to reduce the surface energy,they gather into a ball.100particles in the SEM images are randomly selected to measure the spherical diam -eter D .The result shows that the spherical diameter is in the range of 30~60μm and the average is 40μm.In order to explore the evolution from nesquhonite microrods to hydromagnesite microspheres with rosette -like morphology,time -evolution experiments were carried out.SEM photos of particles at different stages of the pyrogenation process are shown in Fig.2(b~h).According to the work by Dong et al.[27],the dis -solved nesquehonite can reach about 7.632mmol ·L -1in 2min when it is put into the water at 80℃and(a)nesquehonite precursors;(b)20min;(c)40min;(d)final productFig.1XRD patterns of the products at different reactiontimes during pyrogenationprocess1010第5期宋兴福等:玫瑰花状多孔碱式碳酸镁微球的合成(a)the as-synthesized rod-like MgCO3·3H2O;(b,c)at20min during pyrogenation process;(d,e,f,g)at40min during pyrogenation process;(h) hydromagnesite obtained by pyrogenation.The inset image is a typical hydromagnesite microsphereFig.2SEM images of magnesium carbonate at different synthesis stagesthe solubility of hydromagnesite is only about0.9374mmol·L-1[28].The supersaturation ratio is about1.82.Since the pyrogenation process is under static condition,the part close to the rod-like particle has relatively high local supersaturation due to the disso-lution of MgCO3·3H2O.Fig.2(b,c)shows the SEM im-ages of nesquhonite undergoing the pyrogenation pro-cess for20min.In the panoramic image,some spher-ical or nest-like grains cling onto MgCO3·3H2O micro-rods sparsely.These grains“grow”on the rod side faces or tips,which is similar to mushrooms growing on tree pared to the spherical shape,the particles are irregular,slightly flattened and sunken on many particles back(away from the rod).From the close-up image of an individual attachment,it is obvi-ous that MgCO3·3H2O surfaces is rough as the same as chapped skin,which exhibits an interlocking net-work.These results are in good agreement with Dheillys[29].The appendiculate grain has a typical sur-face of“house of cards”structure composed of 4MgCO3·Mg(OH)2·4H2O nano-sheets.It is interesting that the grain is divided into two hemispheres by a clear suture in the back.The hollow and the suture on the grains back mentioned above,to some extent,im-ply that the seed crystals of the basic magnesium car-bonate are hatched from the rod-like particles.Once the spherical particles begin to grow,the growth speed is fast near the rod.Diffusion becomes an important factor in the growth dynamics.With the extension of reaction time up to40min (Fig.2(d~g)),the“nutrient”(growth material)of the “tree trunk”(the nesquehonite microrod)is gradually absorbed by growing“mushrooms”(hydromagnesite growing on the microrod).The increase in the size of 4MgCO3·Mg(OH)2·4H2O microspheres is extremely obvious.Relatively,the MgCO3·3H2O micro-rods be-come shorter and thinner and both tips become nee-dle-shaped due to dissolution while the surface ex-hibits rough peeling layer and grooves.There′s no ex-istence of hollows on the back of spherical particles at this stage,which may be owing to their gradual growth in the pyrogenation process and their complete disap-pearance eventually.There are also some spherical particles growing together.One possibility is that local supersaturation makes the growth happen on both sides of the hemisphere,forming the aggregation of two spherical particles.Another one may be that sev-eral nuclei nucleate and grow at the binding site on nesquehonite microrods.By carefully looking into the surface structure of the hydromagnesite particles at different pyrogenation stages,it is worth noting that the leaf-like crystallites become more compactly arranged on the particles sur-face when pyrogenation takes less time,in other words,there is larger amount of flakes per area unit. On the contrary,as the pyrogenation continues,the 1011第27卷无机化学学报(a)nesquehonite precursors;(b)20min;(c)40min;(d)final productFig.3FTIR spectra of products at different reaction time during pyrogenation processarrangement becomes much looser.Moreover,the binding site of microspheres and microrods is a layer of substance,which is different from the main body of sphere and the body of nesquehonite micro -rods rep -resenting “batholith ”(Fig.2(g)).Therefore,it can be concluded that the growth of hydromagnesite starts from the binding site and grows outward.The leaf -like hydromagnesite accumulation pushes out the primal surface,which makes the structure of “house of cards ”become loose gradually and ultimately “burst ”into rosette -like hydromagnesite.The growth mode can be used to interpret many interesting phenomena in the pyrogenation process,such as the hollow on the back of sphere appearing at the 20th min and disap -pearing at the 40th min (it may have happened before this moment),which results from the growth of bottom crystallites.The sunken parts and incomplete growth areas show the growth traces of 4MgCO 3·Mg(OH)2·4H 2O.If the particle grows on the side face of the rod,the binding sites of the attachments and the substance nesquehonite rod will be arc -shaped and concave tothe interior of spherical 4MgCO 3·Mg(OH)2·4H 2O(Fig.2(e)).As a result,a “nest ”will come into being after the completion of growth to retain this trail.The sec -tion plane of the nest is oval -shaped.Similarly,the binding sites of the particles growing on the tip ofMgCO 3·3H 2O microrod are small that a mini slit will be left on 4MgCO 3·Mg(OH)2·4H 2O when MgCO 3·3H 2O dissolves into a needle -like one.The slit is small and easy to be filled up in the following growth forming intact spherical particles.As shown in Fig.2(f),some floccules can be observed.According to the research by Dong et al.[27],nesquehonite in aqueous solution will transfer into amorphous phase at high temperature.This is not reflected in the XRD pat -terns.This is due to the diffraction peaks of crys -talline phase cover up the existence of amorphous.The characteristics of the system are that magnesium carbonate crystals are crystallized from amorphous nanoparticles.It is multi -step dynamic process and once local supersaturation is formed,amorphous phase forms firstly.Fig.1shows the XRD patterns of the product at different periods of time during the pyrogenation pro -cess.It is obvious that MgCO 3·3H 2O is graduallytransformed into 4MgCO 3·Mg(OH)2·4H 2O as time goesby.As the diffraction peak intensity of 4MgCO 3·Mg(OH)2·4H 2O is much weaker than that of MgCO 3·3H 2O,the diffraction peaks of 4MgCO 3·Mg(OH)2·4H 2O are concealed at the 20min.Increasing the re -action time up to 40min,a large amount of 4MgCO 3·Mg (OH)2·4H 2O appears to demonstrate its strong diffraction intensity that can clearly be identified.Fig.3shows the typical FTIR spectra of the par -ticles obtained from different reaction times.It can be observed that the spectra change significantly with the increase of reaction time.For the precursor,the IR spectra are very similar to those of MgCO 3·3H 2O,which are confirmed by the presence of 850cm -1(ν2mode),1105cm -1(ν1mode),1485and 1420cm -1(ν3mode)CO 32-adsorption bands.Different amounts of crystallization water give the broad bands in the range of 3600~3000cm -1and a faint band at about 1645cm -1is associated with O -H bending mode.All these results indicate that the rod -like particles obtainedbelow 293.2K have a formula of MgCO 3·x H 2O,whichis in good agreement with the results reported in the previous work [30,31].With the increase of reaction time up to 3h (the reaction should be completed before this time),a great change takes place on the IR spec -tra.In contrast to the precursor,O -H bond appears in the crystalline water molecules and there is asharp1012第5期宋兴福等:玫瑰花状多孔碱式碳酸镁微球的合成Fig.4Schematics of the hydromagnesite microspheressynthesis and growth processband around 3650cm -1corresponding to the free O -H vibration.Moreover,the bands between 3600and 3400cm -1also become narrower.As 4MgCO 3·Mg (OH)2·4H 2O consisting of more CO 32-groups,the carbonate bending vibrations split into three absorp -tion bands at 800(the strongest),850,and 880cm -1.All of the features are suggested as the characteristic adsorption of 4MgCO 3·Mg(OH)2·4H 2O,which is con -sistent with the XRD results.A challenge in materials engineering is to make the controlled assembly of purposely designed molecules or ensembles of molecules into different scales with special properties and functions.Due to restrictions of the crystal habit,it is tremendously dif -ficult to achieve the desired architectures.However,there is a dramatic change of morphology on the raw materials and desired products in our experiments.Fig.4shows the schematics of the hydromagnesite microspheres growth process.Crystallization is a mul -ti -step dynamic process,rather than a one -step ther -modynamic process.Amorphous precursor particles are favored to form as the first species at high super -saturations according to the Ostwald rule of stage.When the precipitation begins,amorphous nanoparti -cles initially form from the mixture solution (Fig.4a),and then they tend to quickly aggregate together to form larger,more thermodynamically stable particles,which affect the size and shape of final samples.With the extension of reaction time,the morphology of the synthesized samples varies from particles to microrods (Fig.4b).Finally,all particles are changed into micro -rods with uniform diameter distribution (Fig.4c).At353.2K,the dissolution of MgCO 3·3H 2O forms local supersaturation which again leads to the generation of amorphous precursor particles.According to the view of C 觟lfen et al.[32],the formation of amorphous precur -sors and crystallization of inorganic salt belong to the non -classical crystallization process.Driven by ther -modynamics,by oriented attachment and fusion,these nanoparticles shape nano -leaf MgCO 3·Mg(OH)2·4H 2O crystallites growing on the surface of MgCO 3·3H 2O microrods (Fig.4d).The microrods disappear and mi -crospheres form at last (Fig.4e).The balance between the dissolution rate of nesquehonite and the deposition rate of hydromagnesite is considered to be a dynamic factor in the process of microspheres formation.The involved processes and mechanism during pyrogena -tion may be as follows:(MgCO 3·3H 2O)dissolution -amorphous particles formation -(4MgCO 3·Mg (OH)2·4H 2O)crystallization.3ConclusionsIn this work,a multi -step chemical conversion strategy to achieve the indirectly synthesis of desired architectures was developed.Porous rosette -like 4MgCO 3·Mg (OH)2·4H 2O was obtained by the pyro -genation of MgCO 3·3H 2O.Because of the mild reac -tion condition without introducing additives,products with high purity can be prepared.The transformationfrom MgCO 3·3H 2O microrods to the 4MgCO 3·Mg(OH)2·4H 2O microspheres can be moused out from the tran -sition state in the process.During the pyrogenation process,MgCO 3·3H 2O crystals dissolve and 4MgCO 3·Mg(OH)2·4H 2O crystals grow.Amorphous substancemay form firstly due to local supersaturation.The nanoparticles crystallize into hydromagnesite micro -crystals forming rosette -like morphology finally.Some phenomenon such as the formation of nest -like parti -cles can be explai ned according to the mechanism mentioned above.References :[1]Yan C,Xue D,Zou L,et al.J.Cryst.Growth ,2005,282(3/4):448-4541013第27卷无机化学学报[2]Rasenack N,Müller B W.Int.J.Pharm.,2002,244(1/2):45-57[3]YANG Juan-Yu(杨娟玉),LU Shi-Gang(卢世刚),KAN Su-Rong(阚素荣),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25(4):756-760[4]WANG Feng(王峰),WANG Qiu-Shi(王秋实),CUI Qi-Liang(崔启良),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao), 2009,25(6):1026-1030[5]Mann S.Angew.Chem.Int.Ed.,2000,39(19):3392-3406[6]Fang X S,Yoshio B,Liao M Y,et al.Adv.Mater.,2009,21(20):2034-2039[7]Fang X S,Bando Yoshio,Gautam U K,et al.J.Mater.Chem.,2008,18(5):509-522[8]Fang X S,Xiong S L,Zhai T Y,et al.Adv.Mater.,2009,21(48):5016-5021[9]Clfen H,Qi L,Mastai Y,et al.Cryst.Growth Des.,2002,2(3):191-196[10]Wang T,C觟lfen ngmuir,2006,22(21):8975-8985[11]Mitsuhashi K,Tagami N,Tanabe K,et al.J.Photochem.Photobiol.A,2007,185(2/3):133-139[12]Zhang Z,Zheng Y,Zhang J,et al.J.Chromatogr.A,2007,1165(1/2):116-121[13]Russell M J,Ingham J K,et al.J.Geol.Soc.,1999,156(5):869-888[14]Zhang Z,Zheng Y,Chen J,et al.Adv.Funct.Mater.,2007,17(14):2447-2454[15]Hao Z,Pan J,Du F.Mater.Lett.,2009,63(12):985-988[16]Mitsuhashi K,Tagami N,Tanabe K,et ngmuir,2005,21(8):3659-3663[17]Ohkubo T,Suzuki S,Mitsuhashi K,et ngmuir,2007,23(11):5872-5874[18]ZHANG Li-Li(张黎黎),LIU Jia-Xiang(刘家祥),LI Min(李敏).J.Chin.Chem.Soc.(Guisuanyan Xuebao),2008,36(9):1310-1314[19]Cheng W T,Li Z B,George P D.Chin.J.Chem.Eng.,2009,17(4):661-666[20]Cheng W T,Li Z B.Ind.Eng.Chem.Res.2010,49(4):1964-1974[21]Zhang Z,Zheng Y,Zhang J,et al.Cryst.Growth Des.,2007,7(2):337-342[22]Yan C,Xue D.J.Phys.Chem.B,2005,109(25):12358-12361[23]Li Q,Ding Y,Yu G,et al.Solid State Commun.,2003,125(2):117-120[24]Liu F,Sun C,Yan C,et al.J.Mater.Sci.Technol.,2008,24(4):641-648[25]H覿nchen M,Prigiobbe V,et al.Chem.Eng.Sci.,2008,63(4):1012-1028[26]SONG Xing-Fu(宋兴福),YANG Chen(杨晨),et Patent,101830488A,2010.[27]Dong M,Cheng W,et al.J.Chem.Eng.Data,2008,53(11):2586-2593[28]Cheng W T,Li Z B.Ind.Eng.Chem.Res.,2010,49(4):1964-1974[29]Dheilly R M,Bouguerra A,Beaudoin B,et al.Mater.Sci.Eng.A,1999,268(1/2):127-131[30]Botha A,Strydom C A.J.Therm.Anal.Calorim.,2003,71(3):987-995[31]Zhang Z,Zheng Y,Ni Y,et al.J.Phys.Chem.B,2006,110(26):12969-12973[32]C觟lfen H.Mesocrystals and Nonclassical Crystallization.England:John Wiley&Sons,Inc.,2008:75-781014。

毕业论文:海洋吡咯生物碱——片螺素结构简化物的合成

毕业论文:海洋吡咯生物碱——片螺素结构简化物的合成

Marine Alkaloids—Synthesis of the simplified analogues of LamellarinsA ThesisSubmitted in Partial Fulfillment of the RequirementFor the Master Degree in Applied Chemical摘要以廉价易得的醛、酮、α-氨基酸等化合物为起始原料,经多步反应高效合成了一系列海洋吡咯生物碱——片螺素结构简化物。

合成方法进行了改进,工艺过程进行了优化。

合成反应物通过重结晶分离纯化后,用TLC、IR、1HNMR、熔点仪、显微镜等仪器检测和鉴定结构。

结果表明:采用的合成方法能够高效合成原料中间体以及片螺素结构简化物,具有操作简单,易于放大和工业化生产。

研究工作的意义在于探索吡咯生物碱的有效合成方法以及为药物筛选提供新的化学实体。

论文主要内容有:第一章文献综述,系统介绍了海洋吡咯生物碱生物活性,以及海洋吡咯生物碱的发展、研究现状与合成情况。

在此基础之上,提出了本课题研究的目标与科学依据,设计了获得目标产物合成路线。

第二章制作了简易微管连续流反应器。

在40KHz的超声波作用下,反应温度在26-38˚C之间,使用该反应器合成12种α,β不饱和酮,且产率分别达80~90%。

与传统的烧瓶反应相比较,反应时间由原来的1-6h缩短到10min左右。

该法不但具有反应产率高、反应时间短等优点,而且可以连续、大规模地合成α,β不饱和酮(查尔酮)化合物。

第三章由实验制备的α,β不饱和酮为原料,与对甲苯磺酰甲基异氰(TosMIC)反应,合成了芳香酮类片螺素结构简化物。

采用传统van Leusen方法对芳香酮类片螺素结构简化物进行合成。

研究过程中发现,以NaH为催化剂在乙醚中进行反应,由于NaH一般需要在无水无氧溶剂中进行,存在NaH价格昂贵和乙醚闪点低,极易着火等缺点,很难放大合成以及工业化生产。

吖啶橙_氧化石墨烯荧光猝灭法测定多巴胺_马翠萍

吖啶橙_氧化石墨烯荧光猝灭法测定多巴胺_马翠萍

第30卷第3期2011年3月 分析测试学报FENXI CESH I X UEBAO (J ournal of Ins tru m en talAnal ys i s) V ol 130No 13340~343收稿日期:2010-10-24;修回日期:2010-11-25基金项目:济职院科研基金资助项目(2010J XLX09)通讯作者:马翠萍,Te:l 0537-*******,E-m ai:l m cp z h@yahoo 1co m 1c n吖啶橙-氧化石墨烯荧光猝灭法测定多巴胺马翠萍(济宁职业技术学院 生物与化学工程系,山东 济宁 272037)摘 要:在酸性介质中氧化石墨烯对吖啶橙的荧光发生猝灭作用,此时加入适量多巴胺,则导致体系的荧光强度增强,且增强程度与多巴胺的加入量成正比。

据此建立了吖啶橙-氧化石墨烯荧光光度法测定多巴胺的方法。

多巴胺的质量浓度在0105~1210L m o l/L 范围内呈线性,线性方程为$I F =319+5718c (L m ol/L ),相关系数r =019933;检出限为219n m o l/L 。

该方法具有良好的选择性,应用于实际样品的测定,结果满意。

关键词:吖啶橙;石墨烯;多巴胺;荧光猝灭法中图分类号:O 56113;O 6231731 文献标识码:A 文章编号:1004-4957(2011)03-0340-04do:i 1013969/j 1i ssn 11004-4957120111031022D eterm i nation o f D opa m i ne Based on A cri d i ne O range-G rapheneO x i de F l uorescence Q uenchi ng M ethodMA Cu-i ping(Depart m ent of B i o l ogy and Che m ica l Eng ineer i ng ,Ji n i ng V oca ti ona l T echno l ogy College ,Ji ning 272037,Ch i na)Abstr ac:t Deter m i n ation of trace dopa m i n e has i m portant sign ificance on physi o logy ,disease diagno -sis and phar m aceuticals quality .In ac i d m edi u m and surfactan,t the fl u orescence i n tensity of acri d i n eorange cou l d be quenched in the presence o f graphene ox ide .H o w ever ,when dopa m ine w as addedi n to the syste m so l u ti o n ,the fluorescence i n tensity o f t h e syste m w as increased and the increasing fl u -orescence intensity w as propo rtional to t h e a mount o f dopa m i n e .Based on this ,a nove lm ethod forthe deter m i n ation of dopa m i n e w as deve l o ped .The ca li b ration cur ve w as li n ear i n the range of0105-1210L m ol/L .The linear regression equation w as $I F =319+5718c (L m o l/L)(r =019933)and the detection li m itw as 219nm ol/L .The m ethod sho w ed h i g h sensiti v ity ,and w as successfully app li e d i n the deter m i n ation o f dopa m ine i n rea l sa m ples w ith satisfactory results .Key wor ds :acri d i n e orange ;graphene ;dopa m ine ;fluorescence quench i n g m ethod多巴胺(DA)是哺乳动物和人类中枢神经系统中重要的信息传递物质,其在人脑中特定区域的浓度分布影响垂体内分泌功能的协调,并与神经活动直接有关。

海藻酸钙凝胶微球粒径的理论计算与实验_陈益清

海藻酸钙凝胶微球粒径的理论计算与实验_陈益清

Vol.24高等学校化学学报 No.3 2003年3月 CHEM ICAL JOURNAL OF CHINESE UNIVERS IT IES 481~484 海藻酸钙凝胶微球粒径的理论计算与实验陈益清,孙多先,苏 晶,杨 军(天津大学化工学院,天津300072)摘要 通过静电液滴发生器制备海藻酸钙凝胶微球,通过理论推导得到了微球粒径的计算公式.理论计算的结果表明,凝胶微球粒径的大小取决于静电压、电极距离、针头内径大小、注射器流速、海藻酸钠粘度和表面张力以及凝胶化体积收缩系数.理论计算结果与实验结果吻合得相当好.关键词 静电液滴发生器;海藻酸盐;微球;粒径;理论计算中图分类号 O641 文献标识码 A 文章编号 0251-0790(2003)03-0481-04海藻酸是一种从海藻中提取的天然高分子多糖[1],为聚阴离子电解质,海藻酸钠溶液可与Ca2+相互作用生成海藻酸钙凝胶,其微球及其形成的生物微胶囊的应用极为广泛,通过与聚阴离子的复合可制备人工细胞用于糖尿病、帕金森等疾病的临床治疗[2,3],可用来制备药物释放微球以及用作生物吸附剂[1,4~6].海藻酸钙微球[7~12]的粒径大小对其应用有重要意义,微球粒径的理论计算对制备各种粒径均一的微球有重要的指导意义.本文首先推导了凝胶微球粒径的理论计算公式,并详细考察了海藻酸钠物理化学性质和静电液滴发生器设备参数对微球形态和粒径的影响.1 实验部分海藻酸钠购自Sigma公司;其它试剂为分析纯.高压静电脉冲液滴发生器和竖式微量注射泵由多伦多大学提供;XTL-1型摄影体视显微镜,南京江南光学仪器厂;X-370s型照相机为日本M INOLTA 公司产品.用微量注射泵将海藻酸钠溶液挤出平口针头,在静电力作用下,形成射流液柱并崩解形成均匀液滴流,进入到氯化钙溶液中,形成海藻酸钙凝胶微球.调节静电脉冲发生器电压、针头内径、正负电极距离、注射器流速以及海藻酸钠溶液浓度制备海藻酸钙凝胶微球.在体视显微镜下观察微球形态,放大适当倍数照相,选取100~120个微球,计算微球平均粒径(D-).2 理论计算在静电力作用下,海藻酸钠溶液通过注射剂挤出针尖,在针尖处形成球形液面,液面在注射器推动下增长,依次形成月牙形液面、倒锥形液面和细丝状液柱,在静电作用下崩解形成小液滴[13].当液柱的重力(F g)、注射器推动力(F p)和静电力(F e)之和大于表面张力时,液柱崩解.长度为K,直径为a 的海藻酸钠液柱崩解后在自身表面张力作用下变成直径为d的球形,进入含凝胶化盐氯化钙溶液中,生成海藻酸钙凝胶微球.通过改变电场电压(U)、正负电极距离(h)、海藻酸钠溶液浓度(c)、平口针头内径(d i)、注射泵流速(v f)以及凝胶化盐的浓度可改变微球的形态和粒径.海藻酸钠液柱的受力分析:F g+F e+F p=P a C(1)式中,a是液滴断裂处直径,C是海藻酸钠液体表面张力.液柱的静电力是静电压和电场几何参数的函数.静电力取决于电场电压、正负电极距离和电场形状,液滴发生器的正极位于针尖处,属于点电极,而负极是环形电极.该电场中针尖处液柱的静电力为F e=[P E0U2(a2+4a K)2]/(64h4)(2)式中,E0是真空介电常数,h是正负电极距离,即针尖到液面的距离,a是液滴断裂处直径,K是液柱长收稿日期:2002-02-01.基金项目:国家高技术航天领域863-2项目(批准号:863-2-7-2-11)资助.联系人简介:孙多先(1937年出生),男,教授,博士生导师,从事生物高分子研究.E-mail:tdxsun@度.注射器对液滴的推动力为F p =$p S =[2Q v 2f (1+c -2)]/(P a 2)(3)式中,$p 是注射器压力,$p =[Q v 2j (1+c -2)]/2,S 是射流液柱截面积,S =(1/4)P a 2,v j 是射流速率,v j =4v f /(P a 2),v f 是注射器流速,c 是液体流动系数.根据Lippman 电毛细管理论[14],表面带电液柱随着电压升高,其表面张力降低.C =C 0-E 0U 2/h (4)式中,C 0是没有外加电压下的表面张力.海藻酸钠液滴进入到凝胶化盐氯化钙溶液中发生凝胶化反应,而使液滴收缩变小,凝胶化体积收缩系数为c s ,d 是液滴直径,D 是凝胶微球直径,则D =(c s )1/3d .在没有外加电场力作用下,F e =0,形成的椭球形液滴的直径与断裂后的海藻酸钠液滴直径近似相等,F g =P Q gd 3/6,再由式(1)和(3)以及a ≈d i ,D =(c s )1/3d (d i 是针头内径)推导出没有外加电场力作用下海藻酸钠液滴直径(d 0)和海藻酸钙凝胶微球直径(D 0)的理论计算公式:D 0=c 1/3s d 0=c1/3s 6d i C 0Q g -12v 2f (1+c -2)P 2d 2i g 1/3(5) 在静电力作用下,海藻酸钠溶液形成射流液柱,液柱崩解时,其中重力F g =Q gV c (V c 是液柱体积),V c =P a 2K /4,a 是液滴断裂处直径,将式(2)~(5)代入式(1),得P a 2K Q g /4+(P a E 0U 2/h )[a (a +4K )2/(64h 3)+1]=P d 30Q g /6(6) 由于a 和K 均远远小于h ,因此a (a +4K )2/(64h 3)+1≈1,式(6)变为K =2d 30/(3a 2)-4E 0U 2/(Q hga )(7) 液柱崩解后形成球形液滴,V d 是液滴体积,V c =V d ,V d =P d 3/6(a ≈d i ),并由D =(c s )1/3d i 可得D =(c s )1/3d =(3c s d 2i K /2)1/3(8) 将式(7)代入式(8)得到液滴发生器在静电力作用下液滴直径和凝胶微球直径的理论计算公式:D =c 1/3s d =c 1/3s [d 30-6d i E o U 2/(Q gh )]1/3(9) 由式(7)和(9)可知,升高电压,减小电极距离和小针头内径都可以降低射流液柱长度,从而降低液滴和凝胶微球直径.提高海藻酸钠浓度会增加液柱表面张力,从而增加液滴和凝胶微球粒径.根据瑞利原理,射流液柱崩解形成均匀液滴流必须满足K ≥P a .因此,当进一步增加电压或减小电极距离以及改变其它工艺条件时,射流液柱长度不再减小,微球粒径趋于恒定,定义此时的液滴直径和凝胶微球粒径分别为临界液滴直径和临界凝胶微球粒径(d cr 和D cr ),将K =P a 代入到式(8)得到:D cr =c 1/3s d cr =a (3P c s /2)1/3(10)此时,液滴和微球的粒径取决于针头内径.将K =P a 代入式(9)中,求出对应的电压和高度,并分别定义为临界电压(U cr )和临界距离(h cr ).U cr =[(2d 30-3P a 3)Q gh /(12a E 0)]1/2(11)h cr =12a E 0U 2/[(2d 30-3P a 3)Q g ](12) 在其它条件不变时,当电压增加到临界电压或者电极距离小于临界距离时,微球粒径趋于恒定.3 结果与讨论海藻酸钠液滴与氯化钙形成海藻酸钙凝胶微球的过程是溶胶-凝胶相转移过程.在静电力作用下,海藻酸钠液滴高速进入氯化钙溶液,当海藻酸钠质量浓度较低(0.08g /L )时,形成的微球中凝胶密度较低,微球沉降速度慢,漂浮在液面上,并粘连在一起,形成无定形海藻酸钙凝胶.海藻酸钠是天然聚阴离子多糖,其粘度随质量浓度增加显著增加,海藻酸钠粘度较高时,液滴不易挤出,同时因表面张力增加,不易形成均匀液滴流,海藻酸钠质量浓度大于0.25g /L 时,往往形成粒径50L m 的伴滴和碎片状凝胶.海藻酸钠质量浓度在0.15~0.20g /L 时,形成的凝胶微球球形规整,粒径均一.图1是3种不同质量浓度海藻酸钠溶液形成的微球粒径随电压的变化趋势.在无外加静电力作用下,微球粒径较大,在静电力作用下,粒径显著降低,当电压加到一定程度后,粒径趋于恒定.微球粒径随电压的变482 高等学校化学学报V ol.24化分别与式(5),(9)和(10)的计算结果相符.14#针头内径为0.21mm ,实验测定海藻酸钠质量浓度为0.17g/L 的液滴在0.1mol/L 的CaCl 2中的凝胶化体积收缩系数为0.333,针尖到液面的距离为25mm ,d 0为1.2mm ,代入式(10)和(11)中,求得D cr 为243L m,U cr 为6.1kV.实验测定微球粒径随电压降低到240L m 后,粒径趋于恒定,此时对应的电压为6kV ,理论计算结果与实验吻合.在相同电压下,浓度增加,微球粒径略有增加.由式(5)和(9)可知,海藻酸钠浓度增加,粘度相应增加,其流动系数降低,注射器推动力增加.此外,随着浓度的增加,液体的表面张力也会增加,这些因素都会增加微球粒径.图2是电极距离对微球粒径的影响,减小电极距离,可获得较小粒径的凝胶微球,与式(9)的计算结果一致.但电极距离小,即针尖到液面之间的距离小,海藻酸钠液柱崩解后在下降过程中转变成球形的时间减少,往往形成拖尾的凝胶微球.在较高的电压下,随着电极距离减少,微球粒径减小到一定程度后,粒径趋于恒定,此时粒径的计算公式遵循式(10),测定和计算的电极距离为临界电极距离.电压为6kV 时,根据式(12)计算得到理论临界电极距离为25mm ,与实验结果吻合.Fig .1 Eff ect of mass f raction of sodium alginateon diameter of beadsFrequency:50Hz ;electrode distance:25mm;flow rates :7.63mL /h ;needle :14#.Fig .2 Ef fect of electrode distance on diameter of beads Frequency:50Hz;flow rates:7.63mL/h;mass concen-tration:0.17g/L;needle:14#.图3是不同注射器流速对微球粒径的影响,流速增加,微球粒径略有增加.由式(3)可知,注射器流速增加,注射器压力增大.但射流液柱形成时作用在其上的注射器压力比液柱重力小得多,故注射Fig .3 Eff ect of f low rates on diameter of beadsFrequency:50Hz ;distance:15mm;mass concentrati on:0.15g/L;needle :14#.Fig .4 Ef fect of inner diameter of needle on diameter of beads Frequency :50Hz ;distance :15m m ;flow rates :7.63mL/h ;mass concentrati on:0.19g/L.器流速对粒径的影响不大.本研究所用14#和15#两种针头的内径分别为0.21和0.14mm (图4),针头内径大形成的微球粒径大.在无外加静电力作用下,微球粒径遵循式(5),微球粒径与针头内径的1/3次方成正比;在外加静电力作用下,当电压较小时,微球粒径遵循式(9),粒径随针头内径增大而增大,当电压大于临界电压(U cr )时,微球粒径遵循式(10),微球的临界粒径(D cr )与针头内径成正比,图4中14#和15#两种针头的临界粒径分别是280和160L m,与理论计算结果一致.483N o.3陈益清等:海藻酸钙凝胶微球粒径的理论计算与实验 参 考 文 献[1] Haung A.,Lars en B.,Smidsrob d O..Carbohydr.Research[J],1974,32:217—225[2] XUE Yi-Long(薛毅珑),W ANG Lu-Ning(王鲁宁),HE Li-min(何立敏)et al ..Progress in Natural Science(自然科学进展)[J],2000,10(4):299—303[3] HE Yang(何 洋),XIE Yu-Bing(谢玉冰),WANG Yong(王 勇)et al ..Chem.J.Chinese Universities(高等学校化学学报)[J],2000,21(2):278—282[4] CHEN Yi-Qing(陈益清),S UN Duo-Xian(孙多先),LIU Jing-Yi(刘静怡)et al ..Chem.J.Chinese Universities(高等学校化学学报)[J],2003,24(1):117—120[5] M ooney D.J.,Shea L.D.,Peters M. C.et al ..PCT Int.Appl.,W O 2001035932[P],2001[6] Yuan Patent,6153416[P],2000-11-28[7] Fundueanu G .,Nastruzzi C .,Carpov A .et al ..Biom aterials [J ],1999,20(15):1427—1435[8] Gaserod O.,S midsrod O.,Sk jak-Braek G..Biomateri als[J],1998,19(20):1815—1825[9] Poncelet D.,Babak V.G.,Neufeld R.J.et al ..Advances in Colliod and Interface S cience[J],1999,79:213—228[10] Douglas B.S.,Janice A.P..Biotechnol.Prog.[J],1997,13:562—568[11] Senum a Y.,Lowe C.,Zw eifel Y.et al ..Biochemistry and Biotechnology[J ],2000,67:616—622[12] Ulmke H .,Wriedt T .,Bauckhage K ..Chem .Eng .T echnol .[J ],2001,24(3):265—268[13] Bugarski B.,Li Q.L.,Goosen M.F. A.et al ..AIChE Journal[J],1994,40(6):1026—1031[14] Hunter R.J..Foundations of Colloid Chem i stry,Vol.1[M ],New York:Oxford U niversity Press,1989:112—124Theoretical Calculation and Experiments of Diameter ofCalcium Alginate Gel MicrospheresCHEN Yi -Qing ,SUN Duo -Xian *,SU Jing ,YANG Jun(S chool of Chemical Engineering and T echnology ,T ianj in U niv er sity ,T ianj in 300072,China )Abstract Gel microspheres of calcium alginate and alginate -polycation m icrocapsules are w idely used as the mobilization of biology ,controlled release of drug and biologic adsorbents .In this paper ,gel m icro-spheres of calcium alginate are prepared through electrostatic droplet generator and formula of theoretical calculation of diameter of gel microspheres is accordingly given under different conditions.The results of theoretical calculation show that diam eter of g el microspheres is determined by the voltage ,distance be-tw een positive pole and negative pole,inner diam eter of needle,flow rates of sy ringe pump and phy sico-chemical properties of alg inate.The diameter of gel m icrospheres w ill decrease w ith increasing voltage and decreasing the distance betw een electrode and it has the low est value ,w hich is defined as the critical diame-ter of gel microspheres and is in a direct proportion to the inner diameter of needle .The uniform gel m icro-spheres w ith different diam eters are prepared through chang ing phy sicochemical properties of alginate and parameters of electrostatic droplet generator.In order to obtain g ood spherical and hom og eneous beads,the optim um m ass concentration range of sodium alginate is from 0.15to 0.20g /L .The ex perimental re-sults m atch the theoretical calculation w ell.The formula of theoretical calculation can be w idely used to study the effect of physicochemical properties of alginate and parameters of electrostatic droplet generator on the diam eter of gel microspheres of calcium alginate.Keywords Electrostatic droplet generator ;Alg inate ;M icrospheres ;Diameter of get microsphere ;Theo-retical calculation(Ed.:I,X)484 高等学校化学学报V ol.24。

还原型烟酰胺腺嘌呤二核苷酸氧化酶抑制剂芳香碘鎓盐及其抗肿瘤应

还原型烟酰胺腺嘌呤二核苷酸氧化酶抑制剂芳香碘鎓盐及其抗肿瘤应

专利名称:还原型烟酰胺腺嘌呤二核苷酸氧化酶抑制剂芳香碘鎓盐及其抗肿瘤应用
专利类型:发明专利
发明人:文石军,黄蓬
申请号:CN201210057259.0
申请日:20120306
公开号:CN102617546A
公开日:
20120801
专利内容由知识产权出版社提供
摘要:本发明提供了一系列新颖的芳香碘鎓盐化合物作为还原型烟酰胺腺嘌呤二核苷酸氧化酶抑制剂,并发现它们和其它一些已知还原型烟酰胺腺嘌呤二核苷酸氧化酶抑制剂的抗癌新应用。

这些碘鎓盐在体外实验中抑制了还原型烟酰胺腺嘌呤二核苷酸氧化酶的活性,并且明显抑制了人源胰腺癌、多发性骨髓瘤、食管癌和肠癌等恶性肿瘤细胞的生长。

这将推进针对新抗癌靶点还原型烟酰胺腺嘌呤二核苷酸氧化酶开发新型的抗肿瘤药物。

申请人:文石军,黄蓬,中山大学肿瘤防治中心
地址:510060 广东省广州市东风东路651号中山大学肿瘤防治中心611室
国籍:CN
代理机构:广州三环专利代理有限公司
代理人:成明新
更多信息请下载全文后查看。

高光学纯度紫草素和阿卡宁萘茜母核羟基甲基化羰基肟衍生物及其制

高光学纯度紫草素和阿卡宁萘茜母核羟基甲基化羰基肟衍生物及其制

专利名称:高光学纯度紫草素和阿卡宁萘茜母核羟基甲基化羰基肟衍生物及其制备和用途
专利类型:发明专利
发明人:李绍顺,王汝冰,张旭
申请号:CN201310044877.6
申请日:20130204
公开号:CN103130680A
公开日:
20130605
专利内容由知识产权出版社提供
摘要:本发明公开了一种高光学纯度紫草素和阿卡宁萘茜母核羟基甲基化羰基肟衍生物及其制备和用途。

其结构式如式(I)、(II)、(IIi)或(IV)所示:其中R为1~6个碳原子的烷烃、烯烃、芳烃或取代芳烃,或为H;R为1~6个碳原子的烷烃、烯烃、芳烃或取代芳烃,或为H。

本发明的紫草素和阿卡宁萘茜母核羟基甲基化羰基肟衍生物,光学纯度高,结构新颖;药理实验显示,该类化合物具有抗肿瘤活性,与其母体化合物紫草素和阿卡宁比较,活性相当或增强;可用于制备抗肿瘤药物。

申请人:上海交通大学
地址:200240 上海市闵行区东川路800号
国籍:CN
代理机构:上海汉声知识产权代理有限公司
更多信息请下载全文后查看。

1,2-氧杂硫代羟烷-2,2-二氧化物的测定方法

1,2-氧杂硫代羟烷-2,2-二氧化物的测定方法

1,2-氧杂硫代羟烷-2,2-二氧化物的测定方法1,2-氧杂硫代羟烷-2,2-二氧化物(简称ASG)是一种有机硫化合物,常常用作抗癌药物的前体。

因此,准确测定ASG含量对于药物研发和生产是非常重要的。

本文将介绍几种常用的ASG测定方法,并对其原理、步骤和应用进行详细描述。

一、高效液相色谱法高效液相色谱法(HPLC)是测定ASG含量常用的分析方法之一。

它的主要原理是通过样品中ASG与试剂发生反应,生成产物后再进行分离和测定。

具体步骤如下:1.样品制备:将待测样品溶解在适当的溶剂中,经过过滤得到均匀的溶液。

2.反应条件的设定:选择适当的试剂和反应条件,使ASG与试剂能够发生选择性、定量的反应,生成易分离、检测的产物。

3.色谱条件的优化:选择适当的色谱柱、流动相和检测器,优化色谱条件,使待测物和产物能够在短时间内被分离和检测。

4.方法验证:对方法进行验证,包括线性范围、灵敏度、精密度和准确度等指标。

5.样品测定:根据方法中的指导,将制备好的样品注入色谱仪进行分析,得到ASG的含量。

HPLC法测定ASG的优点是分离效果好、选择性高、灵敏度高,可以满足药物研发和生产的需要。

但该方法存在分析过程中试剂和仪器的要求较高、操作繁琐等缺点。

二、气相色谱法气相色谱法(GC)也是测定ASG含量常用的分析方法之一。

它的主要原理是通过样品中ASG与试剂发生反应,生成易挥发、检测的产物,然后通过气相柱进行分离和测定。

具体步骤如下:1.样品制备:将待测样品溶解在适当的溶剂中,经过过滤得到均匀的溶液。

2.反应条件的设定:选择适当的试剂和反应条件,使ASG与试剂能够发生选择性、定量的反应,生成易挥发、检测的产物。

3.色谱条件的优化:选择适当的色谱柱、流动相和检测器,优化色谱条件,使待测物和产物能够在短时间内被分离和检测。

4.方法验证:对方法进行验证,包括线性范围、灵敏度、精密度和准确度等指标。

5.样品测定:根据方法中的指导,将制备好的样品注入色谱仪进行分析,得到ASG的含量。

《高能乳化法制备光甘草定-烟酰胺纳米乳的研究》

《高能乳化法制备光甘草定-烟酰胺纳米乳的研究》

《高能乳化法制备光甘草定-烟酰胺纳米乳的研究》一、引言光甘草定和烟酰胺作为护肤领域中广泛应用的成分,因其独特的生物活性和皮肤保养功效,越来越受到人们的关注。

纳米乳作为一种新型的化妆品传递系统,能够显著提高活性成分的渗透性和稳定性。

因此,采用高能乳化法制备光甘草定-烟酰胺纳米乳,不仅能够提升两者的功效,还可以为护肤品的研发提供新的思路和方向。

二、材料与方法1. 材料光甘草定、烟酰胺、表面活性剂、助表面活性剂等(均为市售)。

2. 方法采用高能乳化法,通过控制温度、转速、表面活性剂和助表面活性剂的种类和比例等参数,制备光甘草定-烟酰胺纳米乳。

通过透射电镜(TEM)观察纳米乳的形态,利用粒度分析仪测定其粒径大小及分布。

同时,通过紫外-可见光谱法等手段评估光甘草定和烟酰胺在纳米乳中的稳定性。

三、实验结果1. 纳米乳的形态观察通过透射电镜观察,制备的光甘草定-烟酰胺纳米乳呈现出均匀的球形结构,且粒径分布较窄。

2. 粒径大小及分布采用粒度分析仪测定,发现纳米乳的粒径在50-150nm之间,且大部分集中在100nm左右,表明制备的纳米乳具有良好的粒径分布。

3. 活性成分的稳定性评估紫外-可见光谱法结果表明,光甘草定和烟酰胺在纳米乳中的稳定性明显提高,与原始成分相比,其降解速率显著降低。

四、讨论高能乳化法通过提供足够的能量,使表面活性剂和助表面活性剂在液相中形成稳定的混合体系,从而制备出具有小粒径和良好稳定性的纳米乳。

在光甘草定-烟酰胺纳米乳的制备过程中,通过优化表面活性剂和助表面活性剂的种类和比例,可以实现对纳米乳形态和粒径的有效控制。

此外,由于纳米乳具有较高的表面积和渗透性,使得光甘草定和烟酰胺能够更快速地渗透皮肤深层,从而提高其生物利用度和功效。

五、结论本研究采用高能乳化法制备了光甘草定-烟酰胺纳米乳,具有良好的形态、粒径大小及分布。

同时,通过紫外-可见光谱法等手段评估了活性成分的稳定性,发现其在纳米乳中的稳定性明显提高。

《高能乳化法制备光甘草定-烟酰胺纳米乳的研究》

《高能乳化法制备光甘草定-烟酰胺纳米乳的研究》

《高能乳化法制备光甘草定-烟酰胺纳米乳的研究》一、引言光甘草定和烟酰胺作为常见的护肤品成分,在美白、保湿和抗衰老等方面有着显著的护肤效果。

然而,如何有效提高这些活性成分的渗透性及稳定性,成为了科研领域内一个亟待解决的问题。

纳米乳液因其能够有效地将活性成分进行纳米级别的包裹,提高了成分的生物利用度及稳定性,因此在化妆品领域中受到了广泛的关注。

本篇论文旨在通过高能乳化法制备光甘草定-烟酰胺纳米乳,并对其制备工艺及性能进行深入研究。

二、材料与方法1. 材料光甘草定、烟酰胺、表面活性剂、助表面活性剂、水相介质等。

2. 仪器高能乳化机、粒度分析仪、透射电镜、紫外分光光度计等。

3. 方法(1)采用高能乳化法,将光甘草定和烟酰胺按照一定比例混合,加入表面活性剂和助表面活性剂,通过高能乳化机进行乳化。

(2)对制备的纳米乳液进行粒度分析、透射电镜观察及紫外分光光度计检测,评估其性能。

三、结果与讨论1. 纳米乳液的制备结果通过高能乳化法成功制备了光甘草定-烟酰胺纳米乳液。

粒度分析结果显示,纳米乳液的平均粒径在100nm左右,表明活性成分被有效地包裹在纳米级别的乳液中。

透射电镜观察结果显示,纳米乳液呈现规则的球形结构,且分布均匀。

2. 影响因素分析(1)表面活性剂和助表面活性剂的比例对纳米乳液的稳定性及粒径有着显著影响。

通过调整表面活性剂和助表面活性剂的比例,可以有效地控制纳米乳液的粒径及稳定性。

(2)高能乳化机的功率和转速对纳米乳液的制备也有着重要影响。

适当的功率和转速可以保证乳化过程的顺利进行,同时避免过度剪切导致乳液破坏。

(3)光甘草定和烟酰胺的比例也会影响纳米乳液的制备。

在实验过程中,需要优化两者的比例,以达到最佳的护肤效果。

3. 性能评价紫外分光光度计检测结果显示,纳米乳液中的光甘草定和烟酰胺具有较高的稳定性,能够有效地抵抗外界环境的影响。

此外,纳米乳液具有较好的渗透性,能够快速地被皮肤吸收。

四、结论通过高能乳化法制备的光甘草定-烟酰胺纳米乳液,具有较小的粒径、规则的球形结构、良好的稳定性和渗透性。

海藻酸钙凝胶微球的制备和pH敏感释放

海藻酸钙凝胶微球的制备和pH敏感释放

Department of Medical Polymer and Artificial Internal Organ, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
1 材料和方法
设计:对比观察。 时间及地点:实验于2007-10/2009-05在四川大学 高分子科学与工程实验楼完成。 材料:
实验仪器和试剂
UV-1 1800型紫外分光光度计 KXH-ZUZA型恒温干燥箱 海藻酸钠 无水氯化钙(99%) 牛血清白蛋白(生化试剂)
来源
上海美谱达仪器有限公司 上海科析试验仪器公司 成都科龙试剂公司 成都科龙试剂公司 上海伯奥生物科技有限公司
Liu Li-ying★, Studying for master’s degree, Department of Medical Polymer and Artificial Internal Organ, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China 276645641@
ISSN 1673-8225 CN 21-1539/R蛋白质药物的包埋[4]。这一简单的制备过程避免 了高温、有机溶剂及其他有害条件,有利于保护蛋白质 活性[5]。近年来有关海藻酸钙凝胶微球作为口服药物缓 释载体的报道很多,其制备方法包括乳化法和滴制法, 乳化法通常需要在较高的搅拌速度或较大剪切力作用 下进行。Lemoine等[6]发现过高的搅拌速度很容易破坏 药物分子的生物活性,且难以实现规模化生产。另外, 有机溶剂使用与残留对蛋白类药物的活性也存在一定 影响,因此本实验采用滴制法制备海藻酸钠微球,并对 微球的制备条件和工艺进行了探讨。以牛血清白蛋白为 模型药物,研究其体外释放特性,为海藻酸钠作为口服 缓释制剂载体的应用提供一定的指导意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Synthesis of amorphous calcium phosphate usingvarious types of cyclodextrinsYanbao Li 1,Tjandra Wiliana,Kam C.Tam *Singapore-MIT Alliance,School of Mechanical and Aerospace Engineering,Nanyang Technological University,50Nanyang Avenue,Singapore 639798,SingaporeReceived 17March 2006;accepted 28August 2006Available online 10October 2006AbstractAmorphous calcium phosphate (ACP)was synthesised in aqueous solution at room temperature using cyclodextrins.Fourier transform infrared (FTIR)spectroscopy,X-ray diffraction (XRD),transmission electron microscopy (TEM),energy dispersive X-ray spectroscopy (EDX)and thermal analysis (DTA/TGA)were performed on the calcium phosphate precipitates obtained from solutions.We observed that only b -CD could stabilise the amorphous phase in the mother solution because of the lower solubility of b -CD in water and the ACP remained stable in aqueous solution for more than 24h at room temperature.The ACP particle has an initial particle size of less than 40nm,Ca/P molar ratio of 1.67and b -CD absorbed on its surface.The mechanism for the stabilisation of ACP is proposed.#2006Elsevier Ltd.All rights reserved.Keywords:A.Amorphous materials;A.Nanostructures;B.Chemical synthesis1.IntroductionAmorphous calcium phosphate (denoted as ACP)is commonly found in biological system (such as soft bone tissue and bovine milk [1]),and it was first synthesised in solution by Posner and co-workers [2,3].ACP plays a vital role in the biomineralization of bone because it is a precursor to crystalline bone apatite.Furthermore,ACP is widely used as a precursor to prepare crystalline calcium phosphates with different compositions [4].This material can be used in various applications,such as coated implant [5–7],filler [8,9]and bone cements [10],because of its high bioactivity and excellent biodegradable property.ACP formation has been reported to occur via various mechanisms,and several preparation techniques have been adopted;namely (1)synthesis of calcium phosphate in aqueous solution,with or without stabilisers [3,9,11,12],(2)synthesis in organic–water mixtures [9,13],(3)organic-mediated sol–gel processes [4,14],(4)quenching of molten calcium phosphates,and (5)physical deposition techniques [12,15].However,the last two methods are not able to control the composition of ACP materials and they may also introduce contaminated elements or other crystalline phases,such as CaO to the ACP [15].The solution-mediated method has been employed because it can provide precise control of composition and phase characteristics of ACP./locate/matresbuMaterials Research Bulletin 42(2007)820–827*Corresponding author.Tel.:+6567924062;fax:+6567905590.E-mail address:mkctam@.sg (K.C.Tam).1Present address:College of Materials and Engineering,Nanjing University of Technology,5Xin Mofan Road,Nanjing 210009,China.0025-5408/$–see front matter #2006Elsevier Ltd.All rights reserved.doi:10.1016/j.materresbull.2006.08.027Y.Li et al./Materials Research Bulletin42(2007)820–827821 ACP is a transient precursor that will transform into apatite in the mother solution through the dissolution of ACP, followed by the nucleation and growth of apatite[16].The stabilising additives should be added into the ACP mother solution to obtain an amorphous phase.The additives present included not only inorganic substance such as Mg2+[16], Zn2+[12],CO32À[7],P2O74À,FÀand ZrOCl[8],but also biomacromolecules such as nucleotide and casein phosphopeptide[1].However,the addition of such inorganic additives will alter the composition,which would enhance the negative effects in the biomedical application of ACP.Previously,we reported that synthetic polymers can be employed to stabilise ACP in solution[17].Nevertheless, the synthesis conditions were very stringent;i.e.low temperature(58C)and high polymer concentration(>10wt.%). In this paper,polysaccharides,such as cyclodextrins were employed to stabilise the amorphous phase of ACP in solution,and the synthetic conditions were improved to produce nanostructures at room temperature(258C)aided bya low organic content(<1wt.%).2.ExperimentalAll the chemicals were of analytical grade,and used as received without further purification.Calcium chloride, potassium hydrogen phosphate and sodium hydroxide were purchased from Sigma–Adlrich and cyclodextrins were purchased from Cyclodextrin Technologies Development,Inc.Calcium chloride(CaCl2)and cyclodextrins(denoted as CD)were dissolved in deionised water to form0.2M calcium chloride solution in different CD concentrations ranging from0.1to2wt.%,and kept for24h to allow the reaction of calcium and cyclodextrin to reach an equilibrium.Phosphate solution was added drop-wise into CaCl2/CD solution at Ca/ P molar ratio of1.67,which was kept at a pH of10by the addition of1M NaOH.The reaction was conducted at room temperature(258C)for several hours.The precipitates were recovered from the solution using a centrifuge,and washed repeatedly to remove soluble ions such as K+,Na+,and ClÀ.Finally,the precipitates were washed twice with ethanol,and dried at room temperature for24h,and stored in the desiccator prior to characterization.The Fourier transform infrared(FTIR)spectroscopy was conducted in a Nicolet magna-IR FTIR system550 spectrophotometer with2cmÀ1resolution from4000to400cmÀ1,using KBr pellet method.Powder X-ray diffraction patterns were recorded on a Rigaku Rotaflex diffractometer using Cu K a radiation over the range108<2u<708with the step of0.058.The morphology of the precipitates was performed on a JEOL2010Transmission microscope operating at200kV with an Oxford link EDX system.The TEM specimens were prepared by placing a drop of calcium phosphate precipitates dispersed in ethanol solution on a300-mesh copper grid with the polymeric supporting film and the solvent was removed completely at room temperature.3.Results3.1.Effect of different types of CDsFigs.1and2show the XRD and FTIR spectra of calcium phosphate synthesised in the presence of different types of CDs(a-CD,b-CD,g-CD,m-CD and h-CD).Only calcium phosphate synthesised in the presence of b-CD is amorphous with a characteristic halo whose maximum peak was located at2u=308.On the contrary,the other samples had crystalline diffraction peaks,which can be assigned to apatite(JCPDS9-432).This implies that only b-CD can stabilise the ACP phase in aqueous solution at the prevailing condition.The n4PO42Àbending mode at550cmÀ1and n3PO42Àstretching mode at about1000cmÀ1appeared in the FTIR spectra for all the samples.The n4PO42Àband at550cmÀ1is a single halo peak in the b-CD containing sample,which became two peaks at604and565cmÀ1for the other four samples. The n4PO42Àband at874cmÀ1is very weak in the b-CD containing sample,and it is pronounced for the other four samples.According to Termine and Posner[18],ACP phase shows a single peak in the region of600–500cmÀ1while the anisotropic local electricalfield of crystalline phase causes an absorption in the form of an apparent doublet.Thus,the FTIR result confirmed that ACP can be obtained the solution aided by the presence of b-CD.3.2.Effect of b-CD concentrationsFigs.3and4show the XRD and FTIR spectra of calcium phosphate synthesised for3h at room temperature in the presence of different concentrations of b-CD.Diffraction peaks at2u=25.868and31.968appeared at b -CD concentration below 0.5wt.%,which can be assigned to the apatite phase (JCPDS 9-432).A characteristic halo peak occurs at 2u =308at b -CD concentration greater than 0.5wt.%,indicating that ACP is present in the solution.From Fig.4,there is a pronounced absorption band at about 1000cm À1,due to n 3PO 43Àstretching mode.The samples synthesised at high b -CD concentration (!0.5wt.%)has Y.Li et al./Materials Research Bulletin 42(2007)820–827822Fig.1.XRD spectra of calcium phosphates synthesised in the presence of 0.5wt.%CDs at room temperature for 3h and pH of10.Fig.2.FTIR spectra of calcium phosphates synthesised in the presence of 0.5wt.%CDs at room temperature for 3h and kept pH of10.Fig.3.XRD spectra of calcium phosphates synthesised at room temperature for 3h and kept pH of 10in the presence of different concentrations of b -CD.a strong halo band at 600–500cm À1,an indicator of amorphous phase [19].The obvious absorption band at 960cm À1is assigned to n 2PO 43Àstretching mode in the spectrum of the sample synthesised at lowb -CD concentration (<0.3wt.%).The band at 873cm À1becomes more pronounced when the b -CD concentration was decreased to below 0.5wt.%,and the halo band at 600–500cm À1splits into doublet peaks at 603and 562cm À1and their intensity increased with b -CD concentration due to local anisotropic electrical field of the crystalline phase.3.3.Effect of aging timesXRD and FTIR spectra of calcium phosphate synthesised in the presence of 1wt.%b -CD at room temperature for different times are shown in Figs.5and 6.A halo peak at 2u =308is present in the samples,even when aged for 24h,while crystalline diffraction peaks at 2u =25.868and 31.968appeared and became stronger after aging for more than 24h at room temperature,and these peaks belong to (002)and (211)of apatite (JCPDS 9-432).The results from the FTIR spectra agreed with those determined from XRD measurements.The absorption band at 874cm À1did not exist for the sample aged for 3h,but appeared and became stronger with increasing aging times.The halo band at 600–500cm À1became two peaks at 603and 562cm À1after being aged for 48h.A new band at 630cm À1occurred in samples that have been aged for more than 48h,and this can be assigned to OH group,which is an indicator of the hydroxyapatite phase.Thus,we conclude that the ACP phase existed in the solution before aging of 24h.Y.Li et al./Materials Research Bulletin 42(2007)820–827823Fig.4.FTIR spectra of calcium phosphates synthesised in the presence of different concentration of b -CD at room temperature for 3h and kept pH of10.Fig.5.XRD spectra of calcium phosphates synthesised in the presence of 1wt.%b -CD at room temperature and kept at pH of 10after different aging times.3.4.Characterization of ACPACP particles were investigated by TEM,EDX and TGA/DTA techniques.The typical morphology of ACP is spherical particles with size of less than 40nm and these particles aggregated during the preparation for TEM analysis (Fig.7a),and the selected area electron diffraction (SAED)confirmed the amorphous phase,which is consistent with Y.Li et al./Materials Research Bulletin 42(2007)820–827824Fig.6.FTIR spectra of calcium phosphates prepared in the presence of 1wt.%b -CD and kept pH of 10after different agingtimes.Fig.7.(a)Morphology of typical ACP observed by TEM (the inset at the top right is the select area electron diffraction pattern and bottom right is the EDX analysis),(b)XRD spectra of typical ACP after being heated at 8008C for 3h (the black solid line is the experimental data and red line is the reference according to JCPDS 9-432)and (c)TGA/DTA curves of the typical ACP precipitates.Y.Li et al./Materials Research Bulletin42(2007)820–827825 the XRD results.The chemical composition of ACP was also examined by EDX,and only Ca,O and P elements were present with a Ca/P molar ratio of1.67.Impurities such as K,Na,and Cl were not present,which implies that the ACP comprises of pure calcium phosphate.The chemical composition was also confirmed using XRD pattern of ACP after heating at8008C for3h.Only one phase,hydroxyapatite(JCPDS9-432)with the Ca/P molar ratio of1.67(Fig.7b)is present.The organics on the surface of ACP was studied by TGA(Fig.7c).There is about22wt.%weight loss, assigned to the water present in the ACP clusters,which was also reported by Posner[2].Another weight loss of 2wt.%was observed at between300and5508C,due to decomposition of b-CD.From the DTA study,an exothermal peak at6508C was observed and this can be attributed to the crystallization of ACP.4.DiscussionAmorphous calcium phosphate(ACP)occurs widely in animal bone and plays a vital role in the biomineralization process of bone formation.On the one hand,ACP may act as short-term Ca and P storage reservoirs(precursors)for the crystalline apatite in bones.It has been reported that amorphous phase improves the mechanical properties and stability of various biominerals[20].Furthermore,ACP can be used as a precursor to produce the crystalline calcium phosphates,and has been extensively studied by a number of research groups.Pure ACP phase however is a transient phase and can be easily transformed to apatite in the mother solution by the dissolution–recrystallization process,i.e.the dissolution of ACP and nucleation and growth of apatite[2].A number of parameters can affect the transformation of ACP into apatite,including additive type,amount of additive,aging time, pH value,ACP particle size,ACP slurry concentration,temperature,stirring speed,solution composition[2,16,21]. However,thefirst three parameters are the most important,and these were investigated in the present study.Cyclodextrins and calcium chloride solution was being stirred overnight to form a Ca2+-CD complex,as reported by Nicolis et al.[22,23]and Yang[24,25].When the phosphate solution was added,calcium phosphate precipitate was produced and CD molecules are absorbed on the surface of the precipitate,a step that is critical in stabilising the ACP phase.This is confirmed by the TGA thermograms(Fig.7c),where2wt.%b-CD was found on the surface of the ACP precipitates even after repeated washing.CD molecules are absorbed on the surface of calcium phosphate precipitates, thereby reducing the solubility of ACP.This effect may vary depending on the types of CDs.Only b-CD can stabilise ACP because it is more hydrophobic than the other four CD systems,as indicated by their solubilities in water listed in Table1.In addition,the large cyclic structure of CD molecule provides steric hindrance for the atomic rearrangement during the transformation of ACP to apatite.These two effects enhance the stabilising effect of b-CD on ACP in the mother solution.The process of ACP formation can summarized as shown in Eq.(1):Ca2þþCD!Ca2þ-CD complex!ACP-CDðstabilisationÞ(1) The concentration of b-CD determines the degree of stabilisation.There is a limit for the absorption of b-CD on the surface of the ACP in the mother solution.Amorphous phase could be obtained if high b-CD concentration (>0.3wt.%)was used because the amounts of b-CD absorbed on the amorphous cluster has exceeded the limit.While the amount of b-CD absorbed on the surface of the ACP precipitates did not exceed the limit at low b-CD concentration(<0.5wt.%),it cannot stabilise the ACP in the mother solution.The pH determines the process relating to the transformation of ACP into apatite[21]:(a)ACP transforms into apatite directly if pH is greater than9.25as shown by Eq.(2);Table1Solubility in water of different CDs at room temperatureCode Chemical name Solubility(wt.%,258C) a-CD a-Cyclodextrin14.5b-CD b-Cyclodextrin 1.85g-CD g-Cyclodextrin23.2m-CD Methyl-b-cyclodextrin20h-CD Hydroxypropyl-b-cyclodextrin>50(b)The intermediate phase—octacalcium phosphate (OCP)appears and the OCP is transformed into apatite at pHvalue lower than 9.25as shown in Eq.(3):ACP !apatite ðpH >9:25Þ(2)ACP !OCP !apatite ðpH <9:25Þ(3)ACP stabilised by b -CD can remain in the mother solution for more than 24h,and then transformed directly into apatite due to the high pH (about 10).Recently,several studies have reported on the preparation of ACP that remained stable for more than 24h [9,26,27].Although they used the organic–water mixture,it is very difficult to separate ACP from the mother solution and the ACP particle concentration was very low,which limits its mass production.ACP stabilised by b -CD exists as pure calcium phosphate with molar ratio of 1.67,similar to that of hydroxyapatite,without any contaminated ions such K +,Na +and Cl À.Such approach ensures that pure ACP can be produced resulting in the formation of uncontaminated apatite that can have potential applications in biomedical field.The particle size of ACP is less than 40nm and hydroxyapatite was achieved after heated at 8008C for 3h,which indicates ACP can be used as precursor for the synthesis of the crystalline calcium phosphate phases.5.ConclusionsAmorphous calcium phosphate (ACP)was synthesised in aqueous solution at room temperature using cyclodextrins as additives.We observed that 2wt.%of b -CD was absorbed on the surface of ACP particle after repeated washing,which fulfils a vital role for the stabilisation of ACP in the mother solution.ACP is present in the mother solution for more than 24h at the prevailing condition with >0.3wt.%b -CD concentration through the reduction in the solubility of ACP,which prevents the transformation of ACP to apatite.Only b -CD can stabilise ACP due to its lower solubility in water (i.e.more hydrophobic)compared to other CDs.ACP has good chemical composition with Ca/P molar ratio of 1.67and particle size of less than 40nm,without any contaminated ions,such as K +,Na +and Cl À.The present study demonstrates a practical way of synthesizing pure ACP under normal condition (room temperature and low additive concentration).AcknowledgementsWe acknowledge the financial support from Singapore-MIT Alliance and.Ms.Lin Wang from IMRE (A-Star,Singapore)assisted with the FTIR measurements.References[1]K.J.Cross,N.L.Huq,J.E.Palamara,J.W.Perich,E.C.Reynolds,J.Biol.Chem.280(2005)15362.[2]A.S.Posner,F.Betts,Acc.Chem.Res.8(1975)273.[3]E.D.Eanes,Gillesse I.H.,A.S.Gosner,Nature 208(1965)365.[4]yrolle,A.Ito,T.Tateishi,J.Am.Ceram.Soc.81(1998)1421.[5]M.Nagano,T.Nakamura,T.Kokubo,M.Tanahashi,M.Ogawa,Biomaterials 17(1996)1771.[6]S.H.Maxian,J.P.Zawadsky,M.G.Dunn,J.Biomed.Mater.Res.27(1993)717.[7]R.J.Dekker,C.A.Van Blitterswijk,J.D.De Bruijn,M.Stigter,F.Barrere,yrolle,Biomaterials 26(2005)5231.[8]D.Skrtic,J.M.Antonucci,E.D.Eanes,R.T.Brunworth,J.Biomed.Mater.Res.59(2002)597.[9]D.Hakimimehr,D.M.Liu,T.Troczynski,Biomaterials 26(2005)7297.[10]F.C.M.Driessens,J.A.Planell,M.G.Boltong,I.Khairoun,M.P.Ginebra,Proc.Inst.Mech.Eng.H–J.Eng.Med.212(1998)427.[11]P.B.Y .Ofir,rin-Lippman,N.Garti,H.Furedi-Milhofer,Cryst.Growth Des.4(2004)177.[12]R.Z.Legeros,S.Lin,R.Rohanizadeh,D.Mijares,J.P.Legeros,J.Mater.Sci.:Mater.Med.14(2003)201.[13]S.Sadasivan,D.Khushalani,S.Mann,Chem.Mater.17(2005)2765.[14]yrolle,A.Lebugle,Chem.Mater.8(1996)134.[15]R.Murugan,K.P.Rao,T.S.S.Kumar,Editon ed.,Bioceramics 15,vol.240–242,2003,p.51.[16]A.L.Boskey,A.S.Posner,J.Phys.Chem.77(1973)2313.[17]Y .B.Li,W.J.Weng,K.Cheng,P.Y .Du,G.Shen,G.R.Han,Mater.Sci.Technol.20(2004)1075.[18]J.D.Termine,A.S.Posner,Science 153(1966)1523.[19]L.Addadi,S.Raz,S.Weiner,Adv.Mater.15(2003)959.Y.Li et al./Materials Research Bulletin 42(2007)820–827826Y.Li et al./Materials Research Bulletin42(2007)820–827827[20]A.B.C.Gunther,G.Wolf,M.Epple,Z.Anorg.Allg.Chem.631(2005)2830.[21]E.D.Eanes,in:L.C.Chow,E.D.Eanes(Eds.),Amorphous Calcium Phosphates in Octacalcium Phosphates,Karger,Basel,2001.[22]I.Nicolis,A.W.Coleman,P.Charpin,C.deRango,Acta Crystallogr.Sect.B:mun.52(1996)122.[23]M.Eddaoudi,A.Baszkin,H.Parrotlopez,M.M.Boissonnade,A.W.Coleman,Langmuir11(1995)13.[24]X.Y.Zhang,Z.J.Liao,L.Yang,Z.G.Hu,K.Jiang,Y.M.Guo,Acta Chim.Sin.61(2003)69.[25]L.Yang,X.Y.Zhang,Z.J.Liao,Y.M.Guo,Z.G.Hu,Y.Cao,J.Inorg.Biochem.97(2003)377.[26]K.K.Perkin,J.L.Turner,K.L.Wooley,S.Mann,Nano Lett.5(2005)1457.[27]C.E.Fowler,M.Li,S.Mann,H.C.Margolis,J.Mater.Chem.15(2005)3317.。

相关文档
最新文档