二次函数根的分布专题
二次函数根的分布专题(上课用)
一元二次方程根的分布专题一.一元二次方程根的基本分布——零分布设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x①方程有两个不等正根 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>-=+>-=∆>>00040,02121221a c x x a b x x ac b x x②方程两根一正一负 :0021<<<acx x ,则③方程有两个不等负根:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+>-=∆<<00040,02121221a c x x a b x x ac b x x 即时应用:(1)若一元二次方程0)1(2)1(2=-++-m x m x m 有两个不等正根,求m 的取值范围。
(2)k 在何范围内取值,一元二次方程0332=-++k kx kx 有一个正根和一个负根?二、一元二次方程的非零分布——k 分布设一元二次方程20(0)ax bx c a ++=>的两不等实根为1x ,2x , k 为常数。
则一元二次方程根的k 分1x 2x kk kk即时应用:(1) 若方程42x +(m-2)x+(m-5)=0的两根都大于1,则求m 的取值范围.(2) 方程x 2+2px+1=0有一个根大于1,一个根小于1,求p 的取值范围.二、典型例题例1 若一元二次方程03)12(2=-+-+k x k kx 有一根为零,则另一根是正根还是负根?例2若方程2(2)40x k x -++=有两负根,求k 的取值范围.例3..若关于x 的方程2(2)210x k x k +-+-=的两实根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围例4.已知关于x 的方程223230x x m -+-=的两根都在[-1,1]上.求实数m 的取值范围.例5.方程mx 2+2(m+1)x+m+3=0仅有一个负根,求m 的取值范围2k 1k 2k 1k 3k 2k 1k。
微专题11 二次函数根的分布问题(解析版)
微专题11二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=<2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m<<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩在区间(,)m n 内有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】题型一:正负根问题题型二:根在区间的分布问题题型三:整数根问题题型四:范围问题【典型例题】题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m为实数,命题甲:关于x的不等式240mx mx+-<的解集为R;命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m的取值范围为_______.【答案】(20,0]-【解析】由命题甲:关于x的不等式240mx mx+-<的解集为R,当0m=时,不等式40-<恒成立;当0m≠时,则满足2160mm m<⎧⎨∆=+<⎩,解得160m-<<,综上可得160m-<≤.由命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根,则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-,可得200m -<≤,即实数m 的取值范围为(20,0]-.故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________.【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意.当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤,当1a =时,方程有且仅有一个负实数根1x =-,当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <.所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”.故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________.【答案】125k ≤-或3k >【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则12121200,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k kkk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >.例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____.【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根,得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,31113b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣.例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-.(2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________.【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=.(1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3?(3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1,则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤.例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内.【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内,所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩,解得1125<<a ,故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围.【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221 260.x m x m +-++=(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根 αβ,,且满足014αβ<<<<;(3)至少有一个正根.【答案】(1)1m <-(2)7554m -<<-(3)1m ≤-【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-.(2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-.③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________.【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--.故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤,所以实数a 的取值范围是16(5,]3.故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数 a 的取值范围是_____.【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于 2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____.【答案】()3,0-【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是()3,0-.故答案为:()3,0-.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,那么a 的取值范围是()A .2275a -<<B .25a >C .27a <-D .2011a -<<【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a<-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是()A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D.{12,623⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足:①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =,此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =,此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1),()2(2)4210m m ∆=---=,解得6m =±当6m =+2(2)210x m x m +-+-=的根为2-若6m =-2(2)210x m x m +-+-=2,符合题意综上:实数m的取值范围为{12,623⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值.【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求),由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-,95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-==-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,,0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是()A .13B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线,根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21.故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是()A .5B .6C .7D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <,所以k 最大整数值是1.故答案为:1.题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =-,又12t ≤≤,2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x .(1)当1m =时,求1211+x x 的值;(2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==.(2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以211212121241111194(4)()(5)54444x x x x x x x x x x ⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭,当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意,124x x ∴+的最小值为94.例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是()A .4B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-,解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥,当c =2时,等号成立,所以其最小值是2,故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是()A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+ ,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331k k k==++,6k ,∴1106k < ,3102k < ,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是()A .12a x x b <<<B .12x a b x <<<C .12a x b x <<<D .12x a x b<<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<.故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈.(1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<;(ⅱ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <.综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点.所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>,由求根公式得3x =因为函数()g a ()3,+∞上单调递增,所以()332x g >=31012x <<-.所以123111x x x ++.所以a 的取值范围是21,22⎛- ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为()A .1B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <.因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是()A .(5,4)(4,)--+∞B .(5,)-+∞C .(5,4)--D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5mf x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或则54m -<<-,即(5,4)m ∈--故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=()A .3B .6C.D.【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,12||x x -===.故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是().A .(,0)(1,)-∞⋃+∞B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩,解得103-<<a ,故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()A .0a <B .0a >C .1a <-D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <,故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件.故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若AB ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+-由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是()A .{}12a a -<<B .{}21a a -<<C .{}2a a <-D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为()A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-.故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是().A .24a b=B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c ++<的解集为12(,)x x ,且12||4x x -=,则4c =【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231 314 a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误;对于D :若不等式2x ax bc ++<的解集为12(,)x x ,即20x ax b c ++-<的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=,则12||4x x -==,解得4c =,所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是()A .4m =B .5m =C .1m =D .12=-m 【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =.当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得2=±x 但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是()A .3-B .18C .14D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是()A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误;对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为()A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++,由12013x x <<<<,可得()()()()10200110110230193102f f m f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩,解得:25562m -<<-,又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <-,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞)【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-,所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1-【解析】由()()2320x x x -+-≤,得23020x x x ⎧-≥⎪⎨+-≤⎪⎩或23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得13x ≤≤,所以集合{|31A x x =-≤≤-或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则()()3030f f ⎧-≤⎪⎨≤⎪⎩,即9312093120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题;239mx x ∴≤+,即93m x x ≤+;96x x +≥(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--,则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩,∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a=-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,1a ∈--(2)[]1,2x ∃∈,()22130x a x +-+>成立,即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在x ⎡∈⎣上单调递增,在)x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =-故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围;(2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k <-则k 的取值范围为(),2∞--.。
最全面二次方程根的分布情况归纳(完整版)2021
二次方程根的分布与二次函数在闭区间上的最值归纳ax2bx c 0 根的分布情况1、一元二次方程ax2ax2bx c 0 a 0 f x bx c 0 ,设方程x , x x x的不等两根为且,相应的二次函数为1 2 12方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0 的大小比较即根的正负情况)分布情况两个负根即两根都小于两个正根即两根都大于一正根一负根即一个根小于0,00一个大于0 x10, x20x10, x20x10x2大致图象(a0)00得出的结论b2 ab2a00 f 00f 0 f 0大致图象(a0)00得出的结论b2 ab2a00 f 00f 0 f 0综合结论(不讨论a )00b2 ab2a00a f 0 0 a f 00a f 00k k 即k 即分 布 情 况一个根小于k ,一个大于 两根都小于即两根都大于x 1 k, x 2 kx 1k, x 2kx 1kx 2大 致 图 象 (kkka 0)0 0 得 出 的 结 论b 2a kb 2a kk k f kf 0f 0大 致 图 象 (a 0)0 0 得 出 的 结 论b 2 a kb 2a kk k f kf 0f 0综 合 结 论 ( 不 讨 论a)0 0b 2a b2a k k a f ka f ka f k分布情况m, n m,n 内,另一根在p, q两根有且仅有一根在内一根在m, n两根都在内m n p q内,(图象有两种情况,只画了一种)大致图象(a0)0 mnb 2a ffffmnpq得出的结论ffffmpffnq或f m f n0m n大致图象(a0)0 mnb 2a ffffmnpq得出的结论ffffmpffnq或f m f n0m n综合结论(不讨论a )f m f n0f m f n0——————f p f q0m, n根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧x1m, x2n ,(图形分别如下)需满足的条件是f f m n0 0f f m n0 0( 1) a0 时,;( 2) a0 时,对以上的根的分布表中一些特殊情况作说明: ( 1)两根有且仅有一根在m, n 内有以下特殊情况:1 若 f m0或 fn0 ,则此时 f m f n 0 不成立, 但对于这种情况是知道了方程有一根为m 或 n ,mx2可以求出另外一根, 然后可以根据另一根在区间 m, n 内,从而可以求出参数的值。
二次函数实根分布总结
二次函数实根分布总结二次函数是高中数学中的重要内容,其实根分布指的是二次函数图像在坐标系中与x轴相交的情况。
为了更好地理解二次函数的实根分布,我们需要从以下几个方面进行总结:一、二次函数的标准形式及解析式二次函数的标准形式为:y = ax² + bx + c。
其中,a、b、c都是实数,且a ≠ 0。
二次函数的解析式为:y = ax² + bx + c。
通过二次函数的标准形式和解析式可以看出,二次函数是一个关于x的二次多项式。
二、二次函数图像的总体特征1.对称性:二次函数的图像关于抛物线的对称轴对称。
抛物线的对称轴是-x=(b/2a)这一直线。
2.开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3.顶点:二次函数的图像的顶点即为抛物线的最低点或最高点,顶点的横坐标为-b/(2a),纵坐标为f(-b/(2a))。
4.纵轴截距:二次函数与纵轴的交点称为纵轴截距,纵轴截距为函数值f(0)。
5.零点:二次函数与x轴的交点称为零点,也即二次函数的实根。
三、实根分布的情况及原因根据二次函数的解析式可以得出,二次函数的实根个数可能为0、1或者21. 当Δ = b² - 4ac > 0时,二次函数有两个不相等的实根。
这种情况下,抛物线与x轴有两个交点,即图像与x轴相交于两个实根点。
此时,二次函数的图像开口的方向和顶点的位置与抛物线的形态相关。
2. 当Δ = b² - 4ac = 0时,二次函数有两个相等的实根。
这种情况下,抛物线与x轴有一个交点,即图像与x轴相交于同一个点。
此时,二次函数的图像开口的方向和顶点的位置与抛物线的形态相关。
3. 当Δ = b² - 4ac < 0时,二次函数没有实根。
这种情况下,抛物线与x轴没有交点,即图像与x轴没有交点。
此时,二次函数的图像开口的方向和顶点的位置与抛物线的形态相关。
四、实根分布的确定方法确定二次函数的实根分布的方法主要有以下两种:1.利用二次函数的解析式:根据二次函数解析式中的a、b、c的值,可以直接计算Δ的值,然后根据Δ的大小判断实根的分布情况。
二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n < 不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m ,由213m<<得223m <<即为所求; 2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -< 即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
高一数学二次函数根的分布专题归类精练
高一数学:二次方程根的分布一、一元二次方程02=++c bx ax )0(≠a 根的分布情况:设方程02=++c bx ax 的两实根为12,x x ,(不妨设21x x ≤),相应的二次函数为c bx ax x f ++=2)(,方程的根12,x x 即为此二次函数的零点, 即此二次函数的图象与x 轴的交点为)0,(1x 和)0,(2x ,因为02=++c bx ax )0(≠a 与0)(2=++x bx ax a 是同解的,故考虑具体的端点值时,考虑的是函数ac abx x a c bx ax a x af y ++=++==222)()(的端点值,这样只考虑开口向上的情况即可.解决根的分布问题的方法:数形结合,三看:一看判别式;二看对称轴;三看端点值.它们的分布情况见下表:如上图,只是可以过两端点,注注2:对于端点值是否可取,最好单独讨论;注3:以上11种情况都有相应的等价形式,对于具体题中的条件,往往是几种情况合在一起的,这时需要分类讨论,此时莫忘注1,注2 .特别注意下列两种情况:一. 函数)(x f 在()n m ,内仅有一个零点,可分:(1)方程0)(=x f 有且只有一根(两根重合时),且这个根在区间()n m ,内,即0∆=, 此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根, 检验根是否在给定的区间内,如若不在,舍去相应的参数的值.(2)若()0f m =,可以确定的求出相应的系数(或得到一个关系),从而可以求出另外一根, 若这另外的一根在区间()n m ,内,则满足条件;若不在,则这种情况不成立.(3)若()0f n =时,同理.(4)以上三种都讨论完了,只剩下一种情况,即只要0)()(<n f m f 即可.例1:已知624)(2++-=m mx x x f 在区间()3,0-内有且仅有一个零点,求m 的取值范围.解:①当0∆=时,即()2164260m m -+=,得出1m =-或32m =, 当1m =-时,根()23,0x =-∈-,即1m =-满足题意; 当32m =时,根()33,0x =∉-,故32m =不满足题意; ②当0151462129)3(=+=+++=-m m m f ,解得:1415-=m , 由韦达定理的两根之积为72767156232=+-=+=⨯-m x , 即)0,3(792-∈-=x ,满足条件,故1415-=m 合适; ③当062)0(=+=m f ,解得:3-=m ,由韦达定理的两根之和为12402-==+m x , 即)0,3(122-∉-=x ,不满足条件,故3-=m (舍);④当0)0()3(<⋅-f f 时,即0)62)(1514(<++m m ,得出14153-<<-m ,必满足条件. 综上所述所求m 的取值范围是:14153-≤<-m ,或1m =-. 注:你能发现这个题的巧解吗?二. 函数)(x f 在],[n m 内仅有一个零点,可同上分析.即先讨论0=∆(即方程两根重合)时的情况,验证相应的根是否合适;再看取到端点值时的情况,此时已知一根,由韦达定理易得另一根,验证是否满足条件;最后0)()(<n f m f 即可! 熟练之后,此次序可以灵活变通,只是请注意分类要不重不漏!例2:已知624)(2++-=m mx x x f 在区间]0,3[-内有且仅有一个零点,求m 的取值范围. 解:①当0∆=时,即()2164260m m -+=,得出1m =-或32m =, 当1m =-时,根]0,3[2-∈-=x ,即1m =-满足题意; 当32m =时,根]0,3[3-∉=x ,故32m =不满足题意; ②当0151462129)3(=+=+++=-m m m f ,解得:1415-=m , 由韦达定理的两根之积为72767156232=+-=+=⨯-m x , 即)0,3(792-∈-=x ,不满足条件,故1415-=m (舍);③当062)0(=+=m f ,解得:3-=m ,由韦达定理的两根之和为12402-==+m x , 即)0,3(122-∉-=x ,满足条件,故3-=m 合适;④当0)0()3(<⋅-f f 时,即0)62)(1514(<++m m ,得出14153-<<-m ,必满足条件. 综上所述所求m 的取值范围是:14153-<≤-m ,或1m =-. 注:你能发现这个题的巧解吗?注:讨论端点时,如果遇到下列情况,前参看下列题的处理办法!例3:已知方程02)2(2=++-x m mx 在区间()1,3上有一根,求m 的取值范围. 解:当0=m 时,易知方程仅有一个根为1,不满足条件当0≠m 时,令2)2()(2++-=x m mx x f ,因为()10f =, 所以()()()22212mx m x x mx -++=--,故另一根为2m, 由213m <<,得223m <<即为所求. 例4:已知方程02)2(2=++-x m mx 在区间]3,1[上有一根,求m 的取值范围. 解:当0=m 时,易知方程仅有一个根为1,满足条件;当0≠m 时,令)2)(1(2)2()(2--=++-=mx x x m mx x f ,必有一根为1 故另一根2m ,当12=m,即2=m 时合适; 否则必须满足:12<m 或32>m ,解得:0<m ,或320<<m ,或2>m综上所述,所求m 的取值范围是32<m 或2≥m .注:你能发现这两个题的巧解吗?以后再赘述吧,先抱歉了!二.根的分布经典题归类讲解例1、①m 取何实数值时,方程0)1(22=++-m x m x 有两个不等正实根.②m 取何实数值时,方程013422=-++m mx x 有两个负数根.③m 取何实数值时,关于x 的方程05)2(2=-+-+m x m x 的两个实根都大于2. 解:①令=)(x f m x m x ++-)1(22,其图像开口向上,对称轴为41+=m x , 判别式为168)1(22+-=-+=∆m m m m原条件⎪⎪⎩⎪⎪⎨⎧>=>+>+-=∆⇔0)0(0410162m f m m m 解得:2230-<<m 或223+>m ,即为所求.②令=)(x f 13422-++m mx x ,其图像开口向上,对称轴为m x -=, 判别式为)1)(21(16)2123(16)13(81622--=+-=--=∆m m m m m m . 原条件⎪⎪⎩⎪⎪⎨⎧>-=<-≥--=∆⇔013)0(00)1)(21(16m f m m m 解得:2131≤<m 或1≥m ,即为所求.③令=)(x f m x m x -+-+5)2(2,其图像开口向上,对称轴为21m x -=, 判别式为)4)(4(16)5(4)2(22-+=-=---=∆m m m m m .原条件⎪⎪⎩⎪⎪⎨⎧>+=-+-+=>-≥-+=∆⇔055424)2(2210)4)(4(m m m f m m m 解得:45-≤<-m ,即为所求.例2、①已知二次方程012)12(2=-+-+m mx x m 有一正根和一负根,求实数m 的取值范围.②已知二次函数33)42()2(2+++-+=m x m x m y 与x 轴有两个交点,一个在1=x 的左侧,一个在1=x 的右侧,求实数m 的取值范围.③m 取何实数值时,关于x 的方程05)2(2=-+-+m x m x 的一个实根大于2,另一个实根小于2.解:①令=)(x f 12)12(2-+-+m mx x m ,其图像开口方向不明,原条件0)1)(12()0()12(<-+=+⇔m f m ,解得:21->m . 即为所求. 注:利用两个之积012121<+-=m x x ,也可以快速得出!②令=)(x f 33)42()2(2+++-+m x m x m ,其图像开口方向不明,原条件0)12)(2()33422)(2()1()2(<++=++--++=+⇔m m m m m m f m , 解得:212-<<-m . 即为所求. 注:利用0)1)(1(21<--x x ,即021212422331)(2121<++=+++-++=++-m m m m m m x x x x 也可得.③令=)(x f m x m x -+-+5)2(2,其图像开口向上,原条件055424)2(<+=-+-+=⇔m m m f 解得:5-<m ,即为所求.注:利用0)2)(2(21<--x x ,即054)2(254)(22121<+=+---=++-m m m x x x x 也可得. 例3.①已知关于x 的方程:022=+-a ax x 有两个实根βα,,且满足2,10><<βα,求实数a 的取值范围.②已知关于x 的方程:062)1(22=-++--m m mx x m 有两个实根βα,,且满足βα<<<10, 求实数m 的取值范围.③已知关于x 的方程:0532=+-a x x 有两个实根βα,,且满足)3,1(),0,2(∈-∈βα,求实数a 的取值范围.解:①令=)(x f a ax x +-22,其图像开口向上,画图可得:原条件⎪⎩⎪⎨⎧<-=<-=>=⇔034)2(01)1(0)0(a f a f a f 解得:34>a ,即为所求.②令=)(x f 62)1(22-++--m m mx x m ,其图像开口方向不明,画图可得:原条件⎩⎨⎧<->-⇔0)1()1(0)0()1(f m f m ,即⎪⎩⎪⎨⎧<-++--->-+-⇔0)621)(1(0)6)(1(22m m m m m m m m即⎩⎨⎧<+-->+--⇔0)7)(7)(1(0)3)(2)(1(m m m m m m 解得:73-<<-m 或72<<m ,即为所求.③令=)(x f a x x +-532,其图像开口向上,画图可得:原条件⎪⎪⎩⎪⎪⎨⎧>+=+-=<-=+-=<=>+=++=-⇔0121527)3(022)1(0)0(0221012)2(a a f a a f a f a a f 解得:012<<-a ,即为所求.例4、①已知方程03222=+++m mx x 的两个不等实根都在区间)2,0(内,求实数m 的取值范围.②已知方程03222=+++m mx x 的两个不等实根都在区间]2,0[之外,求实数m 的取值范围. 解:令322)(2+++=m mx x x f ,其图像开口向上,对称轴为m x -=,由判别式0)3)(1(4)32(4)32(4422>-+=--=+-=∆m m m m m m ,得:1-<m 或3>m①的条件⎪⎪⎩⎪⎪⎨⎧>+=>+=<-<>∆⇔076)2(032)0(200m f m f m ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧->-><<->-<⇔67230231m m m m m 或解得:167-<<-m 即为所求.②的条件可分为:两根都小于0,或两根都大于2,或一根小于0,一根大于2,三种情况故⎪⎩⎪⎨⎧>+=<->∆⇔032)0(00m f m 或⎪⎩⎪⎨⎧>+=>->∆076)2(20m f m 或⎩⎨⎧<+=<+=076)2(032)0(m f m f解得:3>m ,或无解,或23-<m ,故所求m 的取值范围是:23-<m 或3>m . 例5:已知集合}0107|{2≤+-=x x x A ,}05)2(|{2≤-+--=m x m x x B ,且A B ⊆, 求实数m 的取值范围.解:首先}52|{≤≤=x x A ;当∅=B 时,即不等式05)2(2≤-+--m x m x 无解,即0)5(4)2(2<---=∆m m 即:0162<-m ,解得:44<<-m ; -----(1)当∅≠B 时,即不等式05)2(2≤-+--m x m x 有解,其形式必为21x x x ≤≤; 其中21,x x 为方程05)2(2=-+--m x m x 的两个根,(不妨设21x x ≤) 按条件,只要5221≤≤≤x x 即可满足A B ⊆;按照根的分布的理论,此时只要满足:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-+--=≥-+--=≤-≤≥-=∆05)2(525)5(05)2(24)2(52220162m m f m m f m m即⎪⎪⎩⎪⎪⎨⎧-≥-≥-≤≤-≥-≤55284,4m m m m m 或,解得:45-≤≤-m ,-----(2)由(1)(2)可得:所求的m 的取值范围是45≤≤-m .三.自己练习巩固提升1.设有一元二次方程02)1(22=++-+m x m x .试问:(1)m 为何值时,有一正根、一负根.(2)m 为何值时,有一根大于1、另一根小于1. (3)m 为何值时,有两正根. (4)m 为何值时,有两负根.(5)m 为何值时,仅有一根在[1,4]内.2. 关于x 的方程012=-++a ax x 有异号的两个实根,求a 的取值范围.3.如果方程032)3(22=-+++a x a x 的两个实根中一根大于3,另一根小于3,求实数a 的取值范围. 4.若方程07)1(82=-+++m x m x 有两个负根,求实数a 的取值范围. 5. 关于x 的方程0422=-+-a ax x 有两个正根,求a 的取值范围.6.设关于x 的方程0)(44222=+++-n m x n m x 有一个实根大于-1,另一个实根小于-1,则n m ,必须满足什么关系.7. 设关于x 的方程023222=---k x kx 有两个实根都在]0,2[-之间,求k 的取值范围.8.关于x 的方程02)13(72=--+-m x m x 的两个实根21,x x 满足2021<<<x x ,求m 的范围. 9.①已知方程065)9(222=+-+-+a a x a x 的一根小于0,另一根大于2,求实数a 的取值范围.②已知方程065)9(222=+-+-+a a x a x 的存在小于2的根,求实数a 的取值范围.。
二次函数根的分布专题
二次函数根的分布专题知识结构图一.二次函数与轴交点1.抛物线与轴的交点:二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点抛物线与轴相交; ②有一个交点(顶点在轴上)抛物线与轴相切; ③没有交点抛物线与轴相离.2.平行于轴的直线与抛物线的交点:可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.3.抛物线与轴两交点之间的距离.若抛物线与轴两交点为,,由于、是方程的两个根,故:.二.二次函数与一元二次方程根的分布问题如下表(以为例):题模一 根的分布问题 例1.1、求实数的取值范围,使关于的方程.(1)有两个实根,且满足; (2)至少有一个正根; (3)方程一个根大于而小于,另一个根大于而小于.判别式二次函数的图象一元二次方程:的根有两相异实根有两相等实根例1.2、抛物线y=-x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的个数是()①抛物线与x轴的一个交点为(-2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是x=1;④在对称轴左侧y随x增大而增大.A、 1B、 2C、 3D、4例1.3、二次函数y=x2+px+q中,由于二次项系数为1>0,所以在对称轴左侧,y随x增大而减小,从而得到y越大则x越小,在对称轴右侧,y随x增大而减大,从而得到y越大则x也越大,请根据你对这句话的理解,解决下面问题:若关于x的方程x2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A、 m<d<e<nB、 d<m<n<eC、 d<m<e<nD、m<d<n<e例1.4、已知二次函数(a≠0)的图象过点,,对称轴为直线.(1)求这个二次函数的解析式;(2)若,直接写出y的取值范围;(3)若一元二次方程(,m为实数)在的范围内有实数根,直接写出m的取值范围.题模二函数交点问题例2.1、已知函数的图像与轴的交点坐标为(,0),(,0),且,则该函数的最小值为()A、 2B、 -2C、 10D、-10例2.2、已知关于x的函数图象与坐标轴只有2个交点,则m=__________.例2.3、若关于x的一元二次方程(x﹣1)(x﹣2)=m有实数根x1、x2,且x1<x2,有下列结论:①x1=1,x2=2;②m>﹣;③二次函数y=(x﹣1)(x﹣2)﹣m的图象对称轴为直线x=1.5;④二次函数y=(x﹣1)(x﹣2)+m的图象与y轴交点的一定在(0,2)的上方.其中一定正确的有(只填正确答案的序号).例2.4、已知关于x的方程.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k的值;(3)若抛物线与x轴的两个交点之间的距离为3,求k的值.随堂练习随练1.1、“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A、 m<a<b<nB、 a<m<n<bC、 a<m<b<nD、m<a<n<b随练1.2、已知二次函数.(1)当时,求出该二次函数的图象与x轴的交点坐标;(2)若时,该二次函数的图象与x轴有且只有一个交点,求c的取值范围.随练1.3、二次函数(,a,b,c是常数)中,自变量x与函数y的对应值如下表:若,则一元二次方程()的两个根,的取值范围是()A、,B、,C、,D、,随练1.4、若二次函数的图象与x轴有两个交点,坐标为(m,0),(n,0),且,图象上有一点C(3,P)在x轴下方,则下列判断正确的是()A、B、C、D、以上都不对随练1.5、(1)关于x的方程有两实根,一个根小于1,另一个根大于1,求实数k的取值范围;(2)已知二次方程两根,分别属于和,求m的取值范围.随练1.6、若关于x的函数的图像与坐标轴有两个交点,则a的值为__________.随练1.7、已知二次函数的图象与x轴交点的横坐标为,,那么下列结论:①方程的两根为,;②当时,;③,;④,其中正确结论的序号是__________.随练1.8、已知抛物线的对称轴为,若关于的一元二次方程在的范围内有两个相等的实数根,则的取值范围是()A、B、C、或D、或随练1.9、已知关于x的一元二次方程.(1)求证:该方程必有两个实数根.x轴有两个不同的交点A和B(A在B左侧),并且满足,求m的非负整数值.能力拓展拓展1、若、是一元二次方程的实根,且满足,,则m的取值范围是______________拓展2、已知抛物线,(1)若,,求该抛物线与轴公共点的坐标;(2)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;(3)若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,有几个,证明你的结论;若没有,阐述理由.拓展3、下列关于函数的图象与坐标轴的公共点的情况:①当时,有三个公共点;②时,只有两个公共点;③若只有两个公共点,则;若有三个公共点,则.其中描述正确的是()A、一个B、两个C、三个D、四个拓展4、二次函数与x轴交于,两点,其中点是个定点,,分别在原点的两侧,且,则直线与x轴的交点坐标为__________.拓展5、在平面直角坐标系中,抛物线:.(1)当抛物线经过点(-5,6)时,求抛物线的表达式及顶点坐标;(2)若抛物线:()与x轴的交点的横坐标都在和0之间(不包括-1和0),结合函数的图象,求m的取值范围;(3)参考(2)小问思考问题的方法解决以下问题:关于x的方程在范围内有两个解,求的取值范围.(1)求的取值范围;(2)若取小于的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数与轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若,求点D的坐标.拓展7、已知两个二次函数y1=x2+bx+c和y2=x2+m.对于函数y1,当x=2时,该函数取最小值.(1)求b的值;(2)若函数y1的图象与坐标轴只有2个不同的公共点,求这两个公共点间的距离;(3)若函数y1、y2的图象都经过点(1,﹣2),过点(0,a﹣3)(a为实数)作x轴的平行线,与函数y1、y2的图象共有4个不同的交点,这4个交点的横坐标分别是x1、x2、x3、x4,且x1<x2<x3<x4,求x4﹣x3+x2﹣x1的最大值.。
二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a )()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk分布情况两根都在()n m ,两根有且仅有一根在()n m ,(图象有两种情况,只画了一种) 一根在()n m ,,另一根在()q p ,,q p n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000fm f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩综合结论(不讨论a)——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,,从而可以求出参数的值。
二次方程根的分布情况归纳(完整版)
二次方程根的分布
1、一元二次方程
02=++c bx ax 根的分布情况 设方程()2
00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的
根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)
表一:(两根与0的大小比较 即根的正负情况)
k k k
根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是
(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()
0f m f n >⎧⎪⎨>⎪⎩
根的分布练习题
例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
例2、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围。
例3、已知二次函数()()()2
22433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m
的取值范围。
例4、已知二次方程()2
2340mx m x +-+=只有一个正根且这个根小于1,求实数m 的取值范围。
二次函数在闭区间上的最值练习
例2、求函数()[]2
21,1,3f x x ax x =-+∈的最小值。
例3、求函数2
43y x x =-+在区间[],1t t +上的最小值。
二次函数根的分布
即(2a 3)(a 2) 0 由 x a 1 2得
3 a 2, 2
a2
(1)1 a
2时,
x
(a
1)(a
2)
2(a
2)
(2)
3 2
a
x [6,12)
1时, x (1 a)(a
2)x2([a9, 4
22)3) 4
例3.已知函数f(x)=mx2+(m-3)x+1的图象与x轴的 交点至少有一个在原点的右侧,求实数m的取 值范围 .
1 2
时,
x
a,
01 1 2X=a
01
x
x
X=a
y有最大值a2, x 1时, y有最小值f (1) 2a 1.
2.若关于x的方程 x2 (a 1)x 1 0 有两个相
等的实数根,且两根在区间[0,2]上,求实数a的范围.
解:设f (x) x2 (a 1)x 1(如图)
(a 1)2 4 0
(1)试写出g(t)的函数表达式; (2)作g(t)的图象并写出g(t)的最小值
解: f (x) (x 2)2 8
8 1 t 2
g(t
)
f (t) t2 4t 4(t 2)
f (t 1) (t 1)2 4(t 1) 4(t 1)
【巩固练习】
1.当a 0,0 x 1时,求函数f (x) x2 2ax的最大最小值.
3.关于x的方程x2+(a2-1)x+(a-2)=0的一根比1大,
另一根比1小,则有( C )
(A)-1<a<1 (B)a<-2或a>1 (C)-2<a<1 (D)a<-1或a>2
4.设x,y是关于m的方程m2-2am+a+6=0的两个实
二次方程根的分布情况归纳(完整版)
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
根的分布问题习题
二次函数(一元二次方程)根的分布习题1、已知一元二次方程0)1(212=-++-m x m x m )(有两个正根,求m 的取值范围。
2、已知一元二次方程0422=-+-a ax x 有两个正根,求a 的取值范围。
3、已知一元二次方程0)1(22=++-m x m x 有两个正根,求m 的取值范围。
4、已知一元二次方程03)12(2=-+-+k x k kx 有两个负根,求k 的取值范围。
5、已知一元二次方程04)2(2=++-x k x 有两个负根,求k 的取值范围。
6、已知一元二次方程0332=-++-k kx kx 有一正根和一负根,求k 的取值范围。
7、已知一元二次方程0332=-++m mx mx 有一正根和一负根,求m 的取值范围。
8、已知一元二次方程0)1(2122=++-+m mx x m )(有一正根和一负根,求m 的取值范围。
9、已知一元二次方程0124)3(2=-+-+m mx x m 有两根符号相反的根,且负根的绝对值大于正根的绝对值,求m 的取值范围。
10、已知一元二次方程03)1(22=++++m x m mx 仅有一负根,求m 的取值范围。
11、已知一元二次方程062)1(22=++-+k x k kx 至少有一正根,求k 的取值范围。
12、已知一元二次方程01)3(2=+-+x m mx 至少有一正根,求m 的取值范围。
13、已知一元二次方程03)2(2=+++x m x 两根都大于1,求m 的取值范围。
14、已知一元二次方程05)2(42=-+-+m x m x 两根都大于1,求m 的取值范围。
15、已知一元二次方程03)2(2=+++x m x 两根都大于1,求m 的取值范围。
16、已知一元二次方程01)1(22=-++-a a ax 两根都大于1,求a 的取值范围。
17、已知一元二次方程0122=++px x 一根大于1,一根小于1,求p 的取值范围。
18、已知一元二次方程033)42(22=+++-+m x m x m )(一根大于1,一根小于1,求m 的取值范围。
【经典例题】二次函数根的分布
二次函数根的分布一、知识点二次方程根的分布与二次函数在闭区间上的最值归纳一元二次方程02=++c bx ax 根的分布情况 表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(0>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a表二:(两根与k 的大小比较)分布情况两根都小于k 即k x k x <<21, 两根都大于k 即k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a )()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk表三:(根在区间上的分布)二、经典例题分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种)一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 综合结论(不讨论a )——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f例1:(实根与分布条件)已知βα, 是方程024)12(2=-+-+m x m x 的两个根,且βα<<2 ,求实数m 的取值范围。
二次方程根的分布情况归纳
二次方程根的分布情况归纳二次方程的一般形式为ax² + bx + c = 0,其中a、b、c为实数且a≠0。
对于一个二次方程,可以通过求解其判别式来分析其根的分布情况。
判别式的公式为Δ = b² - 4ac,Δ可以通过求解来判断方程的根的类型和个数。
1.当Δ>0时,方程有两个不相等的实根。
当判别式Δ大于零时,可以得出两个不相等的实根。
这意味着方程图像与x轴有两个交点,也就是图像在x轴上的截距为两个不相等的实数。
这种情况下,方程有两个解,一个解对应于图像与x轴交点的左侧,另一个解对应于图像与x轴交点的右侧。
2.当Δ=0时,方程有两个相等的实根。
当判别式Δ等于零时,可以得出两个相等的实根。
这意味着方程图像与x轴只有一个交点,也就是图像在x轴上的截距相等。
这种情况下,方程有两个相等的解,对应于图像与x轴交点的位置。
3.当Δ<0时,方程没有实根,但有两个共轭复根。
当判别式Δ小于零时,可以得出方程没有实根。
这意味着方程图像与x轴没有交点,图像完全位于x轴的上方或下方。
但是,方程仍然有两个根,称为共轭复根,其中一个虚部为正,一个虚部为负。
这种情况下,方程的解无法在实数域内找到,需要在复数域中寻找。
在二次方程根的分布情况中,可以根据判别式Δ的正负来进行分类。
其中,Δ>0时有两个不相等的实根,Δ=0时有两个相等的实根,而Δ<0时没有实根但有两个共轭复根。
此外1.当a=0时,方程退化为一次方程。
当二次方程中a的系数为0时,方程退化为一次方程,形式为bx + c = 0。
这种情况下,方程只有一个解,即x = -c/b,对应于直线与x轴的交点。
2. 当b² - 4ac = 0时,方程有两个相等的实根。
当判别式Δ等于零时,有特殊情况。
此时,方程的两个根相等,即x₁=x₂=-b/2a。
此时方程图像在x轴上的截距相等,方程只有一个解。
总结起来,二次方程根的分布情况主要根据判别式Δ的正负进行分类。
二次方程根的分布情况归纳(完整版)
二次方程根的分布情况归纳(完整版) 大家好,我今天要和大家聊聊二次方程根的分布情况。
在我们的生活和工作中,二次方程是一个非常常见的数学概念,它在很多领域都有着广泛的应用。
那么,二次方程的根到底有哪些分布情况呢?接下来,我将从三个方面来详细阐述这个问题。
我们来看一下二次方程的一般形式:ax^2 + bx + c = 0。
在这个式子中,a、b、c 分别是二次项、一次项和常数项的系数。
我们需要求解这个方程的根,也就是找到x的值使得上述等式成立。
根据一元二次方程的求根公式,我们可以得到x1、x2是这个方程的两个根,它们满足以下关系:x1 + x2 = -b / ax1 * x2 = c / a接下来,我们来探讨一下二次方程根的具体分布情况。
我们来看一下当a > 0时的情况。
这时候,二次方程有两个实数根,分别为正根和负根。
具体来说,如果b^24ac >= 0,那么x1、x2都是正数;如果b^2 4ac < 0,那么x1、x2中有一个是正数,另一个是负数。
这种情况在现实生活中比较常见,例如我们在解决一些物理问题时,往往需要考虑到物体受到的力的方向和大小,这些因素都会影响到物体的运动轨迹。
我们来看一下当a < 0时的情况。
这时候,二次方程有两个共轭复数根,分别为正根和负根。
具体来说,如果b^2 4ac >= 0,那么x1、x2都是正数;如果b^2 4ac < 0,那么x1、x2中有一个是正数,另一个是负数。
这种情况在现实生活中也比较常见,例如我们在解决一些化学问题时,往往需要考虑到物质之间的反应条件和过程,这些因素都会影响到反应的结果。
我们来看一下当a = 0时的情况。
这时候,二次方程有两个相等的实数根或者一个实数根和一个虚数根。
具体来说,如果b^2 4ac = 0,那么x1 = x2;如果b^2 4ac > 0且a != 0,那么x1、x2中有一个是实数根,另一个是虚数根;如果b^2 4ac < 0且a != 0,那么x1、x2都是虚数根。
二次函数根的分布总结练习
二次函数根的分布总结练习(共3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次函数根的分布一、简单的三种类型利用Δ与韦达定理研究)0(02≠=++a c bx ax 的根的分布(1)方程有两个正根⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>-=+≥-=∆⇔000421212a c x x a b x x ac b(2)方程有两个负根⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+≥-=∆⇔000421212a c x x a b x x ac b(3)方程有一正一负根0<⇔ac例1.若一元二次方程0)1(2)1(2=-++-m x m x m 有两个正根,求m 的取值范围。
例2.k 在何范围内取值,一元二次方程0332=-++k kx kx 有一个正根和一个负根?二、其它几种类型借助函数图像研究)0(02≠=++a c bx ax 的根的分布设一元二次方程)0(02≠=++a c bx ax 的两实根为1x ,2x ,且12x x ≤。
k 为常数。
则一元二次方程根的k 分布(即1x ,2x 相对于k 的位置)有以下若干类型:(1)⎪⎪⎩⎪⎪⎨⎧>->≥-=∆⇔≤<k ab k af ac b x x k 20)(04221【图例】解析:发现无论开口向上或向下,)(k f 与a 的值都是同号的.例3.若方程42x +(m-2)x+(m-5)=0的两根都大于1,则求m 的取值范围.(2)⎪⎪⎩⎪⎪⎨⎧<->≥-=∆⇔<≤k ab k af ac b k x x 20)(04221【图例】解析:发现无论开口向上或向下,)(k f 与a(3)21x k x <<⇔0)(<k af 【图例】解析:要保证两根分布于k 的两边,观察发现两种情况都是)(k f 与a 异号. 例4.方程x 2+2px+1=0有一个根大于1,一个根小于1,求p 的取值范围.(4) 11x k <2k <⇔0)()(21<k f k f【图例】(5) 112122,k x k p x p <<<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><<>>0)(0)(0)(0)(02121p f p f k f k f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧<>><<0)(0)(0)(0)(02121p f p f k f k f a例5.若关于x 的方程x 2+(k-2)x+2k-1=0的两实根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.(6)2211k x x k <≤<,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<>>>≥-=∆2121220)(0)(004k a b k k f k f a ac b 或⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<<<<≥-=∆2121220)(0)(004k a b k k f k f a ac b 例4.已知关于x 的方程223230x x m -+-=的两根都在[-1,1]上.求实数m 的取值范围.针对练习1.关于x 的方程m 2x +(2m+1)x+m=0有两个不等的实根,则m 的取值范围是( )A.(-41, +∞)B.(-∞,-41)C.[-41,+∞]D.(-41,0)∪(0,+∞)2.若方程2x -(k+2)x+4=0有两负根,求k 的取值范围.3.若方程01222=-+-t tx x 的两个实根都在2-和4之间,求实数t 的取值范围.4.若关于x 的方程kx 2-(2k+1)x-3=0在(-1,1)和(1,3)内各有一个实根,求k 的取值范围.5.已知集合26{|1,},{|220,}1A x x RB x x x m x R x =≥∈=-+<∈+.=时,求m的取值范围. (1)当{|14}A B x x=-<<时,求m的值.(2)当A B A。
经典例题二次函数根的分布(供参考)
二次函数根的分布一、知识点二次方程根的分布与二次函数在闭区间上的最值归纳一元二次方程02=++c bx ax 根的分布情况 表一:(两根与0的大小比较即根的正负情况)表二:(两根与k 的大小比较)论论论论表三:(根在区间上的分布)二、经典例题例1:(实根与分布条件)已知βα,是方程024)12(2=-+-+m x m x 的两个根,且βα<<2 ,求实数m 的取值范围。
变式:关于x 的方程012)1(22=-+-mx x m 的两个根,一个小于0,一个大于1,求m 的取值范围。
例2:(动轴定区间)函数32)(2--=ax x x f 在区间[]2,1上是单调函数,则a 的取值范围是?变式2:函数32)(2+-=kx x x f 在[]+∞-,1上是增函数,求实数k 的取值范围。
列3:(定轴动区间)求函数12)(2--=ax x x f 在[]2,0上的值域。
变式3:已知函数2244)(22+-+-=a a ax x x f 在区间[]2,0上有最小值3,求实数a 的取值范围。
例4:(定轴动区间)已知二次函数32)(2--=x x x f ,若)(x f 在[]1,+t t 上的最小值为)(t g ,求)(t g 的表达式。
变式4:已知二次函数)(x f 满足)1()1(x f x f -=+,且1)1(,0)0(==f f ,若)(x f 在区间[]n m ,上的值域是[]n m ,,求n m ,的值。
例5:(恒成立问题)已知函数1)(2-+=mx x x f ,若对于任意[]1,+∈m m x ,都有0)(<x f 成立,求实数m 的取值范围。
变式5:已知函数1)(2+-=mx x x f 在)2,21(上恒大于0,求实数m 的取值范围。
三、课后练习1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
2、函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。
二次函数根的分布问题
二次函数根的分布问题例。
m 为何值时,关于x 的方程07)1(82=-+--m x m x 的两根(1) 为正实数 (2)为异号且负根绝对值大于正根 (3)都大于1(4)一根大于2,一根小于2。
(5)在区间()2,0上练。
.求实数m 的范围,使关于x 的方程x 2+2(m-1)x+2m+6=0(1) 有两个实根,且一个比2大,一个比2小; (2) 有两个实根,且都比1大;(3) 有两个实根α、β,且满足0<α<1<β<4; (4) 至少有一个正根。
1.若函数1)(2+-=ax x x f 有负值,则实数a 的取值范围是( )A.22-<>a a 或B.22<<-aC.2±≠aD.31<<a2.关于x 的方程0124)3(2=-+-+m mx x m 的两根异号,且负根的绝对值比正根大,那么实数m 的取值范围是( )A .)0,3(- B.)3,0( C.),0()3,(+∞⋃--∞ D. ),3()0,(+∞⋃-∞3.若方程0122=--x ax 在)1,0(内恰有一解,则a 的取值范围是( )A .1-<a B.1>a C.11<<-a D. 10<≤a4.已知2))(()(---=b x a x x f ,并且βα,是方程0)(=x f 的两根,则实数βα,,,b a 的大小关系可能是( )A .βα<<<b a B. b a <<<βα C. βα<<<b a D. b a <<<βα5.关于x 的方程0122=++x ax 至少有一个负根的条件是( )A .10≤<a B.1<a C.010<≤<a a 或 D. 1≤a6.若果二次函数1)3(2+-+=x m mx y 的图象与x 轴的交点,至少有一个在原点的右侧,则m 的取值范围是______________________7.已知二次函数a a x a x x f ----=222)2(2)(。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根的分布专题
一元二次方程根的分布是二次函数中的重要内容。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。
下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。
一.一元二次方程根的基本分布——零分布
所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x
①方程有两个不等正根 ⎪⎪⎪
⎩
⎪
⎪
⎪⎨⎧
>=>-=+>-=∆>>00040,0212
1221a c x x a b x x ac b x x ②方程两根一正一负 :0021<<<a
c
x x ,则
③方程有两个不等负根:⎪⎪⎪
⎩
⎪
⎪
⎪⎨⎧
>=<-=+>-=∆<<00040,02121221a c x x a b x x ac b x x
即时应用:
(1)若一元二次方程
0)1(2)1(2
=-++-m x m x m 有两个不等正根,求m 的取值范围。
(2)k 在何范围内取值,一元二次方程0332
=-++k kx kx 有一个正根和一个负根?
二、一元二次方程的非零分布——k分布
设一元二次方程20(0)
ax bx c a
++=>的两不等实根为1x,2x,k为常数。
则一元二次方
k1x2x k
根
的
分
布
①
12
x x k②
12
k x x③
12
x k x
图
象
充
要
条
件
2
b
k
a
f k
2
b
k
a
f k
f k
根
的
分
布
④
1122
k x x k⑤
11223
k x k x k⑥两根有且仅有一根在
12
,k k内
图
象
充
要
条
件
1
2
12
2
f k
f k
b
k k
a
1
2
3
()0
()0
()0
f k
f k
f k
12
f k f k
或
1
12
1
()0
22
f k
k k
b
k
a
或
2
12
2
()0
22
f k
k k b
k
a
k
k
k
2
k
1
k
2
k
1
k
3
k
2
k
1
k
即时应用:
(1) 若方程42x +(m-2)x+(m-5)=0的两根都大于1,则求m 的取值范围.
(2) 方程x 2+2px+1=0有一个根大于1,一个根小于1,求p 的取值范围.
二、典型例题
例1 若一元二次方程03)12(2
=-+-+k x k kx 有一根为零,则另一根是正根还是负根?
例2若方程2(2)40x k x -++=有两负根,求k 的取值范围.
例3..若关于x 的方程2(2)210x k x k +-+-=的两实根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围
例4.已知关于x 的方程223230x x m -+-=的两根都在[-1,1]上.求实数m 的取值范围.
例5.方程mx 2+2(m+1)x+m+3=0仅有一个负根,求m 的取值范围
拓展提升:
已知集合}{
2(2)10A x x a x =+-+=,若{}0A x R x ⊆∈>,求a 的取值范围
一元二次方程根的分布巩固作业
1.对于二次函数x x y 822
+-=,下列结论正确的是( )
A.当2=x 时,y 有最大值8 B.当2-=x 时,y 有最大值8 C.当2=x 时,y 有最小值8 D.当2-=x 时,y 有最小值8-
2.二次函数12
--=ax x y 在区间[0,3]上有最小值-2,则实数a 的值为( )
A .-2
B .4
C .3
10-
D .2
3.设函数∈++=a x a ax x x f ,(232)(2R )的最小值为m (a ),当m (a )有最大值时a 的值为( )
A .
3
4 B .
4
3 C .
9
8 D .
8
9 4.函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )
A .[-3,0]
B .(]3,-∞-
C .[)0,3-
D .[-2,0]
5.设二次函数)1(,0)(,)(2
+<-+-=m f m f a x x x f 则若的值为( ) A .正数 B .负数 C .正、负不定,与m 有关 D .正、负不定,与a 有关
6.已知0)53()2(,2
2
21=+++--k k x k x x x 是方程(k 为实数)的两实数根,则2
22
1x x +的最大值为( )
A .19
B .18
C .9
55
D .不存在
7.设函数)0()(2≠++=a c bx ax x f ,对任意实数t 都有)2()2(t f t f -=+成立,则函数值
)5(),2(),1(),1(f f f f -中,最小的一个不可能是( )
A .f (-1)
B .f (1)
C .f (2)
D .f (5)
8.一元二次方程0)2()1(2
2=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是
9.函数1)(2
-+=ax ax x f ,若0)(<x f 在R 上恒成立,则a 的取值范围是 10.函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。
11.(1)方程2
240x
ax 的两根均大于1,求实数a 的范围.
(2)方程2
240x ax 的两根一者大于1,一者小于1求实数a 的范围.
(3)方程2
24
0x ax
的两根一者在(0,1)内,一者在(6,8)内,求实数a 的范围.
探究创新:
已知}{
2220A x x x p =++-=,且{}0A
x R x ∈>=∅,求p 的取值范围。