高中数学人教A版选修(2-1)2.2.1《椭圆及其标准方程(一)》word导学案
人教版 高中数学【选修 2-1】2.2.1椭圆及其标准方程课后习题
人教版高中数学精品资料2.2.1 椭圆及其标准方程课时演练·促提升A组1.若F1,F2是两个定点,且|F1F2|=6,动点M满足|MF1|+|MF2|=8,则点M的轨迹是()A.椭圆B.直线C.圆D.线段解析:由椭圆定义知,点M的轨迹是椭圆.答案:A2.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:方程可化为=1,表示焦点在y轴上的椭圆时,应满足>0,即m>n>0.所以是充要条件.答案:C3.设P是椭圆=1上一点,P到两焦点F1,F2的距离之差为2,则△PF1F2是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形解析:由椭圆定义知|PF1|+|PF2|=2a=8.又|PF1|-|PF2|=2,∴|PF1|=5,|PF2|=3.又|F1F2|=2c=2=4,∴|PF1|2=|PF2|2+|F1F2|2,∴△PF1F2为直角三角形.答案:B4.已知椭圆的焦点坐标为(0,-1),(0,1),且过点,则椭圆方程为()A.=1B.=1C.+y2=1D.+x2=1解析:由已知椭圆焦点在y轴上,设方程为=1(a>b>0).则2a==4,故a=2.又c=1,则b2=a2-c2=3,故椭圆方程为=1.答案:B5.已知椭圆的焦点是F1,F2,P是椭圆上的一动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A.圆B.椭圆C.直线D.抛物线解析:由题意,得|PF1|+|PF2|=2a(a>0是常数).∵|PQ|=|PF2|,∴|PF1|+|PQ|=2a,即|QF1|=2a,∴动点Q的轨迹是以F1为圆心,2a为半径的圆,故选A.答案:A6.若方程=1表示焦点在x轴上的椭圆,则m的取值范围是.解析:将方程化为=1,依题意,得8>2-m>0,解得-6<m<2.答案:-6<m<27.若椭圆=1的焦距为6,则k的值为.解析:由已知,得2c=6,∴c=3,∴c2=9,∴20-k=9或k-20=9,∴k=11或k=29.答案:11或298.若椭圆的焦点在y轴上,其上任意一点到两焦点的距离和为8,焦距为2,则此椭圆的标准方程为.解析:由已知,得2a=8,2c=2,∴a=4,c=,∴b2=a2-c2=16-15=1,故椭圆的标准方程为+x2=1.答案:+x2=19.已知椭圆=1(a>b>0)的焦点分别是F1(0,-1),F2(0,1),且3a2=4b2.(1)求椭圆的方程;(2)设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦值.解:(1)依题意知c=1,又c2=a2-b2,且3a2=4b2,所以a2-a2=1,即a2=1.所以a2=4.因此b2=3.从而椭圆方程为=1.(2)因为点P在椭圆上,所以|PF1|+|PF2|=2a=2×2=4.又|PF1|-|PF2|=1,所以|PF1|=,|PF2|=.又|F1F2|=2c=2,所以由余弦定理,得cos ∠F1PF2==.即∠F1PF2的余弦值等于.10.已知圆A:x2+(y+6)2=400,圆A内有一定点B(0,6),动圆C过点B且与圆A内切,求动圆圆心C的轨迹方程.解:设动圆C的半径为r,则|CB|=r.因为圆C与圆A内切,所以|CA|=20-r,所以|CA|+|CB|=20>12,所以点C的轨迹是以A,B两点为焦点的椭圆.因为2a=20,2c=|AB|=12,所以a=10,c=6,b2=64.因为点A,B在y轴上,所以点C的轨迹方程为=1.B组1.已知F1,F2是椭圆=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=4∶3,则三角形PF1F2的面积等于()A.24B.26C.22D.24解析:因为a2=49,所以|PF1|+|PF2|=2a=14.又|PF1|∶|PF2|=4∶3,所以|PF1|=8,|PF2|=6.又因为|F1F2|=2c=2=10,所以|PF1|2+|PF2|2=|F1F2|2,所以PF1⊥PF2.故△PF1F2的面积S=|PF1|·|PF2|=×8×6=24.答案:A2.设F1,F2是椭圆C:=1的焦点,在曲线C上满足=0的点P的个数为()A.0B.2C.3D.4解析:∵=0,∴PF1⊥PF2.∴点P为以线段F1F2为直径的圆与椭圆的交点,且此圆的半径为c==2.∵b=2,∴点P为该椭圆y轴的两个端点.答案:B3.F1,F2分别为椭圆=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是.解析:∵|OF2|=c,∴由已知得,∴c2=4,c=2.设点P的坐标为(x0,y0),由△POF2为正三角形,∴|x0|=1,|y0|=,代入椭圆方程得=1.∵a2=b2+4,∴b2+3(b2+4)=b2(b2+4),即b4=12,∴b2=2.答案:24.已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于点M,求点M的轨迹方程.解:如图,M是AQ的垂直平分线与CQ的交点,连接MA,则|MQ|=|MA|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,且|AC|=2,∴动点M的轨迹是椭圆,且其焦点为C,A.易知2a=5,2c=2,∴a=,c=1,∴b2=a2-c2=-1=,故动点M的轨迹方程为=1.5.已知椭圆的焦点在x轴上,且焦距为4,P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若△PF1F2的面积为2,求点P坐标.解:(1)由题意知,2c=4,c=2,|PF1|+|PF2|=2|F1F2|=8,即2a=8,∴a=4.∴b2=a2-c2=16-4=12.∵椭圆的焦点在x轴上,∴椭圆的方程为=1.(2)设点P坐标为(x0,y0),依题意知,|F1F2||y0|=2,∴|y0|=,y0=±.代入椭圆方程=1,得x0=±2,∴点P坐标为(2)或(2,-)或(-2)或(-2,-).6.已知P是椭圆+y2=1上的一点,F1,F2是椭圆上的两个焦点.(1)当∠F1PF2=60°时,求△F1PF2的面积;(2)当∠F1PF2为钝角时,求点P横坐标的取值范围.解:(1)由椭圆的定义,得|PF1|+|PF2|=4且F1(-,0),F2(,0).①在△F1PF2中,由余弦定理,得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°.②由①②得|PF1|·|PF2|=.所以|PF1||PF2|·sin ∠F1PF2=.(2)设点P(x,y),由已知∠F1PF2为钝角,得<0,即(x+,y)·(x-,y)<0.又y2=1-,所以x2<2,解得-<x<.所以点P横坐标的范围是。
高中数学 2.2.1 椭圆及其标准方程试题 新人教A版选修21
2.2.1椭圆及其标准方程一、选择题1.【题文】已知椭圆221102x y m m +=--,焦点在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .82.【题文】已知椭圆221416x y +=上的一点P 到椭圆一个焦点的距离为5,则P 到另一个焦点的距离为 ( )A .2B .3C .5D .73.【题文】设()14,0F -,()24,0F 为定点,动点M 满足128MF MF +=,则动点M 的轨迹是 ( )A .椭圆B .直线C .圆D .线段4.【题文】已知△ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长l 是 ( )A ..6 C ..125.【题文】如果椭圆2218125x y +=上一点M 到此椭圆一个焦点1F 的距离为2,N 是1MF 的中点,O 是坐标原点,则ON 的长为 ( )A .2B .4C .8D .326.【题文】已知椭圆()22:1,2,04x C y A +=,点P 在椭圆C 上,且OP PA ⊥,其中O 为坐标原点,则点P 的坐标为( )A .2,33⎛⎫±⎪ ⎪⎝⎭ B .2,33⎛⎫± ⎪ ⎪⎝⎭C .2,33⎛-± ⎝⎭D .233⎛⎫-± ⎪ ⎪⎝⎭7.【题文】若△ABC 顶点B ,C 的坐标分别为()4,0-,()4,0,AC ,AB 边上的中线长之和为30,则△ABC 的重心G 的轨迹方程为 ( )A.()221010036x y y +=≠ B.()221010084x y y +=≠ C.()221010036x y x +=≠ D.()221010084x y x +=≠8.【题文】已知12,F F 为椭圆22:14x C y +=的左,右焦点,点P 在C 上,123PF PF =,则12cos F PF ∠等于 ( ) A .34 B .13- C .35- D .45二、填空题9.【题文】椭圆221167x y +=上横坐标为2的点到右焦点的距离为 .10.【题文】已知方程2213+2x y k k+=-表示椭圆,则k 的取值范围为 .11.【题文】椭圆221259x y +=的左焦点为1F ,P 为椭圆上的动点,M 是圆 (221x y +-=上的动点,则1PM PF +的最大值是 .三、解答题12.【题文】已知椭圆的中心在原点,两焦点1F ,2F 在x 轴上,且过点()4,3A -.若12F A F A ⊥,求椭圆的标准方程.13.【题文】求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点()2,0和点()0,1;(2)焦点在y 轴上,与y 轴的一个交点为()0,10P -,P 到距它较近的一个焦点的距 离等于2.14.【题文】已知定点1,02A ⎛⎫- ⎪⎝⎭,B 是圆C :22142x y ⎛⎫-+= ⎪⎝⎭上的一个动点,线段AB 的垂直平分线交BC 于M 点,求动点M 的轨迹方程.2.2.1椭圆及其标准方程 参考答案及解析1. 【答案】D【解析】因为焦点在y 轴上,所以2100m m ->->,即610m <<,又 ()()22102m m ---=,所以8m =,故选D. 考点:椭圆的标准方程. 【题型】选择题 【难度】一般 2. 【答案】B【解析】设所求距离为d ,由题意得4a =.根据椭圆的定义得25253a d d a =+⇒=-=,故选B .考点:椭圆的定义. 【题型】选择题 【难度】较易 3. 【答案】D【解析】动点M 满足128MF MF +=,128F F =,故动点M 的轨迹是线段12F F .考点:椭圆的定义. 【题型】选择题 【难度】一般 4. 【答案】C【解析】如图,设椭圆的另外一个焦点为F ,由椭圆的方程知a =ABC 的周长()()4l AB AC BC AB BF AC CF a =++=+++==.考点:椭圆的定义及其应用. 【题型】选择题 【难度】一般 5. 【答案】C【解析】∵椭圆方程为2218125x y +=,∴9a =,根据椭圆的定义得2=18216MF -=, 而ON 是△12MF F 的中位线,∴216822MF ON ===,故选C . 考点:椭圆的定义. 【题型】选择题 【难度】一般 6. 【答案】A【解析】设(),P x y ,由OP PA ⊥,得OP PA ⊥,所以()()()2,2,20OP PA x y x y x x y ⋅=⋅--=--=,与椭圆方程2214x y +=联立,解得23x =(2x =舍去),此时3y =±,即点P 的坐标为2,33⎛± ⎝⎭,故选A.考点:椭圆上点的坐标. 【题型】选择题 【难度】一般 7. 【答案】B【解析】设AC 、AB 边上的中线分别为BD 、CE ,∵23BG BD =,23CG CE =, ∴()22302033BG CG BD CE +=+=⨯=(定值). 因此,重心G 的轨迹为以B 、C 为焦点的椭圆,220a =,4c =,∴10a =,b =,可得椭圆的方程为22110084x y +=.∵当G 点在x 轴上时,A 、B 、C 三点共线,不能构成△ABC ,∴G 的纵坐标不能是0,可得△ABC 的重心G 的轨迹方程为()221010084x y y +=≠,故选B. 考点:椭圆的定义及标准方程. 【题型】选择题 【难度】较难 8. 【答案】B【解析】由题意可知,12F F ==12222344PF PF PF PF PF +=+==,211,3PF PF ∴==,(22222212121212311cos 22313PF PF F F F PF PF PF +-+-∴∠===-⋅⨯⨯,故选B .考点:椭圆的定义,余弦定理. 【题型】选择题 【难度】较难 9. 【答案】2.5【解析】由椭圆方程可知22216,7,9,3a b c c ==∴=∴=,右焦点为()3,0,将2x =代入椭圆方程得2214y =,所以两点间距离为2.5d ==. 考点:椭圆的定义.【题型】填空题 【难度】一般10. 【答案】132,2k k k ⎧⎫-<<≠-⎨⎬⎩⎭且【解析】由椭圆的定义知30,20,32,k k k k +>⎧⎪->⎨⎪+≠-⎩解得132,2k k k ⎧⎫-<<≠-⎨⎬⎩⎭且. 考点:椭圆的定义. 【题型】填空题 【难度】一般 11. 【答案】17【解析】圆(221x y +-=的圆心为(0,C ,半径为1.由椭圆方程221259x y +=可知2225,9a b ==,所以5a =,左焦点为()14,0F -,右焦点为()24,0F .122221010PC PF PC a PF PC PF CF +=+-=+-≤+=,()()11maxmax 117PM PF PC PF +=++=.考点:椭圆的定义. 【题型】填空题 【难度】较难12. 【答案】2214015x y += 【解析】设椭圆的标准方程为()222210x y a b a b+=>>,焦点()1,0F c -,()2,0F c .∵12F A F A ⊥,∴120F A F A ⋅=,而()14,3FA c =-+, ()24,3F A c =--, ∴()()24430c c -+--+=,∴225c =,即5c =.∴()15,0F -,()25,0F .∵122a AF AF =+==∴a=,∴(22222515b a c =-=-=.∴所求椭圆的标准方程为2214015x y +=.考点:椭圆的标准方程. 【题型】解答题 【难度】一般13. 【答案】(1)2214x y +=(2)22110036y x += 【解析】(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为()222210x y a b a b+=>>. ∵椭圆经过点()2,0和()0,1,∴224,1a b ==,故所求椭圆的标准方程为2214x y +=. (2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为()222210y x a b a b+=>>,∵()0,10P -在椭圆上,∴10a =.又∵P 到距它较近的一个焦点的距离等于2, ∴()102c ---=,故8c =,∴22236b a c =-=.∴所求椭圆的标准方程是22110036y x +=. 考点:椭圆的定义,椭圆的标准方程. 【题型】解答题 【难度】一般14. 【答案】22413y x += 【解析】∵线段AB 的垂直平分线交BC 于M 点,∴MB MA =,又∵2MB MC +=, ∴2MA MC AC +=>,点M 的轨迹是以A 、C 为焦点的椭圆, 此时122,2a c ==,∴1,a =234b =, ∴所求的点M 的轨迹方程是22413y x +=. 考点:椭圆的定义及动点的轨迹方程. 【题型】解答题 【难度】一般。
高中数学人教A版选修2-1课件:2-2-1 椭圆及其标准方程
+
������2 ������
2
= 1(������ > ������ > 0).
∵2a= (5 + 4)2 + (5-4)2 = 10, ∴ ������ = 5.
又 c=4,∴b2=a2-c2=9.
2.2 椭圆
-1-
2.2.1 椭圆及其标准方
三角函数
1.了解椭圆的实际背景,体验从具体情境中抽象出椭圆的过程,椭 圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及其几何图形.
栏目 导引
重难聚焦
第一章
三角函数
1.利用待定系数法确定椭圆的标准方程 剖析:求椭圆的标准方程常用待定系数法.首先,要恰当地选择方 程的形式,如果不能确定焦点的位置,可用两种方法来解决问题. (1)如果明确了椭圆的中心在原点,焦点在坐标轴上,那么所求的 椭圆一定是标准形式,就可以利用待定系数法.首先建立方程,然后 依据题设条件,计算出方程中的a,b的值,从而确定方程.有时方程有 两个,即:
= 1.
+
������2 ������
2
= 1(������ > ������ > 0).
栏目 导引
第一章 典例透析三角函数
题型一 题型二 题型三 题型四
∵点( 3, −2)和点(-2 3, 1)都在椭圆上,
而 a>b>0,∴a2=5,b2=15 不合题意. 故焦点在 y 轴上的椭圆不存在.
(-2) ( 3) + = 1, 2 2 ������ ������2 = 5, ������ ∴ ∴ 2 2 2 ������ = 15. 1 (-2 3) + = 1, 2 2 ������ ������
人教A版高中数学选修2-1《2.2椭圆》复习教案
1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。
高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义
当 PF1 PF 2 2a F1F 2 时, P 的轨迹为 以 F1、F2 为端点的线段
2.椭圆的方程与几何性质:
标准方程
x2 y 2 1(a b 0) a2 b2
参数关系
性
焦点
(c,0), (c,0)
质
焦距
范围
| x | a,| y | b
a2 b2 c2 2c
y2 a2
x2 b2
举一反三:【变式 1】两焦点的坐标分别为 0,4,0,- 4,且椭圆经过点(5,0)。
【变式 2】已知一椭圆的对称轴为坐标轴且与椭圆 x 2 y 2 1有相同的焦点,并且经过点(3, 94
-2),求此椭圆的方程。
2
类型三:求椭圆的离心率或离心率的取值范围 例 3.椭圆 x 2 y 2 1(a>b>0)的半焦距为 c,若直线 y=2x 与椭圆的一个交点的横坐标为 c,求 a2 b2
(Ⅰ)求以 A、B 为焦点,且过 C、D 两点的椭圆的标准方程;
5:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线 l : y kx b 与圆锥曲线相交与 A 、 B 两点, A(x1, y1), B(x2 , y2 ) 则
弦长 AB (x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 (kx1 kx2 )2 1 k 2 x1 x2
5
举一反三【变式 1】已知直线 l:y=2x+m 与椭圆 C: x2 y2 1 交于 A、B 两点 54
(1) 求 m 的取值范围
(2) 若|AB|= 5 15 ,求 m 的值 6
例 9、已知椭圆 C: x2 y2 1 ,直线 l:y=kx+1,与 C 交于 AB 两点,k 为何值时,OA⊥OB. 4
高二数学人教A版选修2-1课件:2.2.1 椭圆
焦点所在坐标轴的重要方法.
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
探究一
探究二
探究三
探究四
探究一求椭圆的标准方程
∵2a=10,∴a=5.
又∵c=4,∴b2=a2-c2=52-42=9.
∴所求椭圆的标准方程为������2
25
+
���9���2=1.
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
探究一
探究二
探究三
探究四
(2)方法一:①当焦点在 x 轴上时,设椭圆的标准方程为������������22 +
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
探究一
探究二
探究三
探究四
探究四易错辨析
易错点:对标准方程的认识不清而致误 【典型例题 4】若方程 ������2 + ������2 =1 表示椭圆,求 k 的取值范围.
5-������ ������-3
2a=|PF1|+|PF2|=10, 即|PF1|2+|PF2|2+2|PF1|·|PF2|=100.② 由①②得|PF1|·|PF2|=25, 所以������△������1P������2 = 12|PF1|·|PF2|·sin 60°=254 3.
2.2.1椭圆及其标准方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
P 是椭圆1x22 +y32=1 上的一点,F1、F2为两个焦点,若∠F1PF2
=60°,则△F1PF2 的面积为( )
Aபைடு நூலகம்2 3
B. 3
C.4
D.2
[答案] B
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
注意挖掘隐含条件 △ABC 的三边 a,b,c(a>b>c)成等差数列,A、
C 两点的坐标分别是(-1,0),(1,0),求顶点 B 的轨迹. [错解] 设点 B 的坐标为(x,y). ∵a、b、c 成等差数列,∴a+c=2b,即|BC|+|BA|=2|AC|,
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
椭圆的标准方程
根据下列条件,写出椭圆的标准方程. (1)两个焦点坐标分别是(0,5)、(0,-5),椭圆上一点 P 到 两焦点的距离和为 26,________. (2)经过点 P(1,32),两焦点间的距离为 2,焦点在 x 轴上, ________. [答案] (1)1y629+1x424=1 (2)x42+y32=1
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
(2)设椭圆的标准方程为ax22+by22=1, ∵焦点在 x 轴上,2c=2,∴a2=b2+1,
9 又椭圆经过点 P(1,32),∴b2+1 1+b42=1, 解之得 b2=3,∴a2=4. ∴椭圆的标准方程为x42+y32=1.
2.2.1 椭圆及其标准方程 (共29张PPT)
• 这两个定点叫做椭圆的焦点,
M
• 两焦点的距离叫做焦距.
F1
F2
2019/11/1
8
问:能否由此得到:到两个定点的距离之和 等于定值的点的轨迹就一定是椭圆呢?
说明:在平面上到两个定点F1, F2的距 离之和等于定值2a的点的轨迹为:
当2a>∣F1F2∣=2c ,轨迹为:椭圆 当2a= ∣F1F2∣=2c,轨迹为:线段 当2a< ∣F1F2∣=2c,轨迹为:不存在
2019/11/1
6
反思:
结合实验以及“圆的定义”,思考讨论一下应该 如何定义椭圆?它应该包含几个要素?
(1)在平面内
(2)到两定点F1,F2的距离之和等于定长2a
(3)定长2a﹥ |F1F2|
M
F1
F2
2019/11/1
7
1.椭圆的定义
• 平面内到两定点F1、F2的距离之和等于 常数(大于|F1F2|)的点的轨迹叫做椭圆.
y2 b2
1(a b 0)
这就是所求椭圆的轨迹方程,它表示的椭圆的
焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这
2里019c/121/=1 a2-b2.
13
4.椭圆标准方程分析
我们把方程
x2 a2
y2 b2
1(a b 0)
叫做椭圆的标准方程,它表示
y M (x,y)
答 案:(1) x2 y2 1 16
② a 4, c 15,焦点在Y轴上; (2) y2 x2 1
16
③a+b=10,c 2 5 。
(3) x2 y2 1或 y2 x2 1
36 16
36 16
2019/11/1
2.2.1椭圆及其标准方程(人教A版选修2-1)
x y 1 25 16
y x 1 25 16
1.已知定点 F1,F2,且|F1F2|=8,动点 P 满足|PF1|+|PF2|=8,则动点 P 的轨迹是( ). A.椭圆 B.圆 C.直线 D.线段 答案:D 解析:由于|PF1|+|PF2|=|F1F2|,所以动点 P 的轨迹不是椭圆,而是线 段 F1F2.
答:在 y 轴。(0,-5)和(0,5)
判断椭圆标准方程的焦点在哪个轴上的准则:
焦点在分母大的那个轴上。
2013-11-25
x y 1 例2.已知椭圆的方程为: 25 16 ,则 5 4 3 a=_____,b=_______,c=_______,焦点坐标
(3,0)、(-3,0) 6 为:____________焦距等于______
2 (0,-1)、(0,1) ___________焦距等于__________;曲线上一点P到焦 点F1的距离为3,则点P到另一个焦点F2的距离等于 2 5 3 2 52 _________,则△F1PF2的周长为___________ y F2
2
2
P
O
2013-11-25
x F1
x y (3) 2 2 1 k 10 x 2 k y 2
a 2
2
b
2
y x 8 m 4且m b 0 1 或 1 a 2 a
2
8 m
2
2
4m
b
2
拓展:方程Ax By C表示椭圆,
2 2
(5) x 4 则____ y A、B、C同号,且A B 1
2 2
提高:
2 y2 x 1、已知椭圆的方程为: 1, 16 m2 焦点在x轴上,则m的范围( ) A: m4且m0 -4 B:4m4且m0 C:m4或m4 D:0 m 4
2019-2020人教A版数学选修2-1 第2章 2.2 2.2.1 椭圆及其标准方程
2.2椭圆2.2.1椭圆及其标准方程1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.思考:(1)椭圆定义中将“大于|F1F2|”改为“等于|F1F2|”的常数,其他条件不变,点的轨迹是什么?(2)椭圆定义中将“大于|F1F2|”改为“小于|F1F2|”的常数,其他条件不变,动点的轨迹是什么?[提示](1)点的轨迹是线段F1F2.(2)当距离之和小于|F1F2|时,动点的轨迹不存在.2.椭圆的标准方程1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5C.8 D.10D[由椭圆方程知a2=25,则a=5,|PF1|+|PF2|=2a=10.]2.椭圆的两个焦点坐标分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为()A.x2100+y236=1 B.y2400+x2336=1C.y2100+x236=1 D.y220+x212=1C[由题意知c=8,2a=20,∴a=10,∴b2=a2-c2=36,故椭圆的方程为y2100+x236=1.]3.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的方程为()A.x24+y23=1 B.x24+y2=1C.y24+x23=1 D.y24+x2=1A[由题意知c=1,椭圆的焦点在x轴上,设椭圆方程为x2a2+y2b2=1,又点P(2,0)在椭圆上,∴4a2+b2=1,∴a2=4,b2=a2-c2=3,故椭圆方程为x24+y23=1.]4.椭圆8k2x2-ky2=8的一个焦点坐标为(0,7),则k的值为________.-1或-17[原方程可化为x21k2+y2-8k=1.依题意,得⎩⎪⎨⎪⎧-8k >0,-8k >1k 2,-8k -1k 2=7,即⎩⎪⎨⎪⎧k <0,k <-18,k =-1或k =-17.所以k 的值为-1或-17.](1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点A (3,-2)和点B (-23,1). [解] (1)由于椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0). ∴a =5,c =4,∴b 2=a 2-c 2=25-16=9. 故所求椭圆的标准方程为x 225+y 29=1. (2)由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0). ∴a =2,b =1.故所求椭圆的标准方程为y 24+x 2=1. (3)法一:①当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(3)2a 2+(-2)2b 2=1,(-23)2a 2+1b 2=1,解得⎩⎨⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1. ②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(-2)2a 2+(3)2b 2=1,1a 2+(-23)2b 2=1,解得⎩⎨⎧a 2=5,b 2=15,因为a >b >0,所以无解.所以所求椭圆的标准方程为x 215+y 25=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎨⎧3m +4n =1,12m +n =1,解得⎩⎪⎨⎪⎧m =115,n =15.所以所求椭圆的标准方程为x 215+y 25=1.1.利用待定系数法求椭圆的标准方程(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而简化了运算.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点,若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1[答案] B【例2】 (1)椭圆x 9+y 2=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为________.(2)已知椭圆x 24+y 23=1中,点P 是椭圆上一点,F 1,F 2是椭圆的焦点,且∠PF 1F 2=120°,则△PF 1F 2的面积为________.思路探究:(1)求|PF 2|→求cos ∠F 1PF 2→求∠F 1PF 2的大小 (2)椭圆定义和余弦定理→建立关于|PF 1|,|PF 2|的方程→联立求解|PF 1|→求三角形的面积(1)120° (2)335 [(1)由x 29+y 22=1,知a =3,b =2, ∴c =7.∴|PF 2|=2a -|PF 1|=2,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=-12,∴∠F 1PF 2=120°.(2)由x 24+y 23=1,可知a =2,b =3,所以c =a 2-b 2=1,从而|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos ∠PF 1F 2,即|PF 2|2=|PF 1|2+4+2|PF 1|. ①由椭圆定义得|PF 1|+|PF 2|=2a =4. ② 由①②联立可得|PF 1|=65.所以S △PF 1F 2=12|PF 1||F 1F 2|sin ∠PF 1F 2=12×65×2×32=335.]1.椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .2.椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.在处理椭圆中的焦点三角形问题时,可结合椭圆的定义|MF 1|+|MF 2|=2a 及三角形中的有关定理和公式(如正弦定理、余弦定理、三角形面积公式等)来求解.2.(1)已知P 是椭圆y 25+x 24=1上的一点,F 1,F 2是椭圆的两个焦点,且∠F 1PF 2=30°,则△F 1PF 2的面积是__________________.8-43 [由椭圆的标准方程,知a =5,b =2, ∴c =a 2-b 2=1,∴|F 1F 2|=2. 又由椭圆的定义,知 |PF 1|+|PF 2|=2a =2 5.在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即4=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-2|PF 1|·|PF 2|cos 30°, 即4=20-(2+3)|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=16(2-3).∴S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×16(2-3)×12=8-4 3.] (2)设P 是椭圆x 24+y 23=1上一点,F 1,F 2是椭圆的焦点,若∠PF 1F 2=90°,则△F 1PF 2的面积是________.32 [由椭圆方程x 24+y 23=1,知a =2,c =1,由椭圆定义,得|PF 1|+|PF 2|=2a =4,且|F 1F 2|=2,在△PF 1F 2中,∠PF 1F 2=90°.∴|PF 2|2=|PF 1|2+|F 1F 2|2.从而(4-|PF 1|)2=|PF 1|2+4,则|PF 1|=32,因此S △PF 1F 2=12·|F 1F 2|·|PF 1|=32.故所求△PF 1F 2的面积为32.]1.如图所示,P 为圆B :(x +2)2+y 2=36上一动点,点A 的坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.[提示] 用定义法求椭圆的方程,首先要利用平面几何知识将题目条件转化为到两定点的距离之和为定值,然后判断椭圆的中心是否在原点、对称轴是否为坐标轴,最后由定义确定椭圆的基本量a ,b ,c .所求点Q 的轨迹方程为x 29+y 25=1.2.如图所示,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹方程是什么?为什么?[提示] 当题目中所求动点和已知动点存在明显关系时,一般利用代入法(相关点法)求解.用代入法(相关点法)求轨迹方程的基本步骤为:(1)设点:设所求轨迹上动点坐标为M (x ,y ),已知曲线上动点坐标为P (x 1,y 1).(2)求关系式:用点M 的坐标表示出点P 的坐标,即得关系式⎩⎨⎧x 1=g (x ,y ),y 1=h (x ,y ). (3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可.所求点M 的轨迹方程为x 24+y 2=1.【例3】 (1)已知P 是椭圆x 24+y 28=1上一动点;O 为坐标原点,则线段OP 中点Q 的轨迹方程为______________.(2)一个动圆与圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.思路探究:(1)点Q为OP的中点⇒点Q与点P的坐标关系⇒代入法求解.(2)由圆的相切,及动圆圆心与两个定圆圆心、半径的关系得轨迹.(1)x2+y22=1[设Q(x,y),P(x0,y0),由点Q是线段OP的中点知x0=2x,y0=2y,又x204+y208=1.所以(2x)24+(2y)28=1,即x2+y22=1.](2)解:由已知,得两定圆的圆心和半径分别为Q1(-3,0),R1=1;Q2(3,0),R2=9.设动圆圆心为M(x,y),半径为R,如图.由题设有|MQ1|=1+R,|MQ2|=9-R,所以|MQ1|+|MQ2|=10>|Q1Q2|=6.由椭圆的定义,知点M在以Q1,Q2为焦点的椭圆上,且a=5,c=3.所以b2=a2-c2=25-9=16,故动圆圆心的轨迹方程为x225+y216=1.1.与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例(1)所用方法为代入法.例(2)所用方法为定义法.2.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.3.代入法(相关点法)若所求轨迹上的动点P(x,y)与另一个已知曲线C:F(x,y)=0上的动点Q(x1,y1)存在着某种联系,可以把点Q的坐标用点P的坐标表示出来,然后代入已知曲线C的方程F(x,y)=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).3.(1)已知x 轴上一定点A (1,0),Q 为椭圆x 24+y 2=1上任一点,求线段AQ 中点M 的轨迹方程.[解] 设中点M 的坐标为(x ,y ),点Q 的坐标为(x 0,y 0). 利用中点坐标公式,得⎩⎪⎨⎪⎧x =x 0+12,y =y 02,∴⎩⎨⎧x 0=2x -1,y 0=2y .∵Q (x 0,y 0)在椭圆x 24+y 2=1上, ∴x 204+y 20=1.将x 0=2x -1,y 0=2y 代入上式, 得(2x -1)24+(2y )2=1.故所求AQ 的中点M 的轨迹方程是 ⎝ ⎛⎭⎪⎫x -122+4y 2=1. (2)在Rt △ABC 中,∠CAB =90°,|AB |=2,|AC |=32,曲线E 过C 点,动点P 在曲线E 上运动,且|P A |+|PB |是定值.建立适当的平面直角坐标系,求曲线E 的方程.[解] 以AB 的中点O 为原点,建立如图所示的平面直角坐标系.由题意可知,曲线E 是以A ,B 为焦点,且过点C 的椭圆,设其方程为x 2a 2+y 2b 2=1(a >b >0).则2a =|AC |+|BC |=32+52=4,2c =|AB |=2,所以a =2,c =1,所以b 2=a 2-c 2=3.所以曲线E 的方程为x 24+y 23=1.1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a ,当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.所谓椭圆的标准方程,指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在x 2a 2+y 2b 2=1与y 2a 2+x 2b 2=1这两个标准方程中,都有a >b >0的要求,如方程x 2m +y 2n =1(m >0,n >0,m ≠n )就不能确定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式x a +y b =1类比,如x 2a 2+y 2b 2=1中,由于a >b ,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看x 2,y 2分母的大小).3.对于求解椭圆的标准方程一般有两种方法:一是通过待定系数法求解,二是通过椭圆的定义进行求解.1.已知A (-5,0),B (5,0).动点C 满足|AC |+|BC |=10,则点C 的轨迹是( )A .椭圆B .直线C .线段D .点 C [由|AC |+|BC |=10=|AB |知点C 的轨迹是线段AB .]2.已知椭圆4x 2+ky 2=4的一个焦点坐标是(0,1),则实数k 的值是( ) A .1 B .2 C .3 D .4B[椭圆方程可化为x 2+y24k =1,由题意知⎩⎪⎨⎪⎧4k >1,4k -1=1,解得k =2.]3.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1,F 2的连线夹角为直角,则|PF 1|·|PF 2|=________.48 [由题意知⎩⎨⎧|PF 1|+|PF 2|=14, ①|PF 1|2+|PF 2|2=100, ② ①2-②得2|PF 1||PF 2|=96.所以|PF 1||PF 2|=48.]4.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.[解] 设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).设焦点F 1(-c ,0),F 2(c ,0)(c >0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c ,3),F 2A →=(-4-c ,3),∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2| =(-4+5)2+32+(-4-5)2+32=10+90=410. ∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.。
数学:2.2.1《椭圆的标准方程》课件(新人教A版选修2-1)
已知B,C是两个定点,|BC|=6, B,C是两个定点 例2 已知B,C是两个定点,|BC|=6, 且三角形ABC的周长等于16 ABC的周长等于16, 且三角形ABC的周长等于16,求顶点 的轨迹方程。 A的轨迹方程。
略解: 所在直线为x轴 略解:以BC所在直线为 轴,BC的垂直平分线 所在直线为 的垂直平分线 轴建立平面直角坐标系, 为y轴建立平面直角坐标系,设顶点 轴建立平面直角坐标系 设顶点A(x,y),由 , 已知条件得│AB│+│AC│=10,再由椭圆定义得 已知条件得 再由椭圆定义得 顶点A的轨迹方程为 y2 顶点 的轨迹方程为 x2 + =1 25 16
准方程: 准方程:
(1)a=4, b=1, 焦点在x轴上; (2)a=5, c=3, 焦点在y轴上;
2
x 2 解: ( ) 1 + y =1 16 2 2 y x (2) + =1 25 16
提高型: 提高型: 选择题: 一、选择题: 2 2 x y 1.椭圆 + =1上一点P到一个焦点的 25 16 距离等于 , 则到另一个焦点的距离 ( ) 3 为B A 5 B 7 C 8 D 10
外 ,与 O2 : (x −3) + y = 81 切 试 切 圆 内 ,
2
2
2
祝各位同学学业 有成,天天快乐!
c2 2 2 2 2 2 c2 2 2 2 2 2 (1)(a − c )(x − ) + a y = a (a − c ) b (x − ) + a y = a b 得 c 2 2 2
2 2
令 −c = b a
2 2
2
(2)(a − c ) y + a x = a (a − c ) 得 x + b y = a b a
2014-2015学年人教A版选修2-1高中数学《2.2.1椭圆及其标准方程》 t课件
【方法技巧】 1.求椭圆方程的方法 方法 内容 适合题型或条件
分析条件判断出点 的轨迹是椭圆,然 动点满足|MA|+|MB|= 定义法 后根据定义确定方 2a,且2a>|AB| 程
由题设条件能确定 方程类型,设出标 待定 准方程,再代入已 系数法 知数据,求出相关 参数
2 2 x y 故所求椭圆的标准方程为 1. 25 9
②由于椭圆的焦点在y轴上,
2 2 y x 所以设它的标准方程为 2 2 1 (a>b>0). a b
由于椭圆经过点(0,2)和(1,0),
4 0 2 1, 2 2 a 4, 所以 a b 2 b 1. 0 1 1 a 2 b2
焦点的椭圆的方程是(
x 2 y2 A. 1 15 10 x 2 y2 C. 1 10 15
)
x2 y2 B. 1 225 100 x2 y2 D. 1 100 225
(2)求适合下列条件的椭圆的标准方程: ①两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5, 0). ②焦点在y轴上,且经过两个点(0,2)和(1,0). ③经过点 A( 3, 2) 和点 B 2 3,1 .
2 2 y x (3)椭圆的方程为 1,则a= 9 4
. . ,b= ,
c=
.
【解析】(1)由a2=b2+c2,得b2=52-32=42=16,
2 2 x y 所以椭圆的方程为 1. 25 16 2 2 答案:x y 1 25 16 2 2 1 1 5 x y 2 2 (2)由4x +9y =1,得 所以 c . 1, 1 1 4 9 6 4 9 所以焦点坐标为 ( 5 ,0). 6 答案:( 5 ,0) 6
2019-2020学年数学人教A版选修2-1检测:2.2.1椭圆及其标准方程
2.2.1 椭圆及其标准方程填一填1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆的标准方程焦点在x 轴上 焦点在y 轴上标准方程 x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0)图形焦点坐标F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )a ,b ,c 的关系 c 2=a 2-b 2c 2=a 2-b 2判一判1.2.(√)2.平面内到两个定点F 1,F 2的距离之和等于常数的点的集合是椭圆.(×) 3.椭圆的特殊形式是圆.(×)4.方程x 2a 2+y 2b2=1(a >0,b >0)表示的曲线是椭圆.(×)5.设F 1(-4,0),F 2(4,0)为定点,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是椭圆.(×)6.a =5,c =3,焦点在x 轴上的椭圆的标准方程是x 25+y24=1.(×)7.若椭圆x 25+y 2m=1的一个焦点坐标为(1,0),则实数m 的值为4.(√)8.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,则动点Q 的轨迹为圆.(想一想1.12(2a ),且2a >|F 1F 2|,若2a =|F 1F 2|,则M 的轨迹是什么?若2a <|F 1F 2|,则M 的轨迹是什么?当2a =|F 1F 2|时,点M 的轨迹是线段F 1F 2; 当2a <|F 1F 2|时,点M 的轨迹不存在.2.在椭圆的标准方程中,a >b >c 一定成立吗?不一定,只要a >b ,a >c 即可.b ,c 的大小关系不定.3.根据椭圆方程,如何确定焦点位置?把方程化为标准形式,x 2,y 2的分母哪个大,焦点就在相应的轴上. 思考感悟:练一练1.椭圆x 225+y 2169=1的焦点坐标是( )A .(±5,0)B .(0,±5)C .(0,±12)D .(±12,0) 答案:C2.焦点在坐标轴上,且a 2=13,c 2=12的椭圆的标准方程为( ) A.x 213+y 212=1 B.x 213+y 225=1或 x 225+y 213=1 C.x213+y 2=1 D.x 213+y 2=1或x 2+y 213=1 答案:D3.若椭圆x 2m +y 24=1的焦距为2,则m 的值为( )A .5B .3C .5或3D .8 答案:C4.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|=( )A .4B .5C .8D .10 答案:D知识点一求椭圆的标准方程1.求满足下列条件的椭圆的标准方程.(1)两焦点的坐标分别是(-4,0),(4,0),且椭圆上任意一点P 到两焦点的距离之和等于10;(2)两焦点的坐标分别是(0,-2),(0,2),且椭圆经过点⎝⎛⎭⎫-32,52. 解析:(1)因为椭圆的焦点在x 轴上,所以设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).又c =4,2a =10,则a =5,b 2=a 2-c 2=9.于是所求椭圆的标准方程为x 225+y 29=1.(2)因为椭圆的焦点在y 轴上,所以设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).依题意,得⎩⎪⎨⎪⎧a 2=b 2+4,254a 2+94b2=1, 解得⎩⎪⎨⎪⎧a 2=10,b 2=6.于是所求椭圆的标准方程为y 210+x 26=1.2.写出适合下列条件的椭圆的标准方程. (1)a =5,c =2;(2)经过P 1(6,1),P 2(-3,-2)两点;(3)以椭圆9x 2+5y 2=45的焦点为焦点,且经过点M (2,6). 解析:(1)∵b 2=a 2-c 2得b 2=25-4=21.∴椭圆的标准方程为x 225+y 221=1或 y 225+x 221=1.(2)解法一 ①当焦点在x 轴上时,设椭圆方程为x 2a 2+y 2b2=1(a >b >0).由已知,得⎩⎨⎧ 6a 2+1b 2=1,3a 2+2b2=1⇒⎩⎪⎨⎪⎧ a 2=9,b 2=3,即所求椭圆的标准方程是x 29+y 23=1.②当焦点在y 轴上时,设椭圆方程为x 2b 2+y 2a2=1(a >b >0),由已知,得⎩⎨⎧6b 2+1a 2=1,3b 2+2a 2=1⇒⎩⎪⎨⎪⎧b 2=9,a 2=3,与a >b >0矛盾,此种情况不存在.综上,所求椭圆的标准方程是x 29+y 23=1.解法二 设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ),故⎩⎪⎨⎪⎧6A +B =1,3A +2B =1⇒⎩⎨⎧A =19,B =13,即所求椭圆的标准方程是x 29+y 23=1.(3)由题意,知焦点F 1(0,2),F 2(0,-2),设所求椭圆方程为y 2λ+4+x 2λ=1(λ>0),将x =2,y =6代入,得6λ+4+4λ=1,解得λ=8或λ=-2(舍去).所求椭圆的标准方程为y 212+x 28=1.知识点二 椭圆的定义及应用3.设F 1,F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为( )A .16B .18C .20D .不确定解析:∵a =5,b =3,∴c =4.又|PF 1|+|PF 2|=2a =10,|F 1F 2|=2c =8,∴△F 1PF 2的周长为|PF 1|+|PF 2|+|F 1F 2|=2a +2c =10+8=18,故选B. 答案:B4.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O为坐标原点,那么线段ON 的长是( )A .2B .4C .8 D.32解析:设椭圆的另一个焦点为E ,则|MF |+|ME |=10,∴|ME |=8, 又∵ON 为△MEF 的中位线,∴|ON |=12|ME |=4.故选B.知识点三 与椭圆有关的轨迹问题 5.已知P 是椭圆x 4+y8=1上一动点,O 为坐标原点,则线段OP 中点Q 的轨迹方程为________________.解析:设P (x 0,y 0),Q (x ,y ),由中点坐标公式得⎩⎨⎧x =x 02,y =y 02,∴⎩⎪⎨⎪⎧x 0=2x ,y 0=2y ,又∵点P 在椭圆x 24+y 28=1上,∴(2x )24+(2y )28=1,即x 2+y 22=1.答案:x 2+y 22=1 6.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,求C 的方程.解析:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设动圆P 的圆心为P (x ,y ),半径为R .动圆P 与圆M 外切并且与圆N 内切,所以,|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4,由椭圆定义可知,曲线C 是以M 、N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).综合应用7.若方程x 2m +9+y 225-m=1表示焦点在x 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <8B .8<m <25C .16<m <25D .m >8解析:依题意,有⎩⎪⎨⎪⎧25-m >0,m +9>0,m +9>25-m ,解得8<m <25.故选B.答案:B8.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1)解析:方程x 2+ky 2=2可化为x 22+y 22k=1,若焦点在y 轴上,则必有2k>2,且k >0,即0<k <1.故选D.答案:D基础达标一、选择题1.椭圆3x 2+y 2=1的焦点坐标为( ) A .(3,0)和(-3,0) B .(0,3)和(0,-3)C.⎝⎛⎭⎫63,0和⎝⎛⎭⎫-63,0 D.⎝⎛⎭⎫0,63和⎝⎛⎭⎫0,-63解析:3x 2+y 2=1可化为x 213+y 2=1,所以该椭圆的焦点在y 轴上,且a 2=1,b 2=13,所以c 2=a 2-b 2=23,c =63,焦点坐标为⎝⎛⎭⎫0,63和⎝⎛⎭⎫0,-63.故选D.答案:D2.设P 是椭圆x 216+y 212=1上一点,P 到两焦点F 1,F 2的距离之差为2,则△PF 1F 2是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形 解析:由椭圆定义知|PF 1|+|PF 2|=2a =8. 又|PF 1|-|PF 2|=2,∴|PF 1|=5,|PF 2|=3. 又|F 1F 2|=2c =216-12=4, ∴△PF 1F 2为直角三角形.故选B. 答案:B 3.已知在平面直角坐标系中,点A (-3,0),B (3,0),点P 为一动点,且|P A |+|PB |=2a (a ≥0),给出下列说法:①当a =2时,点P 的轨迹不存在;②当a =4时,点P 的轨迹是椭圆,且焦距为3; ③当a =4时,点P 的轨迹是椭圆,且焦距为6; ④当a =3时,点P 的轨迹是以AB 为直径的圆. 其中正确的说法是( ) A .①② B .①③ C .②③ D .②④解析:当a =2时,2a =4<|AB |,故点P 的轨迹不存在,①正确;当a =4时,2a =8>|AB |,故点P 的轨迹是椭圆,且焦距为|AB |=6,②错误,③正确;当a =3时,点P 的轨迹为线段AB ,④错误.故选B.答案:B4.若方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,那么实数m 的取值范围是( )A .m >0B .0<m <1C .-2<m <1D .m >1且m ≠ 2解析:因为x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,所以2-m 2>m >0,解得0<m <1.故选B.答案:B5.已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过点B 且与圆A 内切,则圆心P 的轨迹是( )A .线段B .直线C .圆D .椭圆解析:设圆P 的半径为r ,因为圆P 过点B ,则|PB |=r .又圆P 过点B 且与圆A 内切,B 在圆A 内,所以圆P 在圆A 内.又圆A 的半径为10,所以两圆的圆心距|P A |=10-r ,故|P A |+|PB |=10>|AB |=6,所以圆心P 的轨迹是以A ,B 为焦点的椭圆.故选D.答案:D6.已知点P 是椭圆x 25+y 24=1上一点,以点P 以及焦点F 1,F 2为顶点的三角形的面积为1,则点P 的坐标为( )A.⎝⎛⎭⎫±152,1B.⎝⎛⎭⎫152,±1C.⎝⎛⎭⎫152,1D.⎝⎛⎭⎫±152,±1 解析:设P (x 0,y 0),∵a 2=5,b 2=4,∴c =1,∴S △PF 1F 2=12|F 1F 2|·|y 0|=|y 0|=1,∴y 0=±1.∵x 205+y 204=1,∴x 0=±152.故选D. 答案:D7.已知椭圆的两个焦点为F 1(-5,0),F 2(5,0),P 是此椭圆上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该椭圆的方程是( )A.x 26+y 2=1B.x 24+y 2=1 C .x 2+y 26=1 D .x 2+y 24=1解析:根据题意得2c =25,由PF 1⊥PF 2,得|PF 1|2+|PF 2|2=20,又因为|PF 1|·|PF 2|=2,所以(|PF 1|+|PF 2|)2=20+4=24,则2a =26,所以a =6,b =1,则椭圆方程为x 26+y 2=1.故选A.答案:A8.已知P 是椭圆x 216+y 29=1上一点,F 1,F 2分别是椭圆的左、右焦点,若|PF 1|·|PF 2|=12,则∠F 1PF 2的大小为( )A .30°B .60°C .120°D .150°解析:由条件可知,a =4,b =3,所以c =a 2-b 2=7,所以|F 1F 2|=27.由椭圆的定义得:|PF 1|+|PF 2|=2a =8.由余弦定理得:cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=82-2×12-(27)22×12=12.所以∠F 1PF 2=60°.答案:B 二、填空题9.已知椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点M 是椭圆上的一点,点N 是MF 1的中点,若|ON |=1(O 为坐标原点),则|MF 1|等于________________.解析:由题意知,ON 是△MF 1F 2的中位线,则|MF 2|=2|ON |=2,又由椭圆的定义,|MF 1|+|MF 2|=8,所以|MF 1|=6.答案:610.与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________________.解析:设动圆的半径为r ,圆心为P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r ,所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,故点P 的轨迹方程为x 225+y 216=1. 答案:x 225+y 216=111.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是________.解析:焦点F 1(-3,0),设P (x 0,y 0),M (0,y ′),则有⎩⎨⎧0=-3+x 02,y ′=0+y2,所以⎩⎪⎨⎪⎧x 0=3,y 0=2y ′.又x 2012+y 203=1,则3212+4y ′23=1,解得y ′=±34. 答案:±3412.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是________.解析:将P ,Q 两点间的最大距离转化为圆心到椭圆上点的最大距离加上圆的半径,设Q (x ,y ),则圆心(0,6)到椭圆上点的距离d =x 2+(y -6)2=-9y 2-12y +46=-9⎝⎛⎭⎫y +232+50≤52,所以P ,Q 两点间的最大距离为6 2. 答案:6 2 三、解答题13.如图所示,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程.解析:由椭圆的定义知,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2.设椭圆的半焦距为c ,由已知PF 1⊥PF 2,故2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1.故所求椭圆的标准方程为x 24+y 2=1.14.已知圆C :(x +1)2+y 2=25及点A (1,0),Q 为圆上一点,AQ 的垂直平分线交CQ 于点M ,求点M 的轨迹方程.解析:如图,M 是AQ 的垂直平分线与CQ 的交点,连接MA ,则|MQ |=|MA |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,且|AC |=2, ∴动点M 的轨迹是椭圆,且其焦点为C ,A . 易知2a =5,2c =2,∴a =52,c =1,∴b 2=a 2-c 2=254-1=214,故动点M 的轨迹方程为x 2254+y 2214=1.能力提升15.在Rt △ABC 中,∠CAB =90°,AB =2,AC =22,曲线E 过C 点,动点P 在E 上运动,且保持|P A |+|PB |的值不变,求曲线E 的方程. 解析:如图,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系.在Rt △ABC 中,BC =AC 2+AB 2=322,∵|P A |+|PB |=|CA |+|CB |=22+322=22,且|P A |+|PB |>|AB |,∴由椭圆的定义知,动点P 的轨迹E 为椭圆,且a =2,c =1,b =1.∴曲线E 的方程为x 22+y 2=1.16.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆方程;(2)若点P 满足∠F 1PF 2=120°,求△PF 1F 2的面积. 解析:(1)由已知得|F 1F 2|=2,∴|PF 1|+|PF 2|=2|F 1F 2|=4=2a ,∴a =2. ∴b 2=a 2-c 2=4-1=3,∴所求椭圆的标准方程为x 24+y 23=1.(2)在△PF 1F 2中,由余弦定理得,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 120°,即4=(|PF 1|+|PF 2|)2-|PF 1||PF 2|,∴4=(2a )2-|PF 1||PF 2|=16-|PF 1||PF 2|, ∴|PF 1||PF 2|=12,∴S △PF 1F 2=12|PF 1|PF 2|sin 120°=12×12×32=3 3.。
人教A版高中数学选修2-1课件2.2.1《椭圆及其标准方程》(新)
F 2 (0, c)
焦点位置的 看标准方程的分母,谁的分母大就在其对
判断
2019/5/8
应的轴上。
题组训练
题组1
x2 y2
x (1)在椭圆
16
9
1中,a= 4 ,b= 3 ,焦距是焦2 7点坐
标是 ,焦点( 位7,0) 于轴( 上7,0).
(2)在椭圆25 x2 4 y 2 100 中,a=5 ,b=2 ,焦距是焦2点21坐
作业
• 15.已知3 椭圆两个焦点(-2,0),F2(2,0),并 且2经过2 点( , ),求它的标准方程。
• 2.椭圆的两个焦点F1(-8,0),F2(8,0),且 椭圆上一点到两个焦点的距离之和是20,求此椭圆 的标准方程。
• 3.若B(-8,0),C(8,0)为的两个顶点,AC和 AB两边上的中线和是30,求的重心G的轨迹方程。
M
移项得 (x c)2 y2 2a - (x c)2 y2
平方得 a2 cx a (x c)2 y2
o
x
F1
再平方,并整理得 (a 2 c 2 )x 2 a 2 y 2 a 2 (a 2 c 2 )
2019/5/8 令 a 2 c 2 b 2 得 b 2 x 2 a 2 x 2 a 2 b 2
2019/5/8
x2 25
y2 16
1上一点,P到一个焦点的距离为4,则
P到另一个焦点的距离为_6_
(2)如图, 椭圆 x 2 y 2 1,两焦点过的直线交椭圆于A,B两点,则
16 9
三角形ABC的周长是_16
(3)如果点M(x,y)在运动过程,总满足关系式: x2 (y3)2 x2 (y3)2 10
2013新人教A版(选修2-1)《椭圆及其标准方程》word学案
学校: 临清一中 学科:数学 编写人:杨晓辉审稿人: 贾志安第二章第三节椭圆及其标准方程课前预习学案一、 预习目标;预习椭圆的定义和标准方程的推导 二、 预习内容:1.椭圆的定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a)(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .三、提出疑惑:同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标:熟练掌握椭圆的定义及标准方程,熟练掌握解析几何的基本思想方法——坐标法,体会数形结合思想和类比思想的应用。
学习重难点:1.重点:椭圆的定义和椭圆的标准方程.2.难点:椭圆的标准方程的推导二、学习过程:(一)椭圆的定义1、[动动手]:取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔拉紧绳子,移动笔尖,画出的轨迹是什么曲线?把细绳的两端拉开一段距离,分别固定在图版的两点处,套上铅笔拉紧绳子,移动笔尖,画出的轨迹是什么曲线?2、[问题]:①对比两条曲线,分别说出移动的笔尖满足的几何条件。
②能否说,椭圆为平面上一动点到两个定点的距离之和等于定长的点的轨迹呢?为什么?3、[讨论]: 平面上一动点到两个定点的距离之和等于这两个定点间的距离的点的轨迹是什么?4、[概括归纳] 椭圆的定义:(二)椭圆的标准方程1、[问题]① 你能说出求轨迹方程的一般步骤吗?② 我们是如何建系求圆的标准方程的?观察椭圆的形状,你认为怎样建立坐标系才能使椭圆的方程简单?2、[动动手]:根据椭圆定义完成标准方程的推导过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1椭圆及其标准方程(一)
【学习目标】 1.理解椭圆的定义 明确焦点、焦距的概念
2.熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆的草图并确定椭圆的标准方程【自主学习】
1997年初,中国科学院紫金山天文台发布了一条消息,从1997
年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长
通过手工操作演示椭圆的形成,得出椭圆的定义:
注意:椭圆定义中容易遗漏的两处地方:
(1)两个定点---两点间距离确定
(2)绳长--轨迹上任意一点到两定点距离之和确定思考:定义中,“定值大于12||F F ”是必要条件.当22a c =时,动点轨迹是 __________________;而当22a c <时,动点轨迹 .
如图,取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}
a PF PF P P 221=+=∴,试根据求曲线方程的一般步骤求椭圆的轨迹方程。
注意:若坐标系的选取不同,可得到椭圆的不同的方程(请写出焦点在y 轴上标准方程)
【自主检测】 1.椭圆22
1259
x y +=上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为 ( )
A.5
B.6
C.4
D.10
2.椭圆221169
x y +=的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为 【目标检测】
1.椭圆1169
252
2=+y x 的焦点坐标是 ( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)
2. 椭圆22
110036
x y +=上一点P 到焦点1F 的距离等于6,则点P 到另一个焦点2F 的距离是
3.方程1422=+ky x 的曲线是焦点在y 轴上的椭圆 ,求k 的取值范围
【总结提升】理解椭圆的定义,熟练掌握椭圆的标准方程;注意利用椭圆的定义求解相关题型.。