高中数学(北师大版)教学设计必修一第一章集合复习

合集下载

(教师用书)高中数学 第一章 集合教案 北师大版必修1

(教师用书)高中数学 第一章 集合教案 北师大版必修1

第一章集合§1集合的含义与表示(教师用书独具)●三维目标1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系.(2)知道常用数集及其专用记号.(3)了解集合中元素的确定性、互异性、无序性.(4)会用集合语言表示有关数学对象.(5)培养学生抽象概括的能力.2.过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3.情感、态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.●重点难点重点:集合的含义与表示方法.难点:表示法的恰当选择.针对教材的内容,编排一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来;通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到一定的预期效果;尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节.在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到设计中所预想的目标.(教师用书独具)●教学建议集合是学生进入高中学习的第一节课,是学生学好数学所必须掌握好的一个知识点,同时集合是一个不加定义的原始概念,对于学生而言既熟悉又模糊,熟悉是因为学生在初中的数学学习和生活体验中掌握了大量集合的实例,模糊是由于对于集合含义的描述以及集合的数学表示、元素与集合的关系等理解的并不十分到位、准确.同时虽然本节课对于学生而言难度不大,但是其概念多、符号多,容易混淆,需要学生理解记忆.对于一些较简单的内容,应放手让学生多一些探究与合作.随着教育改革的深化,教学理念、教学模式、教学内容等教学因素都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求.用全新的理论来武装自己,让自己的课堂更有效率.●教学流程创设情景,揭示课题,通过接触过的集合,举出部分例子⇒研探新知,给出集合的概念及集合的表示⇒质疑答辨,排难解惑,发展思维.思考:集合中元素有什么特点?⇒完成例1及其变式训练,巩固元素与集合的关系⇒通过例2及其变式训练,使学生掌握集合中元素的特性⇒集合的表示方法各有什么特点?完成例3及变式训练⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒巩固深化反馈矫正,完成当堂双基达标,巩固所学知识并进行反馈矫正观察下列实例:(1)2013年1月1日之前,在腾讯微博注册的会员; (2)平面内到两定点的距离相等的点;(3)不等式组⎩⎪⎨⎪⎧x +1≥3,x 2<9的整数解;(4)方程x 2-4x +4=0的实数根; (5)我们班经常参加体育锻炼的同学.上述实例中的研究对象哪些是确定的? 【提示】 (1)(2)(3)(4)的研究对象是确定的. 集合⎩⎪⎨⎪⎧含义:一般地,指定的某些对象的全体称为集合,集合中的每个对象叫作这个集合的元素.表示⎩⎪⎨⎪⎧集合:通常用大写字母A ,B ,C ,…标记;元素:通常用小写字母a ,b ,c ,…标记.对于本班内所有女同学组成的集合,张三(男)、李四(女)分别与集合存在什么关系? 【提示】 张三不在该集合内,李四在该集合内.给出下列集合:(1)小于10的所有正偶数组成的集合A ;(2)方程x 2+2x +1=0的根组成的集合为B ; (3)所有奇数组成的集合为C .1.你能将集合A 中的元素一一列举出来吗? 【提示】 能.2,4,6,82.集合B中的元素满足的条件是什么?【提示】x2+x+1=0.3.如何表示集合C?【提示】C={奇数}或{x|x=2n+1,n∈Z}.1.列举法把集合中的元素一一列举出来写在大括号内的方法.2.描述法用确定的条件表示某些对象属于一个集合并写在大括号内的方法叫描述法.1.有限集含有限个元素的集合.2.无限集含无限个元素的集合.3.空集不含有任何元素的集合.下列所给关系正确的个数是( )①π∈R;②3∉Q;③0∈N*;④|-4|∉N.A.1 B.2 C.3 D.4【思路探究】解答本题要先弄清“∈”和“∉”的区别与联系及特定的数集符号的含义,再进行判断.【自主解答】∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.【答案】 B1.判断一个元素是否属于某个集合,关键看其是否具有该集合的特征.2.N+(N*)与N不同,前者表示正整数集,而后者表示非负整数集.给出下列关系,其中正确的有____. ①3∈Z ②0∈N ③12∈N + ④3.14∈Q【解析】 ∵3不是整数,∴3∉Z ,故①错;∵0是自然数,∴0∈N ,故②正确;∵12不是正整数,∴12∉N +,故③错,∵3.14是有理数,∴3.14∈Q ,故④正确.【答案】 ②④已知集合A ={1,3,a 2+a ,a +1},若a ∈A ,求实数a 的值.【思路探究】 根据题中的条件a ∈A ,可分别列出关于a 的方程,然后求出a 的值即可,但要注意集合中元素的互异性.【自主解答】 ∵a ∈A ,A ={1,3,a 2+a ,a +1}, ∴a =1或a =3或a =a 2+a .当a =1时,a 2+a =2,a +1=2,这与集合中元素互异性矛盾,故舍去, 当a =3时,a 2+a =12,a +1=4,适合题意;当a =a 2+a 即a =0时,a +1=1,与集合中元素互异性矛盾,故舍去, 综上所述,所求实数a 的值是3.1.本题中,a 是集合A 的元素,但不能确定是哪一个元素,故有三种情况. 2.根据集合中元素的确定性可以解出字母的所有可能的值,再根据集合中元素的互异性对集合中的元素进行检验.另外,在利用集合中元素的特性解题时要注意分类讨论思想的运用.(2013·济南高一检测)已知集合A 是由三个元素m ,m 2+1,1组成的,且2是A 中的一个元素,求m 的值.【解】 ∵2是A 中的一个元素,∴m =2或m 2+1=2, 即m =2或m =±1.当m =2时,集合A 中的元素为:2,5,1,符合题意.当m =1时,集合A 中的元素为:1,2,1不满足互异性,舍去.当m =-1时,集合A 中的元素为:-1,2,1符合题意. 综上知m =2或m =-1.用适当的方法表示下列集合.(1)化简式子x |x |+y|y |(x ,y 为非零实数)所得结果构成的集合;(2)所有偶数组成的集合;(3)直角坐标系内第二象限的点组成的集合; (4)方程(x -1)(x 2-5)=0的根组成的集合.【思路探究】 根据题目的特点,结合列举法、描述法的适用范围解答本题. 【自主解答】 (1)根据x ,y 值的符号,两项分别可得1或-1,化简的结果有3种情形,用列举法表示为{0,2,-2};(2)偶数的表达式为2k (k ∈Z).由于有无数个元素,用描述法表示为{x |x =2k ,k ∈Z}; (3)代表元素是有序数对(x ,y ),用描述法表示为{(x ,y )|x <0且y >0}; (4)方程有3个根,用列举法表示为{-5,1,5}.1.当集合中的元素个数较少时往往采用列举法表示.用列举法表示集合时,必须注意以下几点:(1)元素之间必须用“,”隔开; (2)集合的元素必须是明确的; (3)不必考虑元素出现的先后顺序; (4)集合中的元素不能重复; (5)集合中的元素可以是任何事物.2.用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.给出下列说法:①在直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{-2,2}; ③集合{(x ,y )|y =1-x }与{x |y =1-x }是同一集合. 其中正确的有( )A .1个B .2个C .3个D .0个【解析】 在直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于 ⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2, 解为有序实数对(2,-2),即解集为{(2,-2)}或{(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =2y =-2,故②不正确; 集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相同.③不正确.【答案】 A忽视元素的特性致误已知-1∈{m -1,3m ,m 2-1},求实数m 的值.【错解】 ∵-1∈{m -1,3m ,m 2-1}, ∴m -1=-1或3m =-1或m 2-1=-1, 即m =0或m =-13.【错因分析】 代入后,未对元素进行检验,忽视了元素的互异性.【防范措施】 1.解答含有字母的元素与集合之间的关系时,要有分类讨论的意识. 2.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求.【正解】 ∵-1是集合{m -1,3m ,m 2-1}中的元素, ∴当m -1=-1时,m =0,3m =0,m 2-1=-1.此时集合为{-1,0,-1},不满足集合中元素的互异性. 当3m =-1时,m =-13,m -1=-43,m 2-1=-89.此时集合为{-43,-1,-89},符合题意.当m 2-1=-1时,m =0,m -1=-1,3m =0.此时集合为{-1,0,-1},不满足集合中元素的互异性. 综上可知实数m 的值为-13.1.集合在数学中是不加定义的,我们只对它进行描述性说明.集合中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.2.在理解集合概念的同时,必须掌握集合元素的确定性、互异性、无序性.3.集合元素的互异性,是集合的重要属性,实践证明,集合中元素的互异性常常被同学们在解题中忽略,从而导致解题的失误,因此在集合中的元素含有未知数时,求解完后一定要检验.4.表示集合可以用列举法或描述法,它们各有优点,一般有限集用列举法,无限集用描述法.1.下面说法错误的是( )A.所有著名的作家可以组成一个集合B.方程x2+2x+1=0的解集中只有一个元素C.已知a≠b,“a、b构成的集合”与“b、a构成的集合”是同一集合D.如果x与-x是集合中的两个元素,那么x≠0【解析】“著名的作家”没有统一的标准,不确定,因而不能构成集合.【答案】 A2.下列说法正确的是( )A.由1,2,2,4构成集合时,该集合共有4个元素B.由1,2,3和3,2,1分别构成的两个集合不是相等集合C.若x∈Q,则x∈RD.对于任给一个元素a,则无法判断a是否是集合A中的元素【解析】结合集合中元素的互异性可知A不正确;结合集合中元素的确定性知D不正确;结合集合相等的概念可知B不正确;又∵x∈Q,则x是有理数,∴x是实数,即x∈R,故C正确.【答案】 C3.用符号∈或∉填空:(1)-2________N;(2)3.141 59________Q;(3)7________Z.【解析】-2不是自然数;3.141 59是有理数;7是无理数,它不是整数.【答案】(1)∉(2)∈(3)∉4.已知集合A中只有1,x,x2+3x三个元素,且-2∈A,求实数x的值.【解】∵-2∈A,(1)当x=-2时,x2+3x=-2,不满足集合中元素的互异性.(2)当x2+3x=-2时,可解得x=-1或x=-2(舍).综上可知,实数x的值为-1.一、选择题1.下列各组对象能构成集合的有( )①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】 A2.小于2的自然数集用列举法可以表示为( )A.{0,1,2} B.{1} C.{0,1} D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】 C3.下列各组集合,表示相等集合的是( )①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A .①B .②C .③D .以上都不对【解析】 ①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2.【答案】 B4.集合A 中含有三个元素2,4,6,若a ∈A ,则6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4 D .0【解析】 若a =2,则6-a =6-2=4∈A ,符合要求; 若a =4,则6-a =6-4=2∈A ,符合要求; 若a =6,则6-a =6-6=0∉A ,不符合要求. ∴a =2或a =4. 【答案】 B5.(2013·曲靖高一检测)已知集合M 中含有3个元素;0,x 2,-x ,则x 满足的条件是( )A .x ≠0 B.x ≠-1C .x ≠0且x ≠-1D .x ≠0且x ≠1【解析】 由⎩⎪⎨⎪⎧x 2≠0,x 2≠-x ,-x ≠0,解得x ≠0且x ≠-1.【答案】 C 二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x |x <7}; (2)3________{x |x =n 2+1,n ∈N +}; (3)(1,1)________{y |y =x 2}; (1,1)________{(x ,y )|y =x 2}.【解析】 (1)22∈R ,而22=8>7, ∴22∉{x |x <7}. (2)∵n 2+1=3, ∴n =±2∉N +,∴3∉{x |x =n 2+1,n ∈N +}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y |y =x 2}表示二次函数函数值构成的集合,故(1,1)∉{y |y =x 2}.集合{(x ,y )|y =x 2}表示抛物线y =x 2上的点构成的集合(点集),且满足y =x 2,∴(1,1)∈{(x ,y )|y =x 2}.【答案】 (1)∈ ∉ (2)∉ (3)∉ ∈7.已知集合C ={x |63-x ∈Z ,x ∈N *},用列举法表示C =________.【解析】 由题意知3-x =±1,±2,±3,±6, ∴x =0,-3,1,2,4,5,6,9. 又∵x ∈N *,∴C ={1,2,4,5,6,9}. 【答案】 {1,2,4,5,6,9}8.已知集合A ={-2,4,x 2-x },若6∈A ,则x =________.【解析】 由于6∈A ,所以x 2-x =6,即x 2-x -6=0,解得x =-2或x =3. 【答案】 -2或3 三、解答题9.选择适当的方法表示下列集合: (1)绝对值不大于3的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图像上所有点组成的集合.【解】 (1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y =x +6图像上有无数个点,用描述法表示为{(x ,y )|y =x +6}. 10.已知集合A 中含有a -2,2a 2+5a,3三个元素,且-3∈A ,求a 的值. 【解】 由-3∈A ,得a -2=-3或2a 2+5a =-3. (1)若a -2=-3,则a =-1, 当a =-1时,2a 2+5a =-3, ∴a =-1不符合题意.(2)若2a 2+5a =-3,则a =-1或-32.当a =-32时,a -2=-72,符合题意;当a =-1时,由(1)知,不符合题意. 综上可知,实数a 的值为-32.11.已知数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1),如果a =2,试求出A 中的所有元素.【解】 ∵2∈A ,由题意可知,11-2=-1∈A ;由-1∈A 可知,11- -1 =12∈A ;由12∈A 可知,11-12=2∈A . 故集合A 中共有3个元素,它们分别是-1,12,2.(教师用书独具)集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .【思路探究】 明确集合A 的含义→对k 加以讨论→求出k 值→写出集合A 【自主解答】 (1)当k =0时, 原方程变为-8x +16=0,x =2,此时集合A ={2}.(2)当k ≠0时,要使一元二次方程kx 2-8x +16=0有两个相等实根. 只需Δ=64-64k =0, 即k =1.此时方程的解为x 1=x 2=4, 集合A ={4},满足题意.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.1.本题在求解过程中,常因忽略讨论k 是否为0而漏解.2.本题因kx 2-8x +16=0是否为一元二次方程而分k =0和k ≠0而展开讨论,从而做到不重不漏.3.解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点.把本例中条件“有一个元素”改为“有两个元素”,求k 的范围. 【解】 由题意可知方程kx 2-8x +16=0有两个实根.∴⎩⎪⎨⎪⎧k ≠0Δ=64-64k >0解得k <1且k ≠0.所以k 的范围为{k |k <1且k ≠0}.人物介绍为科学而疯的人——康托尔康托尔(Contor ,Georg)(1845~1918),德国数学家,集合论的创立人,康托尔自幼对数学有浓厚兴趣,23岁获博士学位,以后一直从事数学教学与研究.他所创立的集合论已被公认为全部数学的基础.1874年,康托尔的有关无穷的概念震撼了数学界.康托尔凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新思想模式,建立了处理数学中无限的基本技巧,从而极大地推动了分析与逻辑的发展.他发现了惊人的结果:有理数是可列的,而全体实数是不可列的.由于在研究无穷时往往推出一些合乎逻辑的但又很荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度.在1874~1876年期间,30岁的康托尔向神秘的无穷宣战.他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应.这样看起来,1厘米长线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”.后几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论.康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂.有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”.来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医病.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托尔的思想终于大放光彩.1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家,数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”,可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦.§2集合的基本关系(教师用书独具)●三维目标1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集.(2)理解子集、真子集的概念.(3)能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感、态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.●重点难点重点:集合间的包含与相等关系,子集与真子集的概念.难点:属于关系与包含关系的区别.本节的重点是理解集合间包含与相等的含义,其突破方法是让学生多结合实例,类比实数间的大小关系来学习集合间的包含关系.(教师用书独具)●教学建议教材从学生熟悉的实例出发,通过类比引入集合间的关系,同时,结合相关内容介绍子集、Venn图、真子集、空集等概念.在安排这部分内容时,教材注重体现逻辑思考的方法,如类比等.值得注意的问题:在讲解集合间的关系时,建议重视使用Venn图,这有助于学生体会直观图示对理解抽象概念的作用.随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与⊆的区别.●教学流程创设情境提出问题,思考:实数有相等关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系⇒概念形成.分析示例:给出集合的包含关系的相关定义,完成例1及变式训练⇒师生合作得出集合相等的概念. 通过实例的共性探究、理解相等概念,完成例2及互动探究⇒巩固深化,发展思维,加深对集合间关系的理解,完成例3及变式训练⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正给出下列集合:(1)A={1,2,3},B={1,2,3,4,5}.(2)设集合A为衡水中学高一·三班全体男生组成的集合,集合B为高一·三班全体学生组成的集合.集合A中的元素与集合B有什么关系?【提示】集合A中的每一个元素都属于集合B.为了直观地表示集合间的关系,常用封闭曲线的内部表示集合,称为Venn图.给定两个集合A={0,1},B={x|x2=x}.1.集合B能否用列举法表示出来?【提示】能.B={0,1}.2.集合A中的元素与集合B中的元素,有什么关系?【提示】元素完全一样.对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,同时集合B 中的任何一个元素都是集合A中的元素,这时,我们就说集合A与集合B相等,记作A=B.【问题导思】对于集合A={1,2},B={1,2,3,4}.1.集合A是集合B的子集吗?【提示】是.2.集合B是集合A的子集吗?【提示】不是.3.集合A与集合B相等吗?【提示】不相等.(1)含义:对于两个集合A与B,如果A⊆B,并且A≠B,我们就说集合A是集合B的真子集,记作A B或B A.(2)当集合A不包含于集合B或集合B不包含集合A时,记作A B或B⊉A.2.性质(1)空集是任何集合的子集,对于任何一个集合A,都有∅⊆A.(2)对于集合A、B、C,若A⊆B,B⊆C,则A⊆C.已知集合M={x|x<2且x∈N},N={x|-2<x<2且x∈Z}.(1)试判断集合M、N间的关系.(2)写出集合M的子集、集合N的真子集.【思路探究】把用描述法表示的集合用列举法表示出来,以便于观察集合的关系写出子集与真子集.【自主解答】M={x|x<2且x∈N}={0,1},N={x|-2<x<2且x∈Z}={-1,0,1}.(1)M N.(2)M的子集为:∅,{0},{1},{0,1},N的真子集为:∅,{-1},{0},{1},{-1,0},{-1,1},{0,1}.1.写有限集合的所有子集,首先要注意两个特殊的子集:∅和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A含n个元素,那么它的子集个数为2n;真子集个数为2n-1,非空真子集个数为2n-2.若{1,2,3} A⊆{1,2,3,4,5},则集合A的个数为( )A.2 B.3 C.4 D.5【解析】集合{1,2,3}是集合A的真子集,同时集合A又是集合{1,2,3,4,5}的子集,所以集合A只能取集合{1,2,3,4},{1,2,3,5}和{1,2,3,4,5}.若{0,a 2,a +b }={1,a ,b a},求a2 013+b2 013的值.【思路探究】 由0∈{1,a ,b a}先求出b ,再根据集合相等求a . 【自主解答】 因为{0,a 2,a +b }={1,a ,b a}, 所以0∈{1,a ,b a}.所以b =0,此时有{1,a,0}={0,a 2,a }.所以a 2=1,a =±1.当a =1时,不满足互异性,所以a =-1. ∴a 2 013+b 2 013=-1.1.计算出a =±1后,易忽视集合中元素的互异性致误. 2.解决此类问题的步骤:(1)利用集合相等的条件,建立方程或方程组,求得参数;(2)把所得数值依次代入集合验证,若满足元素的三个特性,则所求是可行的,否则应舍去.若本例改为“{0,a ,b a}={1,-a 2,a +b }”,则a 2 013+b2 013的值为多少?【解】 ∵0∈{1,-a 2,a +b } ∴-a 2=0或a +b =0当-a 2=0,即a =0时,{0,a ,b a}中矛盾.当a +b =0,即a =-b 时,{0,a ,b a}={0,a ,-1}, {1,-a 2,a +b }={1,-a 2,0},即{0,a ,-1}={1,-a 2,0}, ∴a =1,b =-1. ∴a2 013+b2 013=0.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A .求实数m 的取值范围【思路探究】 由B ⊆A 可得集合B =∅或B 中的任何一个元素都在集合A 中,可借助数轴解决.【自主解答】 当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴表示如图所示.则⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是{m |m <-2或0≤m ≤52}.1.当已知一个集合是另一个集合的子集时,首先要考虑这个集合是否为空集. 2.已知集合间的关系,求参数范围的步骤: (1)化简所给集合; (2)用数轴表示所给集合;(3)根据集合间的关系,列出关于参数的不等式(组); (4)求解.设集合A ={x |1<x ≤2},B ={x |x <a },若A B ,则a 的取值范围是( ) A .{a |a ≥ 2} B .{a |a <1} C .{a |a >2}D .{a |a ≤1}【解析】 在数 轴 上表示 两个集合A 、B ,要使A B ,则a >2.【答案】 C忽略空集的情况而致误(2013·济南高一检测)已知集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的值.【错解】 据题意知A ={1,3},B ={3m},∵B ⊆A , ∴3m =1或3m=3.即m =3或m =1.【错因分析】 忽略B =∅时的情况,直接认为m ≠0.【防范措施】 解答集合中有包含关系的题目时,一定要警惕“∅”这一陷阱,往往造成不必要的失分.【正解】 据题意知集合A ={1,3}, 当B =∅,即m =0时,满足B ⊆A .当B ≠∅,即m ≠0时,B ={x |mx -3=0}={3m}.∵B ⊆A , ∴3m =1或3m=3,即m =3或m =1.综上所述,所求m 的集合为{0,1,3}.1.集合与集合之间的关系有包含关系,相等关系,其中包含关系有:包含于(⊆)、包含(⊇),真包含于( )、真包含( )等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的,但A⊆B,B⊆A是不同的.2.不能把“A⊆B”、“A B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.3.由于空集是任何集合的子集,是任何非空集合的真子集,所以在遇到“A⊆B”或“A B且B≠∅”时,一定要讨论A=∅和A≠∅两种情况,A=∅的情形易被忽视,应引起足够的重视.1.下列表述正确的有( )①空集没有子集;②任何集合都有至少两个子集;③空集是任何集合的真子集;④若∅ A,则A≠∅.A.0个B.1个C.2个D.3个【解析】∅⊆∅,故①错;∅只有一个子集,即它本身.所以②错;空集是任何集合的子集,是任何非空集合的真子集,所以③错;而④正确,故选B.【答案】 B2.(2013·聊城高一检测)若M={x|x>-1},N={x|x>0},则( )A.M⊆N B.N⊆M C.M=N D.M∈N【解析】 结合数轴可知N ⊆M . 【答案】 B3.已知集合A ={-1,3,m },B ={3,4},若B ⊆A ,则实数m =________. 【解析】 ∵B ⊆A , ∴元素3,4必为A 中元素, ∴m =4. 【答案】 44.已知集合A ={x |a <x <a +1},B ={x |2<x <9}.若A ⊆B ,求实数a 的取值集合. 【解】 ∵B ={x |2<x <9},A ={x |a <x <a +1},A ⊆B ,如图所示,∴⎩⎪⎨⎪⎧a ≥2a +1≤9,解得2≤a ≤8,∴实数a 的取值集合为{a |2≤a ≤8}.(见学生用书第81页)一、选择题1.下列五个关系式:①0⊆{0};②0∈{0};③∅={0};④∅∈{0};⑤∅ {0},其中正确的是( ) A .①③ B .①⑤ C .②④ D .②⑤【解析】 本题考查元素与集合、空集与非空集合的关系,其中0∈{0},∅ {0}. 【答案】 D2.已知M ={-1,0,1}和N ={x |x 2+x =0},其中能表示集合M 、N 关系的Venn 图是( )【解析】 由于N ={0,-1},显然,N M .【答案】 B3.(2013·深圳检测)满足M {1,2,3}的集合M 的个数是( ) A .8 B .7 C .6 D .5【解析】 ∵M {1,2,3},∴M 可能为∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.【答案】 B4.(2013·桂林检测)设A ={x |x >1},B ={x |x >a },且A ⊆B ,则实数a 的取值范围为( ) A .a <1 B .a ≤1 C.a >1 D .a ≥1【解析】 如图,结合数轴可知a ≤1时,有A ⊆B .【答案】 B5.若集合A ={1,3,x },B ={x 2,1},且B A ,则满足条件的实数x 的个数为( ) A .1 B .2 C .3 D .4【解析】 因为B A ,则x 2=3或x 2=x .当x 2=3时,x =±3,此时,A ={1,3,±3},B ={3,1},符合题意.当x 2=x 时,x =0或x =1(舍去),此时,A ={0,1,3},B ={0,1},符合题意,故x =0,± 3.【答案】 C 二、填空题6.已知 ∅ {x |x 2+x +a =0},则实数a 的取值范围是________. 【解析】 ∵∅ {x |x 2+x +a =0}, ∴方程x 2+x +a =0有实根, ∴Δ=12-4a ≥0,∴a ≤14.故实数a 的取值范围是{a |a ≤14}.【答案】 {a |a ≤14}7.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________. 【解析】 因为A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.【答案】 -1或28.设a ,b ∈R ,集合{0,b a,b }={1,a +b ,a },则b -a =________.【解析】 由于{0,ba ,b }={1,a +b ,a },所以a +b =0,即a =-b ,所以b a=-1,则a =-1,b =1.因此,b -a =2.【答案】 2 三、解答题9.设集合A ={1,a ,b },集合B ={a ,a 2,ab },且A =B ,求实数a ,b 的值.【解】 由集合相等的定义得⎩⎪⎨⎪⎧1=a 2,b =ab ,①或⎩⎪⎨⎪⎧1=ab ,b =a 2,②解①得⎩⎪⎨⎪⎧a =1,b ∈R ,或⎩⎪⎨⎪⎧a =-1,b =0.解②得⎩⎪⎨⎪⎧a =1,b =1.由集合中元素的互异性,得a =-1,b =0.10.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 【解】 (1)若A B ,由图可知,a >2.故实数a 的取值范围为{a |a >2}. (2)若B ⊆A ,由图可知,1≤a ≤2.故实数a 的取值范围为{a |1≤a ≤2}.11.已知非空集合A ={x |x 2-ax +b =0},B ={x |x 2-8x +15=0},且A ⊆B . (1)写出集合B 所有的子集; (2)求a +b 的值. 【解】 (1)∵B ={3,5},∴集合B 的所有子集为∅,{3},{5},{3,5}. (2)∵A ≠∅且A ⊆B ,∴A ={3}或A ={5}或A ={3,5}. ①当A ={3}时,有⎩⎪⎨⎪⎧Δ=a 2-4b =0,a2=3,∴⎩⎪⎨⎪⎧a =6,b =9.∴a +b =15.②当A ={5}时,有⎩⎪⎨⎪⎧Δ=a 2-4b =0,a2=5,∴⎩⎪⎨⎪⎧a =10,b =25.∴a +b =35.③当A ={3,5}时,有⎩⎪⎨⎪⎧Δ=a 2-4b >0,a =8,b =15.∴a +b =23. 综上知a +b =15或a +b =23或a +b =35.(教师用书独具)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围. 【思路探究】 借助数轴分析,注意B 是否为空集. 【自主解答】 ∵B ⊆A , (1)当B =∅时,m +1≤2m -1, 解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得实数m 的取值范围为{m |m ≥-1}.1.解决此类问题通常先化简所给集合,再用数轴表示所给集合,根据端点间的大小关系,列出不等式求解,得到参数的取值范围.2.对集合B 分类讨论是解决此类题目的关键,注意不要忽视对B =∅的讨论.若本例把“B ⊆A ”改为“B A ”,其余条件不变,试求实数m 的取值范围. 【解】 (1)当B =∅时,2m -1>m +1,解得m >2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3<2m -1,m +1<4,2m -1≤m +1,解得-1<m ≤2.综上得实数m 的取值范围为{m |m >-1}.§3集合的基本运算3.1 交集与并集(教师用书独具)●三维目标 1.知识与技能(1) 理解两个集合的交集与并集的运算的含义,会利用定义求简单集合的交集与并集. (2)能够用集合语言和图形语言(Venn 图和数轴)表示交集和并集. (3)让学生体会到图形(数形结合思想)对理解抽象概念的作用.(4)会利用数轴求无限集的交集、并集的运算,体会数形结合在解决问题中的作用. 2.过程与方法(1) 经历通过实例导入分析,然后再进行抽象概括得出结论的过程,让学生学会分析问题、解决问题的方法 .(2) 给学生渗透数形结合的数学思想. 3.情感、态度与价值观。

高中数学 第一章 集合 1.2 集合的基本关系教案1 北师大版必修1

高中数学 第一章 集合 1.2 集合的基本关系教案1 北师大版必修1

1.2 集合的基本关系 本节教材分析
课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如归纳等.
值得注意的问题:在集合间的关系教学中,建议重视使用venn 图表,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导区分一些容易混淆的关系和符号.
三维目标
1.知识与技能
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。

(2)理解子集.真子集的概念。

(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.
2. 过程与方法
让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.
3.情感.态度与价值观
(1)树立数形结合的思想 .(2)体会类比对发现新结论的作用.
教学重点:集合间的包含与相等关系,子集与其子集的概念.
教学难点:难点是属于关系与包含关系的区别.
教学建议:本节的重点是集合间的包含与相等关系,子集与其子集的概念..难点是属于关系与包含关系的区别
教学时,应通过具体例子,借助Venn 图,帮助学生直观理解集合间的包含与相等关系,子集与其子集的概念.用图形直观说明.
注意区分属于关系与包含关系,且注意包含与属于符号的方向. 新课导入设计
导入一:我们知道,实数有相等大小关系,如5=5,35,75><等等,类比实数之间的关系,集合之间有什么关系?教师直接点出课题.
导入二:复习元素与集合的关系,举例让学生分析.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有,这就是我们本节课所要学习的内容.。

高中数学 第1章《集合复习一》学案1 北师大版必修1

高中数学 第1章《集合复习一》学案1 北师大版必修1

第一章集合复习一(导学案)[学习目标]1、知识与技能(1)理解集合的含义及其表示法,子集、真子集的定义;(2)了解属于、包含、相等关系的意义;(3)了解两个特殊的集合。

2、过程与方法(1)通过例题回顾掌握集合的有关概念,表示方法.(2)归纳整理本章所学知识使知识形成网络.3、情感.态度与价值观学习集合后要有所收获,增强学好数学的自信心.[学习重点]: 复习集合的表示方法和集合关系.[学习难点]:子集的包含关系和子集的个数.[学习教具]:多媒体[学习方法]:自主整理、回顾复习.[学习过程]一、集合知识导图请同学们对照知识导图,回顾本章的基础知识.二、复习集合的有关基础知识1、集合的概念:(1)集合中元素特征:,,(2)集合的分类:①按元素个数分:,;②按元素特征分:,举例说明:(3)集合的表示法: ; 2、两类关系:(1)元素与集合的关系,用 或 表示;(2)集合与集合的关系,用 , , 表示, 当A B 时,称A 是B 的 ;当A B 时,称A 是B 的 .3、两个特殊的集合:(1)空集: .记作: (2)全集: .记作: 二、注意的问题1、解答集合问题,首先要正确理解集合的有关概念,特别是集合中元素的三个特征;对于用描述法给出的集合,要先看集合中的代表元素是谁,以及它所具有的性质;要重视发挥图示法的作用,通过数形结合直观地解决问题2 、注意特殊集合空集,空集是任何集合的子集,在解型如A ⊆B 类题时,要首先考虑集合A 为空集时,并且有A =B 或A ≠B 两种可能,注意应用分类讨论的思想。

三、例题精讲例1.(广东省惠州市2020)设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .8例2.(江苏省启东中学2020)定义集合A*B ={x |x ∈A,且x ∉B },若A ={1,3,5,7},B ={2,3,5},则A*B 的子集个数为( )A .1B .2C .3D .4例 3.(2020年金华一中)定义{|,xA B z z xy y⊗==+,}x A y B ∈∈,设}2,1{},2,0{==B A ,则B A ⊗中所有元素和为( )A .1B .3C .9D .18例4.(2020年山东卷,数学文科理科,1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .4例5.若集合{}a x x A >=|,{}052|≥-=x x B ,且满足B A ⊆,求实数a 的取值范围.⊆≠ ⊂例6.已知{}0|2=++=q px x x A ,集合{}043|2=--=x x x B ,且满足B A ⊆,求实数p,q 满足的条件.四、课堂练习:1.集合{}2,4,6M =的真子集的个数为( )A .6B .7C .8D .92.设集合{1,2}M =,则满足条件{1,2,3,4}M N =U 的集合N 的个数是( )A .1B .3C .4D .83.设,a b R ∈, {1,,}{0,,}ba b a b a+=,则b a -= ( )A .1B .1-C .2D .2-4.(2020江西2)定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为( )A .0B .2C .3D .65.已知集合{}6|<<x a x ,{}3|≥=x x B ,且满足B A ⊆,求实数a 的取值范围.6.已知{}01|=+=ax x A ,集合{}032|2=--=x x x B ,且满足B A ⊆,求实数a 满足的条件.五、课后作业:1.定义集合运算:A ⊙B ={z ︳z = xy (x+y ),x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为 ( ) A .0 B .6 C .12 D .182.。

高中数学 第一章 集合章末复习课学案 北师大版必修1

高中数学 第一章 集合章末复习课学案 北师大版必修1

第一章集合章末复习课网络构建核心归纳知识点一集合的含义与表示(1)某些指定的对象集在一起就成为一个集合,简称集.其中每个对象叫作元素.集合中的元素具有确定性、互异性和无序性.(2)集合常用的表示方法有:列举法、描述法、图示法它们各有优点,要根据具体需要选择恰当的方法.知识点二元素与集合、集合与集合之间的关系元素与集合之间的关系是属于、不属于的关系,根据集合中元素的确定性,对于任意一个元素a要么是给定集合A中的元素(a∈A),要么不是(a∉A),不能模棱两可.对于两个集合A,B,可分成两类A⊆B,A B,其中A⊆B又可分为A B与A=B两种情况.在解题时要注意空集的特殊性及特殊作用,空集是一个特殊集合,它不含任何元素,它是任何集合的子集,是任何非空集合的真子集.在解决集合之间的关系时,要注意不要丢掉空集这一情形.知识点三集合与集合之间的运算并、交、补是集合间的基本运算,Venn图与数轴是集合运算的重要工具.注意集合之间的运算与集合之间关系的转化,如A⊆B⇔A∩B=A⇔A∪B=B.要点一集合间的关系集合与集合之间的关系是包含和相等的关系,判断两集合之间的关系,可从元素特征入手,并注意代表元素.【例1】(1)已知A={x|-3<x<5},B={x|x<a},若满足A⊆B,则实数a的取值范围是________.(2)已知集合A={x|x2+x-6=0},集合B={y|ay+1=0},若满足B⊆A,则实数a所能取的一切值为________.(3)已知集合A ={x |-2≤x ≤5},集合B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.解析 (1)如下图,先在数轴上表示出A ,要满足A ⊆B ,依图形覆盖关系易知a ≥5.(2)A ={2,-3}.故分B =∅,B ={2},B ={-3}三种情况来讨论,求得a 值为0,-12,13. (3)①B ≠∅时,有⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,解得2≤m ≤3.②B =∅时,m +1>2m -1,解得m <2. 综合①②,可知m ≤3.答案 (1){a |a ≥5} (2)0,-12,13(3){m |m ≤3}【训练1】 已知全集U ={1,3,x 3+3x 2+2x }和它的子集A ={1,|2x -1|}.如果∁U A ={0},求实数x 的值.解 ∵U ={1,3,x 3+3x 2+2x },∁U A ={0}, ∴0∈U ,即x 3+3x 2+2x =0, 解得x =0或x =-1或x =-2,当x =0时,A ={1,1}与集合中元素互异性矛盾,舍去. 当x =-2时,A ={1,5}U 不符合题意,舍去.当x =-1时,A ={1,3}⊆U 符合题意. 因此,实数x 的值为-1. 要点二 集合的运算集合的运算是指集合间的交、并、补这三种常见的运算,在运算过程中往往由于运算能力差或考虑不全面而出现错误,不等式解集之间的包含关系通常用数轴法,而用列举法表示的集合运算常用Venn 图法,运算时特别注意对∅的讨论,不要遗漏.【例2】 已知集合A ={x |0≤x ≤2},B ={x |a ≤x ≤a +3}. (1)若(∁R A )∪B =R ,求实数a 的取值范围; (2)是否存在a ,使(∁R A )∪B =R 且A ∩B =∅? 解 (1)A ={x |0≤x ≤2},∴∁R A ={x |x <0,或x >2}.∵(∁R A )∪B =R .∴⎩⎪⎨⎪⎧a ≤0,a +3≥2,∴-1≤a ≤0.(2)由(1)知(∁R A )∪B =R 时, -1≤a ≤0,而a +3∈[2,3],∴A ⊆B ,这与A ∩B =∅矛盾.即这样的a 不存在.【训练2】 (1)已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________. (2)已知集合A ={x ∈R ||x |≤2},B ={x ∈R |x ≤1},则A ∩B 等于( ) A .{x |x ≤2} B .{x |1≤x ≤2} C .{x |-2≤x ≤2}D .{x |-2≤x ≤1}解析 (1)∵U ={2,3,6,8},A ={2,3},∴∁U A ={6,8}. ∴(∁U A )∩B ={6,8}∩{2,6,8}={6,8}. (2)A ={x ∈R ||x |≤2}={x ∈R |-2≤x ≤2},∴A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1}={x ∈R |-2≤x ≤1}. 答案 (1){6,8} (2)D要点三 定义新运算与集合运算的综合应用新定义型试题背景新颖、构思巧妙,主要通过定义一个新概念,或约定一种新运算,或给定一个新模型来创设新的问题情境,要求学生在阅读理解的基础上,依据题中提供的信息,联系所学的知识和方法,对信息进行转化,从而解决问题.这类问题的解题策略如下:(1)对新定义进行信息提取,明确新定义的名称和符号.(2)细细品味新定义的概念、法则,对所提取的信息进行加工,探求解决方法,有时可以寻找相近知识点,明确它们的共同点和不同点.(3)对新定义中提取的知识整理转换.若是新定义的运算,直接按照运算法则计算即可;若是新定义的性质,一般要判断性质的适用性,考虑能否利用定义外延,也可以用特殊值法排除选项(选择题型).【例3】 设M 和P 是两个非空集合,规定M -P ={x |x ∈M ,且x ∉P },根据这一规定,M -(M -P )等于( )A .MB .PC .M ∪PD .M ∩P解析 由M -P ={x |x ∈M ,且x ∉P }⇔M -P =M ∩(∁U P )(U 为全集),则M -(M -P )=M -[M ∩(∁U P )]=M ∩{∁U [M ∩(∁U P )]}=M ∩[(∁U M )∪∁U (∁U P )]=M ∩[(∁U M )∪P ]=[M ∩(∁U M )]∪(M ∩P )=∅∪(M ∩P )=M ∩P .故选D答案 D【训练3】 若集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2,a3}的不同分拆种数是( )A.27种B.26种C.9种D.8种解析本题定义了一种新概念:集合的一种分拆.实际上还是集合的并集的应用,我们只需把每一种分拆的可能都考虑到,找出规律即可求得集合A的分拆种数.当A1为空集时,A2只有一种可能A2=A,此时共有1种分拆;当A1含有一个元素时,A2可能含有两个元素或三个元素,此时共有6种分拆;当A1含有两个元素时,A2可能含有一个元素、两个元素或三个元素,此时共有12种分拆;当A1含有三个元素时,A2可能是空集,也可能含有一个元素、两个元素或三个元素,此时共有8种分拆.故集合A的不同分拆种数为27种.故选A.答案 A方向1 分类讨论思想在解决含有字母参数的问题时,常用到分类讨论思想.分类讨论时要弄清对哪个字母进行分类讨论,分类的标准是什么,分类时要做到不重不漏.本章中涉及到分类讨论的知识点为:集合元素互异性、集合运算中出现A⊆B,A∩B=A,A∪B=B等符号语言时对∅的讨论等.【例4-1】已知集合A={x|x2-mx+1=0},B={x|x2-3x+2=0},若A∩(∁U B)=∅,求实数m的取值范围.解由A∩(∁U B)=∅,得A⊆B,而B={1,2},①当Δ=m2-4<0时,A=∅⊆B,此时-2<m<2;②当Δ=m2-4=0时,m=±2,当m=2时,A={1}⊆B,当m=-2时,A={-1}B;③当Δ=m2-4>0时,A有两个元素,若A⊆B,则A={1,2},此时不存在相应的m.综上所述,m的取值范围为{m|-2<m≤2}.方向2 数形结合思想集合问题大都比较抽象,解题时要尽可能借助Venn图、数轴等工具利用数形结合思想将抽象问题直观化、形象化、明朗化,从而使问题获解.【例4-2】已知集合A={x|x<-1,或x≥1},B={x|2a<x<a+1,a<1},B⊆A,求实数a的取值范围.解∵a<1,∴2a<a+1,B≠∅.画出数轴分析,如图所示.由图知,要使B ⊆A ,需2a ≥1或a +1≤-1, 即a ≥12或a ≤-2,又∵a <1,∴实数a 的取值范围是{a |a ≤-2或12≤a <1}.【例4-3】 某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析 根据题意画出Venn 图,如图,设只喜欢篮球的人数为x ,则既喜欢篮球又喜欢乒乓球的人数为15-x ,只喜欢乒乓球人数为10-(15-x ).根据题意知喜欢篮球与乒乓球人数为30-8,则x +(15-x )+[10-(15-x )]=30-8,解得x =12,故只喜欢篮球的人数为12.答案 12。

高中数学 第一章 集合教案 北师大版必修1

高中数学 第一章 集合教案 北师大版必修1

第一章集合课题:§0 高中入学第一课(学法指导)教学目标:了解高中阶段数学学习目标和基本能力要求,了解新课程标准的基本思路,了解高考意向,掌握高中数学学习基本方法,激发学生学习数学兴趣,强调布置有关数学学习要求和安排。

教学过程:一、欢迎词:1、祝贺同学们通过自己的努力,进入高一级学校深造。

希望同学们能够以新的行动,圆满完成高中三年的学习任务,并祝愿同学们取得优异成绩,实现宏伟目标。

2、同学们军训辛苦了,收获应是:吃苦耐劳、严肃认真、严格要求3、我将和同学们共同学习高中数学,暂定一年,…4、本节课和同学们谈谈几个问题:为什么要学数学?如何学数学?高中数学知识结构?新课程标准的基本思路?本期数学教学、活动安排?作业要求?二、几个问题:1.为什么要学数学:数学是各科之研究工具,渗透到各个领域;活脑,训练思维;计算机等高科技应用的需要;生活实践应用的需要。

2.如何学数学:请几个同学发表自己的看法→共同完善归纳为四点:抓好自学和预习;带着问题认真听课;独立完成作业;及时复习。

注重自学能力的培养,在学习中有的放矢,形成学习能力。

高中数学由于高考要求,学习时与初中有所不同,精通书本知识外,还要适当加大难度,即能够思考完成一些课后练习册,教材上每章复习参考题一定要题题会做。

适当阅读一些课外资料,如订阅一份数学报刊,购买一本同步辅导资料.3.高中数学知识结构:书本:高一上期(必修①、②),高一下期(必修③、④),高二上期(必修⑤、选修系列),高二下期(选修系列),高三年级:复习资料。

知识:密切联系,必修(五个模块)+选修系列(4个系列,分别有2、3、6、10个模块)能力:运算能力、逻辑思维能力、空间想像能力、分析和解决实际问题的能力、应用能力。

4.新课程标准的基本理念:①构建共同基础,提供发展平台;②提供多样课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学应用意识;⑥与时俱进地认识“双基”;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系。

高中数学 第一章集合小结与复习(2课时)教案 北师大版必修1

高中数学 第一章集合小结与复习(2课时)教案 北师大版必修1

第一章《集合》复习第一课时 集合的概念一、教学目标:1、集合的含义与表示:了解集合的含义,体会元素与集合的“属于”关系。

能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

2、集合的基本关系:理解集合之间包含与相等的含义,能识别给定集合的子集(不要求证明集合的相等关系、包含关系)。

了解全集与空集的含义。

3、能运用上述概念解决一些问题。

二、重难点:重点:集合元素的特征、集合的三种表示方法、集合间的关系。

难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化。

三、教学方法:讲练结合,探析归纳。

四、教学过程 (一).知识点归纳 1.集合①定义:某些指定的对象集在一起就成为一个集合,每个对象叫做集合的元素。

②表示列举法:将集合中的元素一一列举出来,用大括号括起来,如{a,b,c} 描述法:将集合中的元素的共同属性表示出来,形式为:P={x ∣P(x)}.如:}1),({},1{},1{-=-=-=x y y x x y y x y x又如:{x ︱x ≥1}与{y ︱y=x 2-2x+2}图示法:用文氏图表示题中不同的集合。

③分类:有限集、无限集、空集。

④性质 确定性:A a A a ∉∈或必居其一,互异性:不写{1,1,2,3}而是{1,2,3},集合中元素互不相同, 无序性:{1,2,3}={3,2,1}2.常用数集:实数集R 整数集Z 自然数集N 正整数集*N (或N +) 有理数集Q 3.元素与集合的关系:A a A a ∈∉或4.集合与集合的关系:①子集:若对任意A x ∈都有B x ∈[或对任意B x ∉都有A x ∉] 则A 是B 的子集。

记作:A B B A ⊇⊆或 C A C B B A ⊆⇒⊆⊆,②真子集:若B A ⊆,且存在A x B x ∉∈00,但,则A 是B 的真子集。

记作:AB[或“B A B A ≠⊆且”] A B ,B CA C③B A A B B A =⇔⊆⊆且 ④空集:不含任何元素的集合,用φ表示对任何集合A 有A ⊆φ,若φ≠A 则φ A 注:}{}0{}{φφφ≠≠≠a a5.子集的个数:若},,{21n a a a A =,则A 的子集个数、真子集的个数、非空真子集的个数分别为2n个,2n-1个和2n-2个。

高中数学第一章集合教学设计教学设计北师大版必修1(数学教案)

高中数学第一章集合教学设计教学设计北师大版必修1(数学教案)

课时安排 1 课时
导入新课
教学过程
思路 1. 建设高楼大厦的过程中,每建一层,都有质量检查人员验收,合格后,再继续
建上一层,否则返工重建.我们学习知识也是这样,每学完
一个章节都要总结复习,引出
课题.
思路 2. 为了系统掌握第一章的知识,教师直接点出课题.
推进新课
新知探究
提出问题
①第一节是集合的含义与表示,分为几部分? ②第二节是集合的基本关系,分为几部分? ③第三节是集合的基本运算,分为几部分?
④画出本章的知识结构图 .
活动: 让学生自己回顾所学知识或结合教材,重新对知识整合,
对没有思路的学生, 教
师可以提示按教材的章节标题来分类. 对于画知识结构图, 学生可能比较陌生, 教师可以引
导学生先画一个本班班委的结构图或学校各个处室的关系结构图,
待学生了解了简单的画法
后,再画本章的知识结构图.
∴ B= 或 B≠ .
当 B= 时,关于 x 的方程 mx-1= 0 无解,则 m=0;
当 B≠
1 时, x= m∈ A,则有
1 m
2-
3 m-
4=
0

即 4m2+ 3m- 1= 0.
1 解得 m=- 1 或4.
1 故填- 1 或 0 或 4.
1 答案: - 1 或 0 或
4
1
黑色陷阱: 本题容易忽视 B=
合 B.
答案: B= { - 3,1,3,4,6} . 2.已知全集 S= { 1,3 , x3+ 3x2+ 2x} , A= {1 , |2 x- 1|} ,如果 SA= {0} ,则这样的实
数 x 是否存在?若存在,求出 x;若不存在,请说明理由.

高一数学北师大版必修1教学教案第一章3-1交集与全集(4)

高一数学北师大版必修1教学教案第一章3-1交集与全集(4)

3.1 交集、并集一、教材的地位与作用本节通过实例,使学生掌握集合之间的两种运算——交和并。

集合作为一种数学语言,在后续的学习中是一种重要的工具。

因此,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学内容。

有了集合的语言,可以更清晰的表达我们的思想。

所以,集合是整个数学的基础,在以后的学习中有着极为广泛的应用。

二、教学目标:1. 知识与技能:(1)理解交集与并集的概念;(2)理解“或”、“且”的含义,掌握交集、并集运算.2.过程与方法:①会用符号语言表示交集、并集;②掌握交集和并集的表示法,会求两个集合的交集与并集;③逐步学会数形结合法.3.情感态度与价值观:通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。

三、教学重难点教学重点:交集和并集的概念.教学难点:交集和并集的概念、符号之间的区别.学情分析:学习对象为高一新生,高一学生虽然在智力等各方面都有较之初中的发展,但毕竟刚刚由初中阶段上升而来,对于新的知识朦胧性较大,虽然集合的思想在小学以及初中就有了渗透,但是由于学生之间知识的差异层次较大,再者,一个概念的引入,如想较理性的认识还得靠深入的学习和多一些的训练。

学习习惯:高中级学生经过多年的学习,已经有了自己初级的学习习惯和方法,我们可以充分调动他们的积极性,并且适当帮助他们调整学习方法中的不妥之处。

四、教法学法与教具教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质,采用如下的教学方法:(1)类比发现法。

通过让学生类比实数加法运算引入集合间的运算。

(2)图示法。

利用Venn图和数轴让学生理解集合的交与并。

教具:多媒体.五、教学过程:一、创设情景:1、观察集合A,B,C元素间的关系:A={4,5,6,8},B={3,5,7,8},C={5,8}2、观察集合A,B,C元素间的关系: A={4,5,6,8},B={3,5,7,8},C={3,4,5,6,7,8}师:请观察1中A、B、C三个集合的元素,你能发现什么?生:集合C的元素是集合A、B的公共元素.师:请观察2中A、B、D三个集合的元素,你能发现什么?生:集合A与集合B中的元素都是集合D中的元素.师: 我们把集合C叫做集合A与B的交集,把集合D叫做集合A与B的并集这是这节课我们要学习的两个重要概念.二、讲解新课:名称交集并集文字语言一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫做A与B的交集.一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集.记法A B(读作“A交B”)A B(读作“A并B”)符号语言A B={x|x∈A,且x∈B}A B ={x|x∈A,或x∈B}图形语言(一般情形)引导学生自主对交集和并集进行概念的类比、内涵类比、外延类比,重点讲清“且”与“或”的区别与联系,为分析问题、解决问题的实际应用中能迅速、准确地决定取“交”还是取“并”扫清障碍。

高中数学 第一章 集合章末复习课教案 北师大版必修1

高中数学 第一章 集合章末复习课教案 北师大版必修1

——————————新学期新成绩新目标新方向——————————第一章集合章末复习课一.三维目标:1.知识与技能:总结《集合》的知识结构,会结合所学知识解决与“集合”相关的问题;2.过程与方法:通过对知识结构的完善,体会分类讨论、数形结合的思想在数学中的应用。

3.情感态度与价值观:体会用集合表达数学内容的简洁、准确性。

二.教学重难点教学重点:集合知识的总结与应用教学难点:集合知识的综合应用三.教学方法讲练结合法四.教学过程一.画一画:知识网络、结构更完善二.研一研:题型解法、解题更高效题型一 集合的概念例1 设集合A ={(x ,y)|x -y =0},B ={(x ,y)|2x -3y +4=0},则A∩B=________.解析 由⎩⎪⎨⎪⎧ x -y =0,2x -3y +4=0得⎩⎪⎨⎪⎧ x =4,y =4.∴A∩B={(4,4)}.小结: 要解决集合的概念问题,必须先弄清集合中元素的性质,明确是数集,还是点集等.跟踪训练1 设集合A ={x||x -a|<1,x∈R},B ={x|1<x<5,x∈R}.若A∩B=∅,则实数a 的取值范围是 ( )A .{a|0≤a≤6}B .{a|a≤2,或a≥4}C .{a|a≤0,或a≥6}D .{a|2≤a≤4}解析: A ={x|a -1<x<a +1,x∈R },又A∩B=∅,所以a +1≤1,或a -1≥5,即a≤0,或a≥6.题型二 集合间的基本关系例2 若集合P ={x|x 2+x -6=0},S ={x|ax +1=0},且S ⊆P ,求由a 的可能取值组成的集合. 解: 由题意得,P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;a≠0时,方程ax +1=0的解为x =-1a, 为满足S ⊆P ,可使-1a =-3,或-1a=2, 即a =13,或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12. 小结: (1)在解决两个数集关系问题时,合理运用数轴分析与求解可避免出错.在解含有参数的不等式(或方程)时,要对参数进行分类讨论,分类时要遵循“不重不漏”的原则,然后对于每一类情况都要给出问题的解答.(2)对于两集合A ,B ,当A ⊆B 时,不要忽略A =∅的情况.跟踪训练2 若集合A ={x|-2≤x≤5},B ={x|m +1≤x≤2m-1},且B ⊆A ,求由m 的可能取值组成的集合.解: 当m +1>2m -1,即m<2时,B =∅,满足B ⊆A ;若B≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧ m +1≤2m-1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧ m≥2,m≥-3,m≤3.∴2≤m≤3.故m<2,或2≤m≤3,即所求集合为{m|m≤3}.题型三 集合的交、并、补运算例3 设全集为R ,A ={x|3≤x<7},B ={x|2<x<10},求∁R (A∪B)及∁R A∩B.解: 把全集R 和集合A 、B 在数轴上表示如下:由图知,A∪B={x|2<x<10},∵∁R A ={x|x<3或x≥7}.∴∁R A∩B={x|2<x<3或7≤x<10}.小结 求解用不等式表示的数集间的集合运算时,一般要借助于数轴求解,此法的特点是简单直观,同时要注意各个端点的画法及端点的取到与否.跟踪训练3 已知集合U ={x|0≤x≤6,x∈Z},A ={1,3,6},B ={1,4,5},则A∩∁U B 等于 ( )A .{1}B .{3,6}C .{4,5}D .{1,3,4,5,6}解析 ∵U={0,1,2,3,4,5,6},B ={1,4,5},∴∁U B ={0,2,3,6},又∵A={1,3,6},∴A∩∁U B ={3,6},选B.题型四 集合的交、并运算在生活中的应用例4 向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是30,其余的不赞成,赞成B 的人数是33,其余的不赞成;另外,对A 、B 都不赞成的学生比对A 、B 都赞成的学生数的三分之一多1人.问对A 、B 都赞成的学生和都不赞成的学生各多少人?解: 赞成A 的人数为30,赞成B 的人数为33,如下图,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合 A ;赞成事件B 的学生全体为集合B.设对事件A 、B 都赞成的学生人数为x ,则对A 、B 都不赞成的学生人数为x 3+1,赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x.依题意(30-x)+(33-x)+x +(x 3+1)=50, 解得x =21.所以对A 、B 都赞成的学生有21人,都不赞成的有8人.小结: 解决这一类问题一般借用数形结合,借助于Venn 图,把抽象的数学语言与直观的图形结合起来,注意两个集合并集的元素个数不一定等于两个集合的元素个数和.跟踪训练4 学校举办了排球赛,某班45名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛,已知两项都参赛的有6名同学,两项比赛中,这个班共有多少名同学没有参加过比赛?解: 设A={x|x为参加排球赛的同学},B={x|x为参加田径赛的同学},则A∩B={x|x为参加两项比赛的同学}.画出Venn图(如图),可知没有参加过比赛的同学有:45-(12+20-6)=19(名).答: 这个班共有19名同学没有参加过比赛.课堂小结:1.要注意区分两大关系:一是元素与集合的从属关系,二是集合与集合的包含关系.2.在利用集合中元素相等列方程求未知数的值时,要注意利用集合中元素的互异性这一性质进行检验,忽视集合中元素的性质是导致错误的常见原因之一.。

【同步备课】高中数学(北师大版)必修一教案:第1章 集合的基本关系 参考教案

【同步备课】高中数学(北师大版)必修一教案:第1章 集合的基本关系 参考教案

集合的基本关系教学目的:了解集合之间的包含、相等关系的含义;理解子集、真子集的概念;能利用Venn 图表达集合间的关系;了解与空集的含义。

教学重点:子集与空集的概念;用Venn 图表达集合间的关系。

教学难点:弄清元素与子集 、属于与包含之间的区别;课 型:新授课教学过程:一、 引入课题1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、 新课教学1、 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}[来源:]集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ; 如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

[来源:]记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn图表示两个集合间的“包含”关系 )(A B B A ⊇⊆或2、集合与集合之间的 “相等”关系; A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A ⊆练习3、结论:任何一个集合是它本身的子集 A A ⊆4、真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper sub set )。

记作:A B (或B A )读作:A 真包含于B (或B 真包含A ) 举例(由学生举例,共同辨析)5、 规定:空集是任何集合的子集,是任何非空集合的真子集。

6、结论:B A ⊆,且C B ⊆,则C A ⊆三、 例题讲解例1化简集合A={x|x-7≥2},B={x|x ≥5},并表示A 、B 的关系;例2写出集合{0,1,2}的所有的子集,并指出其中哪些是它的真子集。

北师大版高中数学必修1《一章 集合 复习题一》优质课教案_4

北师大版高中数学必修1《一章 集合  复习题一》优质课教案_4

数列求和一.教学目标1.知识与能力目标:2.过程与方法目标:归纳数列求和的常用方法,形成知识网络3.情感态度价值观目标:体会转化思想,提高观察能力,分析问题、解决问题的能力以及计算能力二.学情分析我班学生基础比较薄弱,故先从刚学过的等差等比数列求和的方法入手。

选题能适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。

三. 教学重难点:教学重点:数列求和方法及其思路获取.教学难点:在具体问题情境中,恰当选择求和方法,准确迅速求和四.教学过程例1.已知数列{}n a(1)若.,12n n s n a 求+=(2)若.,23n nn s a 求⋅=学生动手操作,老师点评讲解归纳利用常用求和公式求和是数列求和的最基本最重要的方法.(1)等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列求和公式:例2.求下面数列前n 项和:设计意图:将已知数列的求和问题化为等差数列、等比数列求和问题; 学生上黑板板演,老师与同学点评。

归纳总结:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n ,2,32,22,1232n n++++,例3.项和求该数列前:若变式训练n n n a n ,)2(11+=项和求该数列前已知变式训练n nn a n ,21.2++=归纳总结:裂项相消法是把数列的通项拆成两项之差,在求和的中间一些项可以相互抵消,从而求得其和,利用裂项法的前提是数列中的每一项均能分裂成一正一负两项。

裂项相消求和时抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,才能使裂开的两项差与原通项公式相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计整体设计教学分析本节课是对第一章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生的基本知识系统化和网络化,基本方法条理化.本章内容的三部分是独立,但又相互联系的,集合的含义与表示是基础,集合间的基本关系和基本运算是应用,层层深入,环环相扣,组成了一个完整的整体.三维目标通过总结和归纳集合的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养其抽象思维能力.重点难点教学重点:①集合的基本结构.②判断两个集合间的关系.③交集、并集、补集的求法及其实际应用.教学难点:①集合的基本结构网络化、系统化.②有关补集的混合运算.课时安排1课时教学过程导入新课思路 1.建设高楼大厦的过程中,每建一层,都有质量检查人员验收,合格后,再继续建上一层,否则返工重建.我们学习知识也是这样,每学完一个章节都要总结复习,引出课题.思路2.为了系统掌握第一章的知识,教师直接点出课题.推进新课新知探究提出问题①第一节是集合的含义与表示,分为几部分?②第二节是集合的基本关系,分为几部分?③第三节是集合的基本运算,分为几部分?④画出本章的知识结构图.活动:让学生自己回顾所学知识或结合教材,重新对知识整合,对没有思路的学生,教师可以提示按教材的章节标题来分类.对于画知识结构图,学生可能比较陌生,教师可以引导学生先画一个本班班委的结构图或学校各个处室的关系结构图,待学生了解了简单的画法后,再画本章的知识结构图.讨论结果:①分为:集合的有关概念和集合的表示法两部分.②分为:子集、相等、真子集三部分.③分为:交集、并集、补集三部分.④第一章的知识结构图如图1所示:图1应用示例思路1例1 设集合A ={x |x ≤13},a =23,那么下列关系正确的是( ).A .a ⊂AB .a ∈AC .a AD .{a }∈A分析:∵a =23=12<13,∴a 是集合A 的元素.答案:B点评:本题主要考查元素与集合间的关系.变式训练1.设集合A ={0,a },且B ={x |x ∈A },则集合A 与集合B 的关系是( ).A .ABB .BAC .A =BD .A ∈B分析:∵B ={x |x ∈A },∴集合B 中的任一元素都是集合A 的元素,集合A 中的任一元素都是集合B 的元素. 答案:C2.已知A ={x |x <3},B ={x |x <a },(1)若BA ,则a 的取值范围是________;(2)若AB ,则a 的取值范围是________.答案:(1)a ≤3 (2)a >3例2 集合A ={x |x 2-3x -4=0},B ={x |mx -1=0},若BA ,则实数m =________. 分析:集合B 是关于x 的方程mx -1=0的解集,∵BA ,∴B =或B ≠.当B =时,关于x 的方程mx -1=0无解,则m =0;当B ≠时,x =1m∈A ,则有⎝⎛⎭⎫1m 2-3m -4=0, 即4m 2+3m -1=0.解得m =-1或14.故填-1或0或14. 答案:-1或0或14黑色陷阱:本题容易忽视B =的情况,导致出现错误m =-1或14.避免此类错误的方法是考虑问题要全面,要注意空集是任何集合的子集.3设全集U ={x |0<x <10,x ∈N +},若A ∩B ={3},A ∩(U B )={1,5,7},(U A )∩(U B )={9},求集合A 和B .分析:借助Venn 图来解决.解:U ={x |0<x <10,x ∈N +}={1,2,3,4,5,6,7,8,9},Venn 图如图2所示.图2所以A ={1,3,5,7},B ={2,3,4,6,8}.点评:本题主要考查集合的基本运算以及应用知识解决问题的能力.变式训练1.已知集合A ={0,2,4,6}, U A ={-1,-3,1,3}, U B ={-1,0,2},用列举法写出集合B . 答案:B ={-3,1,3,4,6}.2.已知全集S ={1,3,x 3+3x 2+2x },A ={1,|2x -1|},如果S A ={0},则这样的实数x 是否存在?若存在,求出x ;若不存在,请说明理由.解:∵S A ={0},∴0∈S ,但0A .∴x 3+3x 2+2x =0,x (x +1)(x +2)=0,即x 1=0,x 2=-1,x 3=-2.当x =0时,|2x -1|=1,A 中已有元素1,则x =0不合题意;当x =-1时,|2x -1|=3,3∈S ,则S ={1,3,0},A ={1,3},则x =-1符合题意;当x =-2时,|2x -1|=5,但5S ,则x =-2不合题意.∴实数x 的值存在,它只能是-1,即x =-1.思路2例1 设集合A ={x |x >-1},B ={x |-2<x <2},则A ∪B 等于( ).A .{x |x >-2}B .{x |x >-1}C .{x |-2<x <-1}D .{x |-1<x <2}分析:方法一:利用数轴可得A ∪B ={x |x >-2},故选A.方法二:(代入验证法)很明显3∈A ,则3∈(A ∪B ),但是3{x |-2<x <-1},3{x |-1<x <2},排除C ,D ;又-1.5∈A ,则-1.5∈(A ∪B ),但是-1.5{x |x >-1},排除B.答案:A变式训练1.已知全集U ={1,2,3,4,5,6},集合A ={2,3,6},则集合U A 等于( ).A .{1,4}B .{4,5}C .{1,4,5}D . {2,3,6}答案:C2.设S ={x |2x +1>0},T ={x |3x -5<0},则S ∩T 等于( ).A .B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12C.⎩⎨⎧⎭⎬⎫x ⎪⎪x >53 D.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <53 答案:D例2 若集合P ={x |y =x 2},Q ={(x ,y )|y =x 2,x ∈R },则必有( ).A .P ∩Q =B .PQC .P =QD .PQ分析:从选项来看,本题是判断集合P ,Q 的关系,其关键是对集合P ,Q 的意义理解.集合P 是函数y =x 2的定义域,则集合P 是数集,集合Q 是函数y =x 2的图像上的点组成的集合,则集合Q 是点集,∴P ∩Q =.答案:A点评:判断用描述法表示的集合间关系时,一定要搞清两集合的含义,明确集合中的元素.形如集合{x |x ∈P (x ),x ∈R }是数集,形如集合{(x ,y )|x ,y ∈P (x ,y ),x ,y ∈R }是点集,数集和点集的交集是空集.变式训练定义集合A 与B 的运算A *B ={x |x ∈A ,或x ∈B ,且xA ∩B },则(A *B ) *A 等于( ).A .A ∩B B .A ∪BC .AD .B分析:设A ={1,2,3,4},B ={1,2,5,6,7},则A *B ={3,4,5,6,7},于是(A *B ) *A ={1,2,5,6,7}=B .答案:D点评:解决新定义集合运算问题的关键是抓住新运算定义的本质,本题AB 的本质就是集合A 与B 的并集中除去它们公共元素组成的集合. 知能训练1.已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于( ).A .{1,2,3}B .{2,3}C .{1,2}D .{2}分析:明确集合P ,Q 的运算,依据交集的定义求得.P ={1,2,3,4,5,6,7,8,9,10},Q ={-3,2},则P ∩Q ={2},故选D.答案:D点评:集合P 是大于等于1且小于等于10的自然数组成的集合,集合Q 是方程x 2+x -6=0的解集,解答本题关键是将这两个集合化简后再运算.2.设全集U ={1,2,3,4,5,6,7,8},集合S ={1,3,5},T ={3,6},则U (S ∪T )等于( ).A .B .{2,4,7,8}C .{1,3,5,6}D .{2,4,6,8} 分析:直接观察(或画出V enn 图),得S ∪T ={1,3,5,6},则U (S ∪T )={2,4,7,8},故选B. 答案:B点评:求解用列举法表示的数集运算时,首先看清集合元素的特征,理解并确定集合中的元素,最后通过观察或借助于数轴、V enn 图写出运算结果.课堂小结本节课总结了第一章的基本知识并形成知识网络,归纳了常见的解题方法.作业1.已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R },若A 中元素至多有1个,则a 的取值范围是________.答案:a =0或a ≥982.已知全集U =R ,集合M ={x |x ≤3},N ={x |x <1},求M ∩N ,M ∪N ,(U M )∩N ,M ∩(U N ),(U M )∩(U N ),(U M )∪(U N ).分析:借助数轴,依据集合的运算定义写出结果.解:由题意得M ∩N ={x |x <1},M ∪N ={x |x ≤3},∁U M ={x |x >3},∁U N ={x |x ≥1},则(∁U M )∩N ={x |x >3}∩{x |x <1}=,M ∩(U N )={x |x ≤3}∩{x |x ≥1}={x |1≤x ≤3},(U M )∩(U N )={x |x >3}∩{x |x ≥1}={x |x >3},(U M )∪(U N )={x |x >3}∪{x |x ≥1}={x |x ≥1}.设计感想本节在设计过程中注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是为了满足高考的要求,对教材内容适当拓展.备课资料1.向50名学生调查对A ,B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人.问对A ,B 都赞成的学生和都不赞成的学生各有多少人?分析:在集合问题中,有一些常用的方法如数轴法取交并集,Venn 图法等,需要考生切实掌握.本题主要强化学生的这种能力.解答本题的闪光点是考生能由题目中的条件,想到用Venn 图直观地表示出来.解:赞成A 的人数为50×35=30,赞成B 的人数为30+3=33,如图3,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合B .图3设对事件A ,B 都赞成的学生人数为x ,则对A ,B 都不赞成的学生人数为x 3+1, 赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x ,依题意(30-x )+(33-x )+x +⎝⎛⎭⎫x 3+1=50,解得x =21.所以对A ,B 都赞成的同学有21人,都不赞成的有8人.点评:本题难点在于所给的数量关系错综复杂,一时理不清头绪,不好找线索.画出Venn 图,形象地表示出各数量关系间的联系.2.已知集合A ={x ∈R |x 2-2x -8=0},B ={x ∈R |x 2+ax +a 2-12=0},BA ,求实数a 的取值集合.解:A ={-2, 4},∵BA ,∴B =,{-2},{4},{-2,4}.若B =,则a 2-4(a 2-12)<0,a 2>16,a >4或a <-4;若B ={-2},则(-2)2-2a +a 2-12=0且Δ=a 2-4(a 2-12)=0,解得a =4; 若B ={4},则42+4a +a 2-12=0且Δ=a 2-4(a 2-12)=0,此时a 无解;若B ={-2,4},则⎩⎪⎨⎪⎧-a =4-2,a 2-12=-2×4. ∴a =-2.综上知,所求实数a 的集合为{a |a <-4,或a =-2,或a ≥4}.3.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(1)若A ∩B =A ∪B ,求a 的值;(2)若A ∩B ,A ∩C =,求a 的值.解:由已知,得B ={2,3},C ={2,-4}.(1)∵A ∩B =A ∪B ,∴A =B .于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根,由韦达定理,知⎩⎪⎨⎪⎧2+3=a ,2×3=a 2-19. 解之,得a =5.(2)由A ∩BA ∩B ≠,又A ∩C =,得3∈A,2A ,-4A ,由3∈A ,得32-3a +a 2-19=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},与2A 矛盾;当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意.∴a =-2.。

相关文档
最新文档