广东省深圳高级中学2017届高三(上)第一次考试数学(理)试卷(解析版).doc

合集下载

广东省深圳市2017届高三下学期第一次调研考试(一模)数学理试题 Word版含答案

广东省深圳市2017届高三下学期第一次调研考试(一模)数学理试题 Word版含答案

深圳市2017年高三年级第一次调研考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则A B = ( )A . {}2,4B .{}4,6C .{}6,8D .{}2,82.若复数()12a i a R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . 2 B . 3 C .-2 D .-33. 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )A .14 B .12 C .13 D . 234.等比数列{}n a 的前n 项和为13n n S a b -=+ ,则a b = ( ) A .-3 B . -1 C. 1 D .35.直线():40l kx y k R ++=∈是圆22:4460C x y x y ++-+=的一条对称轴,过点()0,A k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( )A B D . 6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .()24h π- 7. 函数()21cos 21x x f x x +=- 的图象大致是( ) A . B . C. D .8.已知0,0a b c >><,下列不等关系中正确的是 ( )A .ac bc >B .c c a b > C. ()()log log a b a c b c ->-D .a b a c b c>-- 9. 执行如图所示的程序框图,若输入2017p =,则输出i 的值为( )A . 335B .336 C. 337 D .33810.已知F 是双曲线()2222:10,0x y E a b a b-=>>的右焦点,过点F 作E 的一条渐近线的垂线,垂足为P ,线段PF 与E 相交于点Q ,记点Q 到E 的两条渐近线的距离之积为2d ,若2FP d =,则该双曲线的离心率是( )A B .2 C. 3 D .411. 已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为( )A . 83πB .53π C. 43π D .23π 12. 已知函数()2,0,x x f x x e e=≠为自然对数的底数,关于x 的方程0λ+-=有四个相异实根,则实数λ的取值范围是( )A .20,e ⎛⎫ ⎪⎝⎭B .()+∞ C. 2,e e ⎛⎫++∞ ⎪⎝⎭ D .224,2e e ⎛⎫++∞ ⎪⎝⎭ 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量()()1,2,,3p q x ==,若p q ⊥,则p +14.51x ⎫-⎪⎭的二项展开式中,含x 的一次项的系数为 .(用数字作答) 15.若实数,x y 满足不等式组4023801x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数z kx y =-的最大值为12,最小值为0,则实数k = .16.已知数列{}n a 满足()()2222n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对*n N ∀∈恒成立,则实数λ的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17. ABC ∆的内角A B C 、、的对边分别为a b c 、、,已知2sin cos a A a C =-.(1)求C ;(2)若c =ABC ∆的面积S 的最大值.18. 如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G,2,AB BD AE EAD EAB ===∠=∠.(1)证明:平面ACEF ⊥平面ABCD ;(2)若AE 与平面ABCD 所成角为60°,求二面角B EF D --的余弦值.19. 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求,a b 的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y 为该居民用户1月份的用电费用,求Y 的分布列和数学期望.20. 已成椭圆()2222:10x y C a b a b+=>>的左右顶点分别为12A A 、,上下顶点分别为21B B 、,左右焦点分别为12F F 、,其中长轴长为4,且圆2212:7O x y +=为菱形1122A B A B 的内切圆.(1)求椭圆C 的方程; (2)点(),0N n 为x 轴正半轴上一点,过点N 作椭圆C 的切线l ,记右焦点2F 在l 上的射影为H ,若1F HN ∆的面积不小于2316n ,求n 的取值范围. 21. 已知函数()ln ,f x x x e =为自然对数的底数.(1)求曲线()y f x =在2x e -=处的切线方程;(2)关于x 的不等式()()1f x x λ≥-在()0,+∞上恒成立,求实数λ的值;(3)关于x 的方程()f x a =有两个实根12,x x ,求证:21221x x a e --<++. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中xOy 中,已知曲线E经过点P ⎛ ⎝,其参数方程为cos x a y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线E 的极坐标方程;(2)若直线l 交E 于点A B 、,且OA OB ⊥,求证:2211OA OB +为定值,并求出这个定值.23.选修4-5:不等式选讲已知()(),3f x x a g x x x =+=+-,记关于x 的不等式()()f x g x <的解集为M .(1)若3a M -∈,求实数a 的取值范围;(2)若[]1,1M -⊆,求实数a 的取值范围.试卷答案一、选择题1-5: BCBAC 6-10: DCDCB 11、12:BC二、填空题13. [)0,+∞三、解答题17.解:(1)由已知及正弦定理可得2sin sin sin cos A C A A C =-, 在ABC ∆中,sin 0A >,∴2cosC C =-,1cos 12C C -=, 从而sin 16C π⎛⎫-= ⎪⎝⎭, ∵0C π<<, ∴5666C πππ-<-<, ∴62C ππ-=, ∴23C π=;(2)解法:由(1)知23C π=,∴sin C =,∵12sin 2S ab C =,∴S =, ∵222cos 2a b c C ab+-=, ∴223a b ab +=-,∵222a b ab +≥,∴1ab ≤(当且仅当1a b ==时等号成立),∴S =≤; 解法二:由正弦定理可知2sinA sin sin a b c B C ===, ∵1sin 2S ab C =,∴sin S A B =,∴sin 3S A A π⎛⎫=- ⎪⎝⎭,∴26S A π⎛⎫=+- ⎪⎝⎭∵03A π<<, ∴52666A πππ<+<,∴当262A ππ+=,即6A π=时,S . 18.解:(1)证明:连接EG ,∵四边形ABCD 为菱形,∵,,AD AB BD AC DG GB =⊥=,在EAD ∆和EAB ∆中,,AD AB AE AE ==,EAD EAB ∠=∠,∴EAD EAB ∆≅∆,∴ED EB =,∴BD EG ⊥,∵AC EG G = ,∴BD ⊥平面ACFE ,∵BD ⊂平面ABCD ,∴平面ACFE ⊥平面ABCD ;(2)解法一:过G 作EF 垂线,垂足为M ,连接,,MB MG MD ,易得EAC ∠为AE 与面ABCD 所成的角,∴060EAC ∠=,∵,EF GM EF BD ⊥⊥,∴EF ⊥平面BDM ,∴DMB ∠为二面角B EF D --的平面角,可求得3,2MG DM BM === 在DMB ∆中由余弦定理可得:5cos 13BMD ∠=, ∴二面角B EF D --的余弦值为513;解法二:如图,在平面ABCD 内,过G 作AC 的垂线,交EF 于M 点,由(1)可知,平面ACFE ⊥平面ABCD ,∴MG ⊥平面ABCD ,∴直线,,GM GA GB 两两互相垂直,分别GA GB GM 、、为,,x y z 轴建立空间直角坐标系G xyz -,易得EAC ∠为AE 与平面ABCD 所成的角,∴060EAC ∠=,则()()330,1,0,0,1,0,E ,22D B F ⎫⎛⎫-⎪ ⎪⎪ ⎪⎭⎝⎭,()33,1,,22FE BE DE ⎫⎫==-=⎪⎪⎪⎪⎭⎭, 设平面BEF 的一个法向量为(),,n x y z = ,则 0n FE = 且0n BE = ,∴0x =302x y z -+= 取2z =,可得平面BEF 的一个法向量为()0,3,2n = ,同理可求得平面DEF 的一个法向量为()0,3,2m =- , ∴5cos ,13n m =, ∴二面角B EF D --的余弦值为513. 19.解析:(1)当0200x ≤≤时,0.5y x =;当200400x <≤时,()0.52000.82000.860y x x =⨯+⨯-=-,当400x >时,()0.52000.8200 1.0400140y x x =⨯+⨯+⨯-=-,所以y 与x 之间的函数解析式为:0.5,02000.860,200400140,400x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;(2)由(1)可知:当260y =时,400x =,则()4000.80P x ≤=,结合频率分布直方图可知:0.121000.30.81000.050.2b a +⨯+=⎧⎨+=⎩,∴0.0015,0.0020a b ==;(3)由题意可知X 可取50,150,250,350,450,550.当50x =时,0.55025y =⨯=,∴()250.1P y ==,当150x =时,0.515075y =⨯=,∴()750.2P y ==,当250x =时,0.52000.850140y =⨯+⨯=,∴()1400.3P y ==,当350x =时,0.52000.8150220y =⨯+⨯=,∴()2200.2P y ==,当450x =时,0.52000.8200 1.050310y =⨯+⨯+⨯=,∴()3100.15P y ==, 当550x =时,0.52000.8200 1.0150410y =⨯+⨯+⨯=,∴()4100.05P y ==, 故Y 的概率分布列为:所以随机变量X 的数学期望 250.1750.21400.32200.23100.154100.05170.5EY =⨯+⨯+⨯+⨯+⨯+⨯=. 20.解:(1)由题意知24a =,所以2a =,所以()()()()12122,0,2,0,0,,0,A A B b B b --,则直线22A B 的方程为12x y b +=,即220bx y b +-=, ,解得23b =, 故椭圆C 的方程为22143x y +=; (2)由题意,可设直线l 的方程为,0x my n m =+≠,联立223412x my n x y =+⎧⎨+=⎩消去x 得()()222346340m y mny n +++-=,(*) 由直线l 与椭圆C 相切,得()()()2226433440mn m n ∆=-⨯+-=,化简得22340m n -+=,设点(),H mt n t +,由(1)知()()121,0,1,0F F -,则()0111t mt n m-=-+- ,解得()211m n t m -=-+,所以1F HN ∆的面积()()()1222111112121F HNm n m n S n m m∆---=+=++, 代入22340m n -+=消去n 化简得132F HN S m ∆=, 所以()223333421616m n m ≥=+,解得223m ≤≤,即2449m ≤≤, 从而244493n -≤≤,又0n >4n≤≤,故n 的取值范围为4⎤⎥⎦.21.解(1)对函数()f x 求导得()1ln ln 1f x x x x x'=+=+ , ∴()22ln 11f e e --'=+=-, 又()2222ln 2f e e e e ----==-,∴曲线()y f x =在2x e -=处的切线方程为()()222y e x e ----=--,即2y x e -=--;(2)记()()()()1ln 1g x f x x x x x λλ=--=--,其中0x >, 由题意知()0g x ≥在()0,+∞上恒成立,下求函数()g x 的最小值, 对()g x 求导得()ln 1g x x λ'=+-, 令()0g x '=,得1x e λ-=,当x 变化时,()(),g x g x '变化情况列表如下:∴()()()()()1111min 11g x g x g e e e e λλλλλλλ----===---=-极小, ∴10e λλ--≥, 记()1G eλλλ-=-,则()11G eλλ-'=-,令()0G λ'=,得1λ=.当λ变化时,()(),G G λλ'变化情况列表如下:∴()()()max 10G G G λλ===极大, 故10e λλ--≤当且仅当1λ=时取等号, 又10e λλ--≥,从而得到1λ=; (3)先证()2f x x e -≥--,记()()()22ln h x f x x e x x x e --=---=++,则()ln 2h x x '=+, 令()0h x '=,得2x e -=,当x 变化时,()(),h x h x '变化情况列表如下:∴()()()22222min ln 0h x h x h e e e e e -----===++=极小,()0h x ≥恒成立,即()2f x x e -≥--,记直线2,1y x e y x -=--=-分别与y a =交于()()12,,,x a x a '',不妨设12x x <,则()22111a x ef x x e --'=--=≥--,从而11x x '<,当且仅当22a e -=-时取等号,由(2)知,()1f x x ≥-,则()22211a x f x x '=-=≥-, 从而22x x '≤,当且仅当0a =时取等号, 故()()22122121121x x x x x x a a ea e--''-=-≤-=+---=++,因等号成立的条件不能同时满足,故21221x x a e --<++.22.解:(1)将点P ⎛ ⎝代入曲线E的方程:1cos a αα-⎧=, 解得23a =,所以曲线E 的普通方程为22132x y +=,极坐标方程为22211cos sin 132ρθθ⎛⎫+= ⎪⎝⎭, (2)不妨设点,A B 的极坐标分别为()1212,,,,0,02A B πρθρθρρ⎛⎫+>> ⎪⎝⎭, 则()()2211222211cos sin 13211cos sin 13222ρθρθππρθρθ⎧+=⎪⎪⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪+++= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩, 即22212222111cos sin 32111sin cos 32θθρθθρ⎧=+⎪⎪⎨⎪=+⎪⎩,∴22121156ρρ+=, 即221156OAOB +=, 所以2211OAOB+为定值56.23.解:(1)依题意有:()233a a a -<--,若32a ≥,则233a -<,∴332a ≤<, 若302a ≤<,则323a -<,∴302a <<,若0a ≤,则()323a a a -<---,无解, 综上所述,a 的取值范围为()0,3;(2)由题意可知,当[]1,1x ∈-时,()()f x g x <恒成立, ∴3x a +<恒成立,即33x a x --<<-,当[]1,1x ∈-时恒成立, ∴22a -<<.。

广东省2017届高三上学期阶段性测评(一)理数试题Word版含答案

广东省2017届高三上学期阶段性测评(一)理数试题Word版含答案

理科数学 第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}1 ln 2A x x B x y x =≥-==-,,则R A C B =( ) A .[)1 2-,B .[)2 +∞,C .[]1 2-,D .[)1 -+∞, 2.设函数()()1232 2log 1 2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,,,则()()2f f 的值为( ) A .0 B .1 C .2 D .33.若实数 x y ,满足230x y -+≥,则z 的最小值为( ) A .3 BC4.在区间[]0 1,上随机选取两个数x 和y ,则2y x >的概率为( ) A.14 B .12 C.34 D .135.已知命题:2: 2sin 10p x R x x θ∀∈-+≥,;命题(): sin sin sin q R αβαβαβ∀∈+≤+,,.则下列命题中的真命题为( )A .()p q ⌝∧B .()p q ∧⌝ C.()p q ⌝∨ D .()p q ⌝∨6.三棱柱111ABC A B C -的侧棱垂直于底面,且AB BC ⊥,12AB BC AA ===,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为( ) A .48π B .32π C.12π D .8π7.已知向量 AB AC AD ,,满足 2 1AC AB AD AB AD =+==,,, E F ,分别是线段BC CD ,的中点,若54DE BF ⋅=-,则向量AB 与AD 的夹角为( )A .6π B .3π C.23π D .56π 8.已知双曲线()222210 0x y a b a b-=>>,的左、右焦点分别为12 F F ,,且2F 为抛物线224y x =的焦点,设点P 为两曲线的一个公共点,若12PF F △的面积为 )A .221927x y -=B .221279x y -= C.221169x y -= D .221916x y -=9.执行如图所示的程序框图,若[][] 0 4x a b y ∈∈,,,,则b a -的最小值为( )A .2B .3 C.4 D .510.若()()72801281212x x a a x a x a x +-=++++…,则0127a a a a ++++…的值为( ) A .2- B .3- C.253 D .12611.过抛物线()2:20C y px p =>的焦点F 的直线l 与抛物线交于 M N ,两点,若4MF FN =,则直线l 的斜率为( )A .32±B .23± C.34± D .43±12.函数()sin 1f x x x ωω=++的最小正周期为π,当[] x m n ∈,时,()f x 至少有12个零点,则n m -的最小值为( ) A .12π B .73π C.6π D .163π第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.复数z 在复平面内的对应点是()1 1-,,则z = .14.定积分)1x dx +⎰的值为 .15.定义在R 上的奇函数()f x 满足()()2f x f x +=-,当01x ≤≤时,()f x x =,则()37.5f 等于 .16.将一块边长为6cm 的正方形纸片,先按如图(1)所示的阴影部分裁去四个全等的等腰三角形,然后将剩余部分沿虚线折叠并拼成一个正四棱锥模型(底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥),将该四棱锥如图(2)放置,若其正视图为正三角形,则其体积为 2cm .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)在ABC △中,内角 A B C ,,所对的边分别是 a b c ,,,已知60 5 4A b c =︒==,,. (Ⅰ)求a ;(Ⅱ)求sin sin B C 的值. 18.(本小题满分12分)设等差数列{}n a 的公差为d ,且122 21n n a d a a ==-,. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2nn na b =,求数列{}n b 的前n 项和n S . 19.(本小题满分12分)某市为了解各校《国学》课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A 、B 、C 、D 四个等级.随机调阅了甲、乙两所学校各60名学生的成绩,得到如下的分布图:(Ⅰ)试确定图中a 与b 的值;(Ⅱ)规定等级D 为“不合格”,其他等级为“合格”,以事件发生的频率作为相应事件发生的概率.若从甲、乙两校“合格”的学生中各选1名学生,求甲校学生成绩高于乙校学生成绩的概率.20.(本小题满分12分)如图,三棱锥P ABC -中,PA PC =,底面ABC 为正三角形.(Ⅰ)证明:AC PB ⊥;(Ⅱ)若平面PAC ABC ⊥平面,2AC PC ==,求二面角A PC B --的余弦值. 21.(本小题满分12分)椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为12 F F ,.(Ⅰ)若椭圆E 的长轴长、短轴长、焦距成等差数列,求椭圆E 的离心率;(Ⅱ)若椭圆E 过点()0 2A -,,直线1AF ,2AF 与椭圆的另一个交点分别为点 B C ,,且ABC △的面积为509c,求椭圆E 的方程. 22.(本小题满分10分)已知函数()2ln f x a x x x =+-,其中a R ∈. (Ⅰ)当0a >时,讨论()f x 的单调性;(Ⅱ)当1x ≥时,()0f x ≥恒成立,求a 的取值范围.2016-2017学年度高三年级阶段性测评(一)理科数学参考答案及评分参考一、选择题1-5:CCDAB 6-10:CBAAC 11、12:DD 解析:1.C 【解析】[)()(]1 2 2R A B C B =-+∞=+∞=-∞,,,,,,∴[]1 2R A C B =-,. 2.C 【解析】()()()()032log 3122f f f f e ===⨯=. 3.D【解析】z.4.A 【解析】2y x >的概率为11112214⨯⨯=. 5.B 【解析】()()22222:2sin 1sin 1sin sin cos 0p x x x x θθθθθ-+=-+-=-+≥,∴p 为真命题.:q 当54παβ==时,52παβ+=,()sin 1αβ+=,sin sin αβ+= ∴()sin sin sin αβαβ+>+,∴q 为假命题,∴()p q ∨⌝为真命题.6.C 【解析】如图,由题可知矩形11AA C C 的中心O 为该三棱柱外接球的球心,OC =.∴该球的表面积为2412ππ=.7.B 【解析】 22AD ABDE AB BF AD =-=-,,∴225555224244AB AD AD AB DE BF AB AD ⋅⋅=--+=-+⋅=-.∴1AB AD ⋅=,1cos 2AB AD <>=,,∴AB 与AD 的夹角为3π. 8.A 【解析】设P 点为第一象限点,且()11 P x y ,,1211122PF F S y =⨯⨯=△1y =,19x =,∴1226a PF PF =-=,∴ 2 a b ==,,故双曲线方程为221927x y -=.9.A 【解析】程序框图的功能为求分段函数21 04 0x x y x x x +<⎧=⎨-≥⎩,,的函数值, 如图可知[]2 a b ∈,,当0 2a b ==,或 2 4a b ==,时符合题意,∴2b a -≥.10.C 【解析】令1x =,得01283a a a a ++++=…,()7822256a =⨯-=-,∴0783253a a a ++=--=….11.D 【解析】不妨设()()()111122 0 0 M x y x y N x y >>,,,,,∵4MF FN =,∴124y y =-,又212y y p =-,∴22 28p py x =-=,,∴042382MN pk p p --==-.根据对称可得直线l 的斜率为43±.12.D 【解析】由题知()()2sin 2 1 0 2sin 2133f x x f x x ππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,,,∴1sin 232x π⎛⎫+=- ⎪⎝⎭.由周期性可知16533n m πππ-≥+=,∴()min 163n m π-=. 二、填空题13.1i + 14.142π+15.0.5【解析】13.1z i =-,∴1z i =+.14.)110x dx xdx =+⎰⎰⎰,由几何意义得4π=⎰,又121001122xdx x ==⎰.∴)1142x dx π=+⎰. 15.∵()()2f x f x +=-,∴()()4f x f x +=且()()f x f x -=-,01x ≤≤时,()f x x =, ∴()()11137.5 1.5222f f f f ⎛⎫⎛⎫==--== ⎪ ⎪⎝⎭⎝⎭.16.由正视图为正三角形可知,图(1)中2PD CD =,∴23PD =⨯,∴正三角形的边长为PO∴四棱锥的体积为183=三、解答题17.解:(Ⅰ)由余弦定理得:2222cos 21a b c bc A =+-=,∴a =分 (Ⅱ)∵()222228sin a R A ==, ∴()25sin sin 72bcB C R ==.……………………………………………………………………10分 18.解:(Ⅰ)由题可得:()()11112412211a n a a n a +-=+--,解得1 1 2a d ==,.∴()()*1121n a a n d n n N =+-=-∈.………………………………………………5分 (Ⅱ)∵2122n n n n a n b -==, ∴231135232122222n n n n n S ---=+++++…. ① ∴231111252321222222n n n n n n n S -+3---=+++++….② -①②得:23111111212222222n n n n S +-⎛⎫=++++- ⎪⎝⎭ (2232321)112111112123121132222222222n n n n n n n n n S ---+⎛⎫=++++-=++++++-=-⎪⎝⎭…….……12分19.解:(Ⅰ)15 0.5a b ==,;……………………4分 (Ⅱ)记1E 表示事件“甲校国学成绩等级为A “,则()1654P E =;2E 表示事件“甲校国学成绩等级为B ”,则()21554P E =;20.(Ⅰ)证明:取AC 的中点O ,连接PO ,BO , ∵PA PC =, ∴PO AC ⊥, 又AB CB =, ∴AC POB ⊥平面,∴AC PB ⊥.………………………………5分(Ⅱ)平面PAC ABC ⊥平面且交于AC ,PO AC ⊥,∴PO ABC ⊥平面,则可建立如图所示的空间直角坐标系O xyz -.又 2PA PC AC PC ===,,ABC △为正三角形,∴(()()0 0 0 0 1 0 0P B C -,,,,,,,()()0 3 3 1 0PB BC =-=-,,,,,.设() n x y z =,,为平面PBC 的法向量,则00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,∴00x =-=⎪⎩,∴z y x =⎧⎪⎨=⎪⎩,取1y =-,则)1 1n =--,,为平面PBC 的一个法向量,又()0 0OB =,为平面PAC 的一个法向量,∴cos n OB <>==,则二面角A PC B -=.……………………………………12分 21.(Ⅰ)∵长轴长、短轴长、焦距成等差数列,∴()22222222 42 42b a c b a ac c a c a ac c =+=++-=++,,, ∴223520a c ac --=,两边同除以2a 得,25230c c +-=, 解得35c e a ==.………………………………5分 (Ⅱ)由已知得2b =,把直线22:2AF y x c=-代入椭圆方程22214x y a +=,得()222220a c x a cx +-=,∴()22222422c c a cx a c c +==++.∴()224 2c c C y c ⎛⎫+ ⎪ ⎪+⎝⎭,.由椭圆的对称性及平面几何知识可知,ABC △面积为:()()222241222222c c S x y x c c c ⎡⎤+⎢⎥=⋅+==+⎢⎥⎣⎦, ∴()222425029c c c c c ⎡⎤+⎢⎥=-+⎢⎥⎣⎦,解得21c =, ∴25a =.故所求椭圆的方程为22154x y +=.……………………………………12分22.解:(Ⅰ)函数()2ln f x a x x x =+-的定义域为()0 +∞,, ()22'21a x x af x x x x -+=+-=, 设()22 18g x x x a a =-+∆=-,, (1)当18a ≥时,()0 0g x ∆≤≥,成立,故()'0f x ≥成立,()f x 在()0 +∞,上为增函数;(2)当108a <<时,0∆>,令()0g x =,得12 x x ==,显然220x x >>,当()10 x x ∈,时,()()0 '0g x f x >>,,()f x 为增函数, 当()12 x x x ∈,时,()()0 '0g x f x <<,,()f x 为减函数, 当()2 x x ∈+∞,时,()0g x >,()'0f x >,()f x 为增函数, 综上,当18a ≥时,()f x 在()0 +∞,上为增函数,当108a <<时,()f x 在0 ⎛ ⎝⎭, ⎫+∞⎪⎪⎝⎭,上为增函数,在⎝⎭上为减函数.…………………………5分 (Ⅱ)显然()10f =,由1x ≥可知:当0a ≥时,2ln 0 0a x x x ≥-≥,,故()0f x ≥成立;当0a <时,180a ∆=->.令()0g x =,得12 x x ,显然120 0x x <>,,当()20 x x ∈,时,()()()0 '0 g x f x f x <<,,为减函数, 当()2 x x ∈+∞,时,()0g x >,()'0f x >,()f x 为减函数; 若10a -≤<,则21x ≤,当1x ≥时,()f x 为增函数,故()()10f x f ≥=成立;若1a <-,则21x >,由()f x 在()20 x ,上为减函数可知,当()21 x x ∈,时,()f x 为减函数,()()10f x f <=与题意不符,舍去.综上,a 的取值范围是[)1 -+∞,.。

广东省深圳市2017届高三下学期第一次调研考试(一模)数学理试题-Word版含答案

广东省深圳市2017届高三下学期第一次调研考试(一模)数学理试题-Word版含答案

深圳市2017年高三年级第一次调研考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则A B = ( )A . {}2,4B .{}4,6C .{}6,8D .{}2,82.若复数()12a i a R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . 2 B . 3 C .-2 D .-33. 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( ) A .14 B .12 C .13 D . 234.等比数列{}n a 的前n 项和为13n n S a b -=+ ,则a b = ( ) A .-3 B . -1 C. 1 D .35.直线():40l kx y k R ++=∈是圆22:4460C x y x y ++-+=的一条对称轴,过点()0,A k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( )A B D . 6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .()24h π- 7. 函数()21cos 21x x f x x +=- 的图象大致是( ) A . B . C. D .8.已知0,0a b c >><,下列不等关系中正确的是 ( )A .ac bc >B .c c a b > C. ()()log log a b a c b c ->-D .a b a c b c>-- 9. 执行如图所示的程序框图,若输入2017p =,则输出i 的值为( )A . 335B .336 C. 337 D .33810.已知F 是双曲线()2222:10,0x y E a b a b-=>>的右焦点,过点F 作E 的一条渐近线的垂线,垂足为P ,线段PF 与E 相交于点Q ,记点Q 到E 的两条渐近线的距离之积为2d ,若2FP d =,则该双曲线的离心率是( )A B .2 C. 3 D .411. 已知棱长为2的正方体1111ABCD A B C D -,球O 与该正方体的各个面相切,则平面1ACB 截此球所得的截面的面积为( )A . 83πB .53π C. 43π D .23π 12. 已知函数()2,0,x x f x x e e=≠为自然对数的底数,关于x 的方程0λ+-=有四个相异实根,则实数λ的取值范围是( )A .20,e ⎛⎫ ⎪⎝⎭B .()+∞ C. 2,e e ⎛⎫++∞ ⎪⎝⎭ D .224,2e e ⎛⎫++∞ ⎪⎝⎭ 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量()()1,2,,3p q x ==,若p q ⊥,则p +14.51x ⎫-⎪⎭的二项展开式中,含x 的一次项的系数为 .(用数字作答) 15.若实数,x y 满足不等式组4023801x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数z kx y =-的最大值为12,最小值为0,则实数k = .16.已知数列{}n a 满足()()2222n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对*n N ∀∈恒成立,则实数λ的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17. ABC ∆的内角A B C 、、的对边分别为a b c 、、,已知2sin cos a A a C =-.(1)求C ;(2)若c =ABC ∆的面积S 的最大值.18. 如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G,2,AB BD AE EAD EAB ===∠=∠.(1)证明:平面ACEF ⊥平面ABCD ;(2)若AE 与平面ABCD 所成角为60°,求二面角B EF D --的余弦值.19. 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y (单位:元)关于月用电量x (单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求,a b 的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y 为该居民用户1月份的用电费用,求Y 的分布列和数学期望.20. 已成椭圆()2222:10x y C a b a b+=>>的左右顶点分别为12A A 、,上下顶点分别为21B B 、,左右焦点分别为12F F 、,其中长轴长为4,且圆2212:7O x y +=为菱形1122A B A B 的内切圆.(1)求椭圆C 的方程; (2)点(),0N n 为x 轴正半轴上一点,过点N 作椭圆C 的切线l ,记右焦点2F 在l 上的射影为H ,若1F HN ∆的面积不小于2316n ,求n 的取值范围. 21. 已知函数()ln ,f x x x e =为自然对数的底数.(1)求曲线()y f x =在2x e -=处的切线方程;(2)关于x 的不等式()()1f x x λ≥-在()0,+∞上恒成立,求实数λ的值;(3)关于x 的方程()f x a =有两个实根12,x x ,求证:21221x x a e --<++. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中xOy 中,已知曲线E经过点P ⎛ ⎝,其参数方程为cos x a y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线E 的极坐标方程;(2)若直线l 交E 于点A B 、,且OA OB ⊥,求证:2211OA OB +为定值,并求出这个定值.23.选修4-5:不等式选讲已知()(),3f x x a g x x x =+=+-,记关于x 的不等式()()f x g x <的解集为M .(1)若3a M -∈,求实数a 的取值范围;(2)若[]1,1M -⊆,求实数a 的取值范围.试卷答案一、选择题1-5: BCBAC 6-10: DCDCB 11、12:BC二、填空题13. [)0,+∞三、解答题17.解:(1)由已知及正弦定理可得2sin sin sin cos A C A A C =-, 在ABC ∆中,sin 0A >,∴2cosC C =-,1cos 12C C -=, 从而sin 16C π⎛⎫-= ⎪⎝⎭, ∵0C π<<, ∴5666C πππ-<-<, ∴62C ππ-=, ∴23C π=;(2)解法:由(1)知23C π=,∴sin C =,∵12sin 2S ab C =,∴S =, ∵222cos 2a b c C ab+-=, ∴223a b ab +=-,∵222a b ab +≥,∴1ab ≤(当且仅当1a b ==时等号成立),∴S =≤; 解法二:由正弦定理可知2sinA sin sin a b c B C ===, ∵1sin 2S ab C =,∴sin S A B =,∴sin 3S A A π⎛⎫=- ⎪⎝⎭,∴26S A π⎛⎫=+- ⎪⎝⎭∵03A π<<, ∴52666A πππ<+<,∴当262A ππ+=,即6A π=时,S . 18.解:(1)证明:连接EG ,∵四边形ABCD 为菱形,∵,,AD AB BD AC DG GB =⊥=,在EAD ∆和EAB ∆中,,AD AB AE AE ==,EAD EAB ∠=∠,∴EAD EAB ∆≅∆,∴ED EB =,∴BD EG ⊥,∵AC EG G = ,∴BD ⊥平面ACFE ,∵BD ⊂平面ABCD ,∴平面ACFE ⊥平面ABCD ;(2)解法一:过G 作EF 垂线,垂足为M ,连接,,MB MG MD ,易得EAC ∠为AE 与面ABCD 所成的角,∴060EAC ∠=,∵,EF GM EF BD ⊥⊥,∴EF ⊥平面BDM ,∴DMB ∠为二面角B EF D --的平面角,可求得3,2MG DM BM === 在DMB ∆中由余弦定理可得:5cos 13BMD ∠=, ∴二面角B EF D --的余弦值为513;解法二:如图,在平面ABCD 内,过G 作AC 的垂线,交EF 于M 点,由(1)可知,平面ACFE ⊥平面ABCD ,∴MG ⊥平面ABCD ,∴直线,,GM GA GB 两两互相垂直,分别GA GB GM 、、为,,x y z 轴建立空间直角坐标系G xyz -,易得EAC ∠为AE 与平面ABCD 所成的角,∴060EAC ∠=,则()()330,1,0,0,1,0,E ,22D B F ⎫⎛⎫-⎪ ⎪⎪ ⎪⎭⎝⎭,()33,1,,22FE BE DE ⎫⎫==-=⎪⎪⎪⎪⎭⎭, 设平面BEF 的一个法向量为(),,n x y z = ,则 0n FE = 且0n BE = ,∴0x =302x y z -+= 取2z =,可得平面BEF 的一个法向量为()0,3,2n = ,同理可求得平面DEF 的一个法向量为()0,3,2m =- , ∴5cos ,13n m =, ∴二面角B EF D --的余弦值为513. 19.解析:(1)当0200x ≤≤时,0.5y x =;当200400x <≤时,()0.52000.82000.860y x x =⨯+⨯-=-,当400x >时,()0.52000.8200 1.0400140y x x =⨯+⨯+⨯-=-,所以y 与x 之间的函数解析式为:0.5,02000.860,200400140,400x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;(2)由(1)可知:当260y =时,400x =,则()4000.80P x ≤=,结合频率分布直方图可知:0.121000.30.81000.050.2b a +⨯+=⎧⎨+=⎩,∴0.0015,0.0020a b ==;(3)由题意可知X 可取50,150,250,350,450,550.当50x =时,0.55025y =⨯=,∴()250.1P y ==,当150x =时,0.515075y =⨯=,∴()750.2P y ==,当250x =时,0.52000.850140y =⨯+⨯=,∴()1400.3P y ==,当350x =时,0.52000.8150220y =⨯+⨯=,∴()2200.2P y ==,当450x =时,0.52000.8200 1.050310y =⨯+⨯+⨯=,∴()3100.15P y ==, 当550x =时,0.52000.8200 1.0150410y =⨯+⨯+⨯=,∴()4100.05P y ==, 故Y 的概率分布列为:所以随机变量X 的数学期望 250.1750.21400.32200.23100.154100.05170.5EY =⨯+⨯+⨯+⨯+⨯+⨯=. 20.解:(1)由题意知24a =,所以2a =,所以()()()()12122,0,2,0,0,,0,A A B b B b --,则直线22A B 的方程为12x y b +=,即220bx y b +-=, ,解得23b =, 故椭圆C 的方程为22143x y +=; (2)由题意,可设直线l 的方程为,0x my n m =+≠,联立223412x my n x y =+⎧⎨+=⎩消去x 得()()222346340m y mny n +++-=,(*) 由直线l 与椭圆C 相切,得()()()2226433440mn m n ∆=-⨯+-=,化简得22340m n -+=,设点(),H mt n t +,由(1)知()()121,0,1,0F F -,则()0111t mt n m-=-+- ,解得()211m n t m -=-+,所以1F HN ∆的面积()()()1222111112121F HNm n m n S n m m∆---=+=++, 代入22340m n -+=消去n 化简得132F HN S m ∆=, 所以()223333421616m n m ≥=+,解得223m ≤≤,即2449m ≤≤, 从而244493n -≤≤,又0n >4n≤≤,故n 的取值范围为4⎤⎥⎦.21.解(1)对函数()f x 求导得()1ln ln 1f x x x x x'=+=+ , ∴()22ln 11f e e --'=+=-, 又()2222ln 2f e e e e ----==-,∴曲线()y f x =在2x e -=处的切线方程为()()222y e x e ----=--,即2y x e -=--;(2)记()()()()1ln 1g x f x x x x x λλ=--=--,其中0x >, 由题意知()0g x ≥在()0,+∞上恒成立,下求函数()g x 的最小值, 对()g x 求导得()ln 1g x x λ'=+-, 令()0g x '=,得1x e λ-=,当x 变化时,()(),g x g x '变化情况列表如下:∴()()()()()1111min 11g x g x g e e e e λλλλλλλ----===---=-极小, ∴10e λλ--≥, 记()1G eλλλ-=-,则()11G eλλ-'=-,令()0G λ'=,得1λ=.当λ变化时,()(),G G λλ'变化情况列表如下:∴()()()max 10G G G λλ===极大, 故10e λλ--≤当且仅当1λ=时取等号, 又10e λλ--≥,从而得到1λ=; (3)先证()2f x x e -≥--,记()()()22ln h x f x x e x x x e --=---=++,则()ln 2h x x '=+, 令()0h x '=,得2x e -=,当x 变化时,()(),h x h x '变化情况列表如下:∴()()()22222min ln 0h x h x h e e e e e -----===++=极小,()0h x ≥恒成立,即()2f x x e -≥--,记直线2,1y x e y x -=--=-分别与y a =交于()()12,,,x a x a '',不妨设12x x <,则()22111a x ef x x e --'=--=≥--,从而11x x '<,当且仅当22a e -=-时取等号,由(2)知,()1f x x ≥-,则()22211a x f x x '=-=≥-, 从而22x x '≤,当且仅当0a =时取等号, 故()()22122121121x x x x x x a a ea e--''-=-≤-=+---=++,因等号成立的条件不能同时满足,故21221x x a e --<++.22.解:(1)将点P ⎛ ⎝代入曲线E的方程:1cos a αα-⎧=, 解得23a =,所以曲线E 的普通方程为22132x y +=,极坐标方程为22211cos sin 132ρθθ⎛⎫+= ⎪⎝⎭, (2)不妨设点,A B 的极坐标分别为()1212,,,,0,02A B πρθρθρρ⎛⎫+>> ⎪⎝⎭, 则()()2211222211cos sin 13211cos sin 13222ρθρθππρθρθ⎧+=⎪⎪⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪+++= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩, 即22212222111cos sin 32111sin cos 32θθρθθρ⎧=+⎪⎪⎨⎪=+⎪⎩, ∴22121156ρρ+=, 即221156OAOB+=,所以2211OAOB+为定值56. 23.解:(1)依题意有:()233a a a -<--,若32a ≥,则233a -<,∴332a ≤<, 若302a ≤<,则323a -<,∴302a <<,若0a ≤,则()323a a a -<---,无解, 综上所述,a 的取值范围为()0,3;(2)由题意可知,当[]1,1x ∈-时,()()f x g x <恒成立, ∴3x a +<恒成立,即33x a x --<<-,当[]1,1x ∈-时恒成立, ∴22a -<<.。

【调研】广东省深圳市2017届高三下学期第一次调研考试一模数学理试题小题解析Word版含解析

【调研】广东省深圳市2017届高三下学期第一次调研考试一模数学理试题小题解析Word版含解析

【关键字】调研深圳市2017年高三年级第一次调研考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则()A.B.C.D.答案:B解析:因为集合B=,所以,,选B。

2.若复数为纯虚数,其中为虚数单位,则()A.2 B..-2 D.-3答案:C解析:因为为纯虚数,所以,-2,选C。

3. 袋中装有大小相同的四个球,四个球上分别标有数字“,“,“,“.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.答案:B解析:随机选取三个球,共有4种可能,构成等差数列的有:234、246两种,故所求的概率为:P=,选B。

4.等比数列的前项和为,则()A.-3 B.. 1 D.3答案:A解析:因为,,,由等比数列,得=3,又,所以,,解得:-35.直线是圆的一条对称轴,过点作斜率为1的直线,则直线被圆所截得的弦长为()A.B. C. D.答案:C解析:依题意,知直线必过圆心(-2,2),得k=3,所以A(0,3),所以,直线m的方程为:,圆心(-2,2)到直线m的距离为:d=,所以,弦长为:2=6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为的平面截该几何体,则截面面积为()A.B. C. D.答案:D解析:该几何体为挖去一个圆锥的圆柱,设截面空心圆的半径为为r,则,即r=h,所以,截面面积为:,选D7. 函数的图象大致是()答案:C解析:由,可知函数f(x)为奇函数,图象关于原点对称,排除A、B,当时,f(x)>0,所以,排除D,选C。

广东省深圳高级中学2017届高三上学期第一次考试英语试卷 Word版缺答案

广东省深圳高级中学2017届高三上学期第一次考试英语试卷 Word版缺答案

2016-2017学年深圳市高级中学高三年级第一次考试试卷英语科试题第Ⅰ卷第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C、和D)中,选出最佳选项,并在答题卡上将该项涂黑。

AThe chance of a snowy holiday season in most American cities is practically impossible this year, so any festive atmosphere to be enjoyed will have to be the imaginary sort. Luckily, there are books for that.The Complete Fairy Tales by Hans Christian AndersenAny reader of fairy tales knows Andersen’s responsible for the snowy scenes in "The Snow Queen", the story of children Kai and Gerda, who must face the goddess-like woman who controls all snowflakes after Kai is kidnapped.Family Life by Akhil SharmaIt's a beautiful yet tragic novel about an Indian family immigrating to America, only to face entirely new hardships. Sharma's novel isn't entirely set in the wintertime, but his poetic descriptions of winter weather as lovely yet isolating make it a great choice for a December read.Frankenstein by Mary ShelleyGo ahead and give up movie adaptation that has been produced recently and read or re-read the classic itself. You know the story: a scientist driven by his ambition discovers a method for creating life, and spends two years cobbling together a living creature, who later feels anger about him.An American Childhood by Annie DillardDillard's first book is, as its title suggests, about her change from being a self-centered child to being an adult more concerned with the world around her than with her own personal concerns. Her parents are key figures in the story. One famous scene takes place during what the author calls “a big snow”, in 1950.1. Who wrote a novel about “The Snow Queen"?A. Annie Dillard.B. Donna Tartt.C. Akhil Sharma.D. Hans Christian Andersen.2 What do we know about Frankenstein?A. It has been adapted to a movie.B. It’s about the secret history.C. It’s about an Indian familyD. It’s a fairy tale.3. From An American Childhood, we know the main characters are __________.A. self-centered children.B. adults.C. scientists.D. Dillard's parents.BThe summer of 2001 saw Australians win the Cycling Tour de France, beat the world at cricket and rugby, and have a player in the final of the Wimbledon Tennis Tournament for the eighteenth time.Many countries would be amazed at that kind of success. For Australia, it was just a typical sporting summer. At the 2000 Olympics, Australia came fourth in the medals table. That does not sound so great, yet Australia has a population of only 19 million. There are more Olympic medal winners per head of population in Australia than in any other country.What is it that makes Australians a sporting people? This is a question that many people participating in sports have asked themselves over the years.Some of the answers are simple. Sport needs space. Australians have 7.4 million square kilometers of space to play sports in. Many other countries are either too crowded or too small to encourage everybody to take part. Besides that, Australia is a warm, dry country. This encourages people to go outdoors to enjoy themselves. Furthermore, since 85 per cent of Australians live near the sea, they learn water sports early; and since sharks swim off the coasts of Australia, they also learn to swim very fast.Other reasons go deep into the history, culture and economy of the country. When the British first found Australia they decided that it would be a great place to send criminals to. Life for the first Australians was verytough, so they had to be independent and develop a will to win just to survive. Yet they also had to be able to trust each other and be willing to help each other out. In other countries, coaches train people in mental toughness and team building. In Australia, these qualities are part of the general social environment.From the cultural perspective, being far away from Europe also meant that Australians were far away from the centres of Western arts and cultures. As a result, sport itself has become a way of cultural expression and part of the Australian nationality. An English football fan wants to see the national team do well, but really cares more about his local club. For an Australian, representing the nation is the most important of all. Everything else is just good practice. Being good at sports is part of what it means to be an Australian.4. What can we learn from paragraph 2?A. Australia has the most medal winners in the world.B. The achievement made in 2001 is abnormal for Australia.C. Australia has a smaller population than any other country.D. The performance of Australia in sports is great in relation to its population.5. According to paragraph 4, the following factors make Australians a sporting people EXCEPT _____.A. climateB. playgroundC. seasonD. geography6. Supposing you are an English football fan, you are most delighted that ______.A. you will watch a live football matchB. the club you support wins the matchC. you will see a football star in the fleshD. the national team defeats its competitor7. In the following paragraph, the author is probably to _____.A. explain the reason in economyB. introduce the sports stars in clubsC. foresee the future of sports in AustraliaD. describe the love for one’s motherlandCEverywhere I look outside my home I see people busy on their high-tech devices, while driving, walking, shopping, even sitting in toilets. When connected electronically, they are away from physical reality.People have been influenced to become technology addicted. One survey reported that “addicted” was the word most commonly used by people to describe their relationship to iPad and similar devices. One study found that people had a harder time resisting the allure of social media than they did for sleep, cigarettes and alcohol.The main goal of technology companies is to get people to spend more money and time on their products, not to actually improve our quality of life. They have successfully created a cultural disease. Consumers willingly give up their freedom, money and time to catch up on the latest information, to keep pace with their peers or to appear modern.I see people trapped in a pathological (病态的) relationship with time-sucking technology, where they serve technology more than technology serves them. I call this technology servitude. I am referring to a loss of personal freedom and independence because of uncontrolled consumption of many kinds of devices that eat up time and money.What is a healthy use of technology devices? That is the vital question. Who is really in charge of my life? That is what people need to ask themselves if we are to have any chance of breaking up false beliefs about their use of technology. When we can live happily without using so much technology for a day or a week, then we can regain control and personal freedom, become the master of technology and discover what there is to enjoy in life free of technology. Mae West is famous for proclaiming the wisdom that “too much of a good thing is wonderful.” But it’s time to discover that it does not work for technology.Richard Fernandez, an executive coach at Google acknowledged that “w e can be swept away by our technologies.” To break the grand digital connection people must consider how life long ago could be fantastic without today’s overused technology.8. The underlined word “allure” in Paragraph 2 probably means ________.A. adaptionB. attractionC. attemptD. advantage9. From the passage, technology companies aim to ________.A. deal with cultural diseasesB. provide the latest informationC. improve people’s quality of lifeD. attract people to buy their products10. It can be inferred from this passage that people ________.A. consider too much technology wonderfulB. have realized the harm of high-tech devicesC. can regain freedom without high-tech devicesD. may enjoy life better without overused technology11. What’s the author’s attitude towards the overusing of high-tech devices?A. Neutral.B. Skeptical.C. Disapproving.D. Sympathetic.DAntarctica’s Lake Vostok has long been a mystery to scientists. Sealed(密封) off from the outside world for millions of years, Vostok is buried beneath 13 000 feet of ice. The huge underground lake is the size of Lake Ontario and is located in one of Antarctica’s coldest regions. Scientists want to know:What lives below the ice?They might find out soon. After more than 10 years, a team of Russian scientists have finally been able to drill through the ice into Vostok’s ancient waters. Vostok lies below one of the coldest zones on Earth, and the ice here is denser than ice elsewhere on the planet. Drilling can ta ke place each year only during Antarctica’s warmest weather. This is when the ice is easier to drill, and the temperatures are not as severe for scientists living in the Vostok Research Station, which is above the lake. Numerous past attempts to reach the lake, including one last year, failed because the scientists did not finish drilling before the weather became too cold.Scientists estimate that V ostok has been closed off from the outside world for approximately 30 million years. Signs of tiny organisms called microbes (微生物)were discovered years ago in the ice above the lake. Some researchers think similar life-forms could be thriving (兴盛的,繁荣的) below the ice shielding V ostok's waters.Ancient forms of life that could remain in these waters might reveal new information about how organisms can survive in extreme environments, and about how life used to exist on Earth millions of years ago.“For me, the discovery of this lake is comparable with the first flight into space,” says expedition director Valery Lukin.“By technological complexity, by importance, by uniqueness.”More than 350 underground lakes are frozen below Antarctica, and Lake V ostok is one of the largest. Teams of scientists are now planning to drill into similar lakes throughout Antarctica. In December (summertime in the Southern Hemisphere), an American team will be tunneling into Lake Whillans near the South Pole, and a British team will attempt to reach Lake Ellsworth in West Antarctica.12. Russian scientists drilled through the ice into Lake Vostok ________.A. to fetch some ancient waterB. to find some ancient forms of lifeC. to explore natural resourcesD. to measure the thickness of ice13. Based on their findings what are researchers expected to do?A. To know the geographical features of Antarctica.B. To solve mysteries of the ice at the South Pole.C. To analyze the evolution history of the earth.D. To open Antarctica’s 30­million­year­old secrets.14. Research on Antarctica underground lakes like these can be considered ________.A. the path of guiding human developmentB. the result of human struggle for existenceC. a new frontier for scientistsD. a great victory against nature15. Which of the following statements is NOT true?A. The task of Russian scientists drilling is quite challenging.B. British and US teams are targeting Lakes Ellsworth and Whillans respectively.C. The attempt to drill might fail during the Antarctic winter.D. What was in the waters of Antarctica lakes has been revealed.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后选项中选出能填入空白处的最佳选项。

广东省深圳高级中学2017届高三数学上学期第一次考试试题理

广东省深圳高级中学2017届高三数学上学期第一次考试试题理

2016—2017学年深圳市高级中学高三年级第一次考试理 科 数 学一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列函数中,既是偶函数又在(0,)+∞上单调递增的是 ( )A .y =e xB .y =ln x 2C .y =xD .y =sin x2.函数f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6的值域为 ( ).A .[-2,2]B .[-3,3]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-32,32 3.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ). A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞)4.若12()2(),f x x f x dx =+⎰则1()f x dx =⎰ ( )A.1-B.13-C.13 D.15.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于 ( ). A.32B.332C.3+62D.3+3946.函数ln cos ()22y x x ππ=-<<的图象是 ( )7.将函数y =sin ⎝ ⎛⎭⎪⎫6x +π4的图象上各点的横坐标伸长到原来的3倍,再向右平移π8个单位,得到的函数的一个对称中心是 ( ).A.⎝ ⎛⎭⎪⎫π2,0B.⎝ ⎛⎭⎪⎫π4,0C.⎝ ⎛⎭⎪⎫π9,0D.⎝ ⎛⎭⎪⎫π16,08.. 设147()9a -=,159()7b =,27log 9c =,则a , b , c 的大小顺序是 ( )A 、b a c <<B 、c a b <<C 、c b a <<D 、b c a <<9.若()sin()cos()(0)f x x x ωϕωϕω=+++>的最小正周期为π,(0)f = )A .()f x 在(,)44ππ-单调递增B .()f x 在(,)44ππ-单调递减C .()f x 在(0,)2π单调递增 D .()f x 在(0,)2π单调递减 10.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为 ( )A .1B .12C .52D .2211.已知函数()f x =()x R ∈,若关于x 的方程()10f x m -+=恰好有3个不相等的实数根,则实数m 的取值范围为 ( )A.1) B. C .1(1,1)e + D.12 .设a b c x y ===+,若对任意的正实数,x y ,都存在以,,a b c 为三边长的三角形,则实数p 的取值范围是 ( ) A .(1,3) B .(]1,2 C .17(,)22D .以上均不正确二、填空题(本大题共4小题,每小题5分,共20分.)13.函数f (x )=⎪⎩⎪⎨⎧≥-<-)2(),1(log )2(,2231x x x e x ,则不等式f (x )>2的解集为 . 14.已知2sin sin 3παα⎛⎫-+=⎪⎝⎭,则7sin 6πα⎛⎫+ ⎪⎝⎭的值是 . 15. 在中,内角、、的对边分别为、、,且,,则面积的最大值为 .16. 已知定义在R 上的函数()f x 同时满足以下三个条件[1,0](1)()(2)0(2)()(2)(3)()1,(0,1]x f x f x f x f x f x x x ∈-+-==--=-∈⎪⎩,,则函数()f x 与函数122,0()=log ,0x x g x x x ⎧≤⎪⎨>⎪⎩的图像在区间[-3, 3 ]上公共点个数为 个三、解答题: 本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图ABC ∆中,已知点D 在BC边上,且0,sin AD AC BAC =∠=,AB BD ==.(Ⅰ)求AD 的长; (Ⅱ)求cos C .18 (本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式.(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,从平均利润来看,你认为应购进16枝还是17枝?请说明理由.19(本小题满分12分)如图,四棱柱1111ABCD A BC D -的底面ABCDAC BD O = ,1AO ⊥底面ABCD ,1==AA AB (Ⅰ)证明:平面1ACO ⊥平面11BB D D ; (Ⅱ)若60BAD ∠=,求二面角1B OB C --的余弦值. 20. (本小题满分12分)设函数()()()2ln 1af x x a R x=-+∈ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当2x >, ()()ln 12x x a x ->-恒成立,求实数a 的取值范围.21. (本小题满分12分)已知函数()5ln f x x =+,()()1kxg x k R x =∈+ (I )若函数()f x 在点()()1,1f 处的切线与函数()y g x =的图像相切,求k 的值; (II )若k N *∈,且()1,x ∈+∞时,恒有()()f x g x >,求k 的最大值.(参考数据:ln 5 1.61≈,ln 6 1.7918≈,)ln10.8814=)请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲 如图,点,,,A B D E 在O 上,ED 、AB 的延长线交于 点C ,AD 、BE 交于点F ,AE EB BC ==.(1)证明: DEBD =; (2)若2DE =,4AD =,求DF 的长.23. (本小题满分10分)选修4-4:坐标系与参数方程 在极坐标系中,已知曲线:,4C P πρθ⎛⎫=- ⎪⎝⎭为曲线C 上的动点,定点1,4Q π⎛⎫⎪⎝⎭.(1)将曲线C 的方程化成直角坐标方程; (2)求,P Q 两点的最短距离.24. (本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x =+--. (1)求不等式()2f x >的解集; (2)若()211,2x R f x t t ∀∈≥-恒成立, 求实数t 的取值范围. 2016—2017学年深圳市高级中学高三年级第一次考试理科数学答题卷二、填空题 (每小题5分,共20分,请将答案写在答卷上)13._______________ 14.__________________ 15. _________________16. _____________三、解答题(第17-21题,每题12分,第22题10分,共70分)17.18.19.20.21.22(23或24).2016—2017学年深圳市高级中学高三年级第一次考试理科数学答案 1. B 2. B 3. B 4.【解】设()1m f x dx=⎰,则2()2f x x m=+,()111123011()2()2233f x dx x f x dx dx x mx m m =+=+=+=⎰⎰⎰,所以13m =-.5.B 解析 设AB =c ,BC 边上的高为h .由余弦定理,得AC 2=c 2+BC 2-2BC ·c cos 60°,即7=c 2+4-4c cos60°,即c 2-2c -3=0,∴c =3(负值舍去).又h =c ·sin 60°=3×32=332,故选B. 6.A 7. A 8.. C 9.D 【解析】∵())4f x x πωϕ=++,22T πω==,∴())4f x x πϕ=++,∴(0))4f πϕ=+=,∴2,42k k Z ππϕπ+=+∈,取4πϕ=.∴())244f x x x ππ=++=,故选D . 10. D11. A ..当0x≤时,()f x =min()(0)0f x f ==;当0x >时,()f x =()f x '=,则12x >时,()0f x '<,102x <<时,()0f x '>,即()f x 在102⎛⎫ ⎪⎝⎭,上递增,在12⎛⎫+∞ ⎪⎝⎭,上递减,1()2f x f ⎛⎫== ⎪⎝⎭极大值.其大致图象如图3所示,若关于x 的方程()10f x m -+=恰好 有3个不相等的实数根,则01m <-<11m <<+,故选A . 12 . A .答案.A 【解析】因,x y 为正实数,则c a >,要使,,a b c 为三边的三角形存在,则a b ca c b+>⎧⎨+>⎩,即c a b a c -<<+p <,令x y t y x =+,则2t ≥,取图313.(1,2)∪(10,+∞) 14. 45-15.【解析】由余弦定理和,得,可推出,又由和得,当时,,∴面积的最大值为.16. 617. 解:(Ⅰ)因为AD AC ⊥,所以sin sin cos 2BAC BAD BAD π⎛⎫=+∠=⎪⎝⎭,所以cos BAD =······················ 2分 在ABD ∆中,由余弦定理可知,2222cos BD AB AD AB AD BAD =+-即28150AD AD -+=, ······················ 4分 解之得5AD =或3AD =, 由于AB AD >,所以3AD =. ······· 6分(Ⅱ)在ABD ∆中,由正弦定理可知,sin sin BD ABBAD ADB =,又由cos 3BAD =1sin 3BAD = ·············· 8分所以sin sin AB BAD ADB BD ==················ 10分因为2ADB DAC C C π∠=∠+∠=+∠,即cos C = ········ 12分18 解:(Ⅰ)当16n ≥时,16(105)80y =⨯-=, 当15n ≤时,55(16)1080y n n n =--=-,得:1080(15),()80(16)n n y n n -≤⎧=∈⎨≥⎩N . ……………4分(Ⅱ)(i )X 可取60,70,80.(60)0.1,(70)0.2,(80)0.7P X P X P X ====== X 的分布列为,222160.160.240.744DX=⨯+⨯+⨯=.……………10分(ii)购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4 y=⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=因为76.476>得,应购进17枝.19解:19(Ⅰ)证明:因为1AO⊥平面ABCD,BD⊂平面ABCD,所以1AO BD⊥.………………1分因为ABCD是菱形,所以CO BD⊥.………因为1AO CO O=,所以BD⊥平面1A CO因为BD⊂平面11BB D D,所以平面11BB D D⊥平面1ACO.…………………………………………………4分(Ⅱ):因为1AO⊥平面ABCD,CO BD⊥,以O为原点,OB,OC,1OA方向为x,y,z轴正方向建立如图所示空间直角坐标系.………………………5分因为12AB AA==,60BAD∠= ,所以1OB OD==,OA OC==11OA==.………………6分则()1,0,0B,()C,()0,A,A所以()11BB AA==,(11+OB OB BB==.………………………7分设平面1OBB的法向量为(),,x y z=n,因为()1,0,0OB=,()1OB=,所以0,0.xx z=⎧⎪⎨+=⎪⎩令1=y,得(0,1,=n.…………9分同理可求得平面1OCB的法向量为()1,0,1=-m.………………………………10分所以cos ,<>==n m .…………………………………………………11分 因为二面角1B OB C --的平面角为钝角,所以二面角1B OB C --的余弦值为4-.……………………………………12分20. 解:(Ⅰ)由题易知函数()f x 的定义域为()1,+∞,2221222()1(1)a x ax af x x x x x -+'=-=--,……………2分设22()22,484(2)g x x ax a a a a a =-+∆=-=-0,02,()0,()0,()(1,)a g x f x f x '∆≤≤≤≥≥+∞①当即时所以在上是增函数………………………………3分0,(),1,()(1)0()0,()(1,)a g x x a x g x g f x f x <=>>>'>+∞②当时的对称轴当时所以在是增函数………………………………4分2121212121212122,,()2201,1,()0,()(1,),(,),()0,()(,)a x x x x x ax a x a x a x x x x f x f x x x x x x f x f x x x ><-+===+'<<>>+∞'<<<③当时设是方程的两个根则当或时在上是增函数当时在上是减函数………………………………5分综合以上可知:当2a ≤时,()f x 的单调递增区间为()1,+∞,无单调减区间; 当2a >时,()f x的单调递增区间为(()1,,a a +∞,单调减区间为(a a ; ………………………………6分 (Ⅱ)当2x >时,()()()2ln 12ln 1()0ax x a x x a f x a x->-⇔--+=-> ………………………………………………7分()()h x f x a =-令,由(Ⅰ)知2,()(1,),()(2,)2,()(2)0,a f x h x x h x h ≤+∞+∞>>=①当时在上是增函数所以在上是增函数因为当时上式成立;2,()(,()a f x a a h x >+②当时因为在上是减函数所以在(2,,a +上是减函数(2,,()(2)0,x a h x h ∈+<=所以当时上式不成立.综上,a 的取值范围是(],2-∞. ………………………………………………12分21. 【解析】:(I )已知()15f =,且()1f x x'=,从而得到()11f '=. 函数()f x 在点()()1,1f 处的切线方程为:51y x -=-,即4y x =+.………………2分 方法1:设直线4y x =+与()()1kxg x k R x =∈+相切于点()00,P x y ,从而可得()()0001,4g x g x x '==+,又()()21kg x x '=+,因此有()()02000011 41k g x x kx x x ⎧'==⎪+⎪⎨⎪=+⎪+⎩,解得029x k =⎧⎨=⎩或021x k =-⎧⎨=⎩.………………5分 方法2:联立41y x kx y x =+⎧⎪⎨=⎪+⎩,得()2540x k x +-+=,所以()25160k ∆=--=,解得19k k ==或.………………5分(II )方法一:当()1,x ∈+∞时,5ln 1kxx x+>+恒成立, 等价于当()1,x ∈+∞时()()15ln x x k x++<恒成立. ………………6分设()()()()15ln 1x x h x x x++=>,则()()24ln 1x xh x x x --'=>记()()4ln 1p x x x x =-->,则()1110x p x x x-'=-=>,所以()p x 在()1,+x ∈∞递增。

2017年高三深一模数学试卷(理科)(带完美解析)

2017年高三深一模数学试卷(理科)(带完美解析)

2017年广东省深圳市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4}B.{4,6}C.{6,8}D.{2,8}2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.2 B.3 C.﹣2 D.﹣33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A.﹣3 B.﹣1 C.1 D.35.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.B.C.D.26.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h)27.函数f(x)=•cosx的图象大致是()8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac>bc B.a c>b cC.log a(a﹣c)>log b(b﹣c)D.>9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A.335 B.336 C.337 D.33810.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A.B.2 C.3 D.411.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A.B.C.D.12.已知函数f(x)=,x≠0,e为自然对数的底数,关于x的方程+﹣λ=0有四个相异实根,则实数λ的取值范围是()A.(0,)B.(2,+∞)C.(e+,+∞)D.(+,+∞)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|=.14.(﹣)5的二项展开式中,含x的一次项的系数为(用数字作答).15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=.16.已知数列{a n}满足na n﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈+2N*恒成立,则实数λ的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分) △ABC的内角A、B、C的对边分别为a、b、c,已知2a=csinA﹣acosC.(1)求C;(2)若c=,求△ABC的面积S的最大值.18.(12分) 如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.20.(12分) 已成椭圆C: +=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于n2,求n的取值范围.21.(12分) 已知函数f(x)=xlnx,e为自然对数的底数.(1)求曲线y=f(x)在x=e﹣2处的切线方程;(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1﹣x2|<2a+1+e﹣2.[选修4-4:坐标系与参数方程]22.在直角坐标系中xOy中,已知曲线E经过点P(1,),其参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA⊥OB,求证: +为定值,并求出这个定值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a﹣3∈M,求实数a的取值范围;(2)若[﹣1,1]⊆M,求实数a的取值范围.2017年广东省深圳市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4}B.{4,6}C.{6,8}D.{2,8}【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:∵A={2,4,6,8},B={x|x2﹣9x+18≤0}={x|(x﹣3)(x﹣6)≤0}={x|3≤x ≤6},∴A∩B={4,6},故选:B.2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.2 B.3 C.﹣2 D.﹣3【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,根据已知条件列出方程组,求解即可得答案.【解答】解:==,∵复数(a∈R)为纯虚数,∴,解得:a=﹣2.故选:C.3.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】现从中随机选取三个球,基本事件总数n==4,所选的三个球上的数字能构成等差数列包含的基本事件的个数,由此能求出所选的三个球上的数字能构成等差数列的概率.【解答】解:袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,基本事件总数n==4,所选的三个球上的数字能构成等差数列包含的基本事件有:(2,3,4),(2,4,6),共有2个,∴所选的三个球上的数字能构成等差数列的概率是p==.故选:B.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A.﹣3 B.﹣1 C.1 D.3【考点】等比数列的通项公式.【分析】由等比数列{a n}的前n项和求出前3项,由此能求出利用等比数列{a n}中,,能求出.【解答】解:∵等比数列{a n}的前n项和为S n=a•3n﹣1+b,∴a1=S1=a+b,a2=S2﹣S1=3a+b﹣a﹣b=2a,a3=S3﹣S2=9a+b﹣3a﹣b=6a,∵等比数列{a n}中,,∴(2a)2=(a+b)×6a,解得=﹣3.故选:A.5.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.B.C.D.2【考点】直线与圆的位置关系.【分析】求出圆的标准方程可得圆心和半径,由直线l:kx+y+4=0经过圆C的圆心(﹣2,2),求得k的值,可得点A的坐标,求出圆心到直线的距离,即可得出结论.【解答】解:∵圆C:x2+y2+4x﹣4y+6=0,即(x+2)2+(y﹣2)2 =2,表示以C(﹣2,2)为圆心、半径等于的圆.由题意可得,直线l:kx+y+4=0经过圆C的圆心(﹣2,2),故有﹣2k+2+4=0,∴k=3,点A(0,3).直线m:y=x+3,圆心到直线的距离d==,∴直线m被圆C所截得的弦长为2=.故选:C.6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h)2【考点】由三视图求面积、体积.【分析】由题意,首先得到几何体为一个圆柱挖去一个圆锥,得到截面为圆,明确其半径求面积.【解答】解:由已知得到几何体为一个圆柱挖去一个圆锥,底面半径为2高为2,设截面的圆半径为r,则,得到r=h,所以截面圆的面积为πh2;故选B.7.函数f(x)=•cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】先判断函数的奇偶性,再判断函数值,问题得以解决.【解答】解:f(﹣x)=•cos(﹣x)=•cosx=﹣f(x),∴f(x)为奇函数,∴函数f(x)的图象关于原点对称,当x∈(0,)时,cosx>0,>0,∴f(x)>0在(0,)上恒成立,故选:C8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac>bc B.a c>b cC.log a(a﹣c)>log b(b﹣c)D.>【考点】不等式的基本性质.【分析】根据不等式的性质求出a(b﹣c)>b(a﹣c)以及a﹣c>b﹣c>0,从而求出答案.【解答】解:∵a>b>0,c<0,﹣c>0,∴a﹣c>b﹣c>0,ac<bc,故a(b﹣c)>b(a﹣c),故>,故选:D.9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A.335 B.336 C.337 D.338【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出输出i的值.【解答】解:模拟程序的运行,可得程序框图的功能是统计1到2017这些数中能同时被2和3整除的数的个数i,由于:2017=336×6+1,故程序框图输出的i的值为336.故选:B.10.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A.B.2 C.3 D.4【考点】双曲线的简单性质.【分析】E上任意一点Q(x,y)到两条渐近线的距离之积为d1d2===d2,F(c,0)到渐近线bx﹣ay=0的距离为=b=2d,求出可求双曲线的离心率.【解答】解:E上任意一点Q(x,y)到两条渐近线的距离之积为d1d2===d2,F(c,0)到渐近线bx﹣ay=0的距离为=b=2d,∴,∴e==2,故选B.11.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A. B. C. D.【考点】球的体积和表面积.【分析】求出平面ACB1截此球所得的截面的圆的半径,即可求出平面ACB1截此球所得的截面的面积.【解答】解:由题意,球心与B的距离为=,B到平面ACB1的距离为=,球的半径为1,球心到平面ACB1的距离为﹣=,∴平面ACB1截此球所得的截面的圆的半径为=,∴平面ACB1截此球所得的截面的面积为=,故选A.12.已知函数f(x)=,x≠0,e为自然对数的底数,关于x的方程+﹣λ=0有四个相异实根,则实数λ的取值范围是()A.(0,)B.(2,+∞)C.(e+,+∞)D.(+,+∞)【考点】根的存在性及根的个数判断.【分析】求导数,确定函数的单调性,可得x=2时,函数取得极大值,关于x的方程+﹣λ=0有四个相异实根,则t+﹣λ=0的一根在(0,),另一根在(,+∞)之间,即可得出结论.【解答】解:由题意,f′(x)=,∴x<0或x>2时,f′(x)<0,函数单调递减,0<x<2时,f′(x)>0,函数单调递增,∴x=2时,函数取得极大值,关于x的方程+﹣λ=0有四个相异实根,则t+﹣λ=0的一根在(0,),另一根在(,+∞)之间,∴,∴λ>e+,故选:C.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|=5.【考点】平面向量的坐标运算.【分析】⊥,可得=0,解得x.再利用向量模的计算公式即可得出.【解答】解:∵⊥,∴=x+6=0,解得x=﹣6.∴=(﹣5,5).∴|+|==5.故答案为:5.14.(﹣)5的二项展开式中,含x的一次项的系数为﹣5(用数字作答).【考点】二项式系数的性质.【分析】写出二项展开式的通项,由x的指数等于1求得r值,则答案可求.【解答】解:(﹣)5的二项展开式中,通项公式为:=••=(﹣1)r••,T r+1令=1,得r=1;∴二项式(﹣)5的展开式中含x的一次项系数为:﹣1•=﹣5.故答案为:﹣5.15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=3.【考点】简单线性规划.【分析】先画出可行域,得到角点坐标.利用k与0的大小,分类讨论,结合目标函数的最值求解即可.【解答】解:实数x,y满足不等式组的可行域如图:得:A(1,3),B(1,﹣2),C(4,0).①当k=0时,目标函数z=kx﹣y的最大值为12,最小值为0,不满足题意.②当k>0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y过C(4,0)时,Z取得最大值12.当直线z=kx﹣y过A(3,1)时,Z取得最小值0.可得k=3,满足题意.③当k<0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y过C(4,0)时,Z取得最大值12.可得k=﹣3,当直线z=kx﹣y过,B(1,﹣2)时,Z取得最小值0.可得k=﹣2,无解.综上k=3故答案为:3.16.已知数列{a n}满足na n﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈+2N*恒成立,则实数λ的取值范围是[0,+∞).【考点】数列递推式.【分析】把已知递推式变形,可得数列{}的奇数项与偶数项均是以λ为公差的等差数列,分类求其通项公式,代入a n<a n+1,分离参数λ求解.【解答】解:由na n﹣(n+2)a n=λ(n2+2n)=λn(n+2),+2得,∴数列{}的奇数项与偶数项均是以λ为公差的等差数列,∵a1=1,a2=2,∴当n为奇数时,,∴;当n为偶数时,,∴.当n为奇数时,由a n<a n+1,得<,即λ(n﹣1)>﹣2.若n=1,λ∈R,若n>1则λ>,∴λ≥0;当n为偶数时,由a n<a n+1,得<,即3nλ>﹣2,∴λ>,即λ≥0.综上,λ的取值范围为[0,+∞).故答案为:[0,+∞).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的内角A、B、C的对边分别为a、b、c,已知2a=csinA﹣acosC.(1)求C;(2)若c=,求△ABC的面积S的最大值.【考点】正弦定理;余弦定理.【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin(C﹣)=1,结合C的范围,可得C的值.(2)由余弦定理,基本不等式可求ab≤1,进而利用三角形面积公式可求△ABC面积的最大值.【解答】(本题满分为12分)解:(1)∵2a=csinA﹣acosC,∴由正弦定理可得:2sinA=sinCsinA﹣sinAcosC,…2分∵sinA≠0,∴可得:2=sinC﹣cosC,解得:sin(C﹣)=1,∵C∈(0,π),可得:C﹣∈(﹣,),∴C﹣=,可得:C=.…6分(2)∵由(1)可得:cosC=﹣,∴由余弦定理,基本不等式可得:3=b2+a2+ab≥3ab,即:ab≤1,(当且仅当b=a时取等号) (8)分=absinC=ab≤,可得△ABC面积的最大值为.…12分∴S△ABC18.如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)连接EG,由四边形ABCD为菱形,可得AD=AB,BD⊥AC,DG=GB,可证△EAD ≌△EAB,进一步证明BD⊥平面ACEF,则平面ACEF⊥平面ABCD;(2)法一、过G作EF的垂线,垂足为M,连接MB,MG,MD,可得∠EAC为AE与面ABCD 所成的角,得到EF⊥平面BDM,可得∠DMB为二面角B﹣EF﹣D的平面角,在△DMB中,由余弦定理求得∠BMD的余弦值,进一步得到二面角B﹣EF﹣D的余弦值;法二、在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,得MG⊥平面ABCD,则直线GM、GA、GB两两互相垂直,分别以GA、GB、GM 为x、y、z轴建立空间直角坐标系G﹣xyz,分别求出平面BEF与平面DEF的一个法向量,由两法向量所成角的余弦值可得二面角B﹣EF﹣D的余弦值.【解答】(1)证明:连接EG,∵四边形ABCD为菱形,∴AD=AB,BD⊥AC,DG=GB,在△EAD和△EAB中,AD=AB,AE=AE,∠EAD=∠EAB,∴△EAD≌△EAB,∴ED=EB,则BD⊥EG,又AC∩EG=G,∴BD⊥平面ACEF,∵BD⊂平面ABCD,∴平面ACEF⊥平面ABCD;(2)解法一:过G作EF的垂线,垂足为M,连接MB,MG,MD,易得∠EAC为AE与面ABCD所成的角,∴∠EAC=60°,∵EF⊥GM,EF⊥BD,∴EF⊥平面BDM,∴∠DMB为二面角B﹣EF﹣D的平面角,可求得MG=,DM=BM=,在△DMB中,由余弦定理可得:cos∠BMD=,∴二面角B﹣EF﹣D的余弦值为;解法二:如图,在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,∵MG⊥平面ABCD,∴直线GM、GA、GB两两互相垂直,分别以GA、GB、GM为x、y、z轴建立空间直角坐标系G﹣xyz,可得∠EAC为AE与平面ABCD所成的角,∴∠EAC=60°,则D(0,﹣1,0),B(0,1,0),E(),F(),,,设平面BEF的一个法向量为,则,取z=2,可得平面BEF的一个法向量为,同理可求得平面DEF的一个法向量为,∴cos<>==,∴二面角B﹣EF﹣D的余弦值为.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)利用分段函数的性质即可得出.(2)利用(1),结合频率分布直方图的性质即可得出.(3)由题意可知X可取50,150,250,350,450,550.结合频率分布直方图的性质即可得出.【解答】解:(1)当0≤x≤200时,y=0.5x;当200<x≤400时,y=0.5×200+0.8×(x﹣200)=0.8x﹣60,当x>400时,y=0.5×200+0.8×200+1.0×(x﹣400)=x﹣140,所以y与x之间的函数解析式为:y=.(2)由(1)可知:当y=260时,x=400,则P(x≤400)=0.80,结合频率分布直方图可知:0.1+2×100b+0.3=0.8,100a+0.05=0.2,∴a=0.0015,b=0.0020.(3)由题意可知X可取50,150,250,350,450,550.当x=50时,y=0.5×50=25,∴P(y=25)=0.1,当x=150时,y=0.5×150=75,∴P(y=75)=0.2,当x=250时,y=0.5×200+0.8×50=140,∴P(y=140)=0.3,当x=350时,y=0.5×200+0.8×150=220,∴P(y=220)=0.2,当x=450时,y=0.5×200+0.8×200+1.0×50=310,∴P(y=310)=0.15,当x=550时,y=0.5×200×0.8×200+1.0×150=410,∴P(y=410)=0.05.故Y的概率分布列为:Y2575140220310410P0.10.20.30.20.150.05所以随机变量Y的数学期望EY=25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05=170.5.20.已成椭圆C: +=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于n2,求n的取值范围.【考点】椭圆的简单性质.【分析】(1)由题意求得a,直线A2B2的方程为,利用点到直线的距离公式,即可求得b的值,求得椭圆C的方程;(2)设直线方程,代入椭圆方程,由△=0,求得m和n的关系,利用三角形的面积公式,求得m的取值范围,代入即可求得n的取值范围.【解答】解:(1)由题意知2a=4,所以a=2,所以A1(﹣2,0),A2(2,0),B1(0,﹣b),B2(0,b),则直线A2B2的方程为,即bx+2y﹣2b=0,所以=,解得b2=3,故椭圆C的方程为;(2)由题意,可设直线l的方程为x=my+n,m≠0,联立,消去x得(3m2+4)y2+6mny+3(n2﹣4)=0,(*)由直线l与椭圆C相切,得△=(6mn)2﹣4×3×(3m2+4)(n2﹣4)=0,化简得3m2﹣n2+4=0,设点H(mt+n,t),由(1)知F1(﹣1,0),F2(1,0),则•=﹣1,解得:t=﹣,所以△F1HN的面积=(n+1)丨﹣丨=,代入3m2﹣n2+4=0,消去n化简得=丨m丨,所以丨m丨≥n2=(3m2+4),解得≤丨m丨≤2,即≤m2≤4,从而≤≤4,又n>0,所以≤n≤4,故n的取值范围为[,4].21.已知函数f(x)=xlnx,e为自然对数的底数.(1)求曲线y=f(x)在x=e﹣2处的切线方程;(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1﹣x2|<2a+1+e﹣2.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f′(e﹣2)和f(e﹣2)的值,求出切线方程即可;(2)求出函数g(x)的导数,得到函数的单调区间,求出函数的极小值,从而求出λ的值即可;(3)记h(x)=f(x)﹣(﹣x﹣e﹣2)=xlnx+x+e﹣2,求出h(x)的最小值,得到a=﹣1=f(x2)≥x2﹣1,得到|x1﹣x2|=x2﹣x1≤﹣,从而证出结论.【解答】解(1)对函数f(x)求导得f′(x)=lnx+1,∴f′(e﹣2)=lne﹣2+1=﹣1,又f(e﹣2)=e﹣2lne﹣2=﹣2e﹣2,∴曲线y=f(x)在x=e﹣2处的切线方程为y﹣(﹣2e﹣2)=﹣(x﹣e﹣2),即y=﹣x﹣e﹣2;(2)记g(x)=f(x)﹣λ(x﹣1)=xlnx﹣λ(x﹣1),其中x>0,由题意知g(x)≥0在(0,+∞)上恒成立,下面求函数g(x)的最小值,对g(x)求导得g′(x)=lnx+1﹣λ,令g′(x)=0,得x=eλ﹣1,当x变化时,g′(x),g(x)变化情况列表如下:x(0,eλ﹣1)eλ﹣1(eλ﹣1,+∞)g′(x)﹣0+g(x)递减极小值递增∴g(x)min=g(x)极小值=g(eλ﹣1)=(λ﹣1)eλ﹣1﹣λ(eλ﹣1﹣1)=λ﹣eλ﹣1,∴λ﹣eλ﹣1≥0,记G(λ)=λ﹣eλ﹣1,则G′(λ)=1﹣eλ﹣1,令G′(λ)=0,得λ=1,当λ变化时,G′(λ),G(λ)变化情况列表如下:λ(0,1)1(1,+∞)G′(λ)+0﹣G(λ)递增极大值递减∴G(λ)max=G(λ)极大值=G(1)=0,故λ﹣eλ﹣1≤0当且仅当λ=1时取等号,又λ﹣eλ﹣1≥0,从而得到λ=1;(3)先证f(x)≥﹣x﹣e﹣2,记h(x)=f(x)﹣(﹣x﹣e﹣2)=xlnx+x+e﹣2,则h′(x)=lnx+2,令h′(x)=0,得x=e﹣2,当x变化时,h′(x),h(x)变化情况列表如下:x(0,e﹣2)e﹣2(e﹣2,+∞)h′(x)﹣0+h(x)递减极小值递增∴h(x)min=h(x)极小值=h(e﹣2)=e﹣2lne﹣2+e﹣2+e﹣2=0,h(x)≥0恒成立,即f(x)≥﹣x﹣e﹣2,记直线y=﹣x﹣e﹣2,y=x﹣1分别与y=a交于(,a),(,a),不妨设x1<x2,则a=﹣﹣e﹣2=f(x1)≥﹣x1﹣e﹣2,从而<x1,当且仅当a=﹣2e﹣2时取等号,由(2)知,f(x)≥x﹣1,则a=﹣1=f(x2)≥x2﹣1,从而x2≤,当且仅当a=0时取等号,故|x1﹣x2|=x2﹣x1≤﹣=(a+1)﹣(﹣a﹣e﹣2)=2a+1+e﹣2,因等号成立的条件不能同时满足,故|x1﹣x2|<2a+1+e﹣2.[选修4-4:坐标系与参数方程]22.在直角坐标系中xOy中,已知曲线E经过点P(1,),其参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA⊥OB,求证: +为定值,并求出这个定值.【考点】参数方程化成普通方程.【分析】(1)将点P(1,),代入曲线E的方程,求出a2=3,可得曲线E的普通方程,即可求曲线E的极坐标方程;(2)利用点的极坐标,代入极坐标方程,化简,即可证明结论.【解答】解:(1)将点P(1,),代入曲线E的方程:,解得a2=3,所以曲线E的普通方程为=1,极坐标方程为=1;(2)不妨设点A,B的极坐标分别为A(ρ1,θ),B(ρ2,),则代入曲线E的极坐标方程,可得+==,即+为定值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a﹣3∈M,求实数a的取值范围;(2)若[﹣1,1]⊆M,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)将x=a﹣3代入不等式,解关于a的不等式即可;(2)得到|x+a|<3恒成立,即﹣3﹣x<a<3﹣x,当x∈[﹣1,1]时恒成立,求出a的范围即可.【解答】解:(1)依题意有:|2a﹣3|<|a|﹣(a﹣3),若a≥,则2a﹣3<3,∴≤a<3,若0≤a<,则3﹣2a<3,∴0<a<,若a≤0,则3﹣2a<﹣a﹣(a﹣3),无解,综上所述,a的取值范围为(0,3);(2)由题意可知,当x∈[﹣1,1]时,f(x)<g(x)恒成立,∴|x+a|<3恒成立,即﹣3﹣x<a<3﹣x,当x∈[﹣1,1]时恒成立,∴﹣2<a<2.。

2020届广东省深圳市高级中学2017级高三上学期第一次测试理科综合物理试卷及解析

2020届广东省深圳市高级中学2017级高三上学期第一次测试理科综合物理试卷及解析

2020届深圳市高级中学2017级高三上学期第一次测试理科综合物理试卷★祝考试顺利★一、选择题1.现在两个质量相同的物体,一个置于光滑水平面上,另一个置于粗糙水平面上,用相同的水平力推物体,下列说法正确的是( )A. 光滑水平面上的物体相同时间内获得的速度大,所以运动状态容易改变B. 因为两者受到相同的水平推力,所以运动状态改变难易一样C. 两个物体从静止到运动,粗糙水平面上的物体需要的力更大,所以其运动状态难以改变D. 因为两者质量一样,所以运动状态改变难易程度一样【答案】D【解析】【详解】运动状态的变化与惯性有关,而质量是惯性的唯一标准A. 光滑水平面上的物体相同时间内获得的速度大,由于质量相等所以运动状态改变难易程度一样,故A 错误B. 运动状态的变化和受到的推力大小无关,由质量决定,故B 错误;C. 两个物体从静止到运动,粗糙水平面上的物体需要的力更大,由于质量相等所以运动状态改变难易程度一样,故C 错误D. 因为两者质量一样,所以运动状态改变难易程度一样,故D 正确2.转笔是一项深受广大中学生喜爱的休闲活动,其中也包含了许多的物理知识。

如图所示,假设某同学将笔套套在笔杆的一端,在转笔时让笔杆绕其手指上的某一点O 在竖直平面内做匀速圆周运动,则下列叙述中正确的是( )A. 笔套做圆周运动的向心力是由笔杆对其的摩擦力提供的B. 笔杆上离O 点越近的点,做圆周运动的向心加速度越大C. 当笔杆快速转动时笔套有可能被甩走D. 由于匀速转动,笔套受到的摩擦力大小不变【答案】C【解析】【详解】A.笔杆在竖直面内做匀速圆周运动,所以笔套做圆周运动的向心力是由重力、笔杆对其的摩擦力以及笔杆对其产生的弹力的合力提供的,故A 错误B.笔杆上的各个点都做同轴转动,所以角速度是相等的,根据2a r ω= ,笔杆上离O 点越近的点,做圆周运动的向心加速度越小,故B 错误C. 转速过大时,当提供的向心力小于需要向心力时,笔套有可能做离心运动被甩走,故C 正确,D.笔杆在竖直方向做匀速圆周运动,所以重力、弹力、摩擦力的合力一直指向圆心,且大小不变,根据受力可知,摩擦力大小不可能大小不变,故D 错误;3.如图所示,地面上固定有一半径为R 的半圆形凹槽,O 为圆心、AB 为水平直径、现将小球(可视为质点)从A 处以初速度v 1水平抛出后恰好落到D 点:若将该小球从A 处以初速度v 2水平抛出后恰好落到C 点,C 、D 两点等高,OC 与水平方向的夹角θ=60°,不计空气阻力,则下列说法正确的是( )A. v 1:v 2=l :4B. 小球从开始运动到落到凹槽上的过程中,其两次的动量变化量相同C. 小球落在凹槽上时,其两次的重力的瞬时功率不同D. 小球落到C 点时,速度方向可能与该处凹槽切面垂直【答案】B【解析】【详解】过C 与D 分别做AB 的垂线,交AB 分别与M 点与N 点,如图:。

深圳市2017届高三年级第一次调研考试理科综合试题及答案

深圳市2017届高三年级第一次调研考试理科综合试题及答案

深圳市2017届高三年级第一次调研考试理科综合本试卷共16页,38题(含选考题)。

全卷满分300分。

考试用时150分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

签在试题卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号在答题卡指定的位置用统一提供的2B铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 Mg 24 S 32 Ca 40 Zn 65第I卷选择题一、选择题本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列与细胞相关的叙述,错误..的是A.线粒体和核仁都是含有DNA的细胞器B.洋葱鳞片叶内表皮细胞可发生质壁分离C.硝化细菌可依靠有氧呼吸利用葡萄糖的能量D.线粒体不能分解葡萄糖但可产生A TP2.下列关于基因指导蛋白质合成的叙述,正确的是A.遗传信息从碱基序列到氨基酸序列不会损失B.密码子中碱基的改变一定会导致氨基酸改变C.DNA通过碱基互补配对决定mRNA的序列D.每种tRNA可以识别并转运多种氨基酸3.在低温诱导植物染色体数目变化实验中,下列说法合理的是A.剪取0.5~1cm洋葱根尖放入4℃的低温环境中诱导B.待根长至1cm左右时将洋葱放入卡诺氏液中处理C.材料固定后残留的卡诺氏液用95%的酒精冲洗D.经龙胆紫染液染色后的根尖需用清水进行漂洗4.下列关于神经细胞的说法中,正确的是A.神经细胞不能向细胞外分泌化学物质B.静息状态下钾离子外流需要消耗ATPC.受刺激后细胞膜外电位变为负电位D.膝跳反射过程中兴奋的传导是双向的5.松土是农作物栽培的传统耕作措施。

广东省深圳市富源学校2017届高三第一次考试数学(理)试题含答案

广东省深圳市富源学校2017届高三第一次考试数学(理)试题含答案

广东省深圳市富源学校2017届高三第一次考试(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)注意事项:1.答卷Ⅰ前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上.2。

答卷Ⅰ时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

一、 选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.复数512i-(i 为虚数单位)的虚部是( ) A .2iB .2i -C .2-D .22.已知集合{|A x y ==,2{|20}B x x x =-<,则A ∩B =( )A .(0,2]B .(0,2)C .(,2]-∞D .(2,)+∞3。

下列函数在其定义域上既是奇函数又是减函数的是( )A .()2x f x =B .()sin f x x x =C .1()f x x =D .()||f x x x =-4。

设双曲线2214y x -=上的点P 到点的距离为6,则P 点到(0,的距离是( ) A .2或10B .10C .2D .4或85.下列有关命题说法正确的是( )A . 命题p :“sin +cos =x x x ∃∈R ,则⌝p 是真命题B .21560x x x =---=“”是“”的必要不充分条件 C .命题2,10x x x ∃∈++<R “使得”的否定是:“210x x x ∀∈++<R ," D .“1>a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件6.已知函数()2,1,1,1,1x x x f x x x⎧-≤⎪=⎨>⎪-⎩则()()2f f -的值为( ) A .12B .15C .15-D .12- 7.2015年高中生技能大赛中三所学校分别有3名、2名、1名学生获奖,这6名学生要排成一排合影,则同校学生排在一起的概率是( )A .130B .115C .110D .15 8.执行如图8的程序框图,若输出S 的值是12,则a 的值可以为( )A .2014B .2015C .2016D .20179.若nx x ⎪⎭⎫ ⎝⎛-321的展开式中存在常数项,则n 可以为( )A .8B .9C .10D .1110。

2017年广东省深圳市三校联考高考数学一模试卷(理科)

2017年广东省深圳市三校联考高考数学一模试卷(理科)

2017年广东省深圳市三校联考高考数学一模试卷(理科)、选择题(共12小题,每小题5分,满分60分) 1.( 5 分)已知集合 A ={x\x ,4} , B ={x Z |_3, x :::0,则 小 B =()A . {-2 , -1, 0}B . (-1,0)C . {-1 , 0}D . (-3,-2)2. ( 5分)命题“ x ・R , si nx .1 ”的否定是()、, J —x 2 — x +2、、3.(5分)函数y的定义域为()lnxA . (-2,1)B . [一2 , 1]C . (0,1)D . (0 , 1]124. ( 5分)定积分|丄x dx =()2A . 0B .C . 1D . 235.( 5分)函数f(x)=log 2x-7的零点包含于区间()xA . (1,2)B . (2,3)C . (3,4)D . (4,::)6. ( 5 分)已知 a=O.30.3, b=1.2°.3, ^log r2 0.3,则 a , b ,A . c ::: a ::: b“ x 2 -2x -8 0 ”是“ x 5 ”的必要不充分条件,则下列命题正确的是( )A . p qB . p (—q )C . (—p ) (—q )D . (_P )q& ( 5分)已知f (x )二4 -x 2 , g (x )=|x-2|,则下列结论正确的是 ()A . h(x) = f (x) g(x)是偶函数B . h(x) =f (x)|_g (x)是奇函数C . h(x) =g(x)U f(x)是偶函数2 —x D . h(x) 幻是奇函数2 —g(x )A . x R , sinx, 1B . 一x R , sinx . 1C . -l x 三 R , sinx = 1D . 一x 三 R ,sinx, 1c 的大小关系为( D . a ■. c ::: b7 . ( 5分)已知命题 p :不等式ax 2 ax 10的解集为 R ,则实数 a (0,4);命题q19. (5分)函数y 的一段大致图象是()sin x -xA . B.第3页(共17页)x R 都有f (x 6) f (x) =2f (3), y#x( 1 的图象关于点(1,0)对称,且f ( 4) = 4,贝U f (2012)=()B.—4 C.—8D. -16x 211. (5分)若函数f (x) = e (x ax b)有极值点x , x?(X i :::X2),且f (X i) = X i,则关于x 的方程f (x),(2 a)f(x) a 5=0的不同实根个数为C. 412 . ( 5分)定义区间[為,X2]的长度为(a a)X_1(^ R,a=0)的定义域与值域都是X2 -x(x yx ) 1单调递增,函数f(x) 2a x 最大长度时实数[m , n](n m),则区间[m , n]取a的值( )A .二3二、填空题B. -3C. 113.(5分)14.(5分)15.(5分)16 . (5分)(本大题共4小题,每小题5分,满分20分.)lg8 Ig125 -Ig2 -Ig5 _lg .10Jg0.11 -Iog2(2 -x)(x ::2)设函数 f (x) 2 3 ,则f(f (3))= ____________ .}2 +3(x …2)L 2设函数f(x)二区马沁的最大值为M,最小值为m,则M 5 =x +4在平面直角坐标系xOy中,直线y =x b是曲线y = alnx的切线,则当a 0时,实数b的最小值是______ •二、解答题(解答须写出文字说明、证明过程和演算步骤. )2 217. ( 12 分)设p :实数x 满足x -4ax 3a ::: 0,q :实数x满足|x 一3| :::1 .(1 )若a =1,且p q为真,求实数x的取值范围;(2)若a .0且-p是-q的充分不必要条件,求实数a的取值范围.118. (12分)已知函数f(x) =(—)ax, a为常数,且函数的图象过点(-1,2).2(1 )求a的值;(2)若g(x) =4丛_2,且g(x) = f (x),求满足条件的x的值.3 219. (12分)已知三次函数f(x)=x bx cx d(a , b , c R)过点(3,0),且函数f (x)在点(0 , f(0))处的切线恰好是直线y =0 .(1)求函数f (x)的解析式;(2)设函数g(x) =9x m -1,若函数y = f (x) —g(x)在区间[_2 , 1]上有两个零点,求实数m的取值范围.a20. (12 分)已知函数f (x)满足f(log a X)=p (x-x」)(其中a . 0 , a=1)a -1(I)求f (x)的表达式;(n)对于函数f (x),当(-1,1)时,f (1-m) • f (1-m2) :::0,求实数m的取值范围;(川)当(-::,2)时,f(x) -4的值为负数,求a的取值范围.21. (12分)设f (x) =(x a)lnx,曲线y = f(x)在点(1 , f (1))处的切线与直线2x y ^0x +1垂直.(1 )求a的值;(2 )若-x • [1,•: :) , f (x), m(x -1)恒成立,求m 的范围.___ n i(3)求证:ln4 2n 1 2 (n N*).i 4i —1[选修4-1:几何证明选讲]22. (10分)如图,AB是圆O的直径,AC是弦,• BAC的平分线AD交圆O于点D ,DE _ AC,交AC的延长线于点E , OE交AD于点F .(1)求证:DE是圆O的切线;(2)若ZCAB =60 , L O的半径为2, EC =1,求DE的值.DO[选修4-4 :坐标系与参数方程]23. 在平面直角坐标系中,直线I过点P(2,3)且倾斜角为二,以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为:「=4cos( ),直线I与曲线3C相交于A,B两点;(1)求曲线C的直角坐标方程;(2)若| AB |二13,求直线I的倾斜角:-的值.[选修4-5:不等式选讲]24. 设函数f (x)斗2x —7| 1 .(1 )求不等式f(x), x的解集;(2)若存在x使不等式f (x) 一2 I x _1|, a成立,求实数a的取值范围.第5页(共仃页)2017年广东省深圳市三校联考高考数学一模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.( 5 分)已知集合 A ={X |X 2:::4} , B 二{x WZ | _3, x :::1},则 小 B =()B ={ x Z | -3, X ::: 1} ={ < , 则 A 「|B 二{_1, 0}. 故选:C .2. ( 5分)命题“ R , si nx 1 ”的否定是【解答】 解:命题是特称命题,则命题的否定是: 一x 0, sinx, 1 , 故选:D ._X 2 _ X ■罷 13. ( 5分)函数y = 的定义域为【解答】解:由题意得:-X 2_X 2・0,即-2剟x 曰1X 0且lnx -0 X 0且x =1解得:0 ::: X <1, 故选:C .4. ( 5分)定积分C .1 c【解答】解:定积分! X dx故选:B .5. ( 5分)函数f (x )=log 2x-7的零点包含于区间()XA . {_2 , -1 , 0}B .(-1,0)C . {-1 , 0}(-3, -2)【解答】解:集合A={X |X 2:::4} ={X | :::::-2 , -1 , 0},A . X R , sinx, 1B . 一x 三 R , sinx 1C .sin x =1 D .一 x R , sinA . (-2,1)B .[-2 , 1]C . (0,1)(0 , 1]lnx1【解答】解:函数f (x) =log 2x -7在(0, •::)上连续,x77 1f (3)= log 2 30 ; f (4) = log 2 40 ;34 4故函数f (x) =log 2X 一7的零点所在的区间是 (3,4).X 故选:C .0 30 36. ( 5 分)已知 a=0.3.,b =1.2 ',c=log i.2 0.3,则 a ,b ,c 的大小关系为()A . c ::: a ::: bB . c ::: b .. aC. a :: b :: cD. a ■ c ::: b【解答】 解:a =0.30.3 €(0,1) , b=1.20.3>1 , c=log 1.2 0.3 c 0 , .c ::: a ::: b , 故选:A . 7.(5分)已知命题 p :不等式ax 2 ax 1 0的解集为 R ,则实数 a (0,4);命题q “ x 2 -2x -8 0 ”是“ x 5 ”的必要不充分条件,则下列命题正确的是 ( )A . p qB . p (—q)C . (一p) (-q)D . (一p) q【解答】解:命题p :不等式ax 2 ax 1 0的解集为R , a = 0时,可得1 ■ 0恒成立;a = 0时,可得:a 月 ,解得0 ::: a :::4 ,综上可得:实数a ・[0 , 4),因此p 是假命a -4a ::: 0题;命题q : x 2 —2x -8 • 0 ,解得x 4或x ::: -2 .因此“ x 2 —2x 「8 0 ”是“ x 5 ”的必要不充分条件,是真命题. 下列命题正确的是(一p) q . 故选:D .&( 5分)已知f(x)=;;;4-x 2 , g(x)鬥x-2|,则下列结论正确的是( )A . h(x)二 f (x) • g(x)是偶函数B . h(x) =f (x)Lg (x)是奇函数A • (1,2)B • (2,3)C . (3,4)D . (4,::)C . h(x) =g(x)U f(x)是偶函数2 —x1D . h(x) 竺是奇函数2—g(x )【解答】解:f(x) = 4 -x 2 , g(x)=|x-2|,A . h(x)二 f (x) g(x) = .4 —x 2 |x —2|二 4 — x 2 2 —x , x“-2 , 2].h( _x) »4 —x 22 x ,不满足函数的奇偶性的定义,是非奇非偶函数.B . h(x)二 f (x)|_g(x) = 4-x 2|x-2|二 4 -x 2(2 -x) , x 二[一2 , 2].h( _x) = :;;4 -x 2 (2 x),不满足奇偶性的定义.= J4-x 2 , x [_2 , 2)不满足函数的奇偶性定义.图象关于原点对称,C . h(x ),(x)U f(x)2 —xD . h(x)f(x)-2—g(x ),x 三[-2 , 0) _ (0 ,x2],函数是奇函数.段大致图象是(9.故选:D .--f (x),-y = f (x)为奇函数,•当x 二二时,y 0,10. (5分)已知函数f(x)对任意xWR都有f (x+6)+ f (x) =2f (3), y #x()的图象关于点(1,0)对称,且f ( 4) =4,贝U f(2012)=( )A . 0 B. -4 C. -8 D. -16【解答】解:因为函数y = f(x_1)的图象关于点(1,0)对称,所以函数y = f (x)的图象关于点(0,0)对称,即函数y =f(x)是奇函数,令x=_3得,f(_3 6) f(_3)=2f (3),即 f (3) —f ( 3) =2f (3),解得f (3) = 0 .所以 f (x 6) f (x) =2f (3) = 0 , 即卩f (x 6) =_f(x),所以f(x 12^f(x),即函数的周期是12.所以f(2012) =f(12 168 _4) =f (/) - _f (4) - -4 .故选:B .x 211. (5分)若函数f (x)二e (x ax b)有极值点x , X2 (洛:::X2),且f (为)=洛,则关于x的、2方程f (x) • (2 a)f (x) a • b =0的不同实根个数为()A . 0B . 3 C. 4 D. 5【解答】解:函数f(x)有两个不相同的极值点,x 2即f (x) =e [x (2 a)x a b^0有两个不相同的实数根x , X2,也就是方程x (2 a)x a,b=0有两个不相同的实数根,所以△ =(2 a)2 -4(a b) 0 ;由于方程f2(x),(2 a)f(x) a ^0的判别式△丄△,故此方程的两个解为f(x) =X1或f(x)=疋.由于函数y = f (x)的图象和直线y =为的交点个数即为方程 f (x)=人的解的个数,函数y = f (x)的图象和直线y = x2的交点个数即为方程 f (x) =x2的解的个数.根据函数的单调性以及 f (x) ,可知y =f(x)的图象和直线y 的交点个数为2,y = f (x)的图象和直线y =X2的交点个数为1.。

深圳高级中学2017届高三上学期第一次考试理科综合试卷 含答案

深圳高级中学2017届高三上学期第一次考试理科综合试卷 含答案

2016-2017学年深圳市高级中学高三年级第一次考试理综试题命题人:李文清危东书卢广斌2016。

9.18第I卷一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.寨卡病毒是一种RNA病毒,能引起人患病。

下列有关寨卡病毒的叙述正确的是A.具有中心体等结构B。

在人体细胞内其RNA具有生物活性C.可寄生在细菌细胞内D。

含有A、T、U、G、C五种碱基2。

生命活动离不开细胞,人类研究细胞的脚步从未停息.以下关于细胞的研究正确的是A.分析根尖分生区细胞的遗传物质必须提取其DNA和RNAB。

用一定手段破坏造血干细胞的骨架系统可以阻断其分裂分化C。

用差速离心法对破碎的叶肉细胞进行处理只能得到各种细胞器D。

用乳酸菌作为实验材料可以研究生物膜系统在结构和功能上的联系3.提倡有氧运动的原因之一是避免肌肉细胞无氧呼吸产生大量乳酸。

下图为人体运动强度与血液中乳酸含量和氧气消耗速率的关系。

结合所学知识,分析下列说法正确的是A.c~d段肌肉细胞中的ATP将被大量积累B.运动强度大于c后,肌肉细胞CO2的产生量将大于O2消耗量C.运动强度大于c后,肌肉细胞CO2的产生与无氧呼吸无关D.若运动强度超过b,人体获得能量的途径只有有氧呼吸4.右图表示在适宜的光照、CO2浓度等条件下,某植物在不同温度下的净光合作用速率和呼吸作用速率曲线。

下列有关说法中错误的是A.与光合作用相比,与呼吸作用有关酶的适宜温度更高B.在40℃之前,总光合作用速率大于呼吸作用速率C.温度在30℃时总光合作用速率和净光合速率最大D.当温度大于40℃时,该植物不再进行光合作用5。

下图表示真核细胞一个细胞周期中染色体的行为变化。

下列有关叙述正确的是A.b~a可以表示一个完整的细胞周期B.植物细胞中,e~a时期细胞无核基因转录的发生C.mRNA的翻译只能发生在b~c时期D.细胞中的DNA含量在b~a时期相同,细胞中染色体数目在b~c时期最多6。

深圳2017届高三年级第一次调研考试

深圳2017届高三年级第一次调研考试

深圳市2017届高三年级第一次调研考试理科综合本试卷共16页,38题(含选考题)。

全卷满分300分。

考试用时150分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

签在试题卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号在答题卡指定的位置用统一提供的2B铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 Mg 24 S 32 Ca 40 Zn 65第I卷选择题一、选择题本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列与细胞相关的叙述,错误..的是A.线粒体和核仁都是含有DNA的细胞器B.洋葱鳞片叶内表皮细胞可发生质壁分离C.硝化细菌可依靠有氧呼吸利用葡萄糖的能量D.线粒体不能分解葡萄糖但可产生A TP2.下列关于基因指导蛋白质合成的叙述,正确的是A.遗传信息从碱基序列到氨基酸序列不会损失B.密码子中碱基的改变一定会导致氨基酸改变C.DNA通过碱基互补配对决定mRNA的序列D.每种tRNA可以识别并转运多种氨基酸3.在低温诱导植物染色体数目变化实验中,下列说法合理的是A.剪取0.5~1cm洋葱根尖放入4℃的低温环境中诱导B.待根长至1cm左右时将洋葱放入卡诺氏液中处理C.材料固定后残留的卡诺氏液用95%的酒精冲洗D.经龙胆紫染液染色后的根尖需用清水进行漂洗4.下列关于神经细胞的说法中,正确的是A.神经细胞不能向细胞外分泌化学物质B.静息状态下钾离子外流需要消耗ATPC.受刺激后细胞膜外电位变为负电位D.膝跳反射过程中兴奋的传导是双向的5.松土是农作物栽培的传统耕作措施。

广东省深圳市2017届高三上学期第一次三校联考数学(理)试题 含答案

广东省深圳市2017届高三上学期第一次三校联考数学(理)试题 含答案

深圳市2017届高三年级第一次三校联考理科数学命题人:孙子龙 审题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

全卷满分150分。

考试时间120分钟. 注意事项:1.答题前,考生务必把自己的姓名、考生号等填写在答题卡相应的位置上.2.做选择题时,必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.非选择题必须使用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。

4.所有题目必须在答题卡上指定位置作答,不按以上要求作答的答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将答题卡交回。

第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合}4|{2<=xx A ,{|31}B x x =∈-≤<Z ,则=⋂B AA .}0,1,2{--B .)0,1(-C .}0,1{-D .)2,3(-- 2.命题“,sin 1x x ∃∈>R ”的否定是A .,sin 1x x ∃∈≤RB .,sin 1x x ∀∈>RC .,sin 1x x ∃∈=RD .,sin 1x x ∀∈≤R3.函数y =的定义域为A .)1,2(- B .[2,1]- C .]1,0(D .)1,0(4.定积分=⎰-dx x 112A .0B .31C .32D .25.函数27()log f x x x=-的零点所在的区间为 A .(1,2)B .(2,3)C .(3,4)D .(4,)+∞ 6.已知3.0log 2.13.02.13.03.0===c b a ,,,则,,a b c 的大小关系为A .c a b <<B .c b a <<C .a b c <<D .a c b << 7.已知命题:p 不等式210ax ax ++>的解集为R ,则实数(0,4)a ∈;命题:q “0822>--x x ”是“5>x ”的必要不充分条件,则下列命题正确的是A .p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∧ 8.已知()f x ()|2|g x x =-,则下列结论正确的是A .2)()()(-+=x g x f x h 是奇函数B .2)()()(-+=x g x f x h 是偶函数C .()()()2f x g x h x x=-是偶函数 D .()()2()f x h xg x =-是奇函数9.函数y =1的一段大致图象是A B C D10.已知函数()f x 对任意x ∈R 都有)3(2)()6(f x f x f =++,)1(-=x f y 的图像关于点)0,1(对称,且4)4(=f ,则=)2012(f A .0 B .4- C .8-D .16-11.若函数2()()xf x e xax b =++有极值点1212,()x x x x <,且11()f x x =,则关于x 的方程2()(2)()0f x a f x a b ++++=的不同实根个数为A .0B .3C .4D .512.定义区间12[,]x x 的长度为21xx -(21x x >),函数22()1()a a x f x a x+-=(a ∈R , 0a ≠)的定义域与值域都是[,]()m n n m >,则区间[,]m n 取最大长度时实数a 的值为A .B .3-C .1D .3第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题5分,满分20分.)13= .14.设函数211log (2)2()3222x x x f x x ---<⎧⎪=⎨+≥⎪⎩,则((3))f f = .15.设函数4sin )2()(22+++=x xx x f 的最大值为M ,最小值为m ,则=+m M .16.在平面直角坐标系xOy 中,直线y x b =+是曲线ln y a x =的切线,则当a >0时,实数b 的最小值是 .二、解答题(解答须写出文字说明、证明过程和演算步骤.) 17.(本小题满分12分)设p :实数x 满足22430x ax a -+<,q :实数x 满足13<- x .(Ⅰ)若1=a ,且q p ∧为真,求实数x 的取值范围;(Ⅱ)若其中0>a 且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)已知函数1()2axf x ⎛⎫= ⎪⎝⎭,a 为常数,且函数的图象过点(1,2)-.(Ⅰ)求a 的值; (Ⅱ)若()42xg x -=-,且()()g x f x =,求满足条件的x 的值.19.(本小题满分12分)已知三次函数32()(,,)f x x bx cx d b c d =+++∈R 过点(3,0),且函数)(x f 在点))0(,0(f 处的切线恰好是直线0=y .(Ⅰ)求函数)(x f 的解析式;(Ⅱ)设函数19)(-+=m x x g ,若函数)()(x g x f y -=在区间[]1,2-上有两个零点,求实数m 的取值范围.20.(本小题满分12分)已知函数)(x f 满足12(log)()1aa f x x x a -=--(其中 0>a ,1≠a ).(Ⅰ)求)(x f 的表达式;(Ⅱ)对于函数)(x f ,当)1,1(-∈x 时,0)1()1(2<-+-m f m f ,求实数m 的取值范围;(Ⅲ)当)2,(-∞∈x 时,()4f x -的值为负数,求a 的取值范围。

广东省深圳市2017届高三下学期第一次调研考试一模数学理试题小题解析

广东省深圳市2017届高三下学期第一次调研考试一模数学理试题小题解析

深圳市2017年高三年级第一次调研考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}22,4,,6,8,B |9180A x x x ==-+≤,则AB =( )A . {}2,4B .{}4,6C .{}6,8D .{}2,8 答案:B解析:因为集合B ={}|36x x ≤≤,所以,A B ={}4,6,选B 。

2.若复数()12a ia R i+∈+为纯虚数,其中i 为虚数单位,则a = ( ) A . 2 B . 3 C .-2 D .-3 答案:C 解析:因为2222112555a i a ai i a a i i +-+++-+=++=为纯虚数,所以,a =-2,选C 。

3. 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( ) A .14 B .12 C .13 D . 23答案:B解析:随机选取三个球,共有4种可能,构成等差数列的有:234、246两种,故所求的概率为: P =2142=,选B 。

4.等比数列{}n a 的前n 项和为13n n S a b -=+,则ab= ( ) A .-3 B . -1 C. 1 D .3 答案:A解析:因为11a S a b ==+,2212a S S a =-=,3336a S S a =-=,由等比数列,得32aq a ==3,又21a a q =,所以,23()a a b =+,解得:ab=-3 5.直线():40l kx y k R ++=∈是圆22:4460C x y x y ++-+=的一条对称轴,过点()0,A k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( )A .22B .2 C. 6 D .26 答案:C解析:依题意,知直线l 必过圆心(-2,2),得k =3,所以A (0,3), 所以,直线m 的方程为:3y x =+,圆心(-2,2)到直线m 的距离为:d =22, 所以,弦长为:222r d -=66.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为()02h h <<的平面截该几何体,则截面面积为 ( )A .4πB .2h π C. ()22h π- D .2(4)h π-答案:D解析:该几何体为挖去一个圆锥的圆柱,设截面空心圆的半径为为r , 则22h r=,即r=h ,所以,截面面积为:2(4)h π-,选D 7. 函数()21cos 21x xf x x +=-的图象大致是( )答案:C解析:由2121()cos()cos()()2121x x xx f x x x f x --++-=-=-=---,可知函数f(x)为奇函数,图象关于原点对称,排除A 、B ,当(0,)2x π∈时,f (x )>0,所以,排除D ,选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年广东省深圳高中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A.y=e x B.y=lnx2C.y=D.y=sinx【考点】奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】根据函数奇偶性和单调性的定义分别进行判断即可.【解答】解:y=,y=e x为(0,+∞)上的单调递增函数,但不是偶函数,故排除A,C;y=sinx在整个定义域上不具有单调性,排除D;y=lnx2满足题意,故选:B.【点评】本题主要考查函奇偶性和单调性的判断,要求熟练掌握常见函数的性质:单调性、奇偶性等性质,比较基础.2.函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2] B.[﹣,] C.[﹣1,1] D.[﹣,] 【考点】三角函数中的恒等变换应用;正弦函数的定义域和值域.【专题】三角函数的图像与性质.【分析】通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.【解答】解:函数f(x)=sinx﹣cos(x+)=sinx﹣+=﹣+=sin(x﹣)∈.故选B.【点评】本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力.3.若函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.(﹣1,2)B.(﹣∞,﹣3)∪(6,+∞)C.(﹣3,6)D.(﹣∞,﹣1)∪(2,+∞)【考点】利用导数研究函数的极值.【专题】计算题;导数的综合应用.【分析】由题意求导f′(x)=3x2+2ax+(a+6);从而化函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值为△=(2a)2﹣4×3×(a+6)>0;从而求解.【解答】解:∵f(x)=x3+ax2+(a+6)x+1,∴f′(x)=3x2+2ax+(a+6);又∵函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,∴△=(2a)2﹣4×3×(a+6)>0;故a>6或a<﹣3;故选B.【点评】本题考查了导数的综合应用,属于中档题.4.若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D.1【考点】定积分.【专题】导数的综合应用.【分析】利用回代验证法推出选项即可.【解答】解:若f(x)dx=﹣1,则:f(x)=x2﹣2,∴x2﹣2=x2+2(x2﹣2)dx=x2+2()=x2﹣,显然A不正确;若f(x)dx=,则:f(x)=x2﹣,∴x2﹣=x2+2(x2﹣)dx=x2+2()=x2﹣,显然B正确;若f(x)dx=,则:f(x)=x2+,∴x2+=x2+2(x2+)dx=x2+2()=x2+2,显然C不正确;若f(x)dx=1,则:f(x)=x2+2,∴x2+2=x2+2(x2+2)dx=x2+2()=x2+,显然D不正确;故选:B.【点评】本题考查定积分以及微积分基本定理的应用,回代验证有时也是解答问题的好方法.5.在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B.C.D.【考点】解三角形.【专题】计算题;压轴题.【分析】在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD ⊥BC,则在Rt△ABD中,AD=AB×sinB【解答】解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选B【点评】本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题6.函数y=lncosx()的图象是()A.B.C.D.【考点】函数的图象与图象变化.【专题】数形结合.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.【点评】本小题主要考查复合函数的图象识别.属于基础题.7.将函数y=sin(6x+)的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A.B.C.()D.()【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的对称性.【专题】计算题.【分析】先根据三角函数图象变换规律写出所得函数的解析式,再根据三角函数的性质进行验证:若f(a)=0,则(a,0)为一个对称中心,确定选项.【解答】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为=sin2x当x=时,y=sinπ=0,所以是函数y=sin2x的一个对称中心.故选A.【点评】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高.8.设147()9a-=,159()7b=,27log9c=,则a, b, c的大小顺序是()A、b a c<<B、c a b<<C、c b a<<D、b c a<<【考点】对数值大小的比较.【专题】数形结合;转化思想;函数的性质及应用.【分析】利用指数函数的单调性即可得出.【解答】解:∴a>b>c.故选:B.【点评】本题考查了指数函数的单调性,考查了推理能力与计算能力,属于基础题.9.(2016•江门模拟)若f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期为π,f(0)=,则()A.f(x)在单调递增B.f(x)在单调递减C.f(x)在单调递增D.f(x)在单调递减【考点】函数y=Asin(ωx+φ)的图象变换.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由周期求出ω,由f(0)=求出φ的值,可得函数的解析式;再利用余弦函数的单调性得出结论.【解答】解:∵f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)=sin(ωx+ϕ+)(ω>0)的最小正周期为=π,可得ω=2.再根据=sin(ϕ+),可得sin(ϕ+)=1,ϕ+=2kπ+,k∈Z,故可取ϕ=,y=sin(2x+)=cos2x.在上,2x∈(﹣,),函数f(x)=cos2x 没有单调性,故排除A、B;在上,2x∈(0,π),函数f(x)=cos2x 单调递减,故排出C,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f (0)=求出φ的值;余弦函数的单调性,属于基础题.10.(2011•湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.【考点】导数在最大值、最小值问题中的应用.【专题】计算题;压轴题;转化思想.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.11.(2016•湖南校级模拟)已知函数(x∈R),若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的存在性及根的个数判断.【专题】数形结合;转化思想;转化法;函数的性质及应用.【分析】讨论x的范围,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.【解答】解:当x≤0时,为减函数,f(x)min=f(0)=0;当x>0时,,,则时,f'(x)<0,时,f'(x)>0,即f(x)在上递增,在上递减,.其大致图象如图所示,若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则,即,故选:A.【点评】本题主要考查函数根的个数的判断,利用函数与方程之间的关系转化为两个函数的交点问题,求函数的导数,利用数形结合进行求解是解决本题的关键.12.(2016•湖南模拟)设,若对任意的正实数x,y,都存在以a,b,c为三边长的三角形,则实数p的取值范围是()A.(1,3)B.(1,2] C.D.以上均不正确【考点】基本不等式;简单线性规划.【专题】转化思想;转化法;不等式.【分析】由基本不等式可得a≥,c≥2,再由三角形任意两边之和大于第三边可得,+2>,且+>2,且+2>,由此求得实数p的取值范围.【解答】解:对于正实数x,y,由于≥=,c=x+y≥2,,且三角形任意两边之和大于第三边,∴+2>,且+>2,且+2>.解得1<p<3,故实数p的取值范围是(1,3),故选:A.【点评】本题主要考查基本不等式的应用,注意不等式的使用条件,以及三角形中任意两边之和大于第三边,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.(2009•锦州一模)函数f(x)=,不等式f(x)>2的解集为{x|1<x<2或x>}.【考点】分段函数的解析式求法及其图象的作法;其他不等式的解法.【专题】计算题.【分析】先分两段分别解不等式,最后所求将不等式解集合并即可【解答】解:不等式f(x)>2⇔①或②由①得1<x<2,由②得x>∴不等式f(x)>2的解集为{x|1<x<2或x>}故答案为{x|1<x<2或x>}【点评】本题考查了函数与不等式的关系,特别是分段函数与不等式,解题时要分辨清楚何时求交集何时求并集,认真解不等式才可顺利解题14.(2016秋•深圳校级月考)已知,则=﹣.【考点】两角和与差的正弦函数;同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】由已知利用两角差的正弦公式展开化简,然后结合辅助角公式可求sin(),最后利用诱导公式=﹣sin()即可求解【解答】解:∵,展开可得,=∴由辅助角公式可得sin()=则=﹣sin()=﹣故答案为:【点评】本题主要考查了两角差的正弦公式、辅助角公式及诱导公式在三角函数的化简求值中的应用.15.(2015秋•哈尔滨校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且c=2,b=a,则△ABC面积的最大值为2.【考点】三角形的面积公式.【专题】方程思想;综合法;解三角形.【分析】先利用余弦定理求出cosC的值然后利用三角形面积公式可知S=a2sinC,然后化简变形求出S的最大值,注意取最大值时a的值.【解答】解:由公式c2=a2+b2﹣2abcosC和c=2,b=a得4=a2+2a2﹣2a2cosC可推出cosC=,又由公式S面积=absinC和b= a 得S=a2sinC=•=,当a2=12时,S面积取最大值2.三角形三边a+b>c,b﹣a<c所以得2+2>a>2﹣2,所以a=2.故答案是:2.【点评】本题主要考查了三角形中的几何计算,同时考查了余弦定理和二次函数的最值等有关基础知识,属于中档题.16.(2016秋•深圳校级月考)已知定义在R上的函数f(x)同时满足以下三个条件(1)f(x)+f(2﹣x)=0,(2)f(x)=(﹣2﹣x)(3)f(x)=则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上公共点个数为6个.【考点】根的存在性及根的个数判断.【专题】数形结合;数形结合法;函数的性质及应用.【分析】根据f(x)的周期性和对称性做出f(x)在[﹣3,3]上的函数图象,再做出g(x)的函数图象,根据图象判断交点个数.【解答】解:∵f(x)=f(﹣2﹣x),∴f(x)的图象关于x=﹣1对称,又∵f(x)+f(2﹣x)=0,∴f(x)的图象关于点(1,0)对称,做出f(x)和g(x)在[﹣3,3]上的函数图象如图所示:由图象可知当x≤0时,f(x)与g(x)的图象有4个交点,设g(x)在(1,0)处的切线斜率为k,则k=﹣<﹣1,又g(2)=f(2)=﹣1,∴当x>0时,f(x)与g(x)只有两个交点(1,0)和(2,﹣1).综上,f(x)与g(x)在[﹣3,3]上有6个交点.故答案为:6.【点评】本题考查了分段函数的图象,函数性质的应用,属于中档题.三、解答题:本大题共5小题,满分60分.解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•郑州一模)如图△ABC中,已知点D在BC边上,满足•=0.sin ∠BAC=,AB=3,BD=.(Ⅰ)求AD的长;(Ⅱ)求cosC.【考点】余弦定理的应用;正弦定理.【专题】计算题;解三角形.【分析】(I)通过向量的数量积,判断垂直关系,求出cos∠BAD的值,在△ABD中,由余弦定理求AD的长;(Ⅱ)在△ABD中,由正弦定理,求出sin∠ADB,通过三角形是直角三角形,即可求cosC.【解答】解:(Ⅰ)∵•=0,∴AD⊥AC,∴,∵sin∠BAC=,∴….(2分)在△ABD中,由余弦定理可知BD2=AB2+AD2﹣2AB•ADcos∠BAD,即AD2﹣8AD+15=0,解之得AD=5或AD=3 ….(6分)由于AB>AD,∴AD=3…..(7分)(Ⅱ)在△ABD中,由正弦定理可知,又由,可知,∴=,∵∠ADB=∠DAC+∠C,∠DAC=,∴.…(12分)【点评】本题考查解三角形,余弦定理以及正弦定理的应用,考查计算能力.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】概率的应用;离散型随机变量的期望与方差.【专题】综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)(2016•广州一模)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(I)证明:平面A1CO⊥平面BB1D1D;(Ⅱ)若∠BAD=60°,求二面角B﹣OB1﹣C的余弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】综合题;向量法;空间位置关系与距离;空间角;空间向量及应用.【分析】(1)根据面面垂直的判定定理进行证明即可.(2)建立空间直角坐标系,求平面的法向量,利用向量法进行求解.【解答】证明:(1)∵A1O⊥面ABCD,且BD,AC⊂面ABCD,∴A1O⊥BD,又∵在菱形ABCD中,AC⊥BD,∵A1O∩AC=O,∴BD⊥面A1AC,∵BD⊂平面平面BB1D1D,∴平面A1CO⊥平面BB1D1D(2)建立以O为坐标原点,OA,OB,OA1分别为x,y,z轴的空间直角坐标系如图:∵AB=AA1=2,∠BAD=60°,∴OB=1,OA=,∵AA1=2,∴A1O=1.则A(,0,0),B(0,1,0),A1(0,0,1),C(﹣,0,0),==(﹣,1,0),=(0,1,0),=(﹣,0,0),=(0,0,1),则=+=(﹣,1,1),设平面BOB1的一个法向量为=(x,y,z),则,令x=,则y=0,z=3,即=(,0,3),设平面OB1C的一个法向量为=(x,y,z),则,令y=1,则z=﹣1,x=0,则=(0,1,﹣1),cos<,>===﹣,∵二面角B﹣OB1﹣C是钝二面角,∴二面角B﹣OB1﹣C的余弦值是﹣.【点评】本小题主要考查面面垂直的判断和二面角的求解,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大.20.(12分)(2016•蚌埠三模)设函数f(x)=ln(x﹣1)+(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x>2,xln(x﹣1)>a(x﹣2)恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;函数恒成立问题.【专题】转化思想;综合法;导数的综合应用.【分析】(Ⅰ)求得函数的定义域,求导,根据二次函数图象及性质,利用△≤0,再对a 分类讨论即可求f(x)的单调区间;(Ⅱ)xln(x﹣1)>a(x﹣2)恒成立,等价于f(x)﹣a>0,构造辅助函数,根据(Ⅰ)讨论a的取值,判断f(x)的单调区间,即可求得实数a的取值范围.【解答】解:(Ⅰ)由题易知函数f(x)的定义域为(1,+∞),∴,…(2分)设g(x)=x2﹣2ax+2a,△=4a2﹣8a=4a(a﹣2),①当△≤0,即0≤a≤2时,g(x)≥0,∴f'(x)≥0,f(x)在(1,+∞)上是增函数,…(3分)②当a<0时,g(x)的对称轴x=a,当x>1时,g(x)>g(1)>0,∴g(x)>0,函数f(x)在(1,+∞)上是增函数,③当a>2时,设x1,x2(x1<x2)是方程x2﹣2ax+2a=0的两个根,则x1=a﹣>1,x2=a+,当1<x<x1或x>x2时,f′(x)>0,f(x)在(1,x1),(x2,+∞)上增函数,…(4分)当x1<x<x2时,f′(x)<0,f(x)在(x1,x2)上是减函数;…综合以上可知:当a≤2时,f(x)的单调递增区间为(1,+∞),无单调减区间;当a>2时,f(x)的单调递增区间为,单调减区间为;…(6分)(Ⅱ)当x>2时,,…(7分)令h(x)=f(x)﹣a,由(Ⅰ)知:①当a≤2时,f(x)在(1,+∞)上是增函数,∴h(x)在(2,+∞)上增函数,∵当x>2时,h(x)>h(2)=0,上式成立;当a>2时,f(x)在(a﹣,a+)是减函数,∴h(x)在(2,a+)是减函数,x∈(2,a+)时,h(x)<h(2)=0,上式不成立,综上,a的取值范围是(﹣∞,2].…(12分)【点评】本题考查利用函数的导数求函数的单调性及恒成立问题综合应用,关键是通过分类讨论得到函数的单调区间及会转化利用已证的结论解决问题,属于难题.21.(12分)(2016秋•深圳校级月考)已知函数f(x)=5+lnx,g(x)=(k∈R).(I)若函数f(x)在点(1,f(1))处的切线与函数y=g(x)的图象相切,求k的值;(II)若k∈N*,且x∈(1,+∞)时,恒有f(x)>g(x),求k的最大值.(参考数据:ln5≈1.61,ln6≈1.7918,ln(+1)=0.8814)【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】计算题;转化思想;综合法;导数的综合应用.【分析】(I)由f(1)=5,且,f′(1)=1,利用导数的几何意义得到函数f(x)在点(1,f(1))处的切线方程为y=x+4,设直线y=x+4与g(x)=,(k∈R)相切于点P(x0,y0),得g′(x0)=1,g(x0)+4,由此利用导当数性质能求出k的值.(II)当x∈(1,+∞)时,5+lnx>恒成立,等价于当x∈(1,+∞)时,k<恒成立,设h(x)=,(x>1),则,(x>1),记p(x)=x﹣4﹣lnx,(x>1),则p′(x)=,由此利用导数性质能求出k的最大值.【解答】解:(I)∵函数f(x)=5+lnx,∴f(1)=5,且,从而得到f′(1)=1.∴函数f(x)在点(1,f(1))处的切线方程为:y﹣5=x﹣1,即y=x+4.…(2分)设直线y=x+4与g(x)=,(k∈R)相切于点P(x0,y0),从而可得g′(x0)=1,g(x0)+4,又,∴,解得或.∴k的值为1或9.…(II)当x∈(1,+∞)时,5+lnx>恒成立,等价于当x∈(1,+∞)时,k<恒成立.…(6分)设h(x)=,(x>1),则,(x>1)记p(x)=x﹣4﹣lnx,(x>1),则p′(x)=1﹣=,∴p(x)在x∈(1,+∞)递增.又p(5)=1﹣ln5<0,p(6)=2﹣ln6>0,…(8分)∴p(x)在x∈(1,+∞)存在唯一的实数根m∈(5,6),使得p(m)=m﹣4﹣lnm=0,①∴当x∈(1,m)时,p(x)<0,即h′(x)<0,则h(x)在x∈(1,m)递减;当x∈(m,+∞)时,p(x)>0,即h′(x)>0,则h(x)在x∈(m,+∞)递增;所以x∈(1,+∞)时,h min=h(m)=,由①可得lnm=m﹣4,∴h(m)=,…(10分)而m∈(5,6),m+(),又h(3+2)=8,p(3+2)=2﹣1﹣ln(3+2)>0,∴m∈(5,3+2),∴h(m)∈(,8).又k∈N*,∴k的最大值是7.…(12分)【点评】本题考查实数值的求法,考查实数的最大值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.[选修4-1:几何证明选讲]22.(10分)(2016•佛山二模)如图,点A,B,D,E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=2,AD=4,求DF的长.【考点】与圆有关的比例线段.【专题】选作题;转化思想;综合法;推理和证明.【分析】(1)证明∠BAD=∠EAD,即可证明=;(2)证明△EAD∽△FED,可得.即可求DF的长.【解答】(1)证明:∵EB=BC,∴∠C=∠BEC.∵∠BED=∠BAD,∴∠C=∠BED=∠BAD.∵∠EBA=∠C+∠BEC=2∠C,AE=EB,∴∠EAB=∠EBA=2∠C又∠C=∠BAD,∴∠EAD=∠C,∴∠BAD=∠EAD.∴=;(2)解:由(1)知∠EAD=∠C=∠FED,∵∠EAD=∠FDE,∴△EAD∽△FED,∴.∵DE=2,AD=4,∴DF=1.【点评】本题考查两角相等的证明,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.[选修4-4:坐标系与参数方程]23.(2015秋•石家庄校级期末)在极坐标系中,已知曲线C:ρ=sin(θ﹣),P为曲线C上的动点,定点Q(1,).(Ⅰ)将曲线C的方程化成直角坐标方程,并说明它是什么曲线;(Ⅱ)求P、Q两点的最短距离.【考点】简单曲线的极坐标方程.【专题】方程思想;分析法;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用两角差的正弦公式和极坐标与直角坐标的关系:x=ρcosθ,y=ρsinθ,x2+y2=ρ2,化简即可得到所求方程及轨迹;(Ⅱ)求得Q的直角坐标,以及Q到圆心的距离,由最小值d﹣r,即可得到所求值.【解答】解:(Ⅰ)曲线C:ρ=sin(θ﹣)=2(sinθ﹣cosθ)=2sinθ﹣2cosθ,即有ρ2=2ρsinθ﹣2ρcosθ,由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得曲线C:x2+y2+2x﹣2y=0,即为以(﹣1,1)为圆心,为半径的圆;(Ⅱ)Q(1,),即为Q(cos,sin),即Q(,),Q到圆心的距离为d==,即有PQ的最短距离为d﹣r=﹣.【点评】本题考查极坐标和直角坐标的互化,点与圆的位置关系,注意运用两点的距离公式,考查运算能力,属于基础题.[选修4-5:不等式选讲]24.(2014•赤峰模拟)设函数f(x)=|2x+1|﹣|x﹣2|.(1)求不等式f(x)>2的解集;(2)∀x∈R,使f(x)≥t2﹣t,求实数t的取值范围.【考点】一元二次不等式的应用;分段函数的解析式求法及其图象的作法;函数的最值及其几何意义.【专题】不等式.【分析】(1)根据绝对值的代数意义,去掉函数f(x)=|2x+1|﹣|x﹣2|中的绝对值符号,求解不等式f(x)>2,(2)由(1)得出函数f(x)的最小值,若∀x∈R,恒成立,只须即可,求出实数t的取值范围.【解答】解:(1)当,∴x<﹣5当,∴1<x<2当x≥2,x+3>2,x>﹣1,∴x≥2综上所述{x|x>1或x<﹣5}.(2)由(1)得,若∀x∈R,恒成立,则只需,综上所述.【点评】考查了绝对值的代数意义、一元二次不等式的应用、分段函数的解析式等基本,去绝对值体现了分类讨论的数学思想,属中档题.。

相关文档
最新文档