现代分析技术(3部分)
现代分析测试技术复习知识点答案
《现代分析测试技术》复习知识点答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、名词解释1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生1%吸收率即得到的吸光度的某元素的浓度称为特征浓度。
计算公式: S=×C/A (ug/mL/1%)S——1%吸收灵敏度 C——标准溶液浓度——为1%吸收的吸光度A——3次测得的吸光度读数均值2. 原子吸收检出限:是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量。
通常以产生空白溶液信号的标准偏差2~3倍时的测量讯号的浓度表示。
只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠地区分开。
计算公式: D=c Kδ/A mD——元素的检出限ug/mL c——试液的浓度δ——空白溶液吸光度的标准偏差 A m——试液的平均吸光度 K——置信度常数,通常取2~33.荧光激发光谱:将激发光的光源分光,测定不同波长的激发光照射下所发射的荧光强度的变化,以I F—λ激发作图,便可得到荧光物质的激发光谱4.紫外可见分光光度法:紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。
这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。
5.热重法:热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。
TG基本原理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
热重分析通常可分为两类:动态(升温)和静态(恒温)。
检测质量的变化最常用的办法就是用热天平(图1),测量的原理有两种:变位法和零位法。
现代材料分析方法
现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。
下面将针对常用的材料分析技术进行详细介绍。
一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。
通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。
2. 热分析:如热重分析、差示扫描量热仪等。
利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。
3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。
4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。
二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。
通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。
2. 质谱分析:如质子质谱、电喷雾质谱等。
通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。
3. 电化学分析:包括电化学阻抗谱、循环伏安法等。
通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。
4. 色谱分析:如气相色谱、高效液相色谱等。
利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。
三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。
2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。
3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。
通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。
四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。
2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。
材料现代分析技术整理
第一部份 X 射线衍射分析(XRD )1. K 系特点谱线特点:由L 、M 、N 等壳层的电子跃迁到K 壳层的空位时发出的X 射线,别离称为K α、K β、K γ谱线,一起组成K 线系特点谱线。
K α特点谱线最强,比相邻谱线强90倍,是最经常使用的谱线。
2. 特点X 射线的产生:在原子内固定壳层上的电子具有特定能量,当外加能量足够大时,可将内层电子激发出去,形成一个内层空位,外壳层的电子跃迁到内层,多余的能量以X 射线形式放出。
3. X 射线的本质为电磁波。
4. 滤光片的目的和材料:用来过滤或降低X 射线光谱中的持续X 射线和K β线的金属薄片,K β大部份被吸收,K α损失较小,滤波片材料的原子表达一样比X 射线管靶材的原子序数低1。
5. CuK α的含义:以Cu 作为靶材,高速电子轰击在铜靶上,使铜K 层产生了空位,L 层电子跃迁到K 层,产生K 系特点辐射。
6. X 射线的衍射方向是依照布拉格方程理论推导出的。
7. 布拉格方程的推导:含义:线照射晶体时,只有相邻面网之间散射的X 射线光程差为波长的整数倍时,才能产生干与增强,形成衍射线,反之不能形成衍射线。
λθn d hkl =sin 2讨论:(1) 当λ必然,d 相同的晶面,必然在θ相同的情形下才能取得反射。
(2) 当λ必然,d 减小,θ就要增大,这说明间距小的晶面,其掠过角必需是较大的,不然它们的反射线无法增强,在考察多晶体衍射时,这点由为重要。
(3) 在任何可观测的衍射角下,产生衍射的条件为:d 2≤λ,但波长太短致使衍射角过小,使衍射现象难以观测,经常使用X 射线的波长范围是0.25~0.05nm 。
(4) 波长一按时,只有2/λ≥d 的晶面才能发生衍射—衍射的极限条件。
8. X 射线的强度(严格概念)单位时刻内通过衍射方向垂直单位面积上X 射线光量子数量。
表示方式:衍射峰高度或衍射峰积分面积。
理论计算)(2θφPF I =(P-多重性因数,F-结构因子,)(θφ-因数)。
现代分析与测试技术优选全文
析
相干散射——电子衍射分析—— 显微结构分析
技
激发被测物质中原子发出特种X射线
术
——电子探针(电子能(波)谱分析,电子
探针X射线显微分析)
——显微化学分析(Be或Li以上元素分析)
1.材料现代分析技术绪论
材 料 现 代 分 析 技 术
1.材料现代分析技术绪论
材
材料现代分析的任务与方法
料
材料组成分析
1.材料现代分析技术绪论
材
料
直接法的局限
现 代
采用高分辨电子显微分析等直接分析技术并不能有效、 直观地反映材料的实际三维微观结构;高分辨电子
分
显微结构像是直接反映晶体的原子分辨率的投影结
析
构,并不直接反映晶体结构。
技 尽管借助模型法,通过对被测晶体拍摄一系列不同离
术
焦条件的显微像,来分析测定材料的晶体结构,但
性能和使用性能间相互关系的知识及这些知识的应用,是一门应用
基础科学。材料的组成、结构,工艺,性能被认为是材料科学与工
程的四个基本要素。
1.材料现代分析技术绪论
材 料
组成 (composition) 组成是指材料的化学组成及其所占比例。
现 工艺 (process)
代
工艺是将原材料或半成品加工成产品的方法、技术等。
2. 多晶相各种相的尺寸与形态、含量与分布、位向 关系(新相与母相、孪生相、夹杂物)
微观,0.1nm尺度(原子及原子组合层次)
结构分析:原子排列方式与电子构型
1. 各种相的结构(即晶体类型和晶体常数)、晶体缺 陷(点缺陷、位错、层错)
2. 分子结构与价键(电子)结构:包括同种元素的不 同价键类型和化学环境、高分子链的局部结构(官 能团、化学键)和构型序列等
现代分析测试技术_03透射电子显微分析综合练习
第三章透射电子显微分析(红色的为选做,有下划线的为重点名词或术语或概念)1.名词、术语、概念:电子的散射角(2θ),电子的弹性散射与非弹性散射,电子的相干散射与非相干散射,电子吸收,吸收电子,二次电子,背散射电子,透射电子,电子透镜,电磁透镜,像差,球差,像散,色差,景深,焦深(或焦长),成像操作,衍射操作,明场像,暗场像,中心暗场像,质量厚度衬度(简称“质厚衬度”),衍射衬度(简称“衍衬”),复型,一级复型,二级复型,萃取复型等。
2.入射电子照射固体时,与固体中粒子的相互作用包括三个过程,即( )、( )、( )。
3.对于电子的粒子性而言,固体物质对电子的散射有( )散射和( )散射两种。
只改变方向而能量不变的散射叫(),在改变方向的同时能量也发生变化的散射叫()散射。
4.对于电子的波动性而言,固体物质对电子的散射有( )散射和( )散射两种。
5.入射电子轰击固体时,电子激发诱导的X射线辐射主要包括( )、( )和( )。
6.电子与固体物质相互作用,产生的信息主要有()、()、()、()等,据此建立的分析方法(或仪器)主要有()、()、()、()等。
7.透射电子显微镜(简称“透射电镜”,英文缩写“TEM”)主要由()系统、()系统、()系统、()系统和()系统组成。
8.TEM的成像系统是由()镜、()镜和()镜组成。
9.TEM成像系统的两个基本操作是()操作和()操作。
10.TEM的成像操作方式主要有四种,即()操作、()操作、()操作和()操作。
11.按复型的制备方法,复型主要分为()复型、()复型和()复型。
12.物质的原子序数越高,对电子产生弹性散射的比例就越大。
这种说法()。
A.正确;B.不正确13.电子束照射到固体上时,电子束的入射角越大,二次电子的产额越小。
这种说法()。
A.正确;B.不正确14.入射电子能量增加,二次电子的产额开始增加,达极大值后反而减少。
这种说法()。
A.正确;B.不正确15.电子吸收与光子吸收一样,被样品吸收后消失,转变成其它能量。
现代分析技术
牛奶、石灰水、天空中小水滴引起云看上去是白色的。 ②小颗粒散射(瑞利散射)如空气中的水、分子、原子等。 特点:散射光强度正比于λ-4。
1、经典解释 分子振动光谱理论表明,分子振动模式在红外和拉曼光谱
中出现的几率是受选择定则严格限制的。
极化率在平衡位置对简正坐标θ的变化不为零,或极化率 在平衡位置的一阶导数不为零。
因为红外光谱的起源是偶极矩,偶极矩在平衡位置对简正 坐标θ的变化不为零或偶极矩在平衡位置,的一阶导数不为零。
例1、双原子分子:⑴ 同核;⑵ 异核。
1960年以后,激光技术的发展使拉曼技术得以复兴。由于激光束的高 亮度、方向性和偏振性等优点,成为拉曼光谱的理想光源。随探测技 术改进和对被测样品要求的降低,拉曼光谱在物理、化学、医药、工 业等各个领域得到广泛的应用。
第二节 拉曼光谱原理
一、光散射
光与物质的相互作用——能量发生变化:吸收、散射。
什么工作?
四、拉曼散射的偏振特性
光波是横波,横波具有偏振的特性。 横波——光波的振动方向与传播方向垂直。 平面偏振光——光波的振动在传播过程中始终在一 个平面内。
若迎着光射来的方向观察到的自 然光振动方向应为均匀分布。
若迎着光射来的方向观察到的光振 动分布在各个不同方向上,且各个方向 上振动强度也不同,称为部分偏振光。
《现代分析技术》之
拉曼光谱
Raman Spectrum
任课教师:曹剑瑜 Email: jycao@
第一节 引 言
拉曼散射效应是1928年印度科学家 (C.V. Raman)在CCl4光散射实验中发 现的:
实验中,Raman用汞弧灯的绿光(435.83 nm)激发CCl4 所得到的散射光。
现代分析测试技术考试题
一、解析题(每小题15分, 共计30分)1.根据该化合物的1H核磁共振图谱推测其结构, 写出推测依据和过程。
并根据不饱和度计算公式f=1+n4+1/2(n3-n1)计算某化合物C9H10O2的不饱和度。
(15分)答: 根据公式f=1+n4+1/2(n3-n1), 得到此化合物的不饱和度为1+9-(10-0)/2=5, 该化合物的1H核磁共振图谱中主要有三个峰, 所以推断此化合物主要有三种H质子, 由δ=7.38可以推断出此化合物含有苯环结构, 由δ=5.12可以推断出此化合物含有-CH2-O-, 由δ=2.11可以推断出此化合物含有-CO-CH33.分析下列X射线衍射图, 并根据scherrer公式计算(110)晶面的晶粒大小。
其中衍射角2θ为27.5度, 波长为0.154nm, 半峰宽为0.375。
答: 从XRD图可以看出的TiO2衍射峰非常尖锐, 且杂峰较少, 在27.28°, 35.58°, 41.26°, 54.66°和55.08°的位置出现明显特征峰, 分别对应的晶面为(110)、(101)、(111)、(211)和(220), 与PDF(#06-0416)卡片标准锐钛矿型TiO2的特征衍射峰吻合。
Scherrer公式: D=kλ/βcosθ其中, D为沿垂直于晶面(hkl)方向的晶粒直径, k为Scherrer常数(通常为0.89), λ为入射X射线波长(Cuka 波长为0.15406nm)。
晶粒直径为:β=0.375°=0.375*π/180=0.0065θ=27.5°/2=13.75°=13.75*π/180=0.24D=0.89*0.154/(0.0065*0.97)=21.75二、简述题(每小题8分, 共计40分)1.电子跃迁有哪些种类?哪些类型的跃迁可以在紫外光谱中得到反映?一般紫外光谱谱带中分为哪几种类型?答:(1)电子跃迁的种类有:n→σ*, n→π*, π→π*, σ→σ*。
现代色谱分析技术发展及应用
现代色谱分析技术发展及应用色谱分析技术是一种重要的分离和分析方法,在各个领域具有广泛的应用。
随着科学技术的发展,色谱分析技术也不断地得到改进和完善。
本文将就现代色谱分析技术的发展历程以及应用领域进行探讨。
一、色谱分析技术的发展历程色谱分析技术起源于20世纪初,最早的色谱法是在液体中通过旋塞柱进行分离的,被称为“旋转色谱法”。
随后,固定相柱的发明推动了色谱分析技术的进一步发展。
20世纪50年代,气相色谱技术的诞生使得色谱分析技术得到了重大突破。
然而,早期的色谱分析技术存在着许多缺点,如分离效率低、分析速度慢等。
为了克服这些问题,人们进行了一系列的改进和创新。
在20世纪60年代,高效液相色谱技术被引入,这种技术在分离效率和分析速度方面较传统的液相色谱技术有了显著的提高。
此外,超临界流体色谱、毛细管电泳等新型色谱分析技术的出现也为色谱分析的研究和应用带来了新的思路和方法。
二、现代色谱分析技术的分类及原理现代色谱分析技术主要可以分为气相色谱、液相色谱和电泳三类。
下面将分别介绍这三种技术的原理和特点。
1. 气相色谱(Gas Chromatography,GC)气相色谱是利用气体作为载气相和样品分子之间的分隔介质,将混合物中的分离成分分开的色谱技术。
它主要包括样品的气相进样、气相传递和色谱柱的分离。
气相色谱具有分离效率高、分析速度快和灵敏度高等优点,被广泛应用于气体组分分析、环境检测、食品安全等领域。
2. 液相色谱(Liquid Chromatography,LC)液相色谱是以液体作为流动相和样品分子之间的分离介质的色谱技术。
常见的液相色谱包括高效液相色谱(High Performance Liquid Chromatography,HPLC)和超高效液相色谱(Ultra High Performance Liquid Chromatography,UHPLC)。
液相色谱具有高分离度、适用范围广、操作简便等特点,广泛应用于生物医药、食品安全、环境监测等领域。
现代分析测试技术
(M–R1)+
电子轰击电离源(EI)-离子类型
离子室内的反应气(甲烷等;10~100 Pa,试样的103~105倍),电子(100~240 eV)轰击,产生离子,再与试样分子碰撞,产生准分子离子。
特点: 最强峰为准分子离子; 谱图简单; 不适用难挥发试样; 得到的是非标准谱图。
方向聚焦: 相同质荷比,入射方向不同的离子会聚; 能量聚焦: 相同质荷比,速度(能量)不同的离子会聚。
静电分析器(扇形电场) —能量分析器
离子源 狭缝
质量相同,能量不同的离子束
磁分析器 (扇形磁场) —质量分析器
接收器狭缝
聚焦离子束
静电场能量色散作用与磁场能量色散作用大小相等,方向相反
单聚焦质量分析器
添加标题
标准条件获得谱图:通过电子轰击电离方式,获得质谱图(快原子、电喷雾等没有标准谱图);
质谱联用技术及优势分析
气相色谱—质谱联用:混合物分析—化学、化工、环境、食品—适用于可以汽化的样品;GC—很好的分离装置,但不能对化合物定性;MS—很好的定性分析仪器,但要求纯样品;
液相色谱—质谱联用:适用于极性强、分子量大的化合物;关键技术—接口:去除溶剂,并使样品电离—每一类接口装置只适用于某一类分析对象;
质谱仪分析方法原理
横坐标:质荷比,纵坐标:离子的强度; 离子的绝对强度:取决于样品量和仪器的灵敏度; 离子的相对强度:和样品的分子结构—化学键有关;
质谱仪基本工作原理
1
2
5
4
3
质谱仪与质谱分析原理
进样系统
质量分析器
离子源
检测器 单聚焦 双聚焦 飞行时间 四极杆
质谱仪的类型
有机质谱仪
现代材料分析技术期末总结
现代材料分析技术期末总结一、引言现代材料分析技术是指应用各种先进的科学和技术手段来对材料进行分析和研究的过程。
随着科学技术的不断发展,材料分析技术也取得了巨大的进展,涵盖了物理、化学、生物等多个领域。
本文将对现代材料分析技术进行总结,从光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射、质谱仪、红外光谱仪、核磁共振仪和热分析等技术进行详细介绍。
二、光学显微镜光学显微镜是一种常用的材料分析技术,通过可见光对材料进行观察和测量。
使用透射光和反射光来照射样品,通过目镜和物镜将图像放大到人眼可以识别的范围。
该技术可以观察材料的形貌、颗粒分布和晶粒结构等。
光学显微镜广泛应用于金属材料、生物材料和无机材料等研究领域。
三、扫描电子显微镜扫描电子显微镜是一种可以高分辨率地观察样品表面形貌和组织结构的技术。
通过束缚电子的扫描和检测,得到样品的二维和三维图像。
扫描电子显微镜可以观察到样品微观结构的细节,如晶体缺陷、晶界和纳米颗粒等。
该技术对金属材料、半导体材料和生物材料等的分析具有重要意义。
四、透射电子显微镜透射电子显微镜是一种可以观察材料内部的高分辨率分析技术。
通过将电子束通过样品,利用电子的衍射和透射来观察材料的晶体结构和原子成分。
透射电子显微镜可以观察到样品的晶体结构、晶界和位错等,可以分析材料的化学成分和晶态状态。
透射电子显微镜在材料科学、纳米材料和生物材料等研究领域具有重要的应用价值。
五、X射线衍射X射线衍射是一种分析材料晶体结构的技术。
通过用X射线照射样品,利用X射线与样品的晶胞相互作用来得到样品的衍射图像。
可以通过衍射图像来确定材料的晶胞参数、晶体结构和晶面取向等。
X射线衍射技术广泛应用于材料科学、金属材料和矿物材料等领域。
六、质谱仪质谱仪是一种通过分析样品中的离子和分子来测定其化学成分和结构的技术。
通过将样品中的分子或原子离子化并加速到一个高速运动状态,利用它们在磁场和电场中的行为,来分析它们的质量和相对丰度。
现代化学分析方法(仅供参考)
现代化学分析⽅法(仅供参考)SEM 和TEM 统称为电⼦显微镜扫描电镜测试样品表⾯形貌,⽽透射电镜测试内部形貌观察,或者晶体结构分析,特别是微区(微⽶、纳⽶)的像观察和结构分析SEM不能做磁性材料,TEM得是液态样品显微镜放⼤倍数受所⽤波长限制。
电⼦显微镜使⽤电⼦作为光束来观察物体内部或表⾯的结构。
普通光学显微镜是⽤可见光来观察物体的。
由于电⼦的波长远⼩于可见光的波长,所以前者的极限分辨率远⾼于后者的极限分辨率。
“Collect”栏设定扫描次数⼀般是设置16或者32都可以,多扫⼏次为了准确⼀点,⼀般没啥关系为什么减⼩激光器的功率可以减弱荧光对拉曼散射的⼲扰?减⼩激光功率,被激发的分⼦少了,产⽣的荧光跃迁⾃然就少了产⽣荧光所需要的激发能量⾼,产⽣拉曼所需的激发能量低,所以降低激光功率对荧光影响更⼤荧光对拉曼⼲扰问题在拉曼光谱中,通常斯托克斯线的强度⼤于反斯托克斯线,⼀般我们选⽤斯托克斯线部分。
但荧光会严重⼲扰斯托克斯线⽽不⼲扰反斯托克斯线,对能产⽣荧光的试样只能损失灵敏度选反斯托克斯线。
室温时处于基态振动能级的分⼦很少,Anti-stocke线也远少于stocks线。
温度升⾼,反斯托克斯线增加。
从由光学介质和荧光组成的系统来看,Stokes过程和反Stokes过程都是熵不断增⼤的过程。
虽然在反斯托克斯荧光制冷过程中光学介质的熵要减⼩.但由荧光带⾛的熵更⼤。
介质中熵的变化△SM是⼀个很重要的量。
正是由于熵的符号决定了在反斯托克斯过程中不可能产⽣激光。
相关内容还是要掌握的,⽐如什么是stocks和anti-stocks等什么类型的数据属于⼆维数据?荧光分光光度计的⽐⾊⽫为什么需要四⾯透光如果在⼀条直线上那是测吸光度的荧光分光光度计⼊射光源和检测器的⽅向是垂直的这样在垂直⽅向上就不可能有⼊射光⽽激发的荧光在四个⽅向上都有在垂直⽅向上检测⼲扰最⼩所以四⾯透光荧光光谱适⽤低温,是为了增加驰豫作⽤,提⾼灵敏度。
现代分析技术
零分析方法分类、各种分析技术功能、特点,光谱分析、是基于电磁辐射与材料相互作用产生的特征光谱波长与强度进行分析的方法。
包括吸收光谱分析、发射光谱分析和散射光谱分析。
电子能谱分析、是基于光子或运动离子(电子、离子、原子等)照射或轰击材料产生的电子能谱(电子产额随能量的分布)进行材料分析的方法衍射分析,衍射分析的基本目的是分析材料结构。
电磁辐射或运动电子束、中子束等与材料相互作用产生相干散射(弹性散射),相干散射相互干涉的结果-衍射是材料衍射分析方法的技术基础。
包括X射线衍射分析、电子衍射分析及中子衍射分析电子显微分析,是基于电子束与材料的相互作用建立的各种材料现代分析方法色谱分析、质谱分析、电化学分析及热分析等方法表面分析技术是测定和分析固体表面成分、表面结构、表面电子态及表面物理化学过程的各种实验技术的总称。
常用的表面分析技术有以下几种:低能电子衍射(LEED) 、反射高能电子衍射(RHEED)、俄歇电子谱能(AES)、X射线(紫外)光电子能谱[XPS(UPS)]、X射线荧光光谱(XRF)、电子能量损失谱(EELS) 、离子中和谱(INS)、二次离子质谱(SIMS)、扫描隧道显微镜(STM)。
原理都是以外来能量(带电粒子束、射线束、强电场或加热等)作用于固体表面,然后收集、测量和分析作用后的产物(光子、电子、离子、原子或分子),从而获得有关表面的各种信息。
一X射线的性质1)穿透能力强。
能穿透可见光不能穿透的物质。
2)折射率几乎等于1。
X射线穿过不同媒质时几乎不折射、不反射,仍可视为直线传播。
3)通过晶体时发生衍射。
晶体起衍射光栅作用,因而可用它研究晶体内部结构。
X射线的产生1)产生自由电子的电子源,如加热钨丝或场发射阴极;2)设置阳极靶,用以产生X射线;3)在阴、阳极之间施加高压,用以加速自由电子轰击阳极靶;4)将阴阳极封闭在高真空中,保持两极纯洁,促使加速电子无阻地撞击到阳极靶上。
光电效应(1)电子电离是指当入射光子能量大于物质中原子核对电子的束缚能时,电子将吸收光子的全部能量而脱离原子核的束缚,成为自由电子。
现代分析测试技术复习题教案
现代分析测试技术练习题一、判断题:1、色谱定量时,用峰高乘以半峰宽为峰面积,则半峰宽是指峰底宽度的一半。
()2、使用气相色谱仪在关机前应将汽化室温度降低至50℃以下,在封闭电源。
()3、氢焰检测器是一种通用型检测器,既能用于有机物分析,也能用于检测无机化合物。
()4、依照分别原理的不同样,液相色谱可分为液固吸附色谱,液液色谱法,离子互换色谱法和凝胶色谱法四各样类。
()5、在色谱分别过程中,单位柱长内组分在两相间的分派次数越多,则相应的分别收效也越好。
()6、色谱外标法的正确性较高,但前提是仪器的牢固性高且操作重复性好。
()7、只若是试样中不存在的物质,均可选作内标法中的内标物。
()8、进样时进样阀手柄位于load地点时载样,位于inject地点时进样。
()9、紫外分光光度计的光源常用碘钨灯。
()10、红外光谱法最大的特点是其高度的特点性。
()二、选择题:1、人眼能感觉到的可见光的波长范围是()。
A.400nm~760nm C.200nm~600nmB.200nm~400nm D.360nm~800nm2、红外光谱法中的红外吸取带的波长地点与吸取谱带的强度,能够用来()。
A.判断未知物的构造组成或确定其化学基团及进行定量分析与纯度判断B.确定配位数C.研究化学位移D.研究溶剂效应3、紫外-可见吸取光谱主要决定于()。
A.分子的振动、转动能级的跃迁B.分子的电子构造C.原子的电子构造D.原子的外层电子能级间跃迁4、双波长分光光度计的输出信号是()A.试样吸取与参比吸取之差B.试样λ1和λ2吸取之差C.试样在λ1和λ2吸取之和D.试样在λ1的吸取与参比在λ2的吸取之和5、原子吸取光谱产生的原因是()。
A.分子中电子能级跃迁B.转动能级跃迁C.振动能级跃迁D.原子最外层电子跃迁6、荧光分析法和磷光分析法的敏捷度比吸取光度法的敏捷度()。
A.高B.低C.相当D.不用然谁高谁低7、红外分光光度计使用的检测器是()。
现代分析测试技术(仪器分析)
应用
用于有机化合物、高分子化合物、 无机化合物等的结构分析和鉴定。
特点
样品用量少、不破坏样品、分析 速度快、可与其他技术联用。
原子发射光谱法
原理
利用物质在受到激发后发射出特征光谱进行分析。不同元素受到激 发后会发射出不同的特征光谱,可用于元素的定性和定量分析。
应用
广泛应用于金属元素、非金属元素、有机物中元素的定性和定量分 析。
离子色谱法
专门用于离子型物质的分离和分析,如环境监测中的阴阳离子检测。
毛细管电泳色谱法
结合了毛细管电泳和色谱技术的优点,具有高分辨率和高灵敏度等 特点,适用于生物大分子和复杂样品的分析。
05 质谱分析法与联用技术
CHAPTER
质谱法基本原理及仪器结构
质谱法基本原理
通过测量离子质荷比 (m/z)进行成分和结 构分析的方法。
02 光学分析法
CHAPTER
紫外-可见分光光度法
原理
利用物质在紫外-可见光区的吸收 特性进行分析。通过测量物质对 特定波长光的吸收程度,确定物
质的种类和浓度。
应用
广泛应用于无机物、有机物、药物、 生物样品等的定性和定量分析。
特点
灵敏度高、选择性好、操作简便、 分析速度快。
红外光谱法
原理
利用物质在红外光区的吸收特性 进行分析。红外光谱是分子振动 和转动能级的跃迁产生的,可用
03 电化学分析法
CHAPTER
电位分析法
原理
利用电极电位与待测离子浓度之间的关系,通过测量电极电位来 确定待测离子浓度的分析方法。
应用
广泛应用于水质分析、环境监测、生物医学等领域,如pH计测量 溶液酸碱度、离子选择性电极测量特定离子浓度等。
现代测试分析技术SEM、TEM、表面分析技术、热分析技术
现代测试分析技术SEM、TEM、表⾯分析技术、热分析技术重庆⼤学材料现代测试分析技术总结(材料学院研究⽣⽤)电⼦衍射部分1、电⼦衍射与X射线衍射相⽐:相同点:电镜中的电⼦衍射,其衍射⼏何与X射线完全相同,都遵循布拉格⽅程所规定的衍射条件和⼏何关系. 衍射⽅向可以由厄⽡尔德球(反射球)作图求出.因此,许多问题可⽤与X射线衍射相类似的⽅法处理.电⼦衍射优点:电⼦衍射能在同⼀试样上将形貌观察与结构分析结合起来。
电⼦波长短,单晶的电⼦衍射花样婉如晶体的倒易点阵的⼀个⼆维截⾯在底⽚上放⼤投影,从底⽚上的电⼦衍射花样可以直观地辨认出⼀些晶体的结构和有关取向关系,使晶体结构的研究⽐X射线简单。
物质对电⼦散射主要是核散射,因此散射强,约为X射线⼀万倍,曝光时间短。
电⼦衍射缺点:电⼦衍射强度有时⼏乎与透射束相当,以致两者产⽣交互作⽤,使电⼦衍射花样,特别是强度分析变得复杂,不能象X射线那样从测量衍射强度来⼴泛的测定结构。
此外,散射强度⾼导致电⼦透射能⼒有限,要求试样薄,这就使试样制备⼯作较X射线复杂;在精度⽅⾯也远⽐X射线低。
2、电⼦衍射花样的分类:1)斑点花样:平⾏⼊射束与单晶作⽤产⽣斑点状花样;主要⽤于确定第⼆相、孪晶、有序化、调幅结构、取向关系、成象衍射条件;2)菊池线花样:平⾏⼊射束经单晶⾮弹性散射失去很少能量,随之⼜遭到弹性散射⽽产⽣线状花样;主要⽤于衬度分析、结构分析、相变分析以及晶体的精确取向、布拉格位置偏移⽮量、电⼦波长的测定等;3)会聚束花样:会聚束与单晶作⽤产⽣盘、线状花样;可以⽤来确定晶体试样的厚度、强度分布、取向、点群、空间群以及晶体缺陷等。
扫描电⼦显微镜1、透射电镜的成像——电⼦束穿过样品后获得样品衬度的信号(电⼦束强度),利⽤电磁透镜(三级)放⼤成像。
扫描电镜成像原理——利⽤细聚焦电⼦束在样品表⾯扫描时激发出来的各种物理信号来调制成像的。
2、扫描电镜的特点分辨本领较⾼。
⼆次电⼦像分辨本领可达1.0nm(场发射), 3.0nm (钨灯丝);放⼤倍数变化范围⼤(从⼏⼗倍到⼏⼗万倍),且连续可调;图像景深⼤,富有⽴体感。
现代分析测试17种技术
一 电化学技术1 1 电导分析法:电导分析法:电导分析法:根据溶液的电导性质来进行分析的方法称为电导分析法。
根据溶液的电导性质来进行分析的方法称为电导分析法。
根据溶液的电导性质来进行分析的方法称为电导分析法。
它包括电导法和电导滴定法两它包括电导法和电导滴定法两种,电导法是直接根据溶液的电导或电阻与被测离子浓度的关系进行分析的方法;电导滴定法是根据溶液电导的变化来确定滴定终点(滴定时,滴定剂与溶液中被测离子生成水、沉淀或其他难解离的化合物,从而使溶液中的电导发生变化,利用化学计量点时出现的转折来指示滴定终点)。
2 2 电位分析法:电位分析法:根据电池电动势或指示电极电位的变化来进行分析的方法。
它包括电位法和电位滴定法。
电位法是直接根据指示电极的电位与被测物质浓度关系来进行分析的方法;电位滴定法是根据滴定过程中指示电极电位的变化来确定终点(滴定时,在化学计量点附近,由于被测物质的浓度产生突变,使指示电极电位发生突越,从而确定终点)。
3 3 电解分析:电解分析:以电子为沉淀剂使被测物质在电解条件下析出或和其他物质分离,以电子为沉淀剂使被测物质在电解条件下析出或和其他物质分离,直接称量析出的被测物直接称量析出的被测物质的质量来进行分析。
质的质量来进行分析。
4 4 库仑分析法:库仑分析法:库仑分析法:根据电解过程消耗的电荷量来进行分析。
根据电解过程消耗的电荷量来进行分析。
根据电解过程消耗的电荷量来进行分析。
它包括控制电流库仑分析法和控制电位库仑分它包括控制电流库仑分析法和控制电位库仑分析法。
析法。
5 5 伏安法(极谱法)伏安法(极谱法):根据被测物质在电解过程中其电流—电压变化曲线来进行分析的方法。
二 光分析技术1 1 原子发射光谱:是根据每种化学元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,进行原子发射光谱:是根据每种化学元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,进行元素的定性、半定量和定量分析的方法。
现代分析技术与应用:核磁共振波谱技术-3
4)重水可以确认活泼氢 =4.7 ppm
R OH + D2O
R O D+ H O D
20
各类质子的化学位移
质子类型
/ppm
环丙烷
H
0.2
伯
RCH3
0.9
仲
R2CH2
1.3
叔
R3CH
1.5
乙烯型 乙炔型
CCH CCH
4.5~5.9
2~3
21
质子类型
烯丙型 C C CH2-H
氟
FC H
氯
ClC H
溴
HA = 7.27-0.8+0.3 = 6.77 HB = 7.27+1.0-0.15 = 8.12
17
b.邻位二取代 *
*
相同取代基时,谱图左右对称
不同取代基时,谱图复杂
c.间位二取代
*
谱图复杂。中间质子显示粗略单峰。
18
4)活泼氢: OH NH2 SH COOH
值变化大。易受温度、添加重水、 改变溶剂及酸度的影响
a
对如下结构:
CHna
b
CHn b C CHcnc
H d
以Hd为观察核: 1) Jad=Jbd=Jcd,则Nd=(na+nb+nc)+1。 2) Jad≠Jbd≠Jcd
则Hd核共振峰的数目为:Nd=(na+1)(nb+1) (nc+1) 3) Jad≈Jbd≈Jcd,从外表上看:Nd=(na+nb+nc)+1。
所以,该图是2,3,4-三氯苯甲醚的NMR。
42
例四:芳香酮C8H7ClO的1H-NMR谱。
O C CH3 Cl
材料现代分析技术 课件 第3--5章 衍射原理、 X射线应用、电子衍射
二 、单原子对非偏振入射X射线的散射强度
非偏振入射-单电子:
设原子核外有Z个电子,受核束缚较紧,且集中于一点,则单原子对 X射线的散射强度Ia就是Z个电子的散射强度之和,即
注意:
令
则
得 瞬时值: 平均值:
定义原子散射因子f为:
注意:
推导过程:
原子散射因子的讨论:
1.当核外的相干散射电子集中于一点时,各电子的散射波之间无相位差, =0 即:f=Z。
材料研究方法 劳埃方程与布拉格方程知识点
课程内容
— 二 三 四
劳埃方程 布拉格方程 布拉格方程的讨论 衍射矢量方程
一、劳埃方程
标量式: 矢量式:
一维
二维
三维
二 、布拉格方程
几点假设: 1 原子静止不动; 2 电子集中于原子核; 3 X射线平行入射; 4 晶体由无数个平行晶面组成,X射线可同时作用于多个晶面; 5 晶体到感光底片的距离有几十毫米,衍射线视为平行光束。
2dHKLsin =
三 、布拉格方程的讨论
2.衍射条件分析
要求
减小入射波长时,参与衍射的晶面数目将增加!
例如, -Fe体心立方结构中,晶面间距依次减小的晶面(110)、(200)、
(211)、(220)、(310)、(222)
中,当采用铁靶产生的特征X射线
为入射线时, K =0.194nm,仅有前四个晶面能满足衍射条件参与衍射, 若采用铜靶产生的特征X线入射时, 降至0.154nm,参与衍射的晶面
课后思考:多晶平板试样转动过程中,衍射晶面平行于试样表面?
谢谢!
材料研究方法
电子、原子、单胞对x射线的散射知识点
课程内容
X射线的散射强度介绍顺序:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面散射(漫反射)——由物体表面不平整所引起,本质上与反 射相同。
弹性散射特点:νλ=ν散 ①大颗粒散射(延德尔散射)如牛奶,石灰水。
特点:散射光强度与波长无关。
牛奶、石灰水、天空中小水滴引起云看上去是白色的。
②小颗粒散射(瑞利散射)如空气中的水、分子、原子等。
特点:散射光强度正比于λ-4。
滤波器型:
在光路中使用notch filter(槽形滤波器)或edge filter(边缘 滤波器)将照射样品后的散射光中的瑞利散射滤除,使得仪 器只需一块光栅即可完成较高质量的检测。
傅立叶变换型(FT Raman):
特点:使用迈克尔逊干涉仪
拉曼光谱仪的一些技术参数对数据测量的影响 光栅密度对分辨的影响
*对于较复杂的分子①要先确定分子的点群;②查阅点群的特征标表;
③确定红外和拉曼的选律。
2、选择定则的量子解释 采用半经典和半量子的方法:把入射光用经典的 方法处理,作为分子系统扰动源,而把分子系统 用量子的方法处理。
量子力学理论证明,光谱跃迁的选择定则为 :
其中, φi 和φf为分子在初 态和终态的波函数,P为 感生偶极矩。
例1、双原子分子:⑴ 同核;⑵ 异核。
多原子分子:总偶极矩由单个键偶极子贡献所构成,总的分 子极化率由单个键的极化率贡献所构成。
例:CO2:3N-5=4 有四个振动模式
例:SO2:非线型分子3N-6=3 有三个振动模式
结论
⑴ 具有对称结构中心的分子,选择定则遵循互不相容性,即:对称振动 拉曼活性的,红外非活性;非对称振动,红外活性的,拉曼非活性。 ⑵ 无对称中心分子不满足互不相容性,对称性比较低的分子,几乎全部 振动就是红外活性又是拉曼活性。 为了获得更多的分子振动信息,需要红外和拉曼光谱互相补充。 (3) 拉曼光谱适用于对称振动、非极性基团、同原子键。例如:S=S、SS、N=N、C=C、C≡C、O2。红外光谱适用于反对称振动、极性基团、 异原子键。例如:C=O、O-H、H-Cl。
m-ZrO2 and t-ZrO2 的特征拉曼光谱
TiO2不同温度焙烧的XRD图谱和可见拉曼光 谱
ZrO2样品不同温度焙烧后的紫外拉曼光谱图 和XRD图谱
5. 纳米材料
(1) To define physical properties, it is very important to identify ―chirality‖, i.e. how the Graphene sheets are rolled up. (2) The large variety of SWNTs is defined by a pair of integers (n,m) from which their diameter, chirality and semiconducting/metallic behaviour can be determined. (3) Chirality defines the orientation of the rolled Graphene sheet relatively to the main axis of the tube. (4) If the hexagons are aligned along the axis, the tubes will be metallic, and if the hexagons twist around the axis, the tubes will be semiconducting.
振光(激光),偏振方向是
沿z方向记为Ez。照在一球形 分子的外面的电子云是球形
的。
⑴ 若分子与入射光作用后,分子的电子云仍是球形的,那在x 方向测到的拉曼散射光仍是沿z方向的偏振散射光,强度为Iz。
即,散射光的偏振方向与入射光的偏振方向一致。
⑵ 若振动使电子云的球对称性
扭曲或电子云本身不是球形的,
c. 区分晶区与非晶区
分析相同基团振动峰形的异同。 d. 共混聚合物的相结构 e. 反应动力学、检测形变过程等等。
Differentiation between Nylons
Closer Inspection of ―Fingerprint‖ Region of Nylons
4. 在催化中的应用
拉曼光谱原理-拉曼活性
并不是所有的分子结构都具有拉曼活性的。分子振动是否 出现拉曼活性主要取决于分子在运动过程时某一固定方向 上的极化率的变化。 对于分子振动和转动来说,拉曼活性都是根据极化率是否
改变来判断的。
对于全对称振动模式的分子,在激发光子的作用下,肯定 会发生分子极化,产生拉曼活性,而且活性很强;而对于
三、拉曼散射的选择定则
1、经典解释 分子振动光谱理论表明,分子振动模式在红外和拉曼光 谱中出现的几率是受选择定则严格限制的。
极化率在平衡位臵对简正坐标θ的变化不为零,或极化率 在平衡位臵的一阶导数不为零。
因为红外光谱的起源是偶极矩,偶极矩在平衡位臵对简正 坐标θ的变化不为零或偶极矩在平衡位臵,的一阶导数不为零。
离子键的化合物,由于没有分子变形发生,不能产生拉曼
活性。
3、拉曼光谱强度
由上式可知影响拉曼光谱的因素:
被检测分子自身属性 (极化率α)
检测所用激发光 (电磁场E,频率为vo)
斯托克斯(stokes)一侧强度:
反斯托克斯(anti-stokes)一侧强度:
思考题
1. 不同颜色激发光对拉曼光谱的影响?
则沿x方向,不仅能观察到z方向 偏振光Iz,且也能观察到沿y方向 的偏振光Iy。
散射光的两个方向(偏振方向)的强度Iz 与Iy 是不同的, 它与分子的结构及分子振动的对称性有关,可用退偏度ρ来描
述:
拉曼散射退偏率ρ的大小与极化率张量α有关。
考察一双原子分子H2 :由电子云构成化学键沿键方向最 易变形,垂直于化学键方向,在振动时变形最小。 结论:极化率沿分子各轴不同方向而不同。即:极化率各 向异性。
增强,另一方面可从分子水平上研究一些电化学的过程、药
物作用的机理; ⑥玻璃和石英:光通信材料。
石墨
金刚石
3. 研究高分子材料
a. 化学结构和组分分析 例:一些含硫的聚合物 C-S伸缩振动在756和724 cm-1 C-S-C弯曲振动在337和317 cm-1。 b. 立规度; 可以通过测量退偏性来区分样品的立规结构。
CCl4拉曼光谱偏振特性分析
CCl4是对称的四面体结构(点群Td)。
五、拉曼光谱仪
拉曼光谱仪的分类依据:
a. 按激发光波长
常见拉曼激发光源波长: 325 nm(UV),488 nm(蓝绿),514 nm(绿),633 nm(红),
785 nm(红),1064 nm(IR)
b.按光路系统分: 分光型:
正己烷vs.环己烷
Effects of Ring Formation and Presence or Absence of Methyl Groups
2. 在无机化学上的应用 ①测定物质的空间结构,鉴别离子的种类; ②有色配位化合物测定、相态变化和相转变研究;
③矿物质研究 - 珠宝鉴定;
④表面和催化研究:涂料、金属、腐蚀化学、胶体化学和催 化; ⑤表面吸附: 表面增强拉曼光谱(SERS) 它是测量吸附在Ag、 Cu等某些特定金属表面的分子拉曼光谱,一方面使信号大大
天空、大海的散射光是兰色的,早晨与傍晚的太阳由于短波 长的光被空气散射而呈现红色。
非弹性散射:
散射光在被照射物体内发生了能量交换使散射光的光子能 量与入射光的光子能量不同,即散射光频率改变几个到几 千个波数。这种散射光称为拉曼散射光。 散射光的频率改变与分子的振动能级有关。
CCl4的拉曼光谱图
催化材料的拉曼光谱研究
*建立鉴定多孔材料中杂原子的方法
**发现氧化物表面区与体相的异步相变
催化剂和催化反应过程的原位、动态结构表征研究是催
化科学的重要内容, 也是目前催化科学发展的前沿方向。
1125 cm-1 谱峰的位置对Ti的配位环境非常敏感
利用拉曼共振效应检测Fe-ZSM-5中的骨架铁 物种
《现代分析技术》之
拉曼光谱
Raman Spectrum
第一节 引 言
拉曼散射效应是1928年印度科学家 (C.V. Raman)在CCl4光散射实验中发 现的:
实验中,Raman用汞弧灯的绿光(435.83 nm)激发CCl4 所得到的散射光。
拉曼散射效应的发展简史
1928年印度物理学家拉曼(C.V.Raman)发现拉曼散射效应,因该项发 现荣获1930年的诺贝尔物理学奖; 1928~1940年,受到广泛的重视,曾是研究分子结构的主要手段。这是 因为可见光分光技术和照相感光技术已经发展起来的缘故; 1940~1960年,拉曼光谱的发展停滞。主要是因为拉曼效应太弱(约为 入射光强的10-6),并要求被测样品的体积必须足够大、无色、无尘埃、 无荧光等等。到40年代中期,红外技术的进步和商品化更使拉曼光谱
用下产生感生偶极矩p,外来电场为E(入射光)则
当分子振动时, α的变化与分子的振动坐标有关,α(θ)对 坐标系作泰勒展开,并取一级近似。
应用三角恒等式:
①-散射光的频率与入射光的频率ν0 相同,为瑞利散射 ②-散射光的频率为(ν0 – νm),为斯托克斯拉曼散射 ③-散射光的频率为(ν0 + νm),为反斯托克斯拉曼散射
(1)拉曼光谱能提供催化剂本身以及表面上物种的结构信息, 这是认识催化剂和催化反应最为重要的信息。 (2)拉曼光谱较容易实现原位条件下(高温、高压,复杂体系) 的催化研究。
(3)拉曼光谱可以用于催化剂制备的研究,特别是可以对催
化剂制备过程从水相到固相的实时研究。 (4)拉曼光谱可以实现时间分辨动力学和动态学的研究。