线性代数课件5-2

合集下载

线性代数及应用PPT课件

线性代数及应用PPT课件

上列各式出现的运算皆可行的前提是:矩阵的维数满 足运算要求。
证明矩阵乘法结合律:(AB)C=A(BC)=ABC 证:设

证明DC=AG。 因为 元为:
A的 i 行乘以B的 l 列

, 则DC的第i,j
得到DC的第i,j元等于AG的第i,j元。
证明 (AB)T =BTAT
证:


剩下的要证明它们的第i, j元都对应相等。设
通大学出版社
第一章 矩阵
§1.1 矩阵概念 1.1.1 矩阵概念 定义1 m × n元,排成m行n列的矩形阵列:
称作为:维是m × n的矩阵。 一般用黑体大写字母 A,B,C等表示。
简记为:
确定一个矩阵的两要素:
1.元:a ij 的值; 2.维:m,n的值。
矩阵的例: 问题:A的元和维是什么?
广矩阵进行一系列行初等变换,使得
R1R2 ••• R s [A |b]= [R1R2 ••• R s A | R1R2 ••• R s b ]=[ I n | Rb ]
(R= R1R2 ••• R s)。事实上R=A-1
可见只要将增广矩阵中A对应的那一块通过行初等变换化成 单位阵,对应b的那一块变成Rb= A-1 b,即
1.1.2 一些特殊矩阵 对于矩阵
本课程仅限于实矩阵。
n阶方阵:m=n时的矩阵,
a11 a12 a1n
A
a21 a22 a2n
或 An n
an1 an2 ann
列矩阵(列向量):n=1,
行矩阵(行向量):m=1,
数或标量:m=n=1。 向量的元称为分量,分量的个数称为向量的维。
例:
分别是3维列向量和4维行向量。
学习参考书目

线性代数ppt 第五章 二次型

线性代数ppt 第五章 二次型

a11 a 21 a n1
a12 a 22 an2
a1n a2n , a nn
x =
x1 x2 , xn
则 二 次 型 可 记 作 f = xT Ax, 其 中 A为 对 称 矩 阵 .
(3)
此时A 此时A称为二次型 f 的矩阵, f 称为对称矩阵A 的矩阵, 称为对称矩阵A 对应的二次型. 对应的二次型. 对矩阵A的秩叫做二次型 的秩 二次型f的秩 二次型 的秩. f(x1,x2)=3x12+3x22+2x1x2 )=3x +3x +2x
k1 0 TAP = P … 0
0 k2 … 0
… … … …
0 0 … kn
第五章 二次型
§5.1 二次型及其矩阵表示
三. 矩阵的合同 可逆矩阵P, 使得PTAP = B. 记为: A B. 可逆矩阵 使得P 矩阵P 记为: 矩阵间的合同关系也是一种等价关系. 矩阵间的合同关系也是一种等价关系. An与Bn合同(congruent): 合同(congruent):
(1) 反身性: A A; 反身性: A; (2) 对称性: A B B A; 对称性: (3) 传递性: A B, B C A C. 传递性:
定理5.1. 实对称矩阵与对角矩阵合同. 定理5.1. 实对称矩阵与对角矩阵合同.
作业 P151 1. (B) 1(1), (3); 2
本章主要内容 (1) 二次型矩阵表示 (2) 标准二次型,规范二次型 标准二次型, 二次型 (3) 将二次型化为标准形 (4)二次型的正定型的判定—主要是利用顺序 (4)二次型的正定型的判定 主要是利用顺序 二次型的正定型的判定— 主子式判定 主子式判定 作业: 作业: P152 7(1); 20(1)

线性代数:第五章二次型

线性代数:第五章二次型

线性代数:第五章⼆次型第五章⼆次型§1 ⼆次型及其矩阵表⽰⼀、⼆次型及其矩阵表⽰设是⼀个数域,⼀个系数在数域中的的⼆次齐次多项式称为数域上的⼀个元⼆次型,简称⼆次型.定义1 设是两组⽂字,系数在数域P中的⼀组关系式(2)称为由到的⼀个线性替换,或简称线性替换.如果系数⾏列式,那么线性替换(2)就称为⾮退化的.线性替换把⼆次型变成⼆次型.令由于所以⼆次型(1)可写成把(3)的系数排成⼀个矩阵(4)它称为⼆次型(3)的矩阵.因为所以把这样的矩阵称为对称矩阵,因此,⼆次型的矩阵都是对称的.令或应该看到⼆次型(1)的矩阵A的元素,当时正是它的项的系数的⼀半,⽽是项的系数,因此⼆次型和它的矩阵是相互唯⼀决定的.由此可得,若⼆次型且,则.令,于是线性替换(4)可以写成或者经过⼀个⾮退化的线性替换,⼆次型还是变成⼆次型,替换后的⼆次型与原来的⼆次型之间有什么关系,即找出替换后的⼆次型的矩阵与原⼆次型的矩阵之间的关系.设(7)是⼀个⼆次型,作⾮退化线性替换(8)得到⼀个的⼆次型,⼆、矩阵的合同关系现在来看矩阵与的关系.把(8)代⼊(7),有易看出,矩阵也是对称的,由此即得.这是前后两个⼆次型的矩阵的关系。

定义2 数域P上两个阶矩阵,称为合同的,如果有数域P上可逆的矩阵,使得.合同是矩阵之间的⼀个关系,具有以下性质:1) ⾃反性:任意矩阵都与⾃⾝合同.2) 对称性:如果与合同,那么与合同.3) 传递性:如果与合同,与合同,那么与合同.因此,经过⾮退化的线性替换,新⼆次型的矩阵与原来⼆次型的矩阵是合同的。

这样把⼆次型的变换通过矩阵表⽰出来,为以下的讨论提供了有⼒的⼯具。

最后指出,在变换⼆次型时,总是要求所作的线性替换是⾮退化的。

从⼏何上看,这⼀点是⾃然的因为坐标变换⼀定是⾮退化的。

⼀般地,当线性替换是⾮退化时,由上⾯的关系即得.这也是⼀个线性替换,它把所得的⼆次型还原.这样就使我们从所得⼆次型的性质可以推知原来⼆次型的⼀些性质.§2 标准形⼀、⼆次型的标准型⼆次型中最简单的⼀种是只包含平⽅项的⼆次型. (1)定理1 数域上任意⼀个⼆次型都可以经过⾮化线性替换变成平⽅和(1)的形式.易知,⼆次型(1)的矩阵是对⾓矩阵,反过来,矩阵为对⾓形的⼆次型就只包含平⽅项.按上⼀节的讨论,经过⾮退化的线性替换,⼆次型的矩阵变到⼀个合同的矩阵,因此⽤矩阵的语⾔,定理1可以叙述为:定理2 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.定理2也就是说,对于任意⼀个对称矩阵都可以找到⼀个可逆矩阵使成对⾓矩阵.⼆次型经过⾮退化线性替换所变成的平⽅和称为的标准形.例化⼆次型为标准形.⼆、配⽅法1.这时的变量替换为令,则上述变量替换相应于合同变换为计算,可令.于是和可写成分块矩阵,这⾥为的转置,为级单位矩阵.这样矩阵是⼀个对称矩阵,由归纳法假定,有可逆矩阵使为对⾓形,令,于是,这是⼀个对⾓矩阵,我们所要的可逆矩阵就是.2. 但只有⼀个.这时,只要把的第⼀⾏与第⾏互换,再把第⼀列与第列互换,就归结成上⾯的情形,根据初等矩阵与初等变换的关系,取⾏显然.矩阵就是把的第⼀⾏与第⾏互换,再把第⼀列与第列互换.因此,左上⾓第⼀个元素就是,这样就归结到第⼀种情形.3. 但有⼀与上⼀情形类似,作合同变换可以把搬到第⼀⾏第⼆列的位置,这样就变成了配⽅法中的第⼆种情形.与那⾥的变量替换相对应,取,于是的左上⾓就是,也就归结到第⼀种情形.4.由对称性,也全为零.于是,是级对称矩阵.由归纳法假定,有可逆矩阵使成对⾓形.取,就成对⾓形.例化⼆次型成标准形.§3 唯⼀性经过⾮退化线性替换,⼆次型的矩阵变成⼀个与之合同的矩阵.由第四章§4定理4,合同的矩阵有相同的秩,这就是说,经过⾮退化线性替换后,⼆次型矩阵的秩是不变的.标准形的矩阵是对⾓矩阵,⽽对⾓矩阵的秩就等于它对⾓线上不为零的平⽅项的个数.因之,在⼀个⼆次型的标准形中,系数不为零的平⽅项的个数是唯⼀确定的,与所作的⾮退化线性替换⽆关,⼆次型矩阵的秩有时就称为⼆次型的秩.⾄于标准形中的系数,就不是唯⼀确定的.在⼀般数域内,⼆次型的标准形不是唯⼀的,⽽与所作的⾮退化线性替换有关.下⾯只就复数域与实数域的情形来进⼀步讨论唯⼀性的问题.设是⼀个复系数的⼆次型,由本章定理1,经过⼀适当的⾮退化线性替换后,变成标准形,不妨假定化的标准形是. (1)易知就是的矩阵的秩.因为复数总可以开平⽅,再作⼀⾮退化线性替换(2)(1)就变成(3)(3)就称为复⼆次型的规范形.显然,规范形完全被原⼆次型矩阵的秩所决定,因此有定理3 任意⼀个复系数的⼆次型经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.定理3 换个说法就是,任⼀复数的对称矩阵合同于⼀个形式为的对⾓矩阵.从⽽有两个复数对称矩阵合同的充要条件是它们的秩相等.设是⼀实系数的⼆次型.由本章定理1,经过某⼀个⾮退化线性替换,再适当排列⽂字的次序,可使变成标准形(4)其中是的矩阵的秩.因为在实数域中,正实数总可以开平⽅,所以再作⼀⾮退化线性替换(5)(4) 就变成(6)(6)就称为实⼆次型的规范形.显然规范形完全被这两个数所决定.定理4 任意⼀个实数域上的⼆次型,经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.这个定理通常称为惯性定理.定义3 在实⼆次型的规范形中,正平⽅项的个数称为的正惯性指数;负平⽅项的个数称为的负惯性指数;它们的差称为的符号差.应该指出,虽然实⼆次型的标准形不是唯⼀的,但是由上⾯化成规范形的过程可以看出,标准形中系数为正的平⽅项的个数与规范形中正平⽅项的个数是⼀致的,因此,惯性定理也可以叙述为:实⼆次型的标准形中系数为正的平⽅项的个数是唯⼀的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.定理5 (1)任⼀复对称矩阵都合同于⼀个下述形式的对⾓矩阵:.其中对⾓线上1 的个数等于的秩.(2)任⼀实对称矩阵都合同于⼀个下述形式的对⾓矩阵:,其中对⾓线上1的个数及-1的个数(等于的秩)都是唯⼀确定的,分别称为的正、负惯性指数,它们的差称为的符号差..§4 正定⼆次型⼀、正定⼆次型定义4 实⼆次型称为正定的,如果对于任意⼀组不全为零的实数都有.实⼆次型是正定的当且仅当.设实⼆次型(1)是正定的,经过⾮退化实线性替换(2)变成⼆次型(3)则的⼆次型也是正定的,或者说,对于任意⼀组不全为零的实数都有.因为⼆次型(3)也可以经⾮退化实线性替换变到⼆次型(1),所以按同样理由,当(3)正定时(1)也正定.这就是说,⾮退化实线性替换保持正定性不变.⼆、正定⼆次型的判别定理6 实数域上⼆次型是正定的它的正惯性指数等于.定理6说明,正定⼆次型的规范形为(5)定义5 实对称矩阵A称为正定的,如果⼆次型正定.因为⼆次型(5)的矩阵是单位矩阵E,所以⼀个实对称矩阵是正定的它与单位矩阵合同.推论正定矩阵的⾏列式⼤于零.定义6 ⼦式称为矩阵的顺序主⼦式.定理7 实⼆次型是正定的矩阵的顺序主⼦式全⼤于零.例判定⼆次型是否正定.定义7 设是⼀实⼆次型,如果对于任意⼀组不全为零的实数都有,那么称为负定的;如果都有,那么称为半正定的;如果都有,那么称为半负定的;如果它既不是半正定⼜不是半负定,那么就称为不定的.由定理7不难看出负定⼆次型的判别条件.这是因为当是负定时,就是正定的.定理8 对于实⼆次型,其中是实对称的,下列条件等价:(1)是半正定的;(2)它的正惯性指数与秩相等;(3)有可逆实矩阵,使其中;(4)有实矩阵使.(5)的所有主⼦式皆⼤于或等于零;注意,在(5)中,仅有顺序主⼦式⼤于或等于零是不能保证半正定性的.⽐如就是⼀个反例.证明 Th8,设的主⼦式全⼤于或等于零,是的级顺序主⼦式,是对应的矩阵其中是中⼀切级主⼦式之和,由题设,故当时,,是正定矩阵.若不是半正定矩阵,则存在⼀个⾮零向量,使令与时是正定矩阵⽭盾,故是半正定矩阵.Th8记的⾏指标和列指标为的级主⼦式为,对应矩阵是,对任意,有,其中⼜是半正定矩阵,从⽽.若,则P234,12T,存在使与⽭盾,所以.◇设为级实矩阵,且,则都是正定矩阵.◇设为实矩阵,则都是半正定矩阵.证明是实对称矩阵,令,则是维实向量是半正定矩阵,同理可证是半正定矩阵.◇设是级正定矩阵,则时,都是正定矩阵.证明由于正定,存在可逆矩阵,使,,从⽽为正定矩阵.正定⼜正定, ,正定,正定.对称当时,,从⽽正定.当时,所以与合同,因⽽正定.第五章⼆次型(⼩结)⼀、⼆次型与矩阵1. 基本概念⼆次型;⼆次型的矩阵和秩;⾮退化线性替换;矩阵的合同.2. 基本结论(1) ⾮退化线性替换把⼆次型变为⼆次型.(2) ⼆次型可经⾮退化的线性替换化为⼆次型.(3) 矩阵的合同关系满⾜反⾝性、对称性和传递性.⼆、标准形1. 基本概念⼆次型的标准形;配⽅法.2. 基本定理(1) 数域上任意⼀个⼆次型都可经过⾮退化的线性替换化为标准形式.(2) 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.三、唯⼀性1. 基本概念复⼆次型的规范形;实⼆次型的规范形,正惯性指数、负惯性指数、符号差.2. 基本定理(1) 任⼀复⼆次型都可经过⾮退化的线性替换化为唯⼀的规范形式的秩.因⽽有:两个复对称矩阵合同它们的秩相等.(2) 惯性定律:任⼀实⼆次型都可经过⾮退化线性替换化为唯⼀的规范形式的秩,为的惯性指数.因⽽两个元实⼆次型可经过⾮退化线性替换互化它们分别有相同的秩和惯性指数.(4) 实⼆次型的标准形式中系数为正的平⽅项的个数是唯⼀确定的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.四、正定⼆次型1. 基本概念正定⼆次型,正定矩阵;顺序主⼦式,负定⼆次型,半正定⼆次型,半负定⼆次型,不定⼆次型.2. 基本结论(1) ⾮退化线性替换保持实⼆次型的正定性不变.(2) 实⼆次型正定①与单位矩阵合同,即存在可逆矩阵,使得;②的顺序主⼦式都⼤于零.③的正惯性指数等于.。

线性代数-线性空间与线性变换PPT课件

线性代数-线性空间与线性变换PPT课件

例1
次数不超过
n
的多项式的全体,记作
P
x

n

P x n p x anx n a1x a0 an, ,a1,a0 ,
对于通常的多项式加法、数乘多项式的乘法构成线性空间.
这是因为:通常的多项式加法、数乘多项式的乘法两种运算显然满足线性运算规律,
故只要验证
P
x
对运算封闭.
n
一、线性空间的定义
1
0 ,
E 22
0
1
线性无关,所以 E11, E12 , E21, E22 是 M2
的一个基,向量
A
a11 a21
a12 a22
在这个基下的
坐标就是 a11, a12, a21, a22 T .
二、基变换与坐标变换
设1,2, ,n 与 1, 2, , n 是线性空间Vn 中的两个基,且
第5章 线性空间与线性变换 20
目录/Contents
第5章 线性空间与线性变换 21
5.2 维数、基与坐标
一、线性空间的基、维数与坐标 二、基变换与坐标变换
一、线性空间的基、维数与坐标
第5章 线性空间与线性变换 22
定义 1 在线性空间V 中,如果存在n 个元素1,2, ,n 满足
(i) 1,2, ,n 线性无关; (ii) V 中任一元素 总可由1,2, ,n 线性表示,
x1, x2, , xn ,使
x11 x22 xnn ,
x1, x2, , xn 这组有序数就称为元素 在基1,2, ,n 下的坐标,并记作
x1, x2,
,xn
T
.
一、线性空间的基、维数与坐标
第5章 线性空间与线性变换 25

线性代数 第五章二次型PPT课件

线性代数 第五章二次型PPT课件
an1
f xAx
a12
a1n x1
a22
a2n
x2
an1
ann xn
aij a ji
二次型 f
对称矩阵 A
对称矩阵 A 的秩定义为二次型 f 的秩
设 二 次 型 f 3 x 1 2 6 x 1 x 2 8 x 1 x 3 5 x 2 2 x 2 x 3 x 3 2 求 f的 矩 阵 A ,当 x 1 = 3 , x 2 = 1 , x 3 = - 2时 , 求 f的 值 。
1 2 1
得特征值
1 10
2 15
可求得的单位特征向量顺次为
0.6
e1
0.8
0 .8
e2
0 .6
P
0.6 0.8
0.8
0.6
经 正 交 变 换 xPy,
f 10y1 215y2 2
1 2 4
A
2
4
2
,
4 2 1
x1
x
x2
x3
试用正交变换化二次型
e2
2 2
( 1 ,0, 2
1 ) 2
e3
3 3
( 2,2 2, 2) 63 6
2
3
1 2
2
6
作正交变换
Pe1
e2
e3
1
3
2
3
0
2
2
(x 1 ,x 2 ,x 3 ) P (y 1 ,y 2 ,y 3 )
设B为n阶方阵, 求证f xBx的矩阵是A 1 (B B)
显然A是对称矩阵,xRn xAx1(xBx2xBx) 2
xBx(xBx) xBx xAx1(xBxxBx)xBx

5-2(线性代数 第五章)【VIP专享】

5-2(线性代数 第五章)【VIP专享】
(x12 4x1x2 2x1x3) 2x22 3x32 8x2x3
(x1 2x2 x3)2 2(x22 2x2x3) 2x32
(x1 2x2 x3)2 2(x2 x3)2 4x32

y1
x1
2x2
x3
y2
x2 x3
y3
x3

y1 1 2 1 x1
1 1 0 1 0 1 z1
1
1
0
0
1
1
z2
0 0 1 0 0 1 z3
1 1 0 z1
1
1
2
z2
0 0 1 z3
方法总结
(1)如果二次型 f 中含有变量 xi 的平方项,则 先把含有 xi 的项集中,按 xi 配方,然后按 此法对其他变量逐步配方,直至将 f 配成 平方和形式
例2 用正交变换法将二次型
f x1, x2, x3 x12 2x12 2x32 4x1x3
化为标准型,并写出所用的正交变换. 解 二次型矩阵为
1 0 2
A
0
2
0
2 0 2
求A的特征值:
1 0 2
AE 0 2 0 22 6
2 0 2
22 3
则A的特征值为 1 2 2, 3 3
求A属于 1 2 2 的特征向量,求解齐次线性方程组
A 2E x 0
其一个基础解系
0
1
1
,
0
2
2
0
1
显然 a1, a2 正交,再单位化得
0
1
1
,
0
2 5
5
2 0
5 5
求 3 3的单位特征向量,即求解其次方程组

线性代数课件5-2相似矩阵与二次型

线性代数课件5-2相似矩阵与二次型
23
解得x2 2 x1 ,
所以,对应的特征向量可取为p2
1 2 .
2
3对应的全部特征向量为k2
p2
k2
1
2
,
(k2
0).
9
2 1 1
例2
求矩阵A
0
2 0 的特征值和特征向量。
4 1 3
解 特征多项式为 f ( ) A E
2 1 1
2 1
0
2
0
(2 )
4
3
4 1 3
20
于是,得到关于 x1, x2 , , xm 的m个方程 从而,满足下面的方程组:
x1 p1 x2 p2 xm pm 0
1 x1 p1 2 x2 p2 m xm pm 0
1m1
x1
p1
m1 2
x2
p2
m1 m
xm
pm
0
下求该齐次方程组的解
1 1
1
2
1 x1 p1 0
2xx21
x3 x3
,
令x3 1,
基础解系为p1
1 2
1
.
故对应于1 1的全体特征向量为 1
k1 p1
(k1 0).
当2 3 2时, 齐次方程为
1
2
1 2
2 2
1
A
2
2
1 2 2
1 2 2
r3
r1 (1) r2 , r2
2r1
1 0 0
1 x1 0
则有
(1) 1 2 n a11 a22 ann; (2) 12 n A .
5.对应特征向量 i的特征值即是 齐次方程( A i E)x 0的解pi .

线性代数 课件

线性代数 课件

例5 写出四阶行列式中含有因子 a11a23 的项。
解: 1) (13 pq ) a11a23a3 p a4 q , pq为24的全排列 ( 所以: 1) (1324) a11a23a32 a44 a11a23a32 a44 ( ( 1) (1342) a11a23a34 a42 a11a23a34 a42 例6 若 a13a2i a32 a4 k , a11a22 a3i a4 k , ai 2 a31a43ak 4 为四阶行列式的项,试确定i与k,使前两项带正号, 后一项带负号。
n(n 1) ( p1 p2 ... pn ) ( pn pn1... p1 ) C 2 n(n 1) ( pn pn1... p1 ) k 2
2 n
例4 求排列(2k ) k 1)2(2k 2)...( k 1) k 1(2 的逆序数, 并讨论奇偶性。 解:2k 的逆序数为 2k 1 ; 的逆序数为 0 1 (2k 1) 的逆序数为 2k 3 ; 的逆序数为0 2 (2k 2) 的逆序数为 2k 5 ; 的逆序数为0 3 ............ (k 1) 的逆序数为 1 ;k的逆序数为0
( p1 p2 ... pn ) (n, n 1,..., 2,1)
1 2 ... ( n 2) ( n 1)
n
0 0 12 ...n ...
n (n 1) 2
1
0 (1) ... 0
n ( n 1) 2
12 ...n
2.三角行列式 1) 下三角行列式 a11 a21 ... an1 2) 上三角行列式 a11 0 ... 0
自然数的一个排列,考虑元素 pi(i=1,2,…n),如 果比 pi大的且排在 pi 前面的元素有τi个,就说

《线性代数》说课ppt课件

《线性代数》说课ppt课件

1.教学内容 2.教学重、难 点 3.教学设计 4.学法设计
22
说课结束,欢迎大家批评指正,谢谢!
2011年5月
23
6
1.3课程目标
本着“基础理论以应用为目的,以必需够用
为度”的指导思想,一方面通过线性代数的教学,不
仅使学生掌握线性代数的相关的基础知识、基本理
课 论,有较熟练的运算技能一方面使学生获得该课程的

基本概念、基本理论和基本运算技能,为学习有关 专业课程和扩大数学知识面提供必要的数学基础,
目 另一方面通过各个教学环节,逐步培养学生的抽象
段学习成绩差,学习态度学不端法
正,有的甚至自暴自弃。
学习态度不端正 水平参差不齐
符合学生实际情况
教学方法
16
3.2制订大纲
学情分析
学法
必须
够用
实用
教学大纲
17
3.3教学手段
目前来说,线性代 数的教学方式还是以黑 板加粉笔为主,在今后 的教学中要逐步加入多 媒体教学、网上共享教 学资源或线上教学,这 是教学发展的一个趋势, 但是也要注意网络化教 学手段与传统教学的衔 接过度,以达到最佳教 学效果为依据进行改革 创新。
线上教学
教学资源上网
多媒体教学 黑板加粉笔
18
3.4教学过程实施
12
3
4
5
6


概例





念题





介讲





绍解



19
3.4.6布置作业
作业是课堂教学中不可缺少的环节

线性代数 5-2矩阵相似对角化

线性代数 5-2矩阵相似对角化
线性代数
数学科学学院 陈建华
机动
目录
上页
下页
返回
结束
4.2 矩阵相似对角化
• 相似矩阵 • 矩阵可对角化条件 • 矩阵对角化的应用 • 实对称矩阵特征值和特征向量的性质 • 实对称矩阵的对角化
机动
目录
上页
下页
返回
结束
一、相似矩阵
引例
⎛ 1 −1 ⎞ ⎛ 2 1⎞ ⎛ 1 1⎞ ,A = ⎜ , B =⎜ , 设 P =⎜ ⎟ ⎟ ⎟ ⎝ −1 2 ⎠ ⎝ −1 0 ⎠ ⎝ 0 1⎠
| AB + A − B − E |=| ( A − E )( B + E ) |=| A − E || B + E | =| A − E || A + E |=| A2 − E |=| E |= 1
例2 设n阶矩阵A,B ,则下列结论正确的是( ) (A) 矩阵A,B有相同的特征值,则它们相似 (B) 矩阵A的非零特征值个数与它的秩相等 (C) 若矩阵A,B相似,则它们与同一个对角形矩阵相似 (D) 若A 可对角化,且A,B相似,则它们与同一个对角形矩阵相似
⎛ λ1 ⎜ λ2 ⎜ = ( α 1 , α 2 ,⋯ , α n ) ⎜ ⎜ ⎝

AP = P Λ ⇒ P −1 AP = Λ
机动 目录 上页 下页 返回 结束

P AP = Λ ⇒ AP = P Λ
⎛ λ1 ⎜ ⎜ α , α , , α ⋯ ( ) n = 1 2 ⎜ ⎜ ⎝
−1
P = (α1 , α 2 ,⋯ , α n )
机动 目录 上页 下页 返回 结束
α1 , α 2 分别是矩阵A 的属 例3.已知A是 3 阶方阵, -1 和1的特征向量,Aα 3 = α 2 + α 3 证明: 于特征值 于特征值-1 -1和

线性代数同济大学第五版课件5-2张

线性代数同济大学第五版课件5-2张

~
1 p1 , 1
所以对应于 1 2的全部特征向量为
k1 p1 (k1 0)
上页 下页
当2 4时, 解方程组 A 4 E ) x 0.由 (
3 4 A 4E 1 1 1 3 4 1 1 1
1 A E 4 1
1 3 0
0 0 2 ( 2 ) (1 ) ,
2
所以A的特征值为 1 2, 2 3 1.
当1 2时, 解方程组 A 2 E ) x 0.由 (
上页 下页
1 0 3 1 0 1 2 A 2E 4 32 0 4 1 0 1 0 2 2 1 0 0
~
1 0 0 0 1 0 , 0 0 0
得基础解系
0 p1 0 1
所以对应于 1 2的全部特征向量 .
k1
p (k
1
1
0)
上页
下页
当 2 3 1时, 解方程( A E ) x 0.由
1 0 2 1 0 11 A E 4 31 0 4 2 0 1 0 2 1 1 0 1
一、特征值与特征向量的概念
定 义6
方 非 设 A 是 n 阶 矩 阵, 如 果 数 和 n 维 非 零 阵 零
Ax Ax x x
列 向 量x 使 关 系 式
成 立, 那末, 这样的数 称为方阵 的特征值 (eigenvalue) A
非零向量x 称为 A 的对应于特征值 的 特征向量(eigenvector)
2 2

故 是矩阵A 的特征值, 且 x 是 A 对应于 的特

《线性代数》教学课件—第5章 二次型 第五节 二次型及其标准型

《线性代数》教学课件—第5章 二次型 第五节 二次型及其标准型
解 设 f = xTAx , 则
A 12
12
,
x
x y
.
显然,二次型的秩为 R( A) 2.
例 23 已知二次型
f (x1,x2,x3,x4 ) x12 3x22 x32 4x42 2x1x2 4x1x3 6x1x4 8x2 x3 4x2 x4,
写出二次型的矩阵 A ,并求出二次型的秩.
aijபைடு நூலகம்xi x j xT Ax,
i1 j1
其中 AT = A 为实对称矩阵, 称 A 为二次型的矩
阵. 称矩阵 A 的秩 R(A) 为二次型的秩. 这样,
实二次型与实对称矩阵之间就建立起一一对应的
关系.
例 22 已知二次型 f (x,y) x2 4xy y2 ,
写出二次型的矩阵 A , 并求出二次型的秩.
(2) f (x1,x2,x3) x12 4x22 x32 4x1x2 8x1x3 4x2x3 .
(1) 解 二次型 f 的矩阵 A 为 (2) 解 0二1次型1 f 的矩阵 A 为
本若请本若请本若请节想本单若请节想本单若请节想本单若内请结节击想本 本单若 若内请 请结节击想本 本单若 若内请 请结节击想本 本容单若 若束内请 请返结节节击想 想本 本容单单若 若束内请 请返结节节击想 想本 本 本容单 单若 若 若束内请 请 请返结节 节已想击想本本 本容单单若 若回束内内请 请返结 结节 节已击想击想本本容单单若回束内内请返结 结节 节 节已击 击想 想想本本容单 单 单若回束内 内结请返结结堂节节已击想 想击按本本容容单 单若回束 束内 内结请返返结结堂节已击击想按本本容容单若回束 束内 内 内结请返 返结 结结堂节已击 击 击想按本本容 容束单若回束束课内内结请返返结 结钮堂节已已击 击想按本 本本容 容束单若回回束束课内结请返返结钮堂节已已击想按本 本容 容 容束单回 回束束 束课内结返 返 返结钮堂节已 已击想按本本,容容束单回回束 束课.内结结!返 返结钮堂 堂节已 已击想按按本本,容束单回回束课.内结结!返结钮堂 堂已 已 已击按 按本 本本,容束回 回 回束课.内结 结!返结钮堂堂已已击按按本 本,容束束回 回束课 课.内结 结!返结钮钮堂堂已击按按本,容束束回束课 课.结 结 结!返钮 钮堂堂 堂已按 按 按本,容束 束回束课课.结结!返钮钮堂 堂已按 按本,,容束束回束课课..结!!返钮钮堂已按本,,束束束回课 课课..结!!钮 钮 钮堂已按本,,束束回课 课..结!!钮 钮堂已按本,,束回课..结!!钮堂按,,,束课...结!!!钮堂按,,束课..结!!钮堂按,束课.!钮,束课.!钮,束课.!钮,.!,.!,.!

线性代数课件(完整版)

线性代数课件(完整版)

二、三阶行列式
定义 设有9个数排成3行3列的数表
a11 a12 a13
a 21 a 22 a 23
引进记号
a 31 a 32 a 33
原则:横行竖列
主对角线 a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3
a11a22a33a12a23a31a13a21a32
副对角线 a 3 1 a 3 2 a 3 3
2021/3/11
18
3个不同的元素一共有3! =6种不同的排法 123,132,213,231,312,321
所有6种不同的排法中,只有一种排法 (123)中的数字是按从小到大的自然 顺序排列的,而其他排列中都有大的 数排在小的数之前.
b1 b2
由消元法,得
( a a a a ) x b a a b 12 12 12 21 1 1 22 12 2
( a a a a ) x a b b a 12 12 12 21 2 12 11 21
当 a 1a 1 2 2a 1a 时2 2,1 该0 方程组有唯一解
x b1a22a12b2
行列式的性质及计算.
§6 行列式按行(列)展开
§7 克拉默法则 —— 线性方程组的求解.
2021/3/11
4
§1 二阶与三阶行列式
我们从最简单的二元线性方程组出发,探 求其求解公式,并设法化简此公式.
一、二元线性方程组与二阶行列式
二元线性方程组
aa1211xx11
a12 x2 a22 x2
aa1211xx11
a12 x2 a22 x2
b1 b2
若令
D a11 a12 a21 a22
(方程组的系数行列式)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得基础解系
1 p2 2 , 1
所以kp2 ( k 0)是对应于2 3 1的全部特征向量 .
上页 下页 返回
2 1 1 例7 设 A 0 2 0 , 求A的特征值与特征向量. 4 1 3
解 A的特征多项式为:
B 2 A1 3 A 2E .
上页 下页 返回
2 3 2 , 则 令 ( )
B ( A) 2 A1 3 A 2E ,
从而可得 B 的特征值为
(1) 1, ( 1) 3,
( 2) 3.
| B | (1) ( 1) (2)
与题设矛盾. 因此 p1 + p2 不是 A 的特征向量.
上页 下页 返回
四、小结
求矩阵特征值与特征向量的步骤:
1. 计算A的特征多项式 A E ;
2. 求特征方程 A E 0的全部根1 , 2 , , n , 就是A的全部特征值;
3. 对于特征值 i , 求齐次方程组
A i E x 0
2 A E 0 4
1 2 1
2
1 0 3
( 1) 2 ,
所以A的特征值为1 1, 2 3 2.
上页 下页 返回
当1 1时, 解方程 A E x 0.由
1 1 1 A E 0 3 0 4 1 4 1 得基础解系 p1 0 , 1
上页 下页 返回
2. 特征值的性质
设 1 , 2 , · · ·, n 是 n 阶矩阵 A = (aij) 的 n 个 特征值, 则 矩阵的迹,记作trA
(1) 1 2 n a11 a22 ann ;
( 2) 12 n A .
分析
a11 a 21 a n1 a12 a1 n a2n a 22 an2
1 , 2 , · · ·, s .
步骤 2 : 对 A 的每个特征值 i ( i = 1, 2,
· · · , s ), 求解齐次线性方程组 (A - i E ) x = 0,
该方程组的全部非零解即为矩阵 A 的对应于 i 的全部特征向量.
上页 下页 返回
1 1 0 . 例6 求矩阵A 4 3 0 的特征值和特征向量 1 0 2
9.
上页 下页 返回
三、特征值和特征向量的性质
定理 2 设 1 , 2 , · · ·, m 是方阵 A 的 m 个特征值,
p1 , p2 , · · ·, pm 依次是与之对应的特征向量, 如果 1 , 2 , · · ·, m 各不相等, 则 p1 , p2 , · · ·,p m线性无关. 证明 则
上页 下页 返回
Ax = x ( x 0) (A - E)x = 0 | A - E | = 0
a11 a 21 an1 a12 an 2
有非零解的充要条 件
a1 n a2 n 0.
a 22
a nn
上页 下页 返回
上式是以 为未知数的一元 n 次方程,称为 矩阵 A 的特征方程. 左端 | A - E | 是 的 n次多项式,记作 f(), 称为矩阵 A 的特征多项式. 显然,A 的特征值就是特征方程的解. 特征方程在复数范围内恒有解,其个数为方程的 次数(重根按重数计). 因此,n 阶矩阵 A 在复数范围内有 n 个特征值.
解 A的特征多项式为
1 A E 4 1 1 3 0 0 0 2 ( 2 )(1 )2 ,
所以A的特征值为1 2,2 3 1.
上页 下页 返回
当1 2 时, 解方程( A 2 E ) x 0. 由
3 1 0 A 2E 4 1 0 1 0 0 1 0 0 ~ 0 1 0 , 0 0 0
第二节
方阵的特征值与特征向量
主要内容:
特征值与特征向量的概念
特征值与特征向量的求法
特征值与特征向量的性质 小结
上页 下页 返回
一、特征值与特征向量的概念
1. 定义 定义 6 设 A 是 n 阶矩阵,如果数 和 n
维非零列向量 x 使关系式
Ax = x
( 1)
成立, 那么,这样的数 称为矩阵 A 的特征值, 非零向量 x 称为 A 的对应于特征值 的特征向量
设有常数 x1 , x2 ,, xm 使 x1 p1 x2 p2 xm pm 0.
A x1 p1 x2 p2 xm pm 0, 即
k 1 k 2 k m
1 x1 p1 2 x2 p2 m xm pm 0,
类推之,有 x1 p1 x2 p2 xm pm 0.
上页 下页 返回
(2) 当A可逆时, 0
Ax x
两边左乘A , 得到 x A x
1
1
A x x
1 1
故 1是矩阵A 1的特征值, 且x是A 1对应于 1 的特征向量.
上页 下页 返回
按上例类推,易得: 若 是方阵 A 的特征值. 则:k 是 Ak 的特征值(k 为正整数);
k 2 p2 k 3 p3
( k 2 , k 3 不同时为 0).
上页 下页 返回
例 8 设 是方阵 A 的特征值. 证明
(1) 2 是 A2 的特征值; (2) 当A可逆时,-1是A-1的特征值.
证明: 因 是 A 的特征值, 故有 p 0 使
Ap = p. (1) A2p = A (Ap) = A (p) = (Ap) = ( p ) = 2p . 所以, 2 是 A2 的特征值;
上页 下页 返回
例 9 设三阶矩阵 A 的特征值为 1, 1, 2 ,
设矩阵 B A* 3 A 2 E , 试求:
(1) B 的特征值; 解
(2) | B |.
因为 | A | = 123 = -2 ,所以 A 可逆,
而 A = | A | A-1 = -2 A-1. 所以
A(p1 + p2 ) = (p1 + p2 ) ,
上页 下页 返回
于是
(p1 + p2 ) = 1p1 + 2p2 ,
即 ( 1 - )p1 + ( 2 - ) p2 = 0 . 因为 1 2 ,按定理2,知 p1 , p2 线性无关,
故由上式得 1 - = 2 - = 0 ,即 1 = 2 ,
上式等号左端第二个矩 阵的行列式为范德蒙行 列 式,当各i不相等时, 该行列式不等于 0, 从而该矩阵 可逆.于是有 x1 p1 , x2 p2 ,, xm pm 0,0,,0,
即 x j p j 0 j 1,2,, m .但 p j 0,故 x j 0 j 1,2,, m .
的非零解, 就是对应于 i的特征向量.
上页 下页 返回
得基础解系
0 p1 0 , 1
所以kp1 ( k 0)是对应于1 2的全部特征向量 .
上页 下页 返回
当2 3 1时, 解方程( A E ) x 0. 由
2 1 0 A E 4 2 0 1 0 1 1 0 1 ~ 0 1 2 , 0 0 0
所以向量组 p1 , p2 , , pm 线性无关.
证毕
上页 下页 返回
例 10 设 1 , 2 是矩阵 A 的两个不同的
特征值,对应的特征向量依次为 p1 , p2 , 证明
p1 + p2 不是 A 的特征向量.
证明 按题设,有 Ap1 = 1p1 , Ap2 = 2p2 ,
故 A(p1 + p2 ) = 1p1 + 2p2 . 用反证法,假设 p1 + p2 是 A 的特征向量, 则应存在数 , 使
是 A 的特征值.
其中, = a0 + a1 + · · ·+ amm ,
A = a0E+ a1A + · · ·+ amAm ,
分析: 若Ap = p
A p= (a0E+ a1A + · · ·+ amAm )p
= a 0p + a 1 p + · · ·+ am mp= ()p
1 0 1 ~ 0 1 0 , 0 0 0
p1
(k1 0).
上页 下页 返回
当2 3 2时, 解方程 A 2 E x 0.由
4 1 1 4 1 1 A 2 E 0 0 0 ~ 0 0 0 , 4 1 1 0 0 0 得基础解系为: 0 1 p2 1 , p3 0 , 1 4 所以对应于 2 3 2的全部特征向量为:
矩阵 A 可逆的充要条件: 特征值全都非零
f ( ) (1 )(2 )(n )
a nn
上页 下页 返回
二、特征值与特征向量的求法
求矩阵 A 的特征值与特征向量的步骤如下:
步骤 1 :计算 A 的特征多项式,并求出特
征方程的所有根. 设矩阵 A 有 s 个不同的特征值
k 1,2,, m 1
上页 下页 返回
把上列各式合写成矩阵形式,得
m 1 1 1 1 m 1 1 2 2 x1 p1 , x2 p2 ,, xm pm 0,0,,0 1 m 1 m m
相关文档
最新文档