2020年山西省临汾市尧都区九年级中考第三次大联考数学试题
山西省临汾市2019-2020学年第三次中考模拟考试数学试卷含解析
山西省临汾市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点D 在△ABC 边延长线上,点O 是边AC 上一个动点,过O 作直线EF ∥BC ,交∠BCA 的平分线于点F ,交∠BCA 的外角平分线于E,当点O 在线段AC 上移动(不与点A ,C 重合)时,下列结论不一定成立的是( )A .2∠ACE=∠BAC+∠BB .EF=2OC C .∠FCE=90°D .四边形AFCE是矩形 2.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A .12B .11C .10D .93.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:34.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( )A .149×106千米2B .14.9×107千米2C .1.49×108千米2D .0.149×109千25.如图,点A 、B 、C 在⊙O 上,∠OAB=25°,则∠ACB 的度数是( )A .135°B .115°C .65°D .50°6.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++7.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,2C .1,1,3D .1,2,39.如图所示,点E 是正方形ABCD 内一点,把△BEC 绕点C 旋转至△DFC 位置,则∠EFC 的度数是( )A .90°B .30°C .45°D .60°10.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根11.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <012.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.14.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m 的值是______.15.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.16.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).17.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.18.已知函数y=1x-1,给出一下结论:①y的值随x的增大而减小②此函数的图形与x轴的交点为(1,0)③当x>0时,y的值随x的增大而越来越接近-1④当x≤12时,y的取值范围是y≥1以上结论正确的是_________(填序号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E 、F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°,求此时BQ 的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m ,AE=400m ,ED=285m ,CD=340m ,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长,若不存在,请说明理由.20.(6分)(1)化简:221m 2m 11m 2m 4++⎛⎫-÷ ⎪+-⎝⎭(2)解不等式组31234(1)9x x x +⎧>+⎪⎨⎪+->-⎩.21.(6分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.22.(8分)已知a 2+2a=9,求22212321121a a a a a a a +++-÷+--+的值. 23.(8分) (1)解方程: +=4(2)解不等式组并把解集表示在数轴上:.24.(10分)如图,∠AOB=90°,反比例函数y=﹣2x(x<0)的图象过点A(﹣1,a),反比例函数y=kx(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=kx于另一点C,求△OBC的面积.25.(10分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.26.(12分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.27.(12分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)(2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B ,EF=2OC ,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD 是△ABC 的外角,∴∠ACD=∠BAC+∠B ,∵CE 平分∠DCA ,∴∠ACD=2∠ACE ,∴2∠ACE=∠BAC+∠B ,故A 选项正确;∵EF ∥BC ,CF 平分∠BCA ,∴∠BCF=∠CFE ,∠BCF=∠ACF ,∴∠ACF=∠EFC ,∴OF=OC ,同理可得OE=OC ,∴EF=2OC ,故B 选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=12×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.2.A【解析】【分析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.【详解】∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数=36030︒︒=1.故选:A.【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.3.A【解析】【分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.4.C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:149 000 000=1.49×2千米1.故选C.把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.5.B【解析】【分析】由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= 12∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点 P ,连接 PA 、 PB. ∵OA=OB ,∴∠OAB=∠OBA=25°,∴∠AOB=180°−2×25°=130°,∴∠P=12∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键.6.B【解析】【分析】把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.【详解】解:∵y=x2+2x+3=(x+1)2+2,∴原抛物线的顶点坐标为(-1,2),令x=0,则y=3,∴抛物线与y轴的交点坐标为(0,3),∵抛物线绕与y轴的交点旋转180°,∴所得抛物线的顶点坐标为(1,4),∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].故选:B.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.7.D【解析】【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC , ∴, 即,解得:AB =6,故选:D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE ∽△CDE 是解答此题的关键. 8.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B 、∵12+122)2,是等腰直角三角形,故选项错误;C 2231-2()=12,可知是顶角120°,底角30°的等腰三角形,故选项错误; D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D .9.C【解析】【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF ,然后求出△CEF 是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD 是正方形,∴∠BCD=90°,∵△BEC 绕点C 旋转至△DFC 的位置,∴∠ECF=∠BCD=90°,CE=CF ,∴△CEF 是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF ∆ 为等腰直角三角形.10.D【解析】【分析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+V ==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.【解析】【分析】【详解】解:∵二次函数的图象开口向上,∴a>1.∵对称轴在y轴的左边,∴b2a-<1.∴b>1.∵图象与y轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故选A.【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.12.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.64.410⨯【解析】试题分析:将4400000用科学记数法表示为:4.4×1.故答案为4.4×1.考点:科学记数法—表示较大的数.14.258或5或1.【解析】【分析】根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.解:如图(1)当在△ADE 中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m 个单位使得E 、C 点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE 、AD 为腰使ADE 为等腰三角形,设平移了m 个单位:则223(m-4)+,AD=m ,得:2223(m-4)=m +,得m=258, 综上所述:m 为258或5或1, 所以答案:258或5或1. 【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.15.13【解析】【分析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个, ∴这粒豆子落在黑色方格中的概率是515=13, 故答案为13. 【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.16.>;【解析】【详解】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,故答案为>17.这一天的最高气温约是26°【解析】【分析】根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【详解】解:根据图象可得这一天的最高气温约是26°,故答案为:这一天的最高气温约是26°.【点睛】本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.18.②③【解析】(1)因为函数11yx=-的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;(2)由110x-=解得:1x=,∴11yx=-的图象与x轴的交点为(1,0),故②中结论正确;(3)由11yx=-可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;(4)因为在11yx=-中,当=-1x时,2y=-,故④中结论错误;综上所述,正确的结论是②③.故答案为:②③.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1;(1);(4)(【解析】【分析】(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.【详解】(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴227.43∴BP′=27.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:7综上所述:在等腰三角形△ADP中,若PA=PD,则BP=1;若DP=DA,则7;若AP=AD,则BP=7.(1)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=12 BC.∵BC=11,∴EF=4.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=4,∴EF与BC之间的距离为4.∴OQ=4∴OQ=OE=4.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴3∴3∴当∠EQF=90°时,BQ的长为3.(4)在线段CD上存在点M,使∠AMB=40°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP 与AK 交于点O ,以点O 为圆心,OA 为半径作⊙O ,过点O 作OH ⊥CD ,垂足为H ,如图③.则⊙O 是△ABG 的外接圆,∵△ABG 是等边三角形,GP ⊥AB ,∴AP=PB=12AB . ∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG 是等边三角形,AK ⊥BG ,∴∠BAK=∠GAK=40°.∴OP=AP•tan40° =145×33∴3∴OH <OA .∴⊙O 与CD 相交,设交点为M ,连接MA 、MB ,如图③.∴∠AMB=∠AGB=40°,3.∵OH ⊥CD ,OH=6,3∴2222=(903)150OM OH --2∵AE=200,3∴3.若点M 在点H 的左边,则32.∵32>420,∴DM >CD .∴点M 不在线段CD 上,应舍去.若点M 在点H 的右边,则.∵420,∴DM <CD .∴点M 在线段CD 上.综上所述:在线段CD 上存在唯一的点M ,使∠AMB=40°,此时DM 的长为()米.【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键. 20.(1)21m m -+;(2)﹣2<x<1 【解析】【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】 (1)原式=21(2)(2)2m 2(1)1m m m m m m ++--⋅=+++; (2)不等式组整理得:12x x <⎧⎨>-⎩, 则不等式组的解集为﹣2<x<1.【点睛】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.21. (1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】【分析】(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.【详解】(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为12(7+8)=7.5;平均数为110(6×2+7×3+8×2+10×2+11)=110×80=8,所以,方差=110[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=110(8+3+0+8+9),=110×28,=2.8;(3)6℃的度数,210×360°=72°,7℃的度数,310×360°=108°,8℃的度数,210×360°=72°,10℃的度数,210×360°=72°,11℃的度数,110×360°=36°,作出扇形统计图如图所示.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.22.22(1)a +,15. 【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:22212321121a a a a a a a +++-÷+--+=()()()()()211211112a a a a a a a -+-⨯++-++ =()21111a a a --++ =()221a +, ∵a 2+2a=9,∴(a+1)2=1.∴原式=21105=. 23.(1)x=1(2)4<x≤【解析】【分析】(1)先将整理方程再乘以最小公分母移项合并即可;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可.【详解】(1)+=4,方程整理得:=4, 去分母得:x ﹣5=4(2x ﹣3),移项合并得:7x=7,解得:x=1;经检验x=1是分式方程的解;(2)解①得:x≤解②得:x >4 ∴不等式组的解集是4<x≤,在数轴上表示不等式组的解集为:.【点睛】本题考查了解一元二次方程组与分式方程,解题的关键是熟练的掌握解一元二次方程组与分式方程运算法则.24.(1)a=2,k=8(2)OBC S V =1.【解析】分析:(1)把A (-1,a )代入反比例函数2x得到A (-1,2),过A 作AE ⊥x 轴于E ,BF ⊥x 轴于F ,根据相似三角形的性质得到B (4,2),于是得到k=4×2=8; (2)求的直线AO 的解析式为y=-2x ,设直线MN 的解析式为y=-2x+b ,得到直线MN 的解析式为y=-2x+10,解方程组得到C (1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x (x <0)的图象过点A (﹣1,a ), ∴a=﹣21-=2, ∴A (﹣1,2),过A 作AE ⊥x 轴于E ,BF ⊥⊥x 轴于F ,∴AE=2,OE=1,∵AB ∥x 轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF ,∴△AEO ∽△OFB , ∴AE OE OF BF=,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.25.(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E 的圆心角度数是360°×1602000=28.8°, (3)D 选项的人数为2000×25%=500, 补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【解析】【分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.【点睛】熟练掌握将一般式化为顶点式是解题关键.27.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.。
山西省临汾市2019-2020学年中考第三次大联考数学试卷含解析
山西省临汾市2019-2020学年中考第三次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直角三角形ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为( )A .2π﹣3B .π+3C .π+23D .2π﹣232.在△ABC 中,∠C =90°,tanA =,△ABC 的周长为60,那么△ABC 的面积为( ) A .60 B .30 C .240 D .1203.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .124.已知反比例函数2y x-=,下列结论不正确的是( ) A .图象经过点(﹣2,1) B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >2 5.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的( )A .平均数B .中位数C .众数D .方差6.计算(-18)÷9的值是( )A .-9B .-27C .-2D .27.多项式ax 2﹣4ax ﹣12a 因式分解正确的是( )A .a (x ﹣6)(x+2)B .a (x ﹣3)(x+4)C .a (x 2﹣4x ﹣12)D .a (x+6)(x ﹣2)8.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 给好落在AB 的延长线上,连接AD ,下列结论不一定正确的是( )A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)10.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠411.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac <0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个12.若|x| =-x,则x一定是()A.非正数B.正数C.非负数D.负数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程25x _____.14.若点M(1,m)和点N(4,n)在直线y=﹣12x+b上,则m___n(填>、<或=)15.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.16.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x 里,依题意,可列方程为________.17.计算2(32)+的结果等于______________________.18.对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a 的值为 ,中位数在第 组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.组别成绩x 分 频数(人数) 第1组50≤x <60 6 第2组60≤x <70 8 第3组70≤x <80 14 第4组80≤x <90 a 第5组 90≤x <100 1020.(6分)已知:如图.D 是ABC V 的边AB 上一点,//CN AB ,DN 交AC 于点M ,MA MC =. (1)求证:CD AN =;(2)若2AMD MCD ∠=∠,试判断四边形ADCN 的形状,并说明理由.21.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.22.(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
山西省临汾市尧都区2020年九年级中考数学第三次大联考试卷(图片版)
A,B间的距离为
A. 12 m
B. 12.5 m
C. 13 m
D. 13.5 m
(第 3 题图)
4. 某体校要从四名射击选手中选拔一名选手参加省体育运动会,选拔赛中每名选手连续
射靶10次,他们各自的平均成绩及其方差如下表所示:
甲
乙
丙
丁
x(环) 8.6
8.4
8.6
7.6
s2
0.56 0.74 0.94 1.92
(2)当AB=2时,求图中阴影部分面积.
21.(本题9分)
某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节”系列活动.活动中故
事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故
事类图书的数量恰好比单独购买典籍类图书的数量少10本.
图1
图2
(1)求活动中典籍类图书的标价;
姓名
准考证号
6. 探究课上,老师给出一个问题“利用二次函数y=2x2与一次
函数y=x+2的图象,求一元二次方程2x2=x+2的近似根”. 小
华利用计算机绘制出如图所示的图象,通过观察可知该方
数学
程的两近似根x1和x2满足-1<x1<0,1<x2<2. 小华的上述方法 体现的数学思想是
A. 公理化
B. 分类讨论
AC 的值; AE
实践探究
(3)如图3,将图2中的△BCE继续旋转,当AC=AE时停止旋转,直接写出此时琢的度数,
并求出△AEC的面积;
(4)将图3中的△BCE继续旋转,则在某一时刻AC和AE还能相等吗? 如果不能,则说明
理由;如果能,请在图4中画出此时的△BCE,连接AC,AE,并直接写出△AEC的面
山西省临汾市2020年中考数学三模试卷B卷
山西省临汾市2020年中考数学三模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)(2019·凤山模拟) 下列运算正确的是()A . a5﹣a3=a2B . a6÷a2=a3C . (﹣2a)3=﹣8a3D . 2a﹣2=2. (2分)下列运算正确的是()A . +=B . 3x2y﹣x2y=3C . =a+bD . (a2b)3=a6b33. (2分)一元二次方程x2+2x﹣1=0的实数根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 不能确定4. (2分)一个不透明立方体的6个面上分别写有数字1、2、3、4、5、6,任意两对面上所写的两个数字之和为7.将这样的几个立方体按照相接触两个面上的数字之和为8,摆放成一个几何体,这个几何体的三视图如图所示,图中所标注的是部分面上所见的数字,则★所代表的数是()A . 1B . 2C . 3D . 45. (2分)甲乙两人在相同的条件下各射靶10次,他们的环数的方差是S甲2=2.3, S乙2=3.1,则射击稳定性强的是().A . 甲B . 乙C . 两人一样D . 不能确定6. (2分)甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A . s2甲>s2乙B . s2甲=s2乙C . s2甲<s2乙D . 不能确定7. (2分) (2019八上·响水期末) 下列图像中,能反映等腰三角形顶角(度)与底角(度)之间的函数关系的是()A .B .C .D .8. (2分)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为()A . (﹣, 0)B . (﹣,﹣)C . (﹣,﹣)D . (﹣2,﹣2)9. (2分) (2019九上·孝感月考) 如图,为半径,点为中点,为上一点,且,若,则的长为()A .B .C .D .10. (2分)(2017·大连模拟) 如图,PA,PB是⊙O的切线,切点分别为A,B,点C在⊙O上,且是优弧,则∠ACB等于()A . 180°﹣2∠PB . 180°﹣∠PC . 90°﹣∠PD . ∠P11. (2分) (2016八上·铜山期中) 如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为()A . 80°B . 100°C . 60°D . 45°12. (2分) (2017九·龙华月考) 已知函数y=ax2+bx+c(a≠0)的图象与函数y=x- 的图象如图5所示,则下列结论:①ab>0;②c>- ;③a+b+c<- ;④方程a2+(b-1)x+c+ =0有两个不相等的实数根.其中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题: (共6题;共6分)13. (1分)某省2016年初中毕业生人数约为7030000,数7030000用科学记数法表示为________.14. (1分)从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是________15. (1分)(2017·枣阳模拟) 如图,在△ABC中,分别以点A,B为圆心,大于 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ADC的周长为8,AB=6,则△ABC的周长为________.16. (1分)(2013·遵义) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).17. (1分)如图,于E,于F,若,,则下列结论:;平分;;中正确的是________.③④18. (1分) (2018八上·黄石期中) 如图所示,图①是边长为1的等边三角形纸板,周长记为C1 ,沿图①的底边剪去一块边长为的等边三角形,得到图②,周长记为C2 ,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的),得图③④…,图n的周长记为Cn ,若n≥3,则Cn-Cn-1=________.三、解答题: (共7题;共76分)19. (5分)(2017·南山模拟) 计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.20. (6分)(2018·南京模拟) 甲、乙、丙三人到某商场购物,他们同时在该商场的地下车库等电梯,三人都任意从1至3层的某一层出电梯.(1)求甲、乙两人从同一层楼出电梯的概率;(2)甲、乙、丙三人从同一层楼出电梯的概率为________.21. (15分) (2019八下·卫辉期中) 如图所示,一次函数y=kx+b的图象与反比例函数y=的图象交于M、N两点.(1)根据图中条件求出反比例函数和一次函数的解析式;(2)连结OM、ON,求△MON的面积;(3)根据图象,直接写出使一次函数的值大于反比例函数的值的x的取值范围.22. (10分)(2017·谷城模拟) 在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).求:(1)反比例函数和一次函数的解析式;(2)写出当反比例函数的值大于一次函数的值时x的取值范围.23. (10分)(2017·深圳模拟) 某商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?24. (10分)(2017·合肥模拟) 【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.(1)【类比引申】如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;(2)【联想拓展】如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.25. (20分)(2017·胶州模拟) 如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发沿AD向点D匀速运动,速度是1cm/s;同时,点Q从点C出发沿CB方向,在射线CB上匀速运动,速度是2cm/s,过点P作PE∥AC 交DC于点E,连接PQ、QE,PQ交AC于F.设运动时间为t(s)(0<t<8),解答下列问题:(1)当t为何值时,四边形PFCE是平行四边形;(2)设△PQE的面积为s(cm2),求s与t之间的函数关系式;(3)是否存在某一时刻t,使得△PQE的面积为矩形ABCD面积的;(4)是否存在某一时刻t,使得点E在线段PQ的垂直平分线上.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共7题;共76分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、25-4、。
山西省临汾市2019-2020学年中考数学三模考试卷含解析
山西省临汾市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A .8374y x y x +=⎧⎨-=⎩B .8374x yx y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374y x y x -=⎧⎨+=⎩2.如图,点D 在△ABC 边延长线上,点O 是边AC 上一个动点,过O 作直线EF ∥BC ,交∠BCA 的平分线于点F ,交∠BCA 的外角平分线于E,当点O 在线段AC 上移动(不与点A ,C 重合)时,下列结论不一定成立的是( )A .2∠ACE=∠BAC+∠B B .EF=2OC C .∠FCE=90°D .四边形AFCE是矩形3.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点4.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是A.B.C.D.5.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.326.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开.若不考虑接缝,它是一个半径为12cm,圆心角为60o 的扇形,则()A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为235cmD.圆锥形冰淇淋纸套的高为63cm7.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B 两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米D.800tanα米8.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A .3B .4C .5D .69.已知二次函数y=ax 2+bx+c (a≠1)的图象如图所示,则下列结论: ①a 、b 同号;②当x=1和x=3时,函数值相等; ③4a+b=1;④当y=﹣2时,x 的值只能取1; ⑤当﹣1<x <5时,y <1. 其中,正确的有( )A .2个B .3个C .4个D .5个10.关于x 的方程(a ﹣1)x |a|+1﹣3x+2=0是一元二次方程,则( ) A .a≠±1B .a =1C .a =﹣1D .a =±111.如图,ABC V 内接于O e ,若A 40∠=o ,则BCO (∠= )A .40oB .50oC .60oD .80o12.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A 、B 、C 在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为330cm ,则这块圆形纸片的直径为( )A.12cm B.20cm C.24cm D.28cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次函数y=(x﹣2m)2+1,当m<x<m+1时,y随x的增大而减小,则m的取值范围是_____.14.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O 顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.15.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.16.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=223k kx-+(k为常数)的图象上,则y1、y2、y3的大小关系为________.18.比较大小:4 17(填入“>”或“<”号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知△ABC内接于⊙O,AD平分∠BAC.(1)如图1,求证:»»BD CD=;(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.20.(6分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).21.(6分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元. 22.(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.53m污水的费用为2 m的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理13元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.23.(8分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.24.(10分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。
山西省临汾市2019-2020学年中考数学三模试卷含解析
山西省临汾市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列命题中,真命题是( )A .如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B .如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C .如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D .如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离2.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -3.如图,菱形ABCD 的边长为2,∠B=30°.动点P 从点B 出发,沿 B-C-D 的路线向点D 运动.设△ABP 的面积为y(B 、P 两点重合时,△ABP 的面积可以看作0),点P 运动的路程为x ,则y 与x 之间函数关系的图像大致为( )A .B .C .D . 4.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是( )A .75°B .60°C .45°D .30°5.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)6.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×1087.一个多边形的每个内角都等于120°,则这个多边形的边数为( )A .4B .5C .6D .78.cos30°的值为( )A .1B .12C .3D .3 9.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A.110 B.158 C.168 D.178 10.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩11.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.1612.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为()A.76°B.74°C.72°D.70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.14.分解因式:2x2-8x+8=__________.15.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.1635_____.17.比较大小:10(填<,>或=).18.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.20.(6分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?21.(6分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.22.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?23.(8分)如图,已知△ABC中,AB=BC=5,tan∠ABC=34.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求ADDB的值.24.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?25.(10分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x (元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?26.(12分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.27.(12分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据两圆的位置关系、直线和圆的位置关系判断即可.【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A 是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B 是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C 是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D 是真命题;故选:D .【点睛】本题考查了两圆的位置关系:设两圆半径分别为R 、r ,两圆圆心距为d ,则当d >R+r 时两圆外离;当d=R+r 时两圆外切;当R-r <d <R+r (R≥r )时两圆相交;当d=R-r (R >r )时两圆内切;当0≤d <R-r (R >r )时两圆内含.2.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.3.C【解析】【分析】先分别求出点P 从点B 出发,沿B→C→D 向终点D 匀速运动时,当0<x≤2和2<x≤4时,y 与x 之间的函数关系式,即可得出函数的图象.【详解】由题意知,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,则当0<x≤2,y=12x , 当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C .故选C .4.C【解析】【分析】根据直角三角形两锐角互余即可解决问题.【详解】解:∵直角三角形两锐角互余,∴另一个锐角的度数=90°﹣45°=45°,故选C .【点睛】本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.5.C【解析】试题分析:=,∴点M (m ,﹣m 2﹣1),∴点M′(﹣m ,m 2+1),∴m 2+2m 2﹣1=m 2+1.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8).故选C .考点:二次函数的性质.6.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.7.C【解析】试题解析:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=10°,∴边数n=310°÷10°=1.故选C.考点:多边形内角与外角.8.D【解析】cos30°=2.故选D.9.B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.10.B【解析】【分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A、不等式组53xx≥-⎧⎨>-⎩的解集为x>-3,故A错误;B、不等式组53xx>-⎧⎨≥-⎩的解集为x≥-3,故B正确;C、不等式组53xx<⎧⎨<-⎩的解集为x<-3,故C错误;D、不等式组53xx<⎧⎨>-⎩的解集为-3<x<5,故D错误.故选B.本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.11.C【解析】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21 63 .故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.12.B【解析】【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.【详解】解:∵∠A=56°,∠C=88°,∴∠ABC=180°-56°-88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,∴∠BDE=180°-18°-88°=74°.故选:B.【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5:1【解析】【分析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.解:作AE ∥BC 交DC 于点E ,交DF 于点F ,设每个小正方形的边长为a ,则△DEF ∽△DCN , ∴EF CN =DF DN =13, ∴EF=13a , ∵AF=2a ,∴AE=53a , ∵△AME ∽△BMC , ∴AM BM =AE BC =534a a =512, 故答案为:5:1.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.2(x-2)2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.15.2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.16.15【解析】分析:直接利用二次根式的性质进行化简即可.详解:35=3555⨯⨯=155.故答案为155.点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键.17.<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<10,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.18.①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】【分析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵»»AB AB,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.20.(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.21. (1)见解析;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6).【解析】【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA 1B 1,△OA 2B 2,即为所求;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.22.(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.【解析】【分析】(1)可设甲种商品的销售单价x 元,乙种商品的销售单价y 元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;(1)可设销售甲种商品a 万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【详解】(1)设甲种商品的销售单价x 元,乙种商品的销售单价y 元,依题意有:23321500x y x y =⎧⎨-=⎩,解得900600x y =⎧⎨=⎩:. 答:甲种商品的销售单价900元,乙种商品的销售单价600元;(1)设销售甲种商品a 万件,依题意有:900a+600(8﹣a )≥5400,解得:a≥1.答:至少销售甲种商品1万件.【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.23.(1)10(2)35AD BD =. 【解析】【分析】(1)过A 作AE ⊥BC ,在直角三角形ABE 中,利用锐角三角函数定义求出AC 的长即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.【详解】(1)如图,过点A作AE⊥BC,在Rt△ABE中,tan∠ABC=34AEBE=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC=2231+=10;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=52,∵tan∠DBF=34 DFBF=,∴DF=158,在Rt△BFD中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭=258,∴AD=5﹣258=158,则35 ADBD=.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.24.(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【解析】【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.【详解】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:1010350 3020850x yx y+=⎧⎨+=⎩,解这个方程组得:1520x y =⎧⎨=⎩, 答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60-x )分. 则生产甲种产品15x 件,生产乙种产品2586020x ⨯⨯-件. ∴w 总额=1.5×15x +2.8×2586020x ⨯⨯-=0.1x+1200020x -×2.8=0.1x+1680-0.14x=-0.04x+1680, 又15x ≥60,得x≥900, 由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元), 此时甲有90015=60(件), 乙有:2586090020⨯⨯-=555(件), 答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点睛】考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.25.(1)w=(x ﹣200)y=(x ﹣200)(﹣2x+1)=﹣2x 2+1400x ﹣200000;(2)令w=﹣2x 2+1400x ﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x 2+1400x ﹣200000=﹣2(x ﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.【解析】试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x 的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x 2+1400x-200000;(2)令w=-2x 2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x 2+1400x-200000=-2(x-350)2+45000,当x=250时y=-2×2502+1400×250-200000=25000; 故最高利润为45000元,最低利润为25000元.26.(1)13;(2)13. 【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:13(2)、画树状图得:结果:(A ,B )、(A ,C )、(B ,A )、(B ,C )、(C ,A )、(C ,B )∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13. 考点:概率的计算.27.(1)作图见解析;(2)如图所示,点A 的坐标为(0,1),点C 的坐标为(-3,1);(3)如图所示,点B 2的坐标为(3,-5),点C 2的坐标为(3,-1).【解析】【分析】(1)分别作出点B 个点C 旋转后的点,然后顺次连接可以得到;(2)根据点B 的坐标画出平面直角坐标系;(3)分别作出点A 、点B 、点C 关于原点对称的点,然后顺次连接可以得到.【详解】(1)△A 11B C 如图所示;(2)如图所示,A (0,1),C (﹣3,1);(3)△222A B C 如图所示,2B (3,﹣5),(3,﹣1).。
山西省临汾市2019-2020学年中考第三次质量检测数学试题含解析
山西省临汾市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为()A.50035030x x=-B.50035030x x=-C.500350+30x x=D.500350+30x x=2.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称3.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是()A.B.C.D.4.如图,在圆O中,直径AB平分弦CD于点E,且CD=43,连接AC,OD,若∠A与∠DOB互余,则EB的长是()A.3B.4 C3D.25.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人6.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.221x=B.1(1)212x x-=C.21212x=D.(1)21x x-=7.如图,不等式组1010xx+⎧⎨-≤⎩f的解集在数轴上表示正确的是()A.B.C.D.8.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A.①②B.①③C.②③D.①②③9.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限10.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–3611.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是()A.40°B.65°C.70°D.80°12.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.16B.13C.12D.23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.14.已知方程组2425x yx y+=⎧⎨+=⎩,则x+y的值为_______.15.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.16.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.17.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.18.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若S EBMF =1,则S FGDN =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知△OAB 在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O 逆时针旋转90°得△OA 1B 1,再以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2;直接写出点A 1的坐标,点A 2的坐标.20.(6分)已知关于x 的方程(a ﹣1)x 2+2x+a ﹣1=1.若该方程有一根为2,求a 的值及方程的另一根;当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根.21.(6分)计算:﹣(﹣2)0+|1﹣|+2cos30°.22.(8分)如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.求证:△ABC ≌△ADE ;(2)求证:∠EAC =∠DEB .23.(8分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.24.(10分)计算:(1-n)03|+(-13)-1+4cos30°. 25.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?26.(12分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.(1)图①中,点C在⊙O上;(2)图②中,点C在⊙O内;27.(12分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED =∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.【详解】现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.依题意得:500350x x30=-,故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.2.A【解析】【分析】由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.3.D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.4.D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可. 【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.5.C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:12x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.6.B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)21 2x x-=,故选B.考点:由实际问题抽象出一元二次方程.7.B【解析】【分析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.8.B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.D【解析】【分析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.10.D【解析】【分析】根据有理数的乘法法则进行计算即可.【详解】()494936.⨯-=-⨯=-故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.11.C【解析】【分析】根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.【详解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=12∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故选C.【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.12.B【解析】【分析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.∴得到的两位数是3的倍数的概率为:26=13.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.32或94【解析】【详解】①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=32,∴AP=32;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴AD AB AP BC=,∴AP=AD BCABg=334⨯=94.故答案为32或94.14.1。
山西省临汾市2019-2020学年中考三诊数学试题含解析
山西省临汾市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.sin45°的值等于()A.2B.1 C.32D.222.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.3.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A.小明不是胜就是输,所以小明胜的概率为12B.小明胜的概率是13,所以输的概率是23C.两人出相同手势的概率为12D.小明胜的概率和小亮胜的概率一样42x有意义,则实数x的取值范围是()A.x>0 B.x≥0C.x≠0D.任意实数5.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是()A .2013年至2017年北京市国民生产总值逐年增加B .2017年第二产业生产总值为5 320亿元C .2017年比2016年的国民生产总值增加了10%D .若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33 880亿元6.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A .B .C .D .7.-5的倒数是 A .15B .5C .-15D .-58.一元二次方程220x x -=的根是( ) A .120,2x x ==- B .121,2x x == C .121,2x x ==-D .120,2x x ==9.如图所示:有理数,a b 在数轴上的对应点,则下列式子中错误..的是( )A .0ab >B .0a b +<C .1ab< D .0a b -<10.将5570000用科学记数法表示正确的是( )A .5.57×105B .5.57×106C .5.57×107D .5.57×10811.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=60°,则∠2的度数是( )A .60°B .50°C .40°D .30°12.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数 45678人数36542每天加工零件数的中位数和众数为( ) A .6,5B .6,6C .5,5D .5,6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于函数n m y x x =+,我们定义11n m y nx mx --'=+(m 、n 为常数). 例如42y x x =+,则342y x x '=+. 已知:()322113y x m x m x =+-+.若方程0y '=有两个相等实数根,则m 的值为__________. 14.计算:1-22的结果是_____. 15.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.16.已知一组数据﹣3、3,﹣2、1、3、0、4、x 的平均数是1,则众数是_____.17.如果将“概率”的英文单词 probability 中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b 的概率是________. 18.对角线互相平分且相等的四边形是( ) A .菱形B .矩形C .正方形D .等腰梯形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在ABC ∆中,AB =AC ,2A α∠=,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC于点F.(1)∠EDB=_____︒(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转1802α︒-,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路. 20.(6分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC (1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=13,求线段CE的长.21.(6分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?22.(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.53m的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理13m污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.23.(8分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:气温x(℃) 0 5 10 15 20音速y(m/s)331 334 337 340 343(1)求y与x之间的函数关系式:(2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?24.(10分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x xx x-+-÷(1﹣1x)25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.26.(12分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A 公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.27.(12分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据特殊角的三角函数值得出即可.【详解】解:sin45°=22,故选:D.【点睛】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.2.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3.D【解析】【分析】利用概率公式,一一判断即可解决问题.【详解】A、错误.小明还有可能是平;B、错误、小明胜的概率是13,所以输的概率是也是13;C、错误.两人出相同手势的概率为13;D、正确.小明胜的概率和小亮胜的概率一样,概率都是13;故选D.【点睛】本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.4.C【解析】【分析】根据分式和二次根式有意义的条件进行解答.【详解】解:依题意得:x2≥1且x≠1.解得x≠1.故选C.【点睛】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.5.C【解析】【分析】由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5 320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了2800025669100%9.08%25669-⨯=,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33 880亿元,此选项正确;故选C.【点睛】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据. 6.D【解析】【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形.故选A.【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.7.C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15 -.故选C.8.D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.考点:一元二次方程的解法——因式分解法——提公因式法.从数轴上可以看出a 、b 都是负数,且a <b ,由此逐项分析得出结论即可. 【详解】由数轴可知:a<b<0,A 、两数相乘,同号得正,ab >0是正确的; B 、同号相加,取相同的符号,a+b <0是正确的;C 、a <b <0,1a b>,故选项是错误的; D 、a-b=a+(-b )取a 的符号,a-b <0是正确的. 故选:C . 【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答. 10.B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1. 【详解】5570000=5.57×101所以B 正确 11.D 【解析】 【分析】由EF ⊥BD ,∠1=60°,结合三角形内角和为180°即可求出∠D 的度数,再由“两直线平行,同位角相等”即可得出结论. 【详解】解:在△DEF 中,∠1=60°,∠DEF=90°, ∴∠D=180°-∠DEF-∠1=30°. ∵AB ∥CD , ∴∠2=∠D=30°. 故选D . 【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.根据众数、中位数的定义分别进行解答即可. 【详解】由表知数据5出现了6次,次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662+=6, 故选A . 【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.12【解析】分析:根据题目中所给定义先求y ',再利用根与系数关系求m 值.详解:由所给定义知,2221y x m x m '=+-+,若22210x m x m +-+=,22414m m =--⨯n ()=0,解得m=12. 点睛:一元二次方程的根的判别式是()200ax bx c a ++=≠,△=b 2-4ac,a,b,c 分别是一元二次方程中二次项系数、一次项系数和常数项. △>0说明方程有两个不同实数解, △=0说明方程有两个相等实数解, △<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.14 【解析】试题分析:先进行二次根式的化简,然后合并同类二次根式即可,22=-=考点:二次根式的加减15.【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得. 【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键. 16.3【解析】∵-3、3, -2、1、3、0、4、x的平均数是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一组数据-3、3, -2、1、3、0、4、2,∴众数是3.故答案是:3.17.2 11【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率.详解:∵英文单词probability中,一共有11个字母,其中字母b有2个,∴任取一张,那么取到字母b的概率为2 11.故答案为2 11.点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.18.B【解析】【分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∵对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∴对角线相等且互相平分的四边形一定是矩形.故选B .【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)α;(2)(2)①见解析;②DM =DN ,理由见解析;③数量关系:sin BM CN BC α+=⋅【解析】【分析】(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α; (2)①如图,利用∠EDF=180°﹣2α画图;②先利用等腰三角形的性质得到DA 平分∠BAC ,再根据角平分线性质得到DE=DF ,根据四边形内角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF ,然后证明△MDE ≌△NDF 得到DM=DN ;③先由△MDE ≌△NDF 可得EM=FN ,再证明△BDE ≌△CDF 得BE=CF ,利用等量代换得到BM+CN=2BE ,然后根据正弦定义得到BE=BDsinα,从而有BM+CN=BC•sinα.【详解】(1)∵AB=AC ,∴∠B=∠C 12=(180°﹣∠A )=90°﹣α. ∵DE ⊥AB ,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案为:α;(2)①如图:②DM=DN .理由如下:∵AB=AC ,BD=DC ,∴DA 平分∠BAC .∵DE ⊥AB 于点E ,DF ⊥AC 于点F ,∴DE=DF ,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF .在△MDE和△NDF中,∵MED NFDDE DFMDE NDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△MDE≌△NDF,∴DM=DN;③数量关系:BM+CN=BC•sinα.证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BDsinα,从而有BM+CN=BC•sinα.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.20.(1)证明见解析;(2)42.【解析】【分析】(1)已知四边形ABCD 是平行四边形,根据平行四边形的性质可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形ACDE 是平行四边形;(2)连接EC,易证△BEC 是直角三角形,解直角三角形即可解决问题.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四边形ACDE 是平行四边形.(2)如图,连接EC.∵AC=AB=AE,∴△EBC 是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【点睛】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.12【解析】【分析】设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.22.(1)y=19x-1(x>0且x是整数) (2)6000件【解析】【分析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.【详解】(1)依题意得:y=80x-60x-0.5x•2-1,化简得:y=19x-1,∴所求的函数关系式为y=19x-1.(x>0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,∴这个月该厂生产产品6000件.【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.23.(1) y=35x+331;(2)1724m.【解析】【分析】(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.【详解】解:(1)设y=kx+b,∴331 5334bk b=⎧⎨+=⎩∴k=35,∴y=35x+331.(2)当x=23时,y=35x23+331=344.8∴5⨯344.8=1724.∴此人与烟花燃放地相距约1724m.【点睛】此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.24.(1)5(2)11 x+【解析】【分析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.【详解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=•=.【点睛】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.25.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣1;(2)设AB与x轴相交于点C,令﹣2x﹣1=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.26.(1)b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)详见解析. 【解析】【分析】(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;(2)先求出农场从A 、B 公司购买铵肥的费用,再求出农场从A 、B 公司购买铵肥的运输费用,两者之和即为总费用,可以求出总费用关于x 的解析式是一次函数,根据m 的取值范围不同分两类讨论,可得出结论.【详解】(1)有图象可得,函数图象分为两部分,设第一段函数图象为y =k 1x ,代入点(4,12),即12=k 1×4,可得k 1=3,设第二段函数图象为y =k 2x +c ,代入点(4,12)、(8,32)可列出二元一次方程组224k +c=128k +c=32⎧⎨⎩,解得:k 2=5,c =-8,所以函数解析式为:b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)(); (2)农场从A 公司购买铵肥的费用为750x 元,因为B 公司有铵肥7吨,1≤x≤3,故农场从B 公司购买铵肥的重量(8-x )肯定大于5吨,农场从B 公司购买铵肥的费用为700(8-x )元,所以购买铵肥的总费用=750x +700(8-x )=50x +5600(0≤x≤3);农场从A 公司购买铵肥的运输费用为3xm 元,且满足1≤x≤3,农场从B 公司购买铵肥的运输费用为[5(8-x )-8]×2m 元,所以购买铵肥的总运输费用为3xm +[5(8-x )-8]×2m =-7mx +64m 元,因此农场购买铵肥的总费用y =50x +5600-7mx +64m =(50-7m )x +5600+64m (1≤x≤3),分一下两种情况进行讨论;①当50-7m≥0即m≤507时,y 随x 的增加而增加,则x =1使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买1吨,从B 公司购买7吨, ②当50-7m <0即m >507时,y 随x 的增加而减少,则x =3使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买3吨,从B 公司购买5吨.【点睛】本题主要考查了方案比较以及函数解析式的求解,解本题的要点在于根据题意列出相关方程式. 27.见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形, ∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F . ∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩===∴△BCE ≌△DCG (SAS ),∴BE=DG .应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=3ED ,∴S △CDE =1824⨯= , ∴S △ECG =S △CDE +S △CDG =10∴S 菱形CEFG =2S △ECG =20.。
山西省2020年数学中考三模试卷(I)卷
山西省2020年数学中考三模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题。
(共12题;共24分)1. (2分)(2019·永康模拟) 在﹣1,0,1,﹣四个数中,最大的数是()A . ﹣1B . 0C . 1D . ﹣【考点】2. (2分) (2020八上·新疆期末) 下列计算正确的是()A . a2•a3=a5B . (2a)2=4aC . (ab)3=ab3D . (a2)3=a5【考点】3. (2分) (2016八上·扬州期末) 下图中,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个【考点】4. (2分) (2020八上·皇姑月考) 计算× + × 的结果估计在()A . 6至7之间B . 7至8之间C . 8至9之间D . 9至10之间【考点】5. (2分)(2020·绵阳模拟) 某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A . 508B . 520C . 528D . 560【考点】6. (2分) (2018九上·建昌期末) 如图,点A,B,C,D都在⊙O上.OB⊥CD,∠BOC=50°,则∠BAD的度数为()A . 50B . 40C . 30D . 25【考点】7. (2分) (2020八上·兰州期中) 的平方根是()A . ±3B . 3C . 9D . ±9【考点】8. (2分)如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为()A . 9:4B . 9:2C . 3:4D . 3:2【考点】9. (2分) (2013·绵阳) 如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为()A . 20米B . 10 米C . 15 米D . 5 米【考点】10. (2分) (2019八上·朝阳期中) 在平面直角坐标系xOy中,已知点A(0,8),点B(6,8),若点P同时满足下列条件:①点P到A,B两点的距离相等;②点P到∠xOy的两边距离相等.则点P的坐标为().A . (3,5)B . (6,6)C . (3,3)D . (3,6)【考点】11. (2分)方程的解是A . 3B . 2C . 1D . 0【考点】12. (2分) (2019八上·德惠月考) 若一个直角三角形的两直角边的长为12和5,则第三边的长为()A . 13或B . 13或15C . 13D . 15【考点】二、填空题。
临汾市中考数学三模试卷
临汾市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)估算的值在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间2. (2分)(2020·成都模拟) 下列计算正确的是().A . (x+y)2=x2+y2B . (- xy2)3=- x3y6C . x6÷x3=x2D . =23. (2分) (2020八上·咸丰期末) 小明同学把一个含有45°角的直角三角板在如图所示的两条平行线 m、n 上,测得,则的度数是()A . 45°B . 55°C . 65°D . 75°4. (2分)如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A . 2cmB . 3cmC . 4cmD . 1cm5. (2分)(2020·邹平模拟) 下列命题:①方程x2=x的解是x=1 ②的算术平方根是③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中真命题有:()A . 4个B . 3个C . 2个D . 1个6. (2分) (2019七下·宜宾期中) 同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A . 16块,16块B . 8块,24块C . 20块,12块D . 12块,20块7. (2分) (2018九上·浠水期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .8. (2分)下列事件中,是确定事件的是()A . 度量三角形的内角和,结果是360°B . 买一张电影票,座位号是奇数C . 打开电视机,它正在播放花样滑冰D . 明天晚上会看到月亮9. (2分)抛物线y=2(x+1)(x-3)的对称轴是()A . 直线x=-1B . 直线x=1C . 直线x=2D . 直线x=310. (2分) (2019七上·海港期中) 如图,三角形ABC,∠BAC= ,AD是三角形ABC的高,图中相等的是().A . ∠B=∠CB . ∠BAD=∠BC . ∠C=∠BADD . ∠DAC=∠C二、填空题 (共8题;共13分)11. (1分)(2017·泸州模拟) 分解因式:ab2﹣a3=________.12. (1分)截止2016年底,到韶山观看大型实景剧《中国出了个毛泽东》的观众约为925000人次,将925000用科学计数法表示为________.13. (5分) (2019九上·丹东期末) 反比例函数y=的图象,当x>0时,y随x的增大而增大,则k 的取值范围是________.14. (1分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是________15. (1分) (2019九上·长春月考) 如图,添加一个条件:________,使△ADE∽△ACB.16. (1分)(2016·长沙模拟) 如图,在▱ABCD中,DB=DC,∠A=67°,CE⊥BD于点E,则∠BCE=________.17. (1分) (2019七下·北京期末) 如图,是近几天的天气情况,设今天的气温为x℃,用不等式表示今天的气温为________.18. (2分) (2016九上·古县期中) 如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P 是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值________.三、综合题 (共8题;共38分)19. (5分) (2020七下·赤壁期中) 计算:20. (5分) (2016九上·东营期中) 先化简,再求值:,其中a是方程2x2+x﹣3=0的解.21. (2分)(2020·洞头模拟) 如图,点D在⊙O上,过点D的切线交直径AB延长线于点P,DC⊥AB于点C.(1)求证:DB平分∠PDC;(2)若DC=6,tan∠P=,求BC的长.22. (2分)(2018·南海模拟) 滨河小区为缓解我县“停车难”问题,拟建造地下停车库,下图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18o , AB=10m,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.为标明限高,请你根据该图计算CE 的高度.(结果精确到0.1m)23. (2分) (2016七下·五莲期末) 某校就“遇见老人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查(每个被调查的学生必须选择而且只能在4种方式中选择一项),图1和图2是整理数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)该校随机抽查了________名学生;(2)将图1补充完整,在图2中,“视情况而定”部分所占的圆心角是________度;(3)估计该校2800名学生中采取“马上救助”的方式的人数.24. (10分) (2018九上·新乡期末) 某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价现在的售价为每箱36元,每月可销售60箱市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?25. (10分)(2019·澄海模拟) 如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C 运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.26. (2分)(2020·南充) 已知二次函数图象过点A(-2,0),B(4,0),C(0,4)(1)求二次函数的解析式;(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标,若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角,且tan = ,求点K的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、综合题 (共8题;共38分)19-1、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
山西省临汾市中考三模数学考试试卷
山西省临汾市中考三模数学考试试卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共10分)1. (1分) (2017七下·威远期中) 若不等式组的解集是-1<x<2,则 ________.2. (1分) (2017·盘锦模拟) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为﹣其中正确的结论个数有________ (填序号)3. (1分)(2017·盘锦模拟) 某小区2012年屋顶绿化面积为2000平方米,计划2014年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是________.4. (1分)(2017·曹县模拟) 已知2是关于x的方程:x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长是________.5. (1分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=________.6. (1分)如图所示,梯形ABCD中,DC∥AB,将梯形对折,使点D,C分别落在AB上的D′,C′处,折痕为EF,若CD=3cm,EF=4cm,则AD′+BC′的长为________ cm.7. (1分)(2017·本溪模拟) 如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为________.8. (1分)(2017·东安模拟) 已知:如图,直尺的宽度为2cm,A、B两点在直尺的一条边上,AB=8cm,C、D 两点在直尺的另一条边上.若∠ACB=∠ADB=90°,则C、D两点之间的距离为________ cm.9. (1分) (2019九上·深圳期末) 如图,在平面直角坐标系中,直线y=﹣ x+2分别交x轴、y轴于A、B两点,点P(1,m)在△AOB的形内(不包含边界),则m的值可能是________.(填一个即可)10. (1分)(2012·镇江) 有一组数据:6、3、4、x、7,它们的平均数是10,则这组数据的中位数是________.二、选择题 (共5题;共10分)11. (2分) (2015七下·南山期中) 计算(﹣0.25)2013×42013的结果是()A . ﹣1B . 1C . 0.25D . 4402612. (2分)下列命题正确的是()A . 一组对边相等,另一组对边平行的四边形是平行四边形B . 对角线互相垂直的四边形是菱形C . 对角线相等的四边形是矩形D . 对角线互相垂直平分且相等的四边形是正方形13. (2分)下列函数中,自变量x的取值范围是x≥2的是()A .B .C .D .14. (2分) (2017八下·承德期末) 如果某函数的图象如图所示,那么y随x的增大而()A . 增大B . 减小C . 不变D . 有时增大有时减小15. (2分)在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关,那么一次过关的概率是()A .B .C .D .三、解答题 (共10题;共85分)16. (5分)若|a|=1,b2=4,且ab<0,求a+b的值.17. (5分)先化简,再求值:,其中x=2013.18. (5分)如图,点A、F、C、D在同一条直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠BAD=∠ADE,AF=DC.求证:四边形BCEF是平行四边形.19. (5分)如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.20. (15分)(2020·枣阳模拟) 已知:如图,一次函数的图象与反比例函数()的图象交于点 . 轴于点,轴于点 . 一次函数的图象分别交轴、轴于点、点,且, .(1)求点的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当取何值时,一次函数的值小于反比例函数的值?21. (5分) (2017八下·官渡期末) 如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)22. (10分)(2017·济宁模拟) 小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,乙种每件进价60元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)服装店在销售中发现:甲服装平均每天可售出20件,每件盈利40元.经市场调查发现:如果每件甲服装降价4元,那么平均每天就可多售出8件,要想平均每天销售甲服装上盈利1200元,那么每件甲服装应降价多少元?23. (15分)理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣.思路二利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.24. (10分)(2017·辽阳) 如图,Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E,F是⊙O 上两点,连接AE,CF,DF,满足EA=CA.(1)求证:AE是⊙O的切线;(2)若⊙O的半径为3,tan∠CFD= ,求AD的长.25. (10分) (2017九下·沂源开学考) 如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据:≈1.8,≈1.9,≈2.1)参考答案一、填空题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、选择题 (共5题;共10分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共10题;共85分)16-1、17-1、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山西省临汾市尧都区九年级中考第三次大联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知∠A =80°,则∠A 的补角是( ) A .100°B .80°C .40°D .10°2.下列运算正确的是( ) A .325x x x += B .326x x x ⋅= C .()2351x x -÷=D .()()23x x x --÷=-3.如图,A ,B 两地被池塘隔开,小明先在直线AB 外选一点C ,然后步测出AC ,BC 的中点M ,N ,并步测出MN 的长为6.5m .由此,他可以知道A .B 间的距离为( )A .12mB .12.5mC .13mD .13.5m4.某体校要从四名射击选手中选拔一名选手参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差如下表所示:如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( ) A .甲B .乙C .丙D .丁5.如图,AC 是⊙O 的直径,B ,D 是⊙O 上的点,且∠CAB =34°,则∠D 的度数是( )A.44°B.54°C.56°D.66°6.探究课上,老师给出一个问题“利用二次函数y=2x2与一次函数y=x+2的图象,求一元二次方程2x2=x+2的近似根”小华利用计算机绘制出如图所示的图象,通过观察可知该方程的两近似根x1和x2满足﹣1<x1<0,1<x2<2.小华的上述方法体现的数学思想是()A.公理化B.分类讨论C.数形结合D.由特殊到一般7.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.158.某种品牌自行车的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于5%,则至多可打的折数是()A.八折B.八四折C.八五折D.八八折9.如图,在平面直角坐标系中,第二象限内的点P是反比例函数y=kx(k≠0)图象上的一点,过点P作P A⊥x轴于点A,点B为AO的中点若△P AB的面积为3,则k的值为()10.如图,正方形ABCD 的边长为2,点O 为其中心.将其绕点O 顺时针旋转45°后得到正方形A 'B 'C 'D ',则旋转前后两正方形重叠部分构成的多边形的周长为( )(参考212== )A .16﹣B .﹣16C .12﹣D .12二、填空题11.不等式组()23,12236x x x ->-⎧⎨-≥-⎩的解集是______.12.如图是一组有规律的图案,它们是由边长相同的正方形和等边三角形组成,其中正方形涂有阴影.依此规律,第n 个图案中有_____个涂有阴影的正方形(用含有n 的代数式表示).13.盈不足术是中国古代解决盈亏类问题的一种算术方法.中国古代数学名著《九章算术》中,专辟一章名为“盈不足”.该章第一个问题大意是“有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问该物品售价为多少元?”,则该物品售价为_____元.14.某兴趣小组同学借助无人机航拍测量某公园内一座古塔高度.如图,无人机在距离地面168米的A 处,测得该塔底端点B 的俯角为40°,然后向古塔方向沿水平面飞行50秒到达点C 处,此时测得该塔顶端点D 的俯角为60°.已知无人机的飞行速度为3米/秒,则这座古塔的高度约为_____米(参考计算:sin40°≈064.cos40°≈077.tan40°≈0.84.≈ 1.73.结果精确到0.1米)15.如图,平行四边形ABCD 的边长AD =3,AB =2,∠BAD =120°,E 为AB 的中点,F 在边BC 上,且BF =2FC .AF 与DE 交于点G ,则AG 的长为_____.三、解答题16.(1|4|-|+(13)﹣2﹣ (2)化简:22244242x x x x x x-+-÷-+ 17.截至2019年5月,山西省政府大力实施的建设“山西农谷”战略成果初现,“山西农谷”通过组建山西农谷生物科技研究院,逐步建成大学生“互联网+农业”创新创业园.某校科技小组到该创业园的全环境智能番茄特色小镇进行综合实践活动,随机调查了60株“农谷一号“番茄的挂果数量(单位:个),并绘制了如下不完靠的统计图表:“农谷一号”番茄挂果数量统计表请结合图表中的信息解答下列问题:(l)统计表中,a=,若绘制“农谷一号”番茄挂果数量扇形统计图,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为;(2)将频数分布直方图补充完整;(3)若所种植的“农谷一号”番茄有1000株,请估计挂果数量在“55≤x<65”范围的番茄株数.18.如图,在平面直角坐标系中,菱形ABCD的顶点B,C在x轴上,反比例函数y=﹣4x(x<0)的图象经过A,E两点,反比例函数y=kx(x>0)的图象经过第一象限内的D,H两点,正方形EFCH的顶点F.G在AD上.已知A(﹣1,a),B(﹣4,0).(1)求点C的坐标及k的值;(2)直接写出正方形EFGH的边长.19.阅读与探究请阅读下列材料,完成相应的任务:幻方:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”“洛书”等,例如,图1是一个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3x3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等,我们称这种幻方为“数字连续型三阶幻方”.任务:(1)观察图1中三阶幻方中间的数字与9个数的和,可以发现二者有确定的数量关系.设“数字连续型三阶幻方中间的数字是x,幻方中9个数的和为s,则s与x之间的数量关系为;(2)现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方.请将构造的幻方填写在图2的3×3方格中;(3)某学习小组同学在研究图1的三阶幻方时,发现任何一个角上的数都有两个数与其不在同一行、列及对角线上,并且它们之间存在一个等量关系.为此该小组同学绘制了图3,请你用图3中的字母m ,a ,b 表示他们发现的这个等量关系.(直接写出,不必证明)20.如图,以AB 为直径,点О为圆心的半圆上有一点,C 且60,ABC ∠=︒点D 为AO 上一点.将DBC △沿直线DC 对折得到',DB C 点B 的对应点为,B '且'B C 与半圆相切于点,C 连接'B O 交半圆于点E .(1)求证:'B D AB ⊥;(2)当2AB =时,求图中阴影部分面积.21.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本. (1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm 2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm ,宽为15cm ,厚为1cm ,请直接写出该包书纸包这本书时折叠进去的宽度.22.综合与实践问题情境在综合与实践课上,老师组织同学们以“三角形纸片的旋转”为主题开展数学活动.如图1,现有矩形纸片ABCD,AB=4cm,AD=3cm.连接BD,将矩形ABCD沿BD剪开,得到△ABD和△BCE.保持△ABD位置不变,将△BCE从图1的位置开始,绕点B按逆时针方向旋转,旋转角为α(0°≤α<360°).操作发现(1)在△BCE旋转过程中,连接AE,AC,则当α=0°时,ACAE的值是;(2)如图2,将图1中的△BCE旋转,当点E落在BA延长线上时停止旋转,求出此时的ACAE值;实践探究(3)如图3,将图2中的△BCE继续旋转,当AC=AE时停止旋转,直接写出此时α的度数,并求出△AEC的面积;(4)将图3中的△BCE继续旋转,则在某一时刻AC和AE还能相等吗?如果不能,则说明理由;如果能,请在图4中画出此时的△BCE,连接AC,AE,并直接写出△AEC 的面积值.23.综合与探究如图1,在平面直角坐标系中,抛物线y=ax2+83x+3与x轴交于A,B两点(A在B左侧),与y轴交于点C.点A坐标为(﹣1,0).直线l为该抛物线的对称轴,且交直线BC于点D.抛物线上有一动点P,且横坐标为m(4<m<9),连接PD,过点P作PE⊥l 于点E.(1)求抛物线及直线BC的函数表达式.(2)当△DEP与△BOC相似时,求m的值;(3)如图2,点M为直线BC上一动点,是否存在点P,使得以点A,C,P.M为顶点的四边形是平行四边形?若存在,直接写出此时点P和点M的坐标;若不存在,说明理由.参考答案1.A 【解析】 【分析】直接利用互补两角的关系进而得出答案. 【详解】解:∵∠A =80°,∴∠A 补角为:180°﹣80°=100°. 故选A . 【点睛】主要考查了互补两角的关系,正确把握定义是解题关键. 2.D 【解析】 【分析】A.根据同类项定义解题;B.根据同底数幂相乘,底数不变,指数相加解题;C.根据幂的乘方、同底数幂相除,底数不变,指数相减解题;D.根据同底数幂相除,底数不变,指数相减解题. 【详解】A.32x x 、不是同类项,不能合并,故A 错误; B. 325x x x ⋅=,故B 错误; C. ()23565x x x x x -÷=÷=,故C 错误;D. ()()23x x x --÷=-,故D 正确, 故选:D . 【点睛】本题考查整式的运算,其中涉及同类项、同底数幂的乘除法、幂的乘方等知识,是重要考点,难度较易,掌握相关知识是解题关键. 3.C 【解析】【分析】根据三角形中位线定理解答. 【详解】∵点M ,N 分别是AC ,BC 的中点, ∴AB =2MN =13(m ), 故选C . 【点睛】考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半. 4.A 【解析】 【分析】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵x x x x =>>甲乙丁丙, ∴应从甲和丙中选择.∵22=0.560.94s s <=甲丙,方差越小成绩越稳定,∴应选择的选手是甲. 故答案为:A . 【点睛】本题主要考查方差的性质,方差越大,数据越不稳定,方差越小,数据越稳定,正确理解方差的性质是本题的解题关键. 5.C 【解析】 【分析】连接BC ,利用直径所对的圆周角是90°和圆周角定理解答即可. 【详解】 连接BC ,∵AC是⊙O的直径,∠CAB=34°,∴∠C=56°,∴∠D=∠C=56°,故选C.【点睛】主要考查了圆周角的有关定理,关键作好辅助线,构建直角三角形,找到同弧所对的圆周角.6.C【解析】【分析】结合图象解答题目,属于数形结合的数学思想.【详解】根据函数解析式得到函数图象,结合函数图象得到抛物线与x轴交点的大体位置,属于数形结合的数学思想.故选C.【点睛】考查了抛物线与x轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.7.A【解析】【分析】列表得出所有等可能结果,从中找到两个球颜色不同的结果数,再利用概率公式计算可得.【详解】列表如下:由表知共有20种等可能结果,其中这两个球颜色不同的有12种结果, 所以这两个球颜色不同的概率为1220=35, 故选A . 【点睛】考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 8.B 【解析】 【分析】设打x 折,则售价是500×10x元.根据利润率不低于5%就可以列出不等式,求出x 的范围 【详解】要保持利润率不低于5%,设可打x 折. 则500×10x﹣400≥400×5%, 解得x ≥8.4. 故选B . 【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键. 9.D 【解析】 【分析】根据反比例函数系数k的几何意义得出△OAP的面积S=12|k|=2S△P AB的面积,再根据双曲线所在的象限即可求出k的值【详解】连接OP,∵点B为AO的中点,△P AB的面积为3,∴S△OAP=2S△P AB=2×3=6,又∵S△OAP=12|k|,∴12|k|=6,|k|=12,双曲线一支位于第二象限,所以k<0,因此,k=﹣12,故选D.【点睛】考查了反比例函数比例系数k的几何意义:过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积等于12|k|.10.B【解析】【分析】首先求出正方形的对角线长;进而求出OA′的长;证明△A′MN为等腰直角三角形,求出A′N 的长度;同理求出D′M′的长度,即可解决问题.【详解】连接OA′,交AB于M,如图所示:∵正方形ABCD的边长为2,∴该正方形的对角线长=,∴OA ′OM =1,∴A ′M ﹣1;由题意得:∠MA ′N =45°,∠A ′MN =90°, ∴∠MNA ′=45°,∴MN =A ′M 1;由勾股定理得:A ′N =2;同理可求D ′M ′=2,∴NM '=2﹣(4﹣﹣2,∴正八边形的边长为﹣2,故重叠部分构成的多边形的周长为8(﹣2)=﹣16 故选B .【点睛】主要考查了旋转变换的性质、正方形的性质、勾股定理等几何知识点及其应用;应牢固掌握旋转变换的性质、正方形的性质等几何知识点,这是灵活运用、解题的基础和关键. 11.12x -<≤ 【解析】 【分析】分别求解一元一次不等式即可; 【详解】由23->-x ,可得1x ->, 由()12236-≥-x x ,可得2x ≤, ∴不等式组的解集为:12x -<≤.故答案是12x -<≤. 【点睛】本题主要考查了一元一次不等组的求解,准确计算是解题的关键. 12.(2+2n ) 【解析】 【分析】根据题目中的图形可以发现正方形个数的变化规律,可以求得第n 个图案中正方形的个数. 【详解】∵第1个图案中有4个涂有阴影的正方形, 第2个图案中有6=2×2+2个涂有阴影的正方形, 第3个图案中有8=2×3+2个涂有阴影的正方形, …∴第n 个图案中有 (2+2n )个涂有阴影的正方形, 故答案为(2+2n ). 【点睛】考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答. 13.53 【解析】 【分析】设该物品售价为x 元,共y 人一起买该物品,根据“每人出8元,多3元;每人出7元,少4元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 【详解】设该物品售价为x 元,共y 人一起买该物品,依题意,得:8374y x x y -=⎧⎨-=⎩,解得:537x y =⎧⎨=⎩. 故答案为53. 【点睛】考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.81.5【解析】【分析】作AE⊥地面于E,DF⊥AC交AC的延长线于F,根据正切的定义求出BE,再根据正切的定义计算即可.【详解】作AE⊥地面于E,DF⊥AC交AC的延长线于F,则四边形AEBF为矩形,∴BF=AE=168,AF=BE,在Rt△AEB中,tan∠ABE=AE BE,则BE=tan AEABE≈1680.84=200,∴CF=AF﹣AC=200﹣50×3=50,在Rt△CFD中,tan∠FCD=DF CF,则DF=CF•tan∠FCD≈50×1.73=86.5,∴BD=168﹣86.5=81.5(米)故答案为81.5.【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.15.3 4【解析】【分析】延长DE交直线BC于H,如图,利用平行四边形的性质和边长之间的关系证明△ABF为等边三角形得到AF=AB=2,再证明△ADE≌△BEH得到BH=AD=3,然后证明△ADG∽△FHG得到AGGF=ADFH=35,最后利用比例性质计算出AG.【详解】延长DE交直线BC于H,如图,∵四边形ABCD为平行四边形,∴BC=AD=3,AD∥BC,∴∠B=180°﹣∠BAD=180°﹣120°=60°,∵AD=3,AB=2,BF=2FC,∴BF=2=AB,∴△ABF为等边三角形,∴AF=AB=2,∵E为AB的中点,∴AE=BE,而∠H=∠ADE,∠AED=∠BEH,∴△ADE≌△BEH,∴BH=AD=3,∵AD∥FH,∴△ADG∽△FHG,∴AGGF=ADFH=35,∴AGAF=38,∴AG=38×2=34.故答案为34.【点睛】考查了相似三角形的判定与性质:判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;同时灵活运用相似三角形的性质进行几何计算.也考查了平行四边形的性质.16.5+;(2)x【解析】【分析】(1)根据二次根式的性质,绝对值的性质,负整数指数幂法则进行计算,再合并同类二次根式便可;(2)先分解因式,再将分式除法转化成分式乘法进行约分计算便可.【详解】(1)原式=﹣4+9﹣5;(2)原式=()()()2222xx x-+-÷()2(2)xx x-+=22xx-+•(2)2x xx+-=x.【点睛】考查了实数的运算与分式的乘除运算,关键是熟练掌握各个法则和计算步骤,是基础题,难度不大,要求迅速、准确地进行计算.17.(1) 0.25,72°;(2)见解析;(3)估计挂果数量在“55≤x<65”范围的番茄约为300株【解析】【分析】(1)根据频率=频数÷总数可得a的值,用360°乘以对应的频率可得其圆心角度数;(2)总人数乘以35≤x<45的频率可得其人数,再根据各组人数之和等于总人数可得55≤x <65的人数,从而补全图形;(3)根据样本估计总体思想求解可得.【详解】(1)a=15÷60=0.25,挂果数量在“35≤x <45”所对应扇形的圆心角度数为360°×0.2=72°, 故答案为0.25,72°;(2)35≤x <45的株数为60×0.2=12(株), 55≤x <65的株数为60﹣(6+12+15+9)=18(株),(3)1000×1860=300(株) 答:估计挂果数量在“55≤x <65”范围的番茄约为300株. 【点睛】考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和用样本估计总体.18.(1)点C 坐标为(1,0),k=6;(2)﹣2 【解析】 【分析】(1)将A (﹣1,a )代入y =﹣4x中,得a =4.求得点A 的坐标为(﹣1,4),过点A 作AM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,根据勾股定理得到A B =5,结合四边形ABCD 是菱形,求得点C 坐标为(1,0),点D 坐标为(4,4),把点D (4,4)代入y =kx中,于是得到结论; (2)设正方形EFGH 的边长为a ,得到E (﹣44a +,a +4),得到H (164a +,a +4),根据正方形的性质列方程解得a =﹣2,(负值舍去).于是得到结论. 【详解】(1)将A(﹣1,a)代入y=﹣4x中,得a=4.∴点A的坐标为(﹣1,4),过点A作AM⊥x轴于点M,过点D作DN⊥x轴于点N,∴∠A MB=∠DNC=90°,∴AM∥DN.则MO=1,AM=4.∵点B(﹣4,0),∴OB=4,BM=BO﹣MO=3.在Rt△ABM中,A B5,∴四边形ABCD是菱形,∴AD∥BC,AD=BC=AB=5,四边形AMND是矩形,∴MN=AD=5,DN=AM=4,OC=BC﹣BO=5﹣4=1,ON=MN﹣M0=5﹣1=4.∴点C坐标为(1,0),点D坐标为(4,4),把点D(4,4)代入y=kx中,得k=16;(2)设正方形EFGH的边长为a,则∵E点反比例函数y=﹣4x(x<0)的图象上,∴E(﹣44a+,a+4),∵H点在y=16x的图象上,∴H(164a+,a+4),∴164a+﹣(﹣44a+)=a,解得:a=﹣2,(负值舍去).∴正方形EFGH的边长为﹣2.【点睛】考查了反比例函数图象上点的坐标特征,菱形的性质,正方形的性质,正确的识别图形是解题的关键.19.(1)s=9x;(2)见解析;(3)m =2a b 【解析】【分析】(1)求出9个数的和即可解决问题;(2)9个数的平均数为7,故中间应该是7;(3)根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【详解】(1)三阶幻方如图所示:用x 的代数式表示幻方中9个数的和s =(x +3)+(x ﹣4)+(x +1)+(x ﹣2)+(x +2)+x +(x ﹣1)+(x +4)+(x ﹣3)=9x .故答案为s =9x ;(2)如图所示(答案不唯一):(3)根据图1发现:m =2a b + . 【点睛】 考查数的特点,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.20.(1)见解析;(2)=S 阴影48π- 【解析】【分析】(1)连接OC ,根据切线的性质得到∠B'CO=90,根据等边三角形的性质、翻转变换的性质计算,得到∠B′DB=90°,证明结论;(2)求出∠B′OC=45°,根据三角形的面积公式、扇形面积公式计算即可.【详解】解:(1)连接,OC'B C 与半圆相切于点,C'90.B CO ∴∠=,60OC OB ABC =∠=︒,OBC ∴是等边三角形.60,''9060150OCB B CB B CO OCB ∴∠=︒∠=∠+∠=︒+︒=︒. DBC 沿直线DC 对折得到',DB C11'1507522DCB B CB ∴∠=∠=⨯︒=︒. 在DBC △中,180180756045CDB ABC DCB ∠=︒-∠-∠=︒--︒=︒.'224590B DB CDB ∴∠=∠=⨯︒=,'B D AB ∴⊥.()22,AB OBC =是等边三角形,'1,OC OB BC B C ∴===='90,B CO ∠='45,B OC ∴∠=︒2145'2360B OC EOC OC S S S B C CO π'⋅⋅∴=-=⋅-阴影扇形 2145141123608ππ⋅⋅-=⨯⨯-=. 【点睛】本题考查圆的综合题型,切线、扇形面积等,注意运用圆的性质,属于中考常考题型. 21.(1)典籍类图书的标价为18元;(2)折叠进去的宽度为2cm【解析】【分析】(1)设典籍类图书的标价为元,根据购买两种图书的数量差是10本,列出方程并解答; (2)矩形面积=(2宽+1+2折叠进去的宽度)×(长+2折叠进去的宽度).【详解】(1)设典籍类图书的标价为元, 由题意,得540x ﹣10=5401.5x. 解得x =18.经检验:x =18是原分式方程的解,且符合题意.答:典籍类图书的标价为18元;(2)设折叠进去的宽度为ycm ,则(2y +15×2+1)(2y +21)=875,化简得y 2+26y ﹣56=0,∴y =2或﹣28(不合题意,舍去),答:折叠进去的宽度为2cm .【点睛】考查了分式方程和一元二次方程的应用,(2)题结合了矩形面积的求法考查了图形的折叠问题,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.22.(1)53;(2)AC AE =(3)α的度数为60°,面积为(6)cm 2;(4)(+6)cm 2【解析】【分析】(1)如图1中,连接AC ,理由勾股定理求出AC 即可解决问题.(2)如图2中,过点C 作CF ⊥AB 于点F ,在Rt △AFC 中,求出AF ,FC 即可解决问题. (3)结论:α的度数为60°.如图3中,设EC 的中点为G ,连接AG ,过点A 作AH ⊥BC 于点H .解直角三角形求出AG 即可解决问题.(4)结论:AC 和AE 还能相等,△BCE 位置如图4所示:取CE 的中点G ,连接AG ,作BH ⊥AG于H .求出AG 即可解决问题.【详解】(1)如图1中,连接AC ,∵四边形ABCD 是矩形,∴∠ABC =90°,BC =AD =3,∴AC 5,∵AE =AD =3, ∴AE AC =53, 故答案为53. (2)如图2中,过点C 作CF ⊥AB 于点F ,∵四边形ABCD 是矩形,AB =4,AD =3,∴EC =4,BC =3,∠BAD =∠BCE =90°,∴BD =BE 5, ∴sin ∠FBC =EC EB =45.cos ∠FBC =BC EB =35, 在Rt △BFC 中,BF =BC •cos ∠FBC =3×35=95,FC =BC •sin ∠FBC =3×45=125, ∴AF =AB ﹣BF =4﹣95=115,在Rt △AFC 中,AC 5, AE =BE ﹣AB =5﹣4=1,∴AC AE =. (3)结论:α的度数为60°.理由:如图3中,设EC 的中点为G ,连接AG ,过点A 作AH ⊥BC 于点H .∵AC =AE ,EG =GC ,∴AG ⊥EC ,∵∠GCH =180°﹣∠ECB =180°﹣90°=90°,∴∠AGC =∠GCH =∠AHC =90°,∴四边形AGCH 是矩形,∴GC =AH =12EC =12×4=2,在Rt △ABH 中,BH ,sin∠ABH=12AH AB =,∴AG =CH =BH ﹣BC =3,∠ABH=30°,∴旋转角α=90°-30°=60°,S △AEC =12EC •AG =12×4×(3)=(﹣6)cm 2. (4)结论:AC 和AE 还能相等,△BCE 位置如图4所示:取CE 的中点G ,连接AG ,作BH ⊥AG 于H .同法可得:GH =BC =3,AH =∴AG =+3,∴S △AEC =12EC •AG =12×4×(+3)=()cm 2. 【点睛】属于相似形综合题,考查了相似三角形的判定和性质,旋转变换,勾股定理,矩形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.23.(1)y =-13 x +3,y =﹣13x 2+83x +3;(2)m 的值为12-+ 或8;(3)存在点P,点M) 【解析】【分析】(1)将点A 坐标代入可求抛物线解析式,求出B 、C 坐标,待定系数法求出直线BC 的解析式(2)分类讨论相似关系,当△DEP ~△COB 和当△DEP ~ABOC 时,找好边角的对应关系,可求m 的值.(3)因为点P 的坐标范围要求,所以点P 只存在一种情况,利用全等关系,解方程等量关系获得点M 和P 点坐标.【详解】(1)把点A (﹣1,0)代入y =ax 2+83x +3中,得a =﹣13∴抛物线的函数表达式为,y =﹣13x 2+83x +3 当x =0,得y =3,∴点C 的坐标为(0,3)当y =0时,得﹣y =﹣13x 2+83x +3=0 解,得x 1=﹣1,x 2=9.∵点A 在点B 左侧点B 坐标为(9,0)设直线BC 的函数表达式为y =kx +b ,把点B (9,0)和C (0,3)代入上式,得90•03k b k b +=⎧⎨+=⎩ 解得133k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的函数表达式为y =-13x +3; (2)在Rt △BOC 中,OB =9,OC =3,∵PE ⊥l 于点E .∠PED =∠BOC =90°.∵直线l 为抛物线y =﹣13x 2+83x +3的对称轴, ∴直线l 为x =﹣2b a =﹣83÷[2×(﹣13)]=4 ∴点D 和E 的横坐标为4把x =4代入y =-13x +3中,得y =-13x 4+3=53. ∴点D 坐标为(4,53) ∵点P 是抛物线上的点,∴设P(m,﹣13m2+83m+3),E(4,﹣13m2+83m+3)∵4<m<9,且△DEP与△BOC相似∴点E在点D上方,点P在点E右侧.∴DE=﹣13m2+83m+3﹣53=﹣13m2+83m+43,PE=m﹣4①当△DEP~ABOC时,PECO=DEBO,即43m-=21843339m m-++解得m1,m2(舍)②当△DEP~△COB时,DECO=PEBO,即21843333m m-++=49m-解得m1=8,m2=﹣1(舍)∴当△DEP与△BOC相似时,m或8;(3)∵点P的横坐标在4与9之间∴A、C、P、M组成的平行四边形只有一种情况,如图可证△PMN≌△ACO(AAS)∴OA=MN=1,PN=CO=3设点M(m,-13m+3)则P(m+1,-13m+3+3)将点P坐标代入解析式,可解得m=72∴存在点P 坐标为(92+,296),点M 坐标为(71126+). 【点睛】 考查了待定系数法求解析式,相似存在性问题以及平行四边形存在性问题,综合内容较多,是一道很好的入门级压轴问题.。