人教版数学七年级上册期末考试题(三)

合集下载

2023-2024年人教版七年级上册数学期末试题(含简单答案)

2023-2024年人教版七年级上册数学期末试题(含简单答案)

14.关于 x 的方程 2x 3 3m 和 2x 1 5 有相同的解,则 m 的值是
.
15.某车间有 22 名工人,每人每天可以生产 12 个螺钉或 20 个螺母,1 个螺钉需要配 2
个螺母,为使每天生产的螺钉和螺母刚好配套,应安排
人生产螺钉.
16.一个小正方体的六个面分别标有数字1, 2 , 3 , 4 , 5 , 6 .将它按如图所示的方 式顺时针滚动,每滚动 90 算一次,则滚动第 2023次时,小正方体朝下一面标有的数字
1 A.
4
B. 1 4
C.4
D. 4
5.小明同学在解方程 5x 1 mx 3 时,把数字 m 看错了,解得 x 4 ,则该同学把 m 3
看成了( )
A.3
B. 128 9
C.8
D. 8
6.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最
小值是( )
A.5
B.6
C.7
9.计算: 3 2 2 .
C.170
D.189
10.若 a 2 b 32 0 ,则 ba 的值为 .
11.多项式 x2 y 2x4 y xy3 2 y 是

项式.
12.若 x 2 , y 8 ,且 x y 则 x y =
13.规定如下两种运算: x y 2xy 1; x y x 2 y 1.例如: 2 3 2 2 3 1 13; 2 3 2 2 3 1 7 .若 a (4 5) 的值为 79,则 a
22.已知: A x 1 y 2 , B x y 1 . 2
(1)化简 2A B ; (2)若 3y 4x 的值为 4,求 A B 的值;
(3)当 y 3 时, 4A 2 A B 5 ,求 x 的值.

人教版七年级上册数学期末复习专项——《数轴类综合问题》(三)

人教版七年级上册数学期末复习专项——《数轴类综合问题》(三)

人教版七年级上册数学期末复习专项——《数轴类综合问题》(三)1.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q 点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.2.已知数轴上有A、B两个点对应的数分别是a、b,且满足|a+3|+(b﹣9)2=0;(1)求a、b的值;(2)点C是数轴上A、B之间的一个点,使得AC+OC=BC,求出点C所对应的数;(3)在(2)的条件下,点P、点Q为数轴上的两个动点,点P从A点以1个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,点P运动到点C时,P,Q两点同时停止运动.设它们的运动时间为t秒,当OP+BQ=3PQ时,求t的值.3.已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.4.已知,数轴上有两点A、B对应的数分别为﹣1,5,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、B的距离相等,求点A、B的距离及x的值.(2)数轴上是否存在点P,使得点P到点A、B的距离之和最小?若存在,请求出最小值;并求出取得最小值时x可以取的整数值;若不存在,说明理由.(3)点A、B分别以3个单位长度/秒,2个单位长度/秒的速度向右运动,同时点P以4个单位长度/秒的速度从O点向左运动,当遇到A时,点P立即以不变的速度向右运动,当遇到B时,点P立即以不变的速度向左运动,并不停往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?5.已知多项式2x4y2﹣3x2y﹣x﹣4,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.设点C在数轴上对应的数为x,当|CA|+|CB|=12时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度/秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.6.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是;点P到点Q的距离是个单位长度;(2)动点P从点A运动至C点需要秒;(3)P、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.7.已知多项式4x6y2﹣3x2y﹣x﹣7,次数是b,4a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)a=,b=;(2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图.(其中s表示时间单位秒,mm表示路程单位毫米)t(s)0<t≤22<t≤55<t≤16v(mm/s)10168①当2<t≤5时,你知道小蚂蚁甲与乙之间的距离吗?(用含有t的代数式表示);②当t为时,小蚂蚁甲乙之间的距离是42mm.(请直接写出答案)8.如图1,在一条可以折叠的数轴上,点A,B分别表示数﹣9和4.(1)A,B两点之间的距离为.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A.B两点相距4个单位长度?9.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?10.如图,点A、点B是数轴上原点O两侧的两点,其中点A在原点O的左侧,且满足AB =6,OB=2OA.(1)点A、B在数轴上对应的数分别为和.(2)点A、B同时分别以每秒1个单位长度和每秒2个单位长度的速度向左运动.①经过几秒后,OA=3OB;②点A、B在运动的同时,点P以每秒1个单位长度的速度从原点向右运动,经过几秒后,点A、B、P中的某一点成为其余两点所连线段的中点?参考答案1.解:(1)∵|a+24|+|b+10|+(c﹣10)2=0,∴a+24=0,b+10=0,c﹣10=0,解得:a=﹣24,b=﹣10,c=10;(2)﹣10﹣(﹣24)=14,①点P在AB之间,AP=14×=,﹣24+=﹣,点P的对应的数是﹣;②点P在AB的延长线上,AP=14×2=28,﹣24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t﹣8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t﹣34=34,t=<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t﹣8+2t﹣34=34,解得t=>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t﹣20)s后与点P的距离为8,此时2(t﹣20)+(2×20﹣34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.2.解:(1)∵|a+3|+(b﹣9)2=0,∴a+3=0,b﹣9=0,解得a=﹣3,b=9;(2)设点C表示是数是x,依题意得:x+3+x=9﹣x,解得x=2.答:点C表示的数是2;(3)①当0<t<3时,∵点P从A点以每秒1个单位的速度向右运动,点Q同时从B点出发以每秒2个单位的速度向左运动,∴OP=3﹣t,BQ=2t,PQ=12﹣3t.∵OP+BQ=3PQ,∴3﹣t+2t=3(12﹣3t),解得t=3.3,不合题意,舍去;②当3≤t≤4时,OP=t﹣3,BQ=2t,PQ=12﹣3t.∵OP+BQ=3PQ,∴t﹣3+2t=3(12﹣3t),解得t=,③当4<t<5时,OP=t﹣3,BQ=2t,PQ=3t﹣12,方程变为t﹣3+2t=3(3t﹣12),解得t=>5.不合题意,舍去.故时间t的值为.3.解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵P A=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为P A的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.4.解:(1)∵两点A、B对应的数分别为﹣1,5,∴点A、B的距离为:5﹣(﹣1)=6,∵点P到点A、点B的距离相等,∴x﹣(﹣1)=5﹣x,解得x=2;(2)当P点在A点左边时,P A+PB=P A+P A+AB=2P A+AB,当P点在A与B点之间(包括A点和B点)时,P A+PB=AB,当P点在B点右边时,P A+PB=AB+PB+PB=AB+2PB,∵2P A+AB>AB,2PB+AB>AB,∴数轴上存在点P,使点P到点A、点B的距离之和最小,其最小值为AB=6,此时点P在线段AB上,∴点P表示的数x的取值范围是﹣1≤x≤5,∴x可以取的整数值为﹣1,0,1,2,3,4,5;(3)设经过a秒钟点A与点B重合,根据题意得:3a=6+2a,解得a=6.6×4=24.答:点P所经过的总路程为24个单位长度.5.解:(1)由多项式的次数是6可知b=6,又3a和b互为相反数,故a=﹣2.①当C在A左侧时,∵|CA|+|CB|=12,∴﹣2﹣x+6﹣x=12,x=﹣4;②C在A和B之间时,∵|CA|+|CB|=|AB|=8≠12,∴点C不存在;③点C在B点右侧时,∵|CA|+|CB|=12,∴x+2+x﹣6=12,∴x=8;故答案为:﹣4或8.(2)依题意得:﹣2﹣1+2﹣3+4﹣5+6﹣7+……+2018﹣2019=﹣2+1009﹣2019=﹣1012.∴点P对应的有理数为﹣1012.(3)①甲、乙两小蚂蚁均向左运动,即0≤t≤3时,此时OA1=2+t,OB1=6﹣2t,∵OA1=OB1,∴2+t=6﹣2t解得,t=;②甲向左运动,乙向右运动时,即t>3时,此时OA1=2+t,OB1=2t﹣6,依题意得,2+t=2t﹣6,解得,t=8.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.6.解:如图所示:(1)设动点P从点A出发,运动2秒后的点对应数为x,∵点P以2单位/秒的速度沿着“折线数轴”的正方向运动,∴AP=2×2=4,又∵x﹣(﹣10)=4,解得:x=﹣6,又∵同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,∴QC=2×1=2,又∵AC=28,AC=AO+OB+BC,∴点P到点Q的距离=28﹣4﹣2=22;故答案为﹣6,22;(2)由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,AO段时间为,OB段时间为=10,BC段时间为=4,∴动点P从点A运动至C点需要时间为5+10+4=19(秒),故答案为19秒;(3)设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,依题意得:3+y+2y=10,解得:y=,∴P、Q两点相遇时经过的时间为8+=(秒),此时相遇点M在“折线数轴”上所对应的数是为3+=;故答案为,;(4)当点P在AO,点Q在BC上运动时,依题意得:10﹣2t=8﹣t,解得:t=2,当点P、Q两点都在OB上运动时,t﹣5=2(t﹣8)解得:t=11,当P在OB上,Q在BC上运动时,8﹣t=t﹣5,解得:t=;当P在BC上,Q在OA上运动时,t﹣8﹣5+10=2(t﹣5﹣10)+10,解得:t=17;即PO=QB时,运动的时间为2秒或秒或11秒或17秒.7.解:(1)∵多项式4x6y2﹣3x2y﹣x﹣7,次数是b,∴b=8;∵4a与b互为相反数,∴4a+8=0,∴a=﹣2.故答案为:﹣2,8;(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8﹣4t;∵OA=OB,∴2+3t=8﹣4t,解得:t=;②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t﹣8;∵OA=OB,∴2+3t=4t﹣8,解得:t=10;∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为秒或10秒;(3)①∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:10×2+16×3+8×11=156(mm),∵原路返回,刚好在16s时一起重新回到原出发点A和B,∴小蚂蚁甲和乙返程的路程都等于78mm,∴甲乙之间的距离为:8﹣(﹣2)+10×2×2+16×(t﹣2)×2=32t﹣14;②设a秒时小蚂蚁甲和乙开始返程,由(3)①可知:10×2+16×3+8(a﹣5)=78,解得:a=;以下分情况讨论:当8﹣(﹣2)+10t×2=42,解得:t=1.6;当32t﹣14=42时,解得:t=;当t=时,小蚂蚁甲和乙还没有开始返程,故舍去t=;当t>时,8﹣(﹣2)+78×2﹣8(t﹣)×2=42,解得:t=14;综上所述,当t=1.6秒或14秒时,小蚂蚁甲乙之间的距离是42mm.故答案为:1.6秒或14秒.8.解:(1)4﹣(﹣9)=13.故答案为:13.(2)设点C表示的数为x,则AC=x﹣(﹣9),BC=4﹣x,依题意,得:x﹣(﹣9)=4﹣x+1,解得:x=﹣2.故答案为:﹣2.(3)当运动时间为t秒时,点A表示的数为3t﹣9,点B表示的数为2t+4.∵AB=4,∴3t﹣9﹣(2t+4)=4或2t+4﹣(3t﹣9)=4,解得:t=9或t=17.答:经过9秒或17秒时,A.B两点相距4个单位长度.9.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.10.解:(1)设点A在数轴上对应的数为x,则点B在数轴上对应的数为﹣2x,∵AB=﹣2x﹣x=6,∴x=﹣2,﹣2x=4.故答案为:﹣2;4.(2)①设t秒后,OA=3OB.情况一:当点B在点O右侧时,则2+t=3(4﹣2t),解得:;情况二:当点B在点O左侧时,则2+t=3(2t﹣4),解得:.答:经过秒或秒,OA=3OB.②设经过t秒后,点A、B、P中的某一点成为其余两点所连线段的中点.当点P是AB的中点时,则P A=PB,∴t+2+t=4﹣t﹣2t,解得:;当点B是AP的中点时,则AB=BP,∴(t+2)﹣(2t﹣4)=(2t﹣4)+t,解得:;当点A是BP的中点时,则AB=AP,∴2t﹣4﹣(t+2)=(t+2)+t,解得:t=﹣8(不合题意,舍去).答:设经过秒或秒后,点A、B、P中的某一点成为其余两点所连线段的中点.。

部编人教版七年级数学上册期末考试卷及答案【必考题】

部编人教版七年级数学上册期末考试卷及答案【必考题】

专业课原理概述部分一、选择题(每题1分,共5分)1.下列哪个数是质数?A.21B.23C.25D.272.一个等腰三角形的底边长是8cm,腰长是5cm,那么这个三角形的周长是?A.18cmB.20cmC.22cmD.24cm3.下列哪个数是偶数?A.101B.103C.105D.1074.一个正方形的边长是6cm,那么它的面积是?A.12cm²B.18cm²C.24cm²D.36cm²5.下列哪个数是奇数?A.44B.46C.48D.50二、判断题(每题1分,共5分)1.2是质数。

()2.任何两个奇数相加的和都是偶数。

()3.一个三角形的内角和是180度。

()4.1是正数。

()5.0的相反数是0。

()三、填空题(每题1分,共5分)1.9+5=______2.207=______3.8×6=______4.36÷6=______5.5²=______四、简答题(每题2分,共10分)1.请简述质数的定义。

2.请简述偶数的定义。

3.请简述三角形的内角和定理。

4.请简述正方形的性质。

5.请简述相反数的定义。

五、应用题(每题2分,共10分)1.一个长方形的长是10cm,宽是5cm,求这个长方形的面积。

2.一个等腰三角形的底边长是10cm,腰长是8cm,求这个三角形的周长。

3.一个数的平方是36,求这个数。

4.两个质数相加的和是20,求这两个质数。

5.一个数的相反数是-5,求这个数。

六、分析题(每题5分,共10分)七、实践操作题(每题5分,共10分)1.请用直尺和圆规画一个边长为5cm的正方形。

2.请用直尺和圆规画一个底边长为6cm,腰长为8cm的等腰三角形。

八、专业设计题(每题2分,共10分)1.设计一个实验,验证物体在水平面上受到的摩擦力与物体重量之间的关系。

2.设计一个电路,当温度超过设定值时,电路中的灯泡会亮起。

3.设计一个简易的水位控制器,当水箱中的水位低于一定高度时,水泵会自动启动。

人教版度七年级数学上册期末检测试题及答案三

人教版度七年级数学上册期末检测试题及答案三

人教版度七年级数学上册期末检测试题及答案一、选择题1.下列运算正确的是() A .7259545--⨯=-⨯=- B .54331345÷⨯=÷= C .3(2)(6)6--=--=D .12(25)12(3)4÷-=÷-=-2.如图,数轴上表示数2的相反数的点是()A .点NB .点MC .点QD .点P3.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3C ︒时,气温变化记作C 3︒+,那么气温下降10C ︒时,气温变化记作() A .C 13︒-B .10C ︒-C .7C ︒-D .C 7︒+4.若8m x y 与36n x y 的和是单项式,则m n +的值为( ) A .-4B .3C .4D .85.若多项式22229(93)x y ax y -+--+的值与x 的取值无关,则(2)a -的值为() A .0B .1C .4-D .46.已知1639n x y 与41232m x y 的和是单项式,则m n +的值是() A .5B .6C .7D .87.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折; (3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与这两次相同的物品,则应付款( ) A .288元 B .332元 C .288元或316元D .332元或363元8.我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,C .13x +4=14x +1 D .13x ﹣4=14x ﹣1 9.某市居民自来水收费标准如下:每户每月用水不超过 4 吨时,每吨价格为 2 元,当用水超过 4吨而不超过 7 吨时,超过部分每吨水的价格为 3 元,当用水超过 7 吨时,超过部分每吨水的价格为5 元,李老师 10 月份付了水费 32 元,则李老师用水吨数为( )A .7B .10C .11D .1210.如图,AOB ∠,以OB 为边作BOC ∠,使2BOC AOB ∠=∠,那么下列说法正确的是( )A . 3AOC AOB ∠=∠ B .AOB AOC ∠=∠或3AOC AOB ∠=∠ C .AOC BOC ∠>∠D . AOC AOB ∠=∠二、填空题 11.计算111112612209900++++⋯+的值为__________________. 12.已知2241A x ax y =+-+,234B x x by =++-,且对于任意有理数x 、y ,代数式2A B -的值不变,则ab 的值是_______.13.磁器口古镇,被赞誉为“小重庆”,磁器口的陈麻花更是重庆标志性名片之一.磁器口某门店从陈麻花生产商处采购了原味、麻辣、巧克力三种口味的麻花进行销售,其每袋进价分别是10元,12元,15元,其中原味与麻辣味麻花每袋的销售利润率相同,原味与巧克力味麻花每袋的销售利润相同.经统计,在今年元旦节当天,该门店这三种口味的麻花销量是2:3:2,其销售原味与巧克力味麻花的总利润率是40%,且巧克力味麻花销售额比原味麻花销售额多1000元,则今年元旦节当天该门店销售这三种口味的麻花的利润共_____元.14.小明沿街道匀速行走,他注意到每隔6分钟从背后驶过一辆1路公交车,每隔4分钟迎面驶来一辆1路公交车.假设每辆1路公交车行驶速度相同,而且1路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是________ 分钟. 15.如图,已知∠AOB =40°,自O 点引射线OC ,若∠AOC :∠COB =2:3,OC 与∠AOB 的平分线所成的角的度数为_____.三、解答题 16.计算:(3)-27+(-32)+(-8)+72 (4)3222(4)(133⎡⎤-+---⨯⎣⎦)17.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____; (2)数轴上表示x 和﹣2的两点A 和B 之间的距离是_____;如果|AB|=4,则x 为_____; (3)当代数式|x+1|+|x ﹣2|+|x ﹣3|取最小值时,x 的值为_____.18.先化简,再求值(1)2(x 2-5xy)-3(x 2-6xy),其中x=-1,y=12.(2)()222231052xy x y xy yx ⎡⎤--+⎣⎦,其中x = 1010,y= -12.19.若一个四位自然数满足个位与百位相同,十位与千位相同,我们称这个数为“双子数”.将“双子数”m 的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到个新的双子数m ',记22()1111m m F m '+=为“双子数”m 的“双11数”.例如,1313m =,3131m '=,则2131323131(1313)81111F ⨯+⨯==.(1)计算2424的“双11数”(2424)F =______;(2)若“双子数”m 的“双11数”的()F m 是一个完全平方数,求()F m 的值;(3)已知两个“双子数”p 、q ,其中p abab =,q cdcd =(其中19a b ≤<≤,19c ≤≤,19d ≤≤,c d ≠且a 、b 、c 、d 都为整数,若p 的“双11数”()F p 能被17整除,且p 、q 的“双11数”满足()2()(432)0F p F q a b d c +-+++=,令(,)101p qG p q -=,求(,)G p q 的值.20.甲、乙两个玩具的成本共300元,商店老板为获取利润,并快速出售玩具,决定甲玩具按60%的利润率标价出售,乙玩具按50%的利润率标价出售.在实际出售时,应顾客要求,两个玩具均按标价9折出售,这样商店共获利114元. (1)求甲、乙两个玩具的成本各是多少元?(2)商店老板决定投入1000元购进这两种玩具,且为了吸引顾客,每个玩具至少购进1个,那么可以怎样安排进货?21.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数. (1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.22.水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.(1)针对居民用水浪费现象,市政府将向每个家庭收取污水处理费,按每立方米1元收费.此外,市政府还将向市民收取自来水费,收费标准为:规定每个家庭每月的用水量不超过10立方米,则按每立方米2.5元收费;超过10立方米的部分,按每立方米3.2元收费.若我市某家庭某月用水量为x 立方米,产生的污水量也为x 立方米,则这个家庭在该月应缴纳的水费(包括污水处理费)W 1为多少钱?(用含x 的代数式表示)(2)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:不再收取污水处理费,每天6:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日6:00为用水低谷期,水价可定为每立方米3.2元,若某家庭高低峰时期都有用水,且高峰期的用水量比低谷期多20%.设这个家庭这个月用水低谷期的用水量为y 立方米,请计算该家庭在这个月按照此方案应缴纳的水费W 2为多少钱?(用含y 的代数式表示)(3)若某三口之家按照(1)问中的方案与(2)问中的方案所交水费都为392元,请计算表示哪种方案下的用水量较少?23.如图所示,两条直线AB ,CD 相交于点O ,且AOC AOD ∠=∠,射线OM (与射线OB 重合)绕点O 按逆时针方向旋转,速度为15/s ︒,射线ON (与射线OD 重合)绕点O 按顺时针方向旋转,速度为12/s ︒.两射线OM ,ON 同时运动,运动时间为()t s .(本题出现的角均指小于平角的角)(1)图中一定有________个直角;当3t =时,MON ∠的度数为________,BON ∠的度数为________MOC ∠的度数为________.(2)当012t <<时,若360AOM AON ︒∠=∠-,试求出t 的值. (3)当06t <<时,探究72COM BONMON∠+∠∠的值:在t 满足怎样的条件时是定值;在t 满足怎样的条件时不是定值.参考答案1.D2.A3.B4.C5.D6.D7.C8.A9.B10.B 11.9910012.-12 13.3800 14.4.8 15.4°或100°. 16.(1) 4;(2)113-;(3) 5;(4)32. 17.(1)56(2)|x+2|2或﹣6(3)2 18.(1)28x xy -+,-5;(2)28xy ,4020 19.(1)12;(2)4或16或36;;(3)51或17.20.(1)甲玩具的成本是100元,乙玩具的成本是200元;(2)购进乙玩具1个,购进甲玩具8个. 21.(1)1a =-,b=5,c=-2,数轴作图略;(2)6秒;(3)-3或7,22.(1)用水量不超过10立方米,应缴纳的水费3.5x ,用水量超过10立方米,应缴纳的水费4.2x ﹣7;(2)W 2=3.2y +4×(1+20%)y =8y ;(3)问题(2)中的方案下的用水量较少 23.(1)4,171︒,126︒,45︒;(2)107或10;(3)当1003t <<时,72COM BONMON ∠+∠∠不是定值,当1063t <<时,72COM BONMON∠+∠∠是定值,定值是3。

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)1.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t 秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?2.已知两点A、B在数轴上,AB=9,点A表示的数是a,且a与(﹣1)3互为相反数.(1)写出点B表示的数;(2)如图1,当点A、B位于原点O的同侧时,动点P、Q分别从点A、B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P、Q所表示的数;(3)如图2,当点A、B位于原点O的异侧时,动点P、Q分别从点A、B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当|OM﹣ON|=2时,求动点P、Q运动的速度.3.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).4.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).6.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q 分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.7.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?8.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.9.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.10.已知,数轴上两点A,B表示的数分别是9和﹣6,动点P从点A出发,以每秒3个单位的速度沿数轴向点B运动,运动到点B停止;(1)在数轴上表示出A,B两点,并直接回答:线段AB的长度是;(2)若满足BP=2AP,求点P的运动时间;(3)在点P运动过程中,若点M为线段AP的中点,点N为线段BP的中点,请计算线段MN的长度,并说出线段MN与线段AB的数量关系;(4)若另一动点Q同时从B点出发,运动的速度是每秒2个单位,几秒钟后,线段PQ 长度等于5?参考答案1.解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.2.解:(1)∵a与(﹣1)3互为相反数∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示,②当点A、点B在原点的异侧时,点B所表示的数为1﹣9=﹣8,如图2所示,故点B所表示的数为10或﹣8;(2)当点A、B位于原点O的同侧时,点B表示的数是10设点Q的运动速度为x,则点P的速度为2x∵3秒后两动点相遇∴3(x+2x)=9解得:x=1∴点Q的运动速度为1,则点P的速度为2运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9解得:t=;∴点P表示的数为:1+2×=,点Q表示的数为:10﹣=;②相遇后,再运动y秒,P、Q两点相距2,由题意有:y+2y=2解得:y=∴点P表示的数为:1+3×2+×2=,点Q表示的数为:10﹣3×1﹣×1=;(3)根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度∴点Q的运动速度为:9÷5=1.8设点P的速度为v,∵|OM﹣ON|=2∴|9+1﹣(5v+1)|=2解得:v=或∴点P的速度为或.3.解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时,依题意列式,得3t+2t=18﹣4,解得t=2.8;当点A在点B右侧时,3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合,根据题意列方程,可得=0,解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点,由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.4.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.5.解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.则12÷2+x÷1=(20﹣12)÷1+(12﹣x)÷2,解得x=,12÷2+÷1=6+5=11.答:t的值是11,相遇点M所对应的数是.(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍有2种可能:①动点Q在OB上,动点P在BO上,相遇前,则:12+(t﹣12÷2)=[20﹣12+2(t﹣8÷1)],解得:t=.②动点Q在OA上,动点P在BC上,相遇后,则:12+12+2(t﹣18)=[8+12+(t﹣8÷1﹣12÷2)],解得:t=26.综上所述:当t为或26时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍.故答案为:26.6.(1)解:∵|a+2|+(b﹣8)2=0,∴a=﹣2,b=8,∴AB=8﹣(﹣2)=10;(2)解:2x+8=x﹣2,∴x=﹣10,∴C在数轴上对应的数为﹣10,设点P对应的数为y,由题意可知,点P不可能位于点A的左侧,所以存在以下两种情况:①点P在点B的右侧,∴(y﹣8)+[y﹣(﹣2)]=y﹣(﹣10),∴y=16,②当点P在A、B之间,∴(8﹣y)+[y﹣(﹣2)]=y﹣(﹣10),∴y=0,综上所述,点P对应的数是16或0;(3)证明:设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣8t,点N对应的数是8+5t,∵P是ME的中点,∴P点对应的数是=﹣1﹣t,又∵Q是ON的中点,∴Q点对应的数是=4+t,∴MN=(8+5t)﹣(﹣2﹣8t)=10+13t,OE=t,PQ=(4+t)﹣(﹣1﹣t)=5+6t,∴===2(定值).∴在运动过程中,的值不变,这个值是2.7.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.8.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.9.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.10.解:(1)如图所示:线段AB的长度是9﹣(﹣6)=9+6=15,故答案为:15;(2)设AP=3t,则BP=6t,可得3t+6t=15,∴t=;(3)∵AP=3t,∴BP=15﹣3t,∵点M为线段AP的中点,点N为线段BP的中点,∴MP=AP=t,PN=(15﹣3t),则MN=MP+PN=t+(15﹣3t)=,∴MN=AB;(4)设BQ=2t,当Q在AB上时,①15﹣2t﹣3t=5,解得t=2;②2t+3t﹣15=5,解得t=4;当Q在AB外时,2t+(15﹣3t)=5,解得t=4;此时,点P不在线段AB外(舍去)综上所述,当2秒或4秒时,线段PQ的长度等于5.。

人教版七年级数学上册期末常考题型过关练习:计算题专项(三)

人教版七年级数学上册期末常考题型过关练习:计算题专项(三)

七年级数学上册期末常考题型过关练习:计算题专项(一)一.有理数混合运算1.计算:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].2.计算:(1)2﹣(﹣4)+6÷(﹣2)+(﹣3)×2(2)﹣12+(﹣3)2﹣24×()3.计算:(1)﹣10﹣8÷(﹣2)×(﹣);(2)(﹣+﹣)×12+(﹣1)2020.4.有理数的计算:(1)﹣42×|﹣1|﹣(﹣5)+2;(2)(﹣56)×(﹣1)÷(﹣1)×.5.计算(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)(2)25÷×(﹣)+(﹣2)×(﹣1)2019二.解一元一次方程6.先化简,再求值:(1)5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=.(2)﹣2x2﹣[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣2.7.先化简,再求值(1)﹣(4a2+2a﹣1)+3a2﹣3a,其中a=﹣.(2)(3m2﹣mn+5)﹣2(5mn﹣4m2+2),其中m2﹣mn=2.8.化简或化简求值:(1)化简:(2ab+a2b)+3(2a2b﹣5ab)(2)先化简,再求值:(﹣x2+3xy﹣2y)﹣2(﹣x2+4xy﹣y2),其中x=3,y=﹣29.先化简,再求值(1)ab﹣3a2﹣2b2﹣5ab+3a2+4ab,其中a=2,b=﹣1;(2)6(x2y+xy2﹣x)﹣(4x2y+2xy2+8x),其中x=,y=1.10.(1)化简:4x2﹣(x2+y)+2(y﹣2x2)(2)先化简,再求值:,其中a=2,b=.三.整式混合运算11.解方程:(1)2x﹣(x+6)=3x+2(x﹣1).(2).12.解下列方程:(1)6﹣5x=3(4﹣x);(2)﹣=1.13.解方程:(1)5x+2=3x+6(2)14.解方程(1)8x﹣(3x+5)=20(2)﹣1=15.解方程:(1)2x﹣9=7x+6;(2).四.一元一次方程应用16.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时.(1)两车相向而行,几小时后相遇?(2)两车同向而行,几小时后相距420千米?17.如图1,已知数轴上有三点A,B,C.点A,C对应的数分别是﹣40和20,点B是AC 的中点.(1)请直接写出点B对应的数:;(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t>0).①当t为何值时,点B与点E的距离是5个单位长度?②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.18.今年姚强上初一,父母是清洁工,需要很早离家去清理打扫街道,早晨不能送姚强去学校上学.于是,他的父母每月会给姚强100元作为乘车费,平时姚强会选择公交车上学,但时间紧张的时候,他会选择打出租车去上学.其中,两种不同乘车方式的价格如表所示:乘车方式公交车出租车价格(元/次) 2 6已知姚强10月份早晨上学共计乘车23次,不仅没有把100元乘车费用完,而且还剩余34元,求姚强10月份早晨上学乘坐公交车的次数和打出租车的次数各是多少?19.为了提倡节约用电,某地区规定每月用电量不超过a千瓦时,居民生活用电基本价格为每千瓦时0.50元,若每月用电量超过a千瓦时,则超过部分按基本电价提高20%收费.(1)若居住在此地区的小明家十月份用电100千瓦时,共交电费54元,求a.(2)若居住在此地区的小刚家十一月份共用电200千瓦时,应交电费多少元?(3)若居住在此地区的小芳家十二月份月份的平均电费为0.56元,则小芳家十二月份共用电多少千瓦时?应交电费多少元?20.如图:是某月份的月历表,请你认真观察月历表,回答以下问题:(1)如果圈出同一行的三个数,用a表示中间的数,则第一个数,第三个数怎样表示?(2)如果圈出同一列的三个数,用a表示中间的数,则第一个数,第三个数怎样表示?(3)如果圈出如图所示的任意9个数,这9个数的和可能是207吗?如果可能,请求出这9个数;如果不可能,请说明理由.参考答案1.解:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020=16÷(﹣8)﹣+1=﹣2﹣+1=﹣;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=.2.解:(1)2﹣(﹣4)+6÷(﹣2)+(﹣3)×2 =2+4+(﹣3)+(﹣6)=﹣3;(2)﹣12+(﹣3)2﹣24×()=﹣1+9﹣6+9+2=13.3.解:(1)==﹣10﹣2=﹣12;(2)===.4.解:(1)﹣42×|﹣1|﹣(﹣5)+2=﹣16×+5+2=﹣8+5+2=﹣1;(2)(﹣56)×(﹣1)÷(﹣1)×=(﹣56)×(﹣)×(﹣)×=﹣24.5.解:(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)=﹣5+7+3﹣20=﹣25+10=﹣15;(2)25÷×(﹣)+(﹣2)×(﹣1)2019=25××(﹣)+(﹣2)×(﹣1)=﹣12+2=﹣10.6.解:(1)原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2,当a=﹣,b=时,原式=1+=1;(2)原式=﹣2x2﹣y2+x2﹣y2﹣3=﹣x2﹣y2﹣3,当x=﹣1,y=﹣2时,原式=﹣1﹣10﹣3=﹣14.7.解:(1)原式=﹣6a2﹣3a++3a2﹣3a=﹣3a2﹣6a+,当a=﹣时,原式=﹣3×(﹣)2﹣6×(﹣)+=﹣+4+=4;(2)原式=3m2﹣mn+5﹣10mn+8m2﹣4=11m2﹣11mn+1=11(m2﹣mn)+1,当m2﹣mn=2时,原式=22+1=23.8.解:(1)原式=2ab+a2b+6a2b﹣15ab=7a2b﹣13ab;(2)原式=﹣x2+3xy﹣2y+x2﹣8xy+3y2=﹣5xy﹣2y+3y2,当x=3,y=﹣2时,原式=﹣5×3×(﹣2)﹣2×(﹣2)+3×(﹣2)2=30+4+12=46.9.解:(1)原式=(ab﹣5ab+4ab)+(﹣3a2+3a2)﹣2b2=﹣2b2,当a=2,b=﹣1时,原式=﹣2;(2)原式=6x2y+4xy2﹣3x﹣6x2y﹣3xy2﹣12x=xy2﹣15x,当x=,y=1时,原式=×1﹣15×=﹣5=﹣4.10.解:(1)原式=4x2﹣x2﹣y+2y﹣4x2=﹣x2+y;(2)原式=2a2b+ab2﹣3﹣3a2b﹣ab2+6=3﹣a2b,当a=2,b=时,原式=3﹣2=1.11.解:(1)2x﹣(x+6)=3x+2(x﹣1),去括号,得 2x﹣x﹣6=3x+2x﹣2,移项,得 2x﹣x﹣3x﹣2x=﹣2+6,合并同类项,得﹣4x=4,系数化为1,得x=﹣1;(2)去分母得:2x﹣5﹣9x﹣3=6,移项合并得:﹣7x=14,解得:x=﹣2.12.解:(1)去括号得,6﹣5x=12﹣3x,移项合并得:﹣2x=6,(2)去分母得,3(x+1)﹣2(1﹣x)=6,去括号得:3x+3﹣2+2x=6,移项合并得:5x=5,解得:x=1.13.解:(1)移项,合并同类项,可得:2x=4,系数化为1,可得:x=2.(2)去分母,可得:5(x+4)﹣2(x﹣3)=2,去括号,可得:5x+20﹣2x+6=2,移项,合并同类项,可得:3x=﹣24,系数化为1,可得:x=﹣8.14.解:(1)去括号得:8x﹣3x﹣5=20,移项合并得:5x=25,解得:x=5;(2)去分母得:6y﹣3﹣12=10y﹣14,移项合并得:﹣4y=1,解得:y=﹣.15.解:(l)移项合并同类项得:﹣5x=15,解得:x=﹣3;(2)去分母,得4(2x﹣3)﹣5(x﹣2)=﹣20,去括号,得8x﹣12﹣5x+10=﹣20,移项,得8x﹣5x=﹣20+12﹣10,合并同类项,得3x=﹣18,系数化为1,得x=﹣6.16.解:(1)设两车相向而行,x小时后相遇,则(115+85)x=450∴200x=450,答:两车相向而行,2.25小时后相遇.(2)设两车同向而行,x小时后相距420千米,①(115﹣85)x=450﹣420∴30x=30,解得x=1②(115﹣85)x=450+420∴30x=870,解得x=29答:两车同向而行,1小时或29小时后相距420千米.17.解:(1)点B对应的数是﹣10;故答案为:﹣10(2)①PB=AB+AP=﹣10﹣(﹣40)+2t=30+2tPQ=20﹣(﹣40)+2t﹣3t=60﹣t,∵E是PQ的中点,∴PE=PQ=(60﹣t)=30﹣t当E在B的左侧时,BE=PB﹣PE=30+2t﹣(30﹣)=BE=t=5,∴t=2,当E在B的右侧时∴BE=PE﹣PB=30﹣t﹣(30+2t)=t∴BE=t=5,∴t=﹣2答:当t=2时,点B与点E的距离是5个单位长度.②依题意,得:AE=+40=30﹣t,QC=3t,∴mAE+QC=m(30﹣t)+3t=30m+(m+3)t,∵mAE+QC的值不随时间的变化而改变∴m+3=0,解得:m=;,答:当m=时,mAE+QC的值不随时间的变化而改变18.解:设乘公交车x次,则打出租车(23﹣x)次,依题意,得:2x+6(23﹣x)=100﹣34.2x+138﹣6x=66x=18所以23﹣x=5.答:乘坐公交车的次数18次,打出租车的次数5次.19.解:(1)∵100×0.5=50(元)<54元,∴该户用电超出基本用电量.根据题意得:0.5a+0.5×(1+20%)×(100﹣a)=54.解得:a=60.(2)0.5×60+(200﹣60)×0.5×120%=114(元);(3)设小芳家十二月份共用电x千瓦时,根据题意得:0.5×60+(x﹣60)×0.5×120%=0.56x,解得:x=150.∴0.56x=0.56×150=84.答:小房家十二月份共用电150千瓦时,应交电费84元.20.解:(1)同一行中的第一个数为:a﹣1.第三个数为:a+1;(2)同一列中的第一个数为:a﹣7.第三个数为:a+7.(3)设9个数中间的数为:x,则这九个数分别为:x+8,x+7,x+6,x﹣1,x,x+1,x﹣8,x﹣7,x﹣6,则这9个数的和为:(x+8)+(x+7)+(x+6)+(x﹣1)+(x+1)+x+(x﹣8)+(x﹣7)+(x﹣6)=9x.所以:当9个数的和为207时,即:9x=207解得:x=23.所以:此时的九个数分别是:15 16 1722 23 2429 30 31.学海迷津:数学学习十大方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

人教版数学七年级上册期末计算题100例附解析(3)

人教版数学七年级上册期末计算题100例附解析(3)

人教版数学七年级上册期末计算题100例附解析(3)1.计算:(1)(+12)+(-21);(2)(−12)−(−13) .2.解方程:2x−13=x+22+1.3.先化简,再求值:2(12b −1)−3(−13a 2+b −2) ,其中a=-1,b=1. 4.化简(1)3(53x 2−4x +3)−5(x 2−3x +2)(2)-2x 2−[−3x 2−2(52x −32)+5x]5.解方程: x 0.7 ﹣ 1.7−2x 0.3=1. 6.计算:[﹣22﹣( 79−1112+16 )×36]÷5.7.计算:(1)−40−(−19)+(−24)(2)(-5)×(-8)-(-28)÷4(3)(12+56−712)×12(4)−22−(−2)2−23×(−1)2011(5)−32÷94+|−4|×0.52+229×(−112)28.计算:(1)把37.37°化为度、分、秒;(2)把13°37′48″化为度.9.619 ÷(-1 12 )× 1924 ;10.已知方程 (a −4)x |a|−3+2=0 是关于x 的一元一次方程,求a 的值.11.计算:(﹣1)2﹣(π﹣3)0+2﹣2 .12.若多项式4x n+2﹣5x 2﹣n +6是关于x 的三次多项式,求代数式n 2﹣2n+3的值.13.计算:7+( −15 )-4-(-0.2)14.已知:|a|=5,|b-1|=8,且a-b<0,求a+b 的值。

15.计算: (1) (12)2−(−3)0(1)(12)−2−(−3)0 ;(2)8a 3−3a 5÷a 2(3)4ab (2a 2b 2−ab +3) ;(4)(x +y)2−(x −y)(x +y)16.解方程: x+12+3−2x 3=117.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3)513+(−423)+(−613) ;(4)23+(-72)+(-22)+57+(-16);(5)356+(−315)+(−256)+415+(−2) ;(6)2.25+(-4 14 )+(-2.5)+2 12 +3.4+(-175 ) (7)5611+(−3.125)+(−747)+(−3411)+818+(−367)+(−2211)+63718.先化简,再求值: 3a 2b −[−2a 2b −6(ab −23a 2b)+4ab]−3ab ,其中 a =3 , b =−13 . 19.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C .其位置如图所示,化简 |a |+2|b +c|−3|a −c|−4|a +b| .20.解一元一次方程: 3x−24 ﹣ 5x+26 =1﹣x .21.去括号,并合并相同的项:﹣(y+x )﹣(5x ﹣2y )22.如果关于x 的多项式5x 2﹣(2y n+1﹣mx 2)﹣3(x 2+1)的值与x 的取值无关,且该多项式的次数是三次.求m ,n 的值.23.解方程: 4x−13−2x+16=1 .24.先去括号,再合并同类项:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2)25.12(x−3)+1=x−13(x−2)26.计算:(x﹣2)2﹣(x+3)(x﹣3)27.100÷(﹣2)2﹣(﹣2)÷(﹣2)28.计算下列各题:(1)(1﹣16+ 34)×(﹣48)(2)﹣14﹣(1﹣0.5)× 13×[2﹣(﹣3)2].29.计算:(1)20-17-(-7)(2)3×(−2)−(−28)÷7(3)(19-16-118)×36(4)−23+3×(−1)2010−(−2)2 30.解方程:(1)①2(x-2)=3(4x-1)+9(2)② x−20.2−x+30.5=231.计算:(1)2a3b(−3ab2)2;(2)[(−14)÷2−3+(−23)]×(−1)201632.已知|m|=4,|n|=6,且|m+n|=m+n,求m−n的值.33.计算(1)20070+2﹣2﹣(12)2+2009(2)(﹣2ab)(3a2﹣2ab﹣b2)(3)(2x2)3﹣6x3(x3+2x2﹣x)(4)(2a+3b)2﹣(2a﹣b)(2a+b)(5)(2x﹣5)(2x+5)﹣(2x+1)(2x﹣3)(6)(x3+3)2−(x3−3)2(7)(x+1)(x+3)﹣(x﹣2)2(8)(a+b+3)(a+b ﹣3)(9)(9x 2y ﹣6xy 2+3xy )÷( 3xy )(10)化简求值:(3a ﹣1)2﹣3(2﹣5a+3a 2),其中 a =−13 . 34.已知 |x −8y|+2(4y −1)2+3|8z −3x|=0 ,求x +y +z 的值. 35.计算(1)−34+(−8)−5−(−23)(2)−5×(−115)+13×(−115)−3×(−115)(3)−22+√273−6+(−2)×√9(4)−22×(−12)+8÷(−2)2+(−1)201836.用简便方法计算:﹣1.25+2.25+7.75+(﹣8.75)37.-|-26|+|+28|-(+15)38.计算:(1)|−2|+(π+3)0−(12)−3(2)a 5⋅(−2a)3+a 6⋅(−3a)2(3)(4a 2−6ab +2a)÷2a(4)20182−2017×2019 (用乘法公式)39.解方程(1)3(3x +5)=2(2x −1)(2)x−23−0.5=5x 640.计算:(1)18x 3yz· (−13y 2z)3 ÷ 16 x 2y 2z;(2)(a 3+2)2 - (a 3−2)2 .41.计算:(1)(−56)×(47−38+114) ;(2)(−18)÷94+(−2)3×(−12)−(−32) .42.计算题:(1)23+17+(-7)+(-16)(2)(-5 14 )+(-3.5)(3)(+ 23 )+(- 34 )(4)23 +(- 15 )+(-1)+ 13 .43.计算题(1)8﹣(﹣3)+2+(﹣6)(2)﹣22×3﹣(﹣3)2÷344.解一元一次方程:(1)7x ﹣5=3x ﹣1(2)y−14−2=2y−3645.计算:(1)12−(−9)+|−7|−4(2)(−12)×(43−34+56)(3)(−2)2×5−23÷4 ;(4)8x +2y +(−5x −y)46. 先化简,再求值:(1)4a +3a 2-3-3a 3-(-a +4a 3),其中a =-2;(2)2x 2y -2xy 2-[(-3x 2y 2+3x 2y)+(3x 2y 2-3xy 2)],其中x =-1,y =2.47.解下列方程(1)3x-4=x(2)x−12=1−x−1448. 计算:(1)1.3-(-2.7);(2)(-13)-(-17);(3)(-1.8)-(+4.5);(4)6.38-(-2.62);(5)(−14)−(−13) ;(6)(−6.25)−(−314) .49.解方程(1)2(2x −1)=1−(3−x)(2)x 0.3−2x−10.7=150.计算:(1)( 16 - 34 + 512 )× 12(2)(−81)÷214×49÷(−16)51.先化简再求值:(1)(4a 2﹣3a )﹣(1﹣4a+4a 2),其中a=﹣2(2)﹣2(mn ﹣3m 2)﹣[m 2﹣5(mn ﹣m 2)+2mn],其中m=1,n=﹣2. 52.计算:(1)(-8)+10+(-3)+2(2)(14−56+38)×24(3)12×(−23)−(−54)÷(−14)(4)−12+[(−4)2−(1−3)2×(−12)3]53.先化简,再求值: 3(x 2−2xy)−[3x 2−2y +2(xy +y)] ,其中 x =−12,y =−3 .54.(-0.19)+(-3.11)55.计算题:(1)−2−(−12)−(+23)(2)(−2)2×7−(−3)×(−6)−|−5|56. 计算:(1)28°32′46″+15°36′48″;(2)(30°-23′40″).57.化简:-3(x 2-xy)+2(3x 2+2xy)58.计算:﹣14﹣[2﹣(﹣3)2]÷(12)3 .59.1+(-2)+3+(-4)+ …+2017+(-2018)60.解方程 2x+56−3x−28=161.计算:(1)(−79−56+518)×(−18)(2)-22+3x(-1)4-(-4)×5(3)(+1317)+(−3.5)+(−6)+(+2.5)+(+6)+(+417)62.解下列方程或方程组:(1)4x −3(20−x)=6x −7(9−x)(2)x+12=x −x−26(3){2x +y =5x −y =1(4){2x−15+3y−24=212x −15y =663.解方程 (1)5x −3=22 ;(2)3x −2=5x −4(3)5(3x −1)=2(4x +2)−8 ;(4)2x−13=1+4x 5−164.计算:(1)﹣22+|﹣5|(2)( 29 ﹣ 14 + 118 )÷(﹣ 136 )65.若a ,b 互为相反数, c ,d 互为倒数,|x|=2,求cd+a+b-x 的值.66.-20+(-14)-(-18)-1367.合并同类项:(1)5m +2n −m −3n(2)3a 2−1−2a −5+3a −a 268.先化简,再求值 3(x 2y −xy 2)−2(−32xy 2−2+x 2y)−3 ,其中 x =−12,y =−2 。

2024年人教版七年级数学(上册)期末试题及答案(各版本)

2024年人教版七年级数学(上册)期末试题及答案(各版本)

专业课原理概述部分一、选择题(每题1分,共5分)1.下列哪个数是质数?A.21B.23C.25D.272.一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的周长是?A.16厘米B.26厘米C.36厘米D.28厘米3.下列哪个数是偶数?A.101B.102C.103D.1044.一个正方形的边长为5厘米,那么这个正方形的面积是?A.5平方厘米B.10平方厘米C.25平方厘米D.50平方厘米5.下列哪个数是奇数?A.121B.122C.123D.124二、判断题(每题1分,共5分)1.2是最大的质数。

()2.一个等边三角形的三个角都是60度。

()3.0是偶数。

()4.一个长方形的长和宽相等,那么这个长方形就是正方形。

()5.5的倍数都是奇数。

()三、填空题(每题1分,共5分)1.2的倍数都是____数。

2.一个等腰三角形的两个腰长相等,底边长为8厘米,腰长为10厘米,那么这个三角形的周长是____厘米。

3.5的倍数的个位数只能是____或____。

4.一个正方形的边长为6厘米,那么这个正方形的面积是____平方厘米。

5.下列哪个数是合数?____四、简答题(每题2分,共10分)1.请写出前5个质数。

2.请解释等边三角形的特点。

3.请解释偶数和奇数的区别。

4.请解释正方形的周长和面积的计算方法。

5.请写出5的倍数的前5个数。

五、应用题(每题2分,共10分)1.一个长方形的长是10厘米,宽是5厘米,请计算这个长方形的周长和面积。

2.一个等腰三角形的底边长为8厘米,腰长为10厘米,请计算这个三角形的周长和面积。

3.请找出20以内的所有质数。

4.请找出50以内的所有5的倍数。

5.请计算一个正方形的边长为7厘米时,它的周长和面积。

六、分析题(每题5分,共10分)1.请分析一个等边三角形和一个等腰三角形的不同点。

2.请分析一个长方形和一个正方形的不同点。

七、实践操作题(每题5分,共10分)1.请画出一个等腰三角形,并标出它的底边和腰。

2022-2023学年人教版七年级数学上册《第3章一元一次方程》期末综合复习题(附答案)

2022-2023学年人教版七年级数学上册《第3章一元一次方程》期末综合复习题(附答案)

2022-2023学年人教版七年级数学上册《第3章一元一次方程》期末综合复习题(附答案)一、选择题1.下列方程是一元一次方程的是()A.x﹣2=3B.1+5=6C.x2+x=1D.x﹣3y=02.x=﹣2是下列哪个方程的解()A.x+1=2B.2﹣x=0C.x=1D.+3=13.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d4.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x+2x=1﹣2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程3t=2,未知数系数化为1,得t=D.方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣45.解方程﹣=1时,去分母后,正确的结果是()A.15x+3﹣2x﹣1=1B.15x+3﹣2x+1=1C.15x+3﹣2x+1=6D.15x+3﹣2x﹣1=66.小马虎做作业,不小心将方程中一个常数污染了,被污染方程是2(x﹣3)﹣•=x+1,怎么办呢?他想了想便翻看书后答案,方程的解是x=9,请问这个被污染的常数是()A.1B.2C.3D.47.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)8.两地相距600千米,甲乙两车分别从两地同时出发相向而行,甲车比乙车每小时多走10千米,4小时后两车相遇,则乙车的速度是()A.70千米/小时B.75千米/小时C.80千米/小时D.85千米/小时9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元10.当x=﹣1时,式子ax3+bx+1=0,则关于x方程+=的解是()A.x=B.x=﹣C.x=1D.x=﹣1二、填空题11.若方程x|a|+3=0是关于x的一元一次方程,则a=.12.已知2a﹣3和4a+6互为相反数,则a=.13.若方程x+2m=8与方程的解相同,则m=.14.方程|x﹣3|=6的解是x=.15.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个队踢了16场比赛,负了5场,共得27分,那么这个队平了场.16.一个两位数,个位上的数字与十位上数字之和是7,将十位和个位对调后的新数比原数的2倍还大2,则原两位数是.17.学校开设兴趣班,建模组有16人,本学期新来的学生小丽加入了已有x人的航模组,这样建模组的人数比航模组的人数的一半多5人,根据题意,可列方程.18.若关于x的方程2x﹣(3x﹣a)=1的解为负数,则a的取值范围是.三、解答题19.解下列方程:(1)3x﹣5x﹣2x=0(2)3(5x﹣6)=3﹣20x(3)2x+3[x﹣2(x﹣1)+4]=8(4)﹣=120.方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x的解互为倒数,求k的值.21.某瓷器厂共有120个工人,每个工人一天能生产200个茶杯或50个茶壶,如果8个茶杯和一个茶壶为一套,问如何安排生产工人可使每天生产的产品配套?22.某件商品的进价为800元,标价为1150元,因库存积压需降价出售,若每件商品仍想获得15%的利润,需几折出售?23.一项工程,甲工程队单独做要10天完成,乙工程队单独做要15天完成,甲乙两工程队先合作若干天后,再由乙工程队单独做了5天,此时还有三分之一的工程没有完成,求甲乙两工程队先合作了几天?24.数学课上,小华把一张白卡纸画出如图①所示的8个一样大小的长方形,再把这8个长方形纸片剪开,无重叠的拼成如图②的正方形ABCD ,若中间小正方形的边长为1,求正方形ABCD 的边长.25.某市剧院举办大型文艺演出,其门票价格为:一等票300元/人,二等票200元/人,三等票150元/人,某公司组织员工36人去观看,计划用5850元购买其中两种门票,请你帮该公司设计可能的购票方案.26.“水是生命之源”,我国是一个严重缺水的国家.为倡导节约用水,某市自来水公司对水费实行分段收费,具体标准如下表: 每月用水量第一档(不超过10立方米)第二档(超过10立方米但不超过15立方米部分)第三档(超过15立方米部分) 收费标准 (元/立方米)2.5元?元比第二档高20%已知某月市民甲交水费17.5元,市民乙用水13立方米,交费34元,市民丙交水费61.6元,求:①市民甲该月用水多少立方米? ②第二档水费每立方米多少元? ③市民丙该月用水多少立方米?27.数轴上,点A 、点B 所表示的数分别是a 和b ,点A 在原点左边,点B 在原点右边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大6,点P 从点A 以每秒3个单位长度的速度沿数轴正方向运动,点Q 从点B 以每秒1个单位长度的速度沿数轴负方向运动,两点同时出发.①求a、b的值.②设x秒后点P、点Q相遇,求x的值.③数轴上点C到点A和到点B的距离之和是30,求点C所表示的数.④设t秒后点P、Q相距6个单位长度,求t的值.参考答案一、选择题1.解:A、x﹣2=3是一元一次方程,故此选项正确;B、1+5=6不是方程,故此选项错误;C、x2+x=1是一元二次方程,故此选项错误;D、x﹣3y=0是二元一次方程,故此选项错误;故选:A.2.解:A、解方程x+1=2得:x=1,所以x=﹣2不是方程x+1=2的解,故本选项不符合题意;B、解方程1﹣x=0得:x=2,所以x=﹣2不是方程2﹣x=0的解,故本选项不符合题意;C、解方程x=1得:x=2,所以x=﹣2不是方程x=1的解,故本选项不符合题意;D、当x=﹣2时,左边=+3=1,右边=1,即左边=右边,所以x=﹣2是方程的解,故本选项符合题意;故选:D.3.解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.4.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、方程3t=2,未知数系数化为1,得t=,不符合题意;D、方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣4,符合题意,故选:D.5.解:﹣=1,去分母得:3(5x+1)﹣(2x﹣1)=6,去括号得:15x+3﹣2x+1=6.故选:C.6.解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.7.解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选:C.8.解:设乙车的速度为x千米/小时,则甲车的速度为(x+10)千米/小时,根据题意得:4(x+x+10)=600,解得:x=70.故选:A.9.解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.10.解:把x=﹣1代入得:﹣a﹣b+1=0,即a+b=1,方程去分母得:2ax+2+2bx﹣3=x,整理得:(2a+2b﹣1)x=1,即[2(a+b)﹣1]x=1,解得:x=1,故选:C.二、填空题11.解:∵方程x|a|+3=0是关于x的一元一次方程,∴|a|=1,解得:a=±1,故答案为:±112.解:∵2a﹣3和4a+6互为相反数,∴(2a﹣3)+(4a+6)=0,∴6a+3=0,解得a=﹣0.5.故答案为:﹣0.5.13.解:由解得x=1,将x=1代入方程x+2m=8,解得m=,故答案为:.14.解:由题意得:x﹣3=6或x﹣3=﹣6,x=9或﹣3,故答案为:9或﹣3.15.解:设该队共平x场,则该队胜了16﹣x﹣5=11﹣x,胜场得分是3(11﹣x)分,平场得分是x分.根据等量关系列方程得:3(11﹣x)+x=27,解得:x=3,故平了3场,故答案为:3.16.解:设原来个位数字是x,十位数字是(7﹣x),2[10(7﹣x)+x]+2=10x+7﹣x,x=2.7﹣x=7﹣2=5.原数为25.故答案是:25.17.解:设航模组已有x人,则学生小丽加入后航模组共有(x+1)人,∵建模组有16人且建模组的人数比航模组的人数的一半多5人,∴(x+1)+5=16,故答案为:(x+1)+5=16.18.解:解方程2x﹣(3x﹣a)=1得,x=a﹣1,∵x为负数,∴a﹣1<0,解得a<1.故答案为a<1.三、解答题19.解:(1)3x﹣5x﹣2x=0合并同类项,可得:﹣4x=0,系数互为1,可得:x=0;(2)3(5x﹣6)=3﹣20x去括号,可得:15x﹣18=3﹣20x,移项,可得:15x+20x=3+18,合并同类项,可得:35x=21,系数互为1,可得:x=0.6;(3)2x+3[x﹣2(x﹣1)+4]=8,去括号,可得:2x+3x﹣6x+6+12=8移项,可得:2x+3x﹣6x=﹣6﹣12+8,合并同类项,可得:﹣x=﹣10,系数互为1,可得:x=10;(4)﹣=1,去分母,可得,4(2x﹣1)﹣3(2x﹣3)=12,去括号,可得:8x﹣4﹣6x+9=12,移项,可得:8x﹣6x=4﹣9+12,合并同类项,可得:2x=7,系数互为1,可得:x=.20.解:解方程2﹣3(x+1)=0得:x=﹣,﹣的倒数为x=﹣3,把x=﹣3代入方程﹣3k﹣2=2x得:﹣3k﹣2=﹣6,解得:k=1.21.解:设x人生产茶杯,则(120﹣x)人生产茶壶.50(120﹣x)×8=200x解得:x=80.所以120﹣80=40(人)答:80人生产茶杯,40人生产茶壶.22.解:由题意可知:设需要按x元出售才能获得15%的利润则:=15%解得:x=920,按n折出售,则n=×10=8故每件商品仍想获得10%的利润需八折出售.23.解:设甲乙两工程队先合作了x天,由题意,得+=1﹣.解得x=2.答:甲乙两工程队先合作了2天.24.解:设小长方形的长为xcm,则宽为x,由题意,得:2×x﹣x=1,解得:x=5,则x=3,所以正方形ABCD的边长是:x+2×x=×5=11.答:正方形ABCD的边长是11.25.解:∵200×36=7200>5850,∴该公司不可能购买一等门票和二等门票,设该公司购买一等门票a张,三等门票(36﹣a)张,300a+150(36﹣a)=5850,解得,a=3,∴36﹣a=33,即该公司购买一等门票3张,三等门票33张;设该公司购买二等门票b张,三等门票(36﹣b)张,200b+150(36﹣b)=5850,解得,b=9,∴36﹣b=27,即该公司购买二等门票9张,三等门票27张;由上可得,有两种购买方案,方案一:该公司购买一等门票3张,三等门票33张;方案二:该公司购买二等门票9张,三等门票27张.26.解:①∵2.5×10=25>17.5,∴甲用水量不超过10立方米,∴17.5÷2.5=7立方米,答:甲市民该月用水7立方米.②设超出的部分x元/立方米,由题意得,2.5×10+(13﹣10)x=34,解得,x=3,答:第二档水费每立方米3元.③∵2.5×10+3×(15﹣10)=40<61.6,∴丙的用水量超过15立方米,设丙用水y立方米,由题意得,2.5×10+3×5+3×(1+20%)(y﹣15)=61.6,解得,y=21,答:市民丙该月用水21立方米.27.解:①∵点A在原点左边,点B在原点右边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大6,∴a=﹣(24+6)÷2=﹣15,b=(24﹣6)÷2=9;②依题意有3x+x=24,解得x=6.故x的值为6;③(30﹣24)÷2=3,点C在点A的左边,点C所表示的数为﹣15﹣3=﹣18;点C在点A的右边,点C所表示的数为9+3=12.故点C所表示的数为﹣18或12;④相遇前,依题意有:3t+t=24﹣6,解得t=;相遇后,依题意有:3t+t=24+6,解得t=.故t的值为或.。

人教版七年级数学上册期末测试题含答案 (3)

人教版七年级数学上册期末测试题含答案 (3)

七年级(上)期末目标检测数学试卷(三)一、选择题(每小题3分,共30分)1.a 、b ,在数轴上表示如图1,下列判断正确的是( )A .0>+b aB .01>+bC .01<--bD .01>+a 2.如图2,在下列说法中错误的是( )A .射线OA 的方向是正西方向B .射线OB 的方向是东北方向C .射线OC 的方向是南偏东60°D .射线OD 的方向是南偏西55°3.下列运算正确的是( )A.235=-x xB.ab b a 532=+C.ab ba ab =-2D.a b b a +=--)(4.如果有理数b a ,满足0>ab ,0<+b a ,则下列说法正确的是( )A.0,0>>b aB.0,0><b aC.0,0<<b aD.0,0<>b a 5.若0|2|)1(2=++-n m ,如n m +的值为( )A.1-B.3-C.3D.不确定 6.若0||>a ,那么( )A.0>aB.0<aC.0≠aD.a 为任意有理数 7.平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( ) A.2条 B.3条 C.4条 D.1条或3条 8.将长方形的纸ABCD 沿AE 折叠,得到如图3 所示的图形,已知∠CED′=60º.则∠AED 的是( ) A.60º B.50º C.75º D.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是( )10.一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价54收费。

人教版七年级上册数学期末专题复习:几何图形问题(三)(含答案)

人教版七年级上册数学期末专题复习:几何图形问题(三)(含答案)

七年级上册数学期末专题复习:几何图形问题(二)1.请认真观察图形,解答下列问题:(1)根据图中条件,试用两种不同方法表示阴影部分的面积.方法1:;方法2:.(2)从中你能发现什么结论?请用乘法公式表示该结论:.(3)运用你所得到的结论,解决问题:已知(x+y)2=25,xy=3,求x2+y2的值.12.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形,根据这一操作过程回答下列问题:(1)图②中阴影部分的正方形的边长为;(2)请用两种方法表示图②中阴影部分的面积.方法一:;方法二:;(3)观察图②,写出代数式(m+n)2、(m﹣n)2、mn之间的等量关系式:;(4)计算:(10.5+2)2﹣(10.5﹣2)2=.13.我们在学习整式乘法运算时,经常会用图形的面积关系来说明运算的合理性.(1)根据所给图形写出表示整式运算及其结果的等式,并写出等式两边的整式所表示的意义;(2)请尝试用类似的图形表示(a+2b+c)2,并根据图形直接写出运算的结果.14.如图①所示是一个长为2m,宽为2n(m>n)的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形.(1)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:;方法②:;(2)观察图②,试写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:;(3)根据(3)题中的等量关系,若m+n=15,mn=30,求图②中阴影部分的面积.15.如图,是某单位办公用房的平面结构示意图(长度单位:米),图形中的四边形均是长方形或正方形.(1)请分别求出会客室和会议厅的占地面积是多少平方米?(2)如果x+y=5,xy=6.求会议厅比会客室大多少平方米?16.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,若a+b=4,a2+b2=10,求剩下的钢板的面积.17.利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性(1)根据下图写出一个代数恒等式:.(2)我们可以用几何图形来解释一些代数恒等式,请你画出符合(2a+b)(a+b)=2a2+3ab+b2的几何图形.(3)已知正数a、b、c和m、n、l满足a+m=b+n=c+l=k,试构造边长为k的正方形,利用面积来说明al+bm+cn<k2.18.利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性.(1)根据下列所示图形写出一个代数恒等式.(2)已知正数a,b,c和m,n,l,满足a+m=b+n=c+l=k,试构造边长为k的正方形.利用图形面积来说明al+bm+cn<k2.思考过程如下:因为a+m=b+n=c+l=k,所以a,b,c,m,n,l,均k(填“大于”或“小于”).由于k2可以看成一个正方形的面积,则al、bn、cn可以分别看成三个长方形的面积.请画出图形,并利用图形面积来说明al+bm+cn<k2.19.如图1是一个长为4a,宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成如图2的正方形.(1)图2中的阴影正方形边长表示正确的序号为;①a+b;②b﹣a;③(a+b)(b﹣a).(2)由图2可以直接写出(a+b)2,(b﹣a)2,ab之间的一个等量关系是;(3)根据(2)中的结论,解决下列问题:①x+y=8,xy=2,求(x﹣y)2的值;②两个正方形ABCD,AEFG如图3摆放,边长分别为x,y,若x2+y2=16,BE=2,直接写出图中阴影部分面积和.20.如图1,A纸片是边长为a的正方形,B纸片是边长为b的正方形,C纸片是长为b,宽为a的长方形.现用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:;(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:若a+b=5,a2+b2=13,求ab的值.七年级上册数学期末专题复习:几何图形问题(三)1.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题.(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2;(4)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形m张边长分别为a、b的长方形纸片拼出一个长方形或正方形,直接写出m的所有可能取值.22.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为.(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是.(3)若x+y=﹣6,xy=,则x﹣y=.(4)观察图③,你能得到怎样的代数恒等式呢?23.如图,边长为a的大正方形内有一个边长为b的小正方形.(1)用含字母的代数式表示图1中阴影部分的面积为.(2)将图1的阴影部分沿斜线剪开后,拼成了一个如图2所示的长方形,用含字母的代数式表示此长方形的面积为.(多项式乘积的形式)(3)比较左、右两图的阴影部分面积,请你写出一个整式乘法的公式.(4)结合(3)的公式,计算(1+)(1+)(1+)(1+)+.24.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划在中间正方形地块上修建一座雕像,其中这个正方形的边长为(a+b)米,其余部分(阴影)进行绿化,请计算绿化部分的面积.25.探究活动:(1)如图①,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图②,若将图①中阴影部分裁剪下来,重新拼成一个长方形,面积是(写成多项式乘法的形式);(3)比较图①,图②阴影部分的面积,可以得到公式.知识应用:运用你得到的公式解决以下问题(4)计算:(a+b﹣2c)(a+b+2c);(5)若4x2﹣9y2=10,4x+6y=4,求2x﹣3y的值.26.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4)运用你所得到的公式,计算下列式子:①1002×998;②(2m+n﹣p)(2m+n+p);③(2+1)(22+1)(24+1)…(232+1)+1.27.“囧”(jiǒng)是最近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形后得到一个“囧”字图案.设剪去的小长方形的长和宽分别为x、y;两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”字图案中阴影部分的面积.(2)若x=8,y=4,求此时“囧”字图案中阴影部分的面积.28.小李家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖(房间内隔墙宽度忽略不计).(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米,已知卧室2的面积为21平方米,求铺设地面的总费用.(木地板与地砖的总价和)29.如图,一个长方形运动场被分割成A、B、A、B、C共5个区域,A区域是边长为a 米的正方形,C区是边长为c米的正方形.(1)①列式表示B区长方形场地的长是,宽是.②列式表示一个B区长方形场地周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;当a=4时,求运动场地的周长.30.如图①所示是一个长为2m,宽为2n的长方形,沿虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①;方法②;(3)观察图②,直接写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(a﹣b)2的值.参考答案1.解:(1)方法1,两个正方形的面积和,即a2+b2,方法2,大正方形的面积减去两个长方形的面积,即(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)根据方法1与方法2所表示的面积相等得,a2+b2=(a+b)2﹣2ab,故答案为:a2+b2=(a+b)2﹣2ab;(3)∵xy=3,∴xy=6,又∵(x+y)2=25,∴x2+y2=(x+y)2﹣2xy=25﹣12=13.12.解:(1)由拼图可知,阴影部分是边长为(m﹣n)的正方形,故答案为:m﹣n;(2)方法一:直接利用正方形的面积公式得正方形的面积为(m﹣n)2;方法二:从边长为(m+n)的大正方形减去四个长为m,宽为n的矩形面积即为阴影部分的面积,即(m+n)2﹣4mn;故答案为:(m﹣n)2,(m+n)2﹣4mn;(3)由(2)的两种方法可得,(m﹣n)2=(m+n)2﹣4mn;故答案为:(m﹣n)2=(m+n)2﹣4mn;(4)(10.5+2)2﹣(10.5﹣2)2=(10.5﹣2)2+4×10.5×2﹣(10.5﹣2)2=4×10.5×2=84.故答案为:84.13.解:(1)(2a+b)(a+2b)=2a2+5ab+2b2,左边表示大矩形的面积,右边表示4个正方形和5个小矩形的面积的和;(2)如图所示,(a+2b+c)2=a2+4b2+c2+4ab+2ac+4bc.14.解:(1)方法①∵阴影正方形边长为(m﹣n),∴面积为:(m﹣n)2,故答案为:(m﹣n)2,方法②∵大正方形边长为(m+n),∴大正方形面积为:(m+n)2∵四个小长方形面积为4mn,∴阴影正方形面积=大正方形面积﹣4×小长方形面积,为:(m+n)2﹣4mn,故答案为:(m+n)2﹣4mn;(2)根据阴影正方形面积可得:(m+n)2﹣4mn=(m﹣n)2故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)∵(m+n)2﹣4mn=(m﹣n)2且m+n=15,mn=30,∴(m﹣n)2=(m+n)2﹣4mn=152﹣4×30=225﹣120=105.15.解:(1)会客室:(x﹣y)(2x+y﹣x﹣y)=(x﹣y)x=x2﹣xy,会议厅:(2x+y)(2x+y﹣x)=(2x+y)(x+y)=2x2+2xy+xy+y2=2x2+3xy+y2;答:会客室的占地面积是(x2﹣xy)平方米,会议厅的占地面积是(2x2+3xy+y2)平方米;(2)2x2+3xy+y2﹣(x2﹣xy)=2x2+3xy+y2﹣x2+xy=x2+4xy+y2,由x+y=5,得(x+y)2=25,∴x2+2xy+y2=25,又∵xy=6,∴x2+4xy+y2=25+2×6=37(平方米)答:会议厅比会客室大37平方米.16.解:根据题意得:S阴影=()2π﹣()2π﹣()2π=,∵a+b=4,a2+b2=10,∴ab==,∴S阴影=.17.解:(1)由图可得,4ab=(a+b)2﹣(a﹣b)2;故答案为:4ab=(a+b)2﹣(a﹣b)2;(2)∵如图2的面积为(2a+b)(a+b)或2a2+3ab+b2,∴(2a+b)(a+b)=2a2+3ab+b2;,(3)构造一个边长为k的正方形,如图所示:显然a+m=b+n=c+l=k,根据图形可知,正方形内部3个矩形的面积和小于正方形的面积,故al+bm+cn<k2.18.解:(1)由图可得,4ab=(a+b)2﹣(a﹣b)2;故答案为:4ab=(a+b)2﹣(a﹣b)2;(2)因为a+m=b+n=c+l=k,所以a,b,c,m,n,l,均小于k;故答案为:小于;构造一个边长为k的正方形,如图所示:显然a+m=b+n=c+l=k,根据图形可知,正方形内部3个矩形的面积和小于正方形的面积,故al+bm+cn<k2.19.解:(1)阴影部分的正方形的边长为b﹣a,故答案为:②;(2)大正方形的边长为a+b,面积为(a+b)2,小正方形的边长为b﹣a,面积为(b﹣a)2,四块长方形的面积为4ab,所以有(a+b)2=(b﹣a)2+4ab,故答案为:(a+b)2=(b﹣a)2+4ab;(3)①由(2)的结论可得(x+y)2=(y﹣x)2+4xy,把x+y=8,xy=2代入得,64=(y﹣x)2+8,所以(y﹣x)2=56,②由BE=2,即x﹣y=2,y=x﹣2由拼图可得,阴影部分的面积为(x2﹣y2),即(x+y)(x﹣y)=x+y=2x﹣2,∵x2+y2=16,即x2+(x﹣2)2=16,也就是x2﹣2x﹣6=0,解得x1=1+,x2=1﹣<0(舍去),∴2x﹣2=2+2﹣2=2,答:阴影部分的面积和为2.20.解:(1)方法一,直接利用正方形的面积公式可得图2的面积为(a+b)2 ,方法二,大正方形的面积等于4个部分面积和,可得a2+b2+2ab,故答案为:(a+b)2 ,a2+b2+2ab;(2)由(1)得,(a+b)2 =b2+a2+2ab;故答案为:(a+b)2 =b2+a2+2ab;(3)∵a+b=5,a2+b2=13,(a+b)2 =b2+a2+2ab,∴52=13+2ab,∴ab=6.参考答案1.解:(1)∵边长为(a+b+c)的正方形的面积为:(a+b+c)2分部分来看的面积为a2+b2+c2+2ab+2bc+2ac两部分面积相等.故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac(3)∵a+b+c=10,ab+ac+bc=35∴a2+b2+c2=(a+b+c)2﹣2ab﹣2bc﹣2ac=102﹣2×35=30∴a2+b2+c2的值为30.(4)由题意可得,所拼成的长方形或正方形的面积为:2a2+3b2+mab从因式分解的角度看,可分解为(2a+b)(a+3b)或(2a+3b)(a+b)∴(2a+b)(a+3b)=2a2+3b2+7ab或(2a+3b)(a+b)=2a2+3b2+5ab∴m=5或7.22.解:(1)图②中阴影部分为边长为(m﹣n)的正方形,其面积为:(m﹣n)2故答案为:(m﹣n)2.(2)最外层大正方形的面积为:(m+n)2,4个长方形的面积为4mn,阴影部分面积为(m﹣n)2,总体看图形的面积和分部分之和的面积相等故答案为:(m+n)2﹣4mn=(m﹣n)2.(3)∵x+y=﹣6,xy=,∴(x﹣y)2=(x+y)2﹣4xy=36﹣11=25∴x﹣y=±5故答案为:±5.(4)由整体求面积和分部分求面积,二者相等,可得:(2m+n)(m+n)=2m2+3mn+n2.23.解:(1)图1中阴影部分的面积为大正方形的面积减去小正方形的面积,即a2﹣b2;故答案为:a2﹣b2;(2)拼成的长方形的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)根据两个图形的面积相等可得,a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(4)(1+)(1+)(1+)(1+)+=2×[(1﹣)(1+)(1+)(1+)(1+)]+=2×[(1﹣)(1+)(1+)(1+)]+=2×[(1﹣)(1+)(1+)]+=2×[(1﹣)(1+)]+=2×(1﹣)+=2﹣+=2.24.解:绿化部分的面积=长方形的面积﹣正方形的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+2ab+3ab+b2﹣(a2+2ab+b2)=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab.答:绿化部分的面积为(5a2+3ab)平方米.25.解:(1)S阴影部分=S大正方形﹣S小正方形=a2﹣b2,故答案为:a2﹣b2;(2)拼成的长方形的长为(a+b),宽为(a﹣b),所以S阴影部分=S长方形=(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由(1)、(2)可得,a2﹣b2=(a+b)(a﹣b);故答案为:a2﹣b2=(a+b)(a﹣b);(4)原式=[(a+b)﹣2c][(a+b)+2c]=(a+b)2﹣(2c)2,=a2+2ab+b2﹣4c2;(5)∵4x2﹣9y2=(2x+3y)(2x﹣3y)=10,4x+6y=4,∴2x+3y=2,∴2x﹣3y=10÷2=5,故2x﹣3y的值为5.26.解:(1)左图的面积为两个正方形的面积差,即:a2﹣b2,故答案为:a2﹣b2,(2)右图可得:拼成长方形的宽是(a﹣b),长是(a+b),面积是(a+b)(a﹣b),故答案为:(a﹣b),(a+b),(a﹣b)(a+b)(3)故答案为:(a+b)(a﹣b)=a2﹣b2,(4)①1002×998=(1000+2)(1000﹣2)=10002﹣22=1000000﹣4=999996,②(2m+n﹣p)(2m+n+p)=(2m+n)2﹣p2=4m2+4mn+n2﹣p2;③(2+1)(22+1)(24+1)…(232+1)+1,=(2﹣1)(2+1)(22+1)(24+1)…(232+1)+1,=(22﹣1)(22+1)(24+1)…(232+1)+1,=(24﹣1)(24+1)…(232+1)+1,=264﹣1+1,=264.27.解:(1)“囧”字图案中阴影部分的面积为20×20﹣xy×2﹣xy=400﹣2xy;(2)把x=8,y=4代入400﹣2xy,得原式=400﹣2×8×4=336.故此时“囧”字图案中阴影部分的面积是336.28.解:(1)根据题意得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6﹣(2x﹣1)﹣x﹣2x]+6×4=8x+3(17﹣5x)+24=(75﹣7x)平方米;铺设地面需要地砖:16×8﹣(75﹣7x)=128﹣75+7x=(7x+53)平方米;(3)∵卧室2的面积为21平方米,∴3[10+6﹣(2x﹣1)﹣x﹣2x]=21,∴3(17﹣5x)=21,∴x=2,∴铺设地面需要木地板:75﹣7x=75﹣7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.铺设地面的总费用:61×300+67×100+2000=25000(元).故铺设地面的总费用为25000元.29.解:(1)①根据图形各个区域之间的关系可得,B区长方形场地的长是(a+c),宽为(a﹣c),故答案为:(a+c),(a﹣c);②2[(a+c)+(a﹣c)]=4a;(2)整个长方形的长为(2a+c),宽为(2a﹣c),∴周长为2[(2a+c)+(2a﹣c)]=8a,当a=4时,8a=32.30.解:(1)根据拼图可得,阴影部分是边长为(m﹣n)的正方形,故答案为:m﹣n;(2)方法①,从大正方形中减去四个小长方形的面积,即:(m+n)2﹣4mn,方法②根据正方形的面积公式直接表示小正方形的面积为(m﹣n)2,故答案为:①(m+n)2﹣4mn,②(m﹣n)2;(3)由(2)知,(m+n)2﹣(m﹣n)2=4mn;(4)由于(a﹣b)2=(a+b)2﹣4ab,又∵a+b=8,ab=5,∴(a﹣b)2=64﹣20=44.。

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试题一、单选题1.﹣18的相反数是( ) A .﹣8 B .18 C .0.8 D .82.下列计算正确的是( )A .x2y ﹣2xy2=﹣x2yB .2a+3b=5abC .a3+a2=a5D .﹣3ab ﹣3ab=﹣6ab3.数据40000000用科学记数法可表示为( )A .74.010⨯B .74010⨯C .40×109D .0.4×109 4.已知322x y 和32m x y -是同类项,则m 的值是( )A .1B .2C .3D .45.下列变形中正确的是( )A .由5=x -2得 x=-5-2B .由5y=0得 y=15C .由3x=-2 得x=-32D .由2x=3x+5得-5=3x -2x 6.已知线段AB=5 cm ,在直线AB 上画线段BC=2 cm ,则AC 的长是( )A .3 cmB .7 cmC .3 cm 或7 cmD .无法确定 7.如果x =2是方程12x+a =﹣1的解,那么a 的值是( ) A .﹣2 B .2 C .0 D .﹣68.如图,OC 是∠AOB 的平分线,OD 平分∠AOC,且∠COD=20°,则∠AOB=( )A .40°B .50°C .90°D .80° 9.下图是一个运算程序,若输入1-,按下图所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),则输出的结果为( )A .3B .5-C .0D .510.如图,正方体展开图的每个面上都有一个汉字,那么在原正方体的表面上,与“一”相对面上的汉字是( )A .态B .度C .决D .定二、填空题11.已知2|1|(2)0a b -++=,则2011)a b (+的值是___________.12.若(a ﹣1)x |a |+3=﹣6是关于x 的一元一次方程,则a =_____.13.一个角的补角是它的余角的3倍,则这个角是__________.14.如图,钟表8时30分时,时针与分针所成的角的度数为________.15.一个两位数,个位数字为y ,十位数字比个位数字大1,那么这个两位数可表示为____________16.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保证利润率等于5%,则该商品应该打_____折.17.下列单项式:x -,22x ,33x -,44x ,…1919x -,2020x ,…根据你发现的规律,第2011个单项式是______________.18.数a b c 、、在数轴上对应点的位置如图所示,则()a b c +_______0(填“>”、“=”、“<”);三、解答题19.计算与解方程(1)3571()491236--+÷; (2)23-+[9-(-6)×2]÷(-3);(3) 5x -2(3-2x)=3; (4)2521510x x +--=.20.已知如图,根据下列要求画图:(1)作线段AB ;(2)作射线OA 、射线OB ;(3)分别在线段AB 、OA 上取一点C 、D (点C 、D 都不与线段的端点重合),作直线CD ,使直线CD 与射线OB 交于点E .21.先化简,再求值:()()222234+---x y xy x y xy x y ,其中x=1,y=−1.22.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若AM=1,BC=4,求MN 的长度.(2)若AB=6,求MN 的长度.23.定义新运算:对于任意有理数a 、b ,都有a∠b=a (a ﹣b )+1,等式的右边是通常的有理数运算.例如2∠5=2(2﹣5)+1=2×(﹣3)+1.(1)求(﹣2)∠3.(2)若3∠x=﹣5,求x 的值.24.某车间22名工人生产螺钉和螺母,每人每天可生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为使每天生产的螺钉和螺母刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?25.如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC,求∠MON 的度数.26.某校校长暑假将带领该校市级“三好学生”去旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括校长在内,全部按全票价的六折优惠”,两家旅行社的全票价都是240元.(1)设学生数为x,分别表示两家旅行社的收费;(2)当学生数是多少时,两家旅行社的收费一样?(3)就学生数讨论哪家旅行社更优惠.27.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是______,(2)数轴上表示x与2的两点之间的距离可以表示为______.(3)如果|x﹣2|=5,则x=______.参考答案1.B【详解】∠只有符号不同的两个数叫做互为相反数, ∠1-8的相反数是18, 故选B.2.D【详解】试题解析:A. x 2y 与2xy 2不是同类项,不能合并,故该选项错误;B. 2a 与3b 不是同类项,不能合并,故该选项错误;C. a 3+a 2≠a 5,故该选项错误;D. ﹣3ab ﹣3ab=﹣6ab ,正确.故选D.3.A【分析】根据科学记数法的定义即可求解.【详解】将40000000用科学记数法表示为74.010⨯故选:A .【点睛】此题考查了科学记数法的表示方法以及有效数字的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要确定a 的值以及n 的值. 4.A【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也分别相同的项叫做同类项)分析计算即可.【详解】解:∠322xy 和32m x y -是同类项,∠33m =,∠1m =,故选:A .【点睛】本题考查了同类项的概念,解题的关键是注意同类项不单单是所含字母相同,相同字母的指数也分别相同.5.D【分析】根据等式的基本性质逐一判断即可得.【详解】解:A.由5=x-2得x=5+2,此选项错误;B. 由5y=0得y=0 ,此选项错误;C. 由3x=-2 得x=-23,此选项错误;D. 由2x=3x+5得-5=3x-2x,此选项正确.故选D.【点睛】本题主要考查等式的性质,解题的关键是应用时要注意把握两关:∠怎样变形;∠依据哪一条,变形时只有做到步步有据,才能保证是正确的.6.C【分析】分点C在线段AB的延长线上与点C在线段AB之间两种情况进行计算即可得解.【详解】解:∠在直线AB上画线段BC,∠AC的长度有两种可能:∠当C在AB之间,此时AC=AB-BC=5-2=3cm;∠当C在线段AB的延长线上,此时AC=AB+BC=5+2=7cm.故选C.【点睛】本题考查了两点间的距离,难点在于要分情况讨论,作出图形更形象直观.7.A【分析】把x=2代入方程12x+a=﹣1,得出关于a的方程,求出方程的解即可.【详解】解:把x=2代入方程12x+a=﹣1得:212⨯+a=﹣1,解得:a=﹣2,故选:A.【点睛】本题主要考查一元一次方程的解及解法,熟练掌握一元一次方程的解及解法是解题的关键.8.D【详解】试题分析:由OD平分∠AOC,且∠COD=20°,可得∠AOC=2∠COD=40°,然后根据OC是∠AOB的平分线,可得∠AOB=2∠AOC=80°.故选D考点:角平分线的性质9.A【分析】根据程序流程图进行列式计算即可.【详解】解:由题意可知:()1+435=1<2----,代入1得:()1+435=3>2---,输出故选A .【点睛】本题考查程序流程图,解题的关键是根据流程图列代数式进行计算.10.A【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方形的表面展开图,相对的面之间一定相隔一个正方形,“度”和“定”是相对面;“态”和“一”是相对面;“决“和“切”是相对面.故选A.【点睛】本题主要考查了正方体相对两面上的文字. 注意正方体的空间图形,从相对面入手,分析及解答问题.11.1-【详解】试题解析:根据题意得,a -1=0,b+2=0,解得a=1,b=-2,所以,(a+b )2011=(1-2)2011=-1.12.﹣1【分析】根据一元一次方程的特点即可求出a 的值. 【详解】解析:由一元一次方程的特点得101a a -≠⎧⎨=⎩, 解得:a=﹣1.故答案为:-1【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.13.45°##45度【分析】设这个角的度数为x ,根据互为余角的两个角的角度和等于90°,互为补角的两个角的角度和等于180°表示出出这个角的余角与补角,然后列出方程求解即可.【详解】解:设这个角的度数为x,则它的余角为90°-x,补角为180°-x,根据题意得,180°-x=3(90°-x),解得x=45°.故答案为:45°.【点睛】本题考查了互为余角与补角的定义,一元一次方程的应用,根据题意表示出这个角的余角与补角,然后列出方程是解题的关键.14.75°【分析】本题考查了钟表里的旋转角的问题,钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针每分钟转动一次6°,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每分钟转动6°,时针才转动12⎛⎫⎪⎝⎭°,逆过来同理.【详解】解:∠8时30分时,时针指向8与9之间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30°,∠8时30分时分针与时针的夹角是8×30°+12⎛⎫⎪⎝⎭°×30-6°×30=240°+15°-180°=75°.故答案为:75°.【点睛】本题考查的是钟面角,掌握时针和分针每格转动的速度,解题的关键是抓住等量关系是时针与分针的夹角=时针转过角度+8×30º-分针转过的角度.15.1110y+【分析】根据题意,先求出十位上的数字,再用十位数字×10+个位数字求出这个两位数.【详解】解:个位上的数字y,十位上的数字比个位上的数字大1,则十位数是10(y+1),则这个数是10(y+1)+y=11y+10.故答案为11y+10.【点睛】本题主要考查了列代数式,解题的关键是正确把握数字的表示方法.16.七【分析】因为售价进价进价-=利润率,所以当商品打10x折后,售价即为1200x,而进价800为已知所以有1200800800x-=5%,解不等式即可求解.【详解】解:设可以打10x折,由题意可得1200800800x -=5% 解之可得x =0.7即:最多可以打七折.故答案是:七.【点睛】本题主要考查了一元一次方程的应用,准确计算是解题的关键.17.20112011x -【分析】发现规律:第奇数个单项式的符号为负,偶数个单项式的符号为正,第n 个单项式的系数的绝对值为n ,第n 个单项式的幂的底数为x ,指数为n ,根据规律解答即可.【详解】解:第奇数个单项式的符号为负,偶数个单项式的符号为正,∠第2011个单项式的符号为负,第n 个单项式的系数的绝对值为n ,第n 个单项式的幂的底数为x ,指数为n ,∠第2011个单项式的系数为-2011,幂为2011x ,∠第2011个单项式是20112011x -,故答案为:20112011x -.【点睛】本题考查了数字的变化规律,判断出单项式的符号,系数以及幂与序号之间的关系是解决本题的关键.18.<【分析】根据数轴得到0a >,0b c +<,再结合有理数的乘法计算法则即可求解.【详解】根据数轴可得:0a >,c b >,b c >,∠0b c +<,∠()0a b c +<,故答案为:<.【点睛】本题考查了数轴,有理数的加法法则和乘法法则等知识点,有理数加法计算,异号两数相加时,取绝对值较大的数的符号;有理数乘法计算时,同号得正,异号得负,正确判断字母或式子的符号是解题的关键.19.(1)-26(2)-16(3)x=1 (4)43x =-【分析】(1)先把除法变成乘法,然后根据有理数乘法的分配律求解即可;(2)根据含乘方的有理数混合计算法则求解即可;(3)按照去括号,移项,合并,系数化为1的步骤解方程即可;(4)按照去分母,去括号,移项,合并,系数化为1的步骤解方程即可.(1) 解:原式357364912⎛⎫--+⨯ ⎪⎝⎭272021=--+26=-;(2)解:原式()()99123=-+--÷-⎡⎤⎣⎦()()99123=-++÷-()9213=-+÷-97=--16=-;(3)解:()52323x x --=去括号得:5643x x -+=,移项得:5436x x +=+,合并得:99x =,系数化为1得:1x =;(4) 解:2521510x x +--=去分母得:()()225210x x +--=去括号得:245210x x +-+=,移项得:251042x x -=--,合并得:34x -=,系数化为1得:43x =-. 【点睛】本题主要考查了有理数的乘法分配律,有理数的除法,含乘方的有理数混合计算,解一元一次方程,熟知解一元一次方程去分母要每一项都要乘以10以及相关计算法则是解题的关键.20.见解析【分析】根据题目的要求作线段、射线,直线即可.【详解】解:如图【点睛】本题主要考查了直线、射线、线段的作图,是一个基础题.21.255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x=1,y=−1时,原式()()2511511550=-⨯⨯-+⨯⨯-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.22.(1)MN=3(2)MN=3【分析】(1)由已知可求得CN 的长,从而不难求得MN 的长度;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长则不难求得MN 的长度.(1)解:∠N 是BC 的中点,M 是AC 的中点,AM=1,BC=4,∠CN=2,AM=CM=1,∠MN=MC+CN=3;(2)解:∠M是AC的中点,N是BC的中点,AB=6,∠NM=MC+CN=12AB=3.【点睛】本题考查了两点间距离,熟练掌握线段的中点性质是解题的关键.23.(1)11;(2)x=5【分析】根据新定义运算法则进行即可.【详解】解:(1)(﹣2)∠3=﹣2×(﹣2﹣3)+1=10+1=11;(2)3∠x=3(3﹣x)+1=﹣5,∠9﹣3x+1=﹣5,﹣3x=﹣15,x=5【点睛】此题主要考查新定义的运算,解题的关键是根据题意列出方程进行求解.24.分配10名工人生产螺钉,12名工人生产螺母.【详解】试题分析:根据“一个螺钉要配两个螺母”,生产螺母的数量应是螺钉的2倍,所以本题中的等量关系是:每人每天平均生产螺钉的个数×生产螺钉的人数×2=每人每天平均生产螺母的个数×生产螺母的人数.据此等量关系式可列方程解答.试题解析:解:设应分配x名工人生产螺钉,则生产螺母的工人应是(22﹣x)名,根据题意得:1200x×2=2000×(22﹣x),解得:x=10,22﹣x=22﹣10=12(名).答:应该分配10名工人生产螺钉,12名工人生产螺母.点睛:本题的关键是根据“一个螺钉要配两个螺母”,生产螺母的数量应是螺钉的2倍,找出题目中的等量关系,再列方程解答.25.∠MON的度数为45°.【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:∠OM平分∠BOC,ON平分∠AOC,∠∠MOC=12∠BOC,∠NOC=12∠AOC,∠∠MON=∠MOC-∠NOC=12(∠BOC-∠AOC)=12(∠BOA+∠AOC -∠AOC ) =12∠BOA=45°.故∠MON 的度数为45°.【点睛】本题考查角的计算及角平分线的定义.26.(1)甲旅行社的收费为240+120x ,乙旅行社的收费为144x+144.(2)当学生数是4人时,两家旅行社的收费一样.(3)学生数少于4人乙优惠,学生数多于4人甲优惠.【分析】甲旅行社的收费=240+学生人数×120,乙旅行社的收费=校长1人+学生人数×240×0.6.由甲旅行社的收费=乙旅行社的收费得到方程,求解即可.由甲旅行社的收费>乙旅行社的收费得到不等式,求解即可.(1)解()240120,124060y x y x =+=+⨯⨯甲乙%,即144144y x =+乙(2)解:由y y =甲乙,得240120144144x x +=+,解得4x =即当学生数是4人时,两家旅行社的收费一样.(3)由y y 甲乙>,得240120144144x x ++>,解得4<x故:学生数少于4人乙优惠,学生数多于4人甲优惠.【点睛】本题考查了一元一次方程的实际应用问题,解题的关键是理解题意,根据题意找到等量关系求一元一次方程,然后根据一元一次方程的定义求解.27.(1)7(2)|x -2|(3)7或-3【分析】(1)根据距离公式即可解答.(2)根据距离公式即可解答.(3)利用数轴求解即可.(1)数轴上表示5与-2两点之间的距离是:()527--= 故答案为:7.(2)数轴上表示x 与2的两点之间的距离可以表示为:2x - 故答案为:2x -.(3) ∠25x∠x 在2的左侧或右侧,距离点2距离为5 x 在2的左侧时,x 表示的数是253-=- x 在2的右侧时,x 表示的数是257+= 故答案为:7或-3.。

人教版七年级数学上册期末考试卷及答案【完整版】

人教版七年级数学上册期末考试卷及答案【完整版】

人教版七年级数学上册期末考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组21 2319x yx y+=⎧⎨-=-⎩2.已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、C7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、①③④⑤.6、2或-8三、解答题(本大题共6小题,共72分)1、25 xy=-⎧⎨=⎩2、m=4,n=﹣1.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1)详略;(2)70°.5、(1)40;(2)72;(3)280.6、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.。

人教版七年级上册数学《期末》考试【参考答案】

人教版七年级上册数学《期末》考试【参考答案】

人教版七年级上册数学《期末》考试【参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等4.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-15.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b7.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .108.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃9.已知(m-n )2=8,(m+n )2=2,则m 2+n 2=( )A .10B .6C .5D .310.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.323a ,小数部分为b ,则a -b =________.4.27的立方根为________.51a -5b -=0,则(a ﹣b )2的平方根是________.69=________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5)243x x x ⎡⎤--=+⎢⎥⎣⎦.2.已知方程组351ax by x cy +=⎧⎨-=⎩,甲正确地解得23x y =⎧⎨=⎩,而乙粗心地把C 看错了,得36x y =⎧⎨=⎩,试求出a ,b ,c 的值.3.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C =∠B+D ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N .①以线段AC 为边的“8字型”有 个,以点O 为交点的“8字型”有 个;②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.4.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、C5、B6、A7、B8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、1253、4、35、±4.6、3三、解答题(本大题共6小题,共72分)x=1、12、a=3,b=﹣1,c=3.3、(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.4、(1)证明略(2)等腰三角形,略5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.。

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试卷及答案一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 2.-2的倒数是( ) A .-2 B .12- C .12D .23.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=4.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或55.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④6.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-7.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 9.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+B .321x +C .22x x -D .3221x x -+10.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-11.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==12.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.14.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.15.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.16.若a a -=,则a 应满足的条件为______.17.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.18.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 19.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 20.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.21.化简:2x+1﹣(x+1)=_____.22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 23.当12点20分时,钟表上时针和分针所成的角度是___________.24.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题25.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 26.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.27.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.28.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.29.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.30.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.31.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】 【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可. 【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分. 设小强做数学作业花了x 分钟, 由题意得 6x -0.5x =180, 解之得x = 36011. 故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.B解析:B 【解析】 【分析】根据倒数的定义求解. 【详解】 -2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握3.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.4.D解析:D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,∴3m-=2,∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.5.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.6.A解析:A【解析】x +(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代根据非负数的性质,由1入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A7.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8. 故选C . 【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.B解析:B 【解析】A. 2x 2x 1-+是二次三项式,故此选项错误;B. 32x 1+是三次二项式,故此选项正确;C. 2x 2x -是二次二项式,故此选项错误;D. 32x 2x 1-+是三次三项式,故此选项错误; 故选B.10.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意; 故选:C . 【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.11.C解析:C 【解析】 【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得. 【详解】解:根据题意得:a+1=2,b=3, 则a=1. 故选:C . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.12.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.二、填空题13.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.17.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.18.42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.19.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.20.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.21.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.22.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键23.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.24.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、压轴题25.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为224202x x++-=442x+,点N对应的数为2052x x-+=2x+10,∴MN=|442x+﹣(2x+10)|=|12﹣1.5x|.∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.分三种情况讨论:①当0<x<4时,12﹣1.5x+20﹣5x=25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.26.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--,a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.27.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=,∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+=()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.29.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P 运动x 秒时追上Q ,根据P 、Q 之间相距20,列方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=20,∴点B 表示的数是8﹣20=﹣12,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒,∴点P 表示的数是8﹣5t ,故答案为﹣12,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2;分两种情况:①点P 、Q 相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.30.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011学年度临沂蒙阴第一学期七年级期末教学质量检测数学试卷(时间:90分钟,满分:l20分,试题115分,卷面5分)一、选择题:(每小题3分,共30分。

)1.如果零上5℃记作+5℃,那么零下5℃记作( ) A .-5B .-10C .-10℃D .-5℃2.-2的绝对值是( ) A .±2B .-2C .2D .21-3.地球上陆地的面积约为148000000平方千米,用科学记数法表示为( ) A .148×106平方千米 B .14.8×107平方千米 C .1.48×108平方千米D .1.48×109平方千米4.下面的图形中,是圆锥的侧面展开图的是( )5.从空中正上方看方便杯,形状是( )6.5||=a ,且a <0,则a 的值是( ) A .-1B .5C .±5D .-57.下列各式中,运算正确的是( ) A .ab b a 33=+B .x x 27423=+C .42)4(2+-=--x xD .)23(32--=-x x8.下列各式中,不是方程的是 ( ) A .x =1;B .523+=x xC .0=+y xD .132+-y x9.如果∠l 与∠2互补,∠2为锐角,则下列表示∠2余角的式子是( ) A .90°-∠1 B .∠1-90°C .∠1+90°D .180°-∠110.下列结论:①某商品进价为40元,按标价的八折销售,可盈利20%,则标价为60元。

②近似数5.014×106有3个有效数字,精确到千分位。

③某地区上网费用方式有两种,A :无月租,上网通讯费3.8元/时,B :月租52元,上网通讯费1.2元/时,当上网时间在20小时以上时选择B 种方式比较合算。

④将弯曲的公路改为直道后可以缩短路程,是因为“两点确定一条直线”。

其中命题正确的是( ) A .①②B .①③C .②③D .③④二、填空题(每小题4分,共24分)11.在3)4(-,24-,2)3(--,432-,2)23(-中,负数是____________________;负分数是__________________;互为相反数是____________________.12.写出一个解为=x 2的一元一次方程(只写一个即可):________________________. 13.一个角是它补角的三倍,这个角的度数是:____________________. 14.若)1(232+--++-bx x b x x 中存在含x 的项,则b=__________.15.下列是一组按规律排列的数-2,4,-8,16,-32……则第n 个数是:__________(用式子表示).16.在直线l 上有三点A 、B 、C ,量得AB=5cm ,BC=3cm ,如果AC 的中点,那么线段OB 长为____________.三、用心做一做:(本大题有7小题,共61分,解答要求写出文字说明、证明过程或计算步骤)17.计算:(本题共3小题,每小题4分,满分l2分)(1)1)21(55032--⨯++;(2)2312)3221(3|9|+⨯-++-;(3)先化简再求值:y x xy y x xy 22225243+--其中1-=x ,y =2:18.解下列方程:(每小题4分,共8分)(1)x x 3.15.67.05.0-=-; (2)3713321-+=-x x . 19.(4分)如图,平面内有A ,B ,C ,D 四点,按下列语句画图: (1)画射线AB ,直线BC ,线段AC ; (2)连接AD 与BC 相交于点E .20.(7分)如图,已知∠AOB=30°,∠BOC=50°,∠COD=21°,OE 平分∠AOD ,求 ∠AOE 的度数。

(精确到分)21.(9分)(1)已知:如图,点C 在线段AB 上,线段AC=15,BC=5,点M 、N 分别是AC 、BC 的中点,求MN 的长度.(2)根据(1)的计算过程与结果,没AC+BC=a ,其它条件不变,你能猜出MN 的长度吗?请用一句简洁的语言表达你发现的规律.(3)若把(1)中的“点C 在线段AB 上”改为“点C 在直线AB 上”,其它条件不变,结论又如何?请说明你的理由,22.(10分)观察下列等式:211211-=⨯ 3121321-=⨯ 4131431-=⨯ 将以上三式相加,得=⨯+⨯+⨯4313212114341141313121211=-=-+-+-. (1)猜想并写出:=+)1(1n n _________________.(2)直接写出下列各式的计算结果:①+⨯+⨯+⨯431321211…=⨯+200820071_______________; ②+⨯+⨯+⨯431321211…=+⨯+)1(1n n _______________. (3)探究并计算:+⨯+⨯+⨯861641421 (2008)20061⨯+ 23.(11分)某班买一批乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,以洽淡后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒)。

问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案及评分标准一.D C D A B D D D B B二.11.3)4(-,2)3(--,432-;432-;2)3(-与2)3(-.12.02=-x (答案不唯一) 13.45° 14.-3 15.(-2)2 16.1或4. 三.17.解:原式=1)21(25503--⨯++,……………………… 1分 =1)21(23--⨯+ ………………………2分 =3+(-1)-l …………………………3分=1 ………………………4分(2)解:原式=912)61(39+⨯-+÷ ………………2分(注:计算括号l 分) =3+(-2)+9 ………………………………3分=10.…………………………4分或者原式=9)86(39+-+÷ ……………………2分(分配律)=3+(-2)+9 ………………………………3分(3)解:原式=y x xy 22+ …………………………2分当2,1=-=y x 时,原式=2)1(2)1(22⨯-+⨯-=-4+2=-2………………………4分18.解:原方程整理,得2.78.0=x , ……………………2分解得 x =9 …………………………4分(2)解:去分母,得6339147-+=-x x …………………2分 移项, 得 6723=x . …………………3分 解得 2367=x ……………………4分 19.画射线AB …………(1分) 画直线BC …………(2分)画线段AC …………(3分) 边接AD 与BC 相交于点E …………(4分) 20.解:因为∠AOB=30° ∠BOC=50° ∠COD=21° …………1分 所以∠AOD=101° …………3分 又因为OE 平分∠AOD …………4分 所以∠AOE=21∠AOD=21×101° …………5分所以∠AOE=50°30′ …………7分21.解:(1)∵点M 、N 分别是AC ,BC 的中点∴MC=21AC=21×15=215,NC=21BC=25∴MN=MC+NC=10 ………………3分(2)MN 的长度是2a。

………………4分 己知线段分成两部分。

它们的中点之间的距离等于原来线段长度的一半。

………………5分(3)分情况讨论:当点C 在线段AB 上时,由(1)得MN=21AB=10 ……7分 当点C 在线段AB 延长线上时,MN=MC -NC=21AC -21BC=21AB=5…………9分22.(1)111+-n n …………………2分 (2)①20082007……………4分②1+n n……………………5分(3)原式=21+-+-+-816161414121(…)2008120061-+……………8分 =21)2008121(-………………9分 =40161003………………………10分23.解:(1)设购买x 盒乒乓球时,两种优惠办法付款一样……………1分 根据题意得 30×5+(x -5)×5=(30×5+5x )×0.9 …………… 3分 解得x =20……………4分所以购买20盒乒乓球时,两种优惠办法付款一样……………5分 (3)当购买15盒时:甲店需付款30×5+(15-5)×5=200(元)乙店需付款 (30×5+15×5)×0.9=202.5(元)…………7分 因为200<202.5所以购买l5盒时,去甲店比较合算………………8分 当购买30盒时:甲店需付款30×5+(30-5)×5=275(元)乙店需付款(30×5+30×5)×0.9=270(元)……………10分 因为275>270所以购买30盒时,去乙店比较合算 ………………11分。

相关文档
最新文档