Effect of Soil Amendments on Soil Borne Pathogens of French Bean (Phaseolus vulgaris L
草地土壤微生物及胞外酶活性对氮沉降的响应研究进展
摘要近年来,区域性的氮沉降增加受到广泛关注。
有研究预测,在未来的几十年内陆地表面的活性氮沉降量会不断增加。
草地作为陆地生态系统分布最广的植被,更易受氮沉降增加的干扰。
土壤微生物能够影响土壤生态系统的结构、功能及过程,是维持土壤生产力的重要组分。
因此,本文综述了氮沉降增加对草地土壤微生物及胞外酶活性的影响研究进展,并对未来研究进行展望,以期为未来相关研究提供一些参考。
关键词氮沉降;草地;土壤微生物;胞外酶中图分类号S154文献标识码A 文章编号1007-5739(2021)07-0173-03DOI :10.3969/j.issn.1007-5739.2021.07.068开放科学(资源服务)标识码(OSID ):Progress on Response of Soil Microbes and Extracellular Enzyme Activities to Nitrogen Depositionin GrasslandXIAO Tianhao 1ZHANG Jiawei 2(1Beijing University of Chemical Technology,Beijing 100029;2Beijing Rujing Ecological Landscaping Co.,Ltd.,Beijing 100194)Abstract The increase of regional nitrogen deposition has received widespread attention in recent years.Studies have predicted that the amount of active nitrogen deposition on the land surface will continue to increase in the next few decades.As the most widely spread vegetation in the terrestrial ecosystems,grassland is more susceptible to interference from increased nitrogen deposition.Soil microbe,an important component to maintain soil productivity,could affect the structure,function and process of soil ecosystem.In this paper,the research progress on the effects of increased nitrogen deposition on grassland soil microbes and extracellular enzyme activities was reviewed,and prospects for future research was proposed,so as to provide some references for related research in the future.Keywords nitrogen deposition;grassland;soil microbe;extracellular enzyme草地土壤微生物及胞外酶活性对氮沉降的响应研究进展肖天昊1张佳伟2(1北京化工大学,北京100029;2北京如景生态园林绿化有限公司,北京100194)人类生产生活中化石燃料的大量燃烧和农业生产过程中化肥的普遍使用,导致大气氮素沉降量呈现增加趋势,对全球生物地球化学循环产生了较大的影响[1]。
不同改良剂对污染土壤中Cd形态影响的研究_刘丽娟
据资料显示,人体摄入的重金属有 70%左右源自食物 中的蔬菜[5],可以说蔬菜供应质量在很大程度上直接
于土壤和沉积物中重金属的形态分析及其污染、迁移 和生物可利用性等方面的研究并取得了大量的研究
影响着食品质量安全问题,开展对蔬菜种植地重金属 成果[13]。
污染的调控工作已经刻不容缓。
本 文 采 用 菜 地 土 壤 外 源 加 Cd 培 养 实 验 ,用
全磷/ g·kg-1 0.302 0.371 0.492 0.206
全钾/ g·kg-1 22.98 20.98 17.96 14.97
有机质/ 全镉/ g·kg-1 mg·kg-1
31.6
ND
100.4 ND
137.8 ND
3.12
ND
目前,国内外多采用化学连续提取法对土壤重金 属形态进行表征,虽然该方法所表征的形态并非土壤
中人为加入添加剂,通过调节和改变土壤的物理化学 的应用提供技术支持。
性质,影响重金属离子与土壤组分(包括改良剂本身) 的吸附、沉淀、氧化还原等作用,降低土壤重金属的生
1 材料与方法
物有效性和可迁移性,从而减轻重金属对生态环境的 1.1 供试材料与试验设备
危害,达到污染修复的目的,该技术操作简单、成本低 1.1.1 供试土壤
pH 值 7.53
全氮/g·kg-1 1.19
全磷/g·kg-1 0.80
全钾/g·kg-1 4.99
有机质/g·kg-1 26.9
全镉/mg·kg-1 0.031
1780
计、Z-2000 原子吸收分光光度计、UV-1600 紫外-可 见光分光光度计、EHD36 DigiBlock 消解仪。 1.2 试验设计 1.2.1 污染土壤制备
土壤有机碳 激发效应
土壤有机碳激发效应英文回答:Soil organic carbon (SOC) plays a crucial role in maintaining the productivity and health of terrestrial ecosystems. Enhancing SOC content has emerged as a promising strategy to improve soil quality and mitigate the effects of climate change. This phenomenon, known as the "priming effect," involves the acceleration of decomposition of native soil organic matter (SOM) upon the addition of fresh organic matter inputs.The priming effect is driven by the microbial response to the increased availability of labile carbon from the fresh organic matter. Microbes utilize this labile carbon as an energy source, releasing enzymes that degrade both the fresh organic matter and native SOM. The extent of the priming effect varies depending on the quality of the added organic matter, the soil microbial community composition, and environmental conditions.Several mechanisms have been proposed to explain the priming effect. One theory suggests that the addition of fresh organic matter stimulates the growth of microbial populations, leading to increased enzyme production and decomposition of both the fresh and native SOM. Another mechanism involves the selective utilization of labile carbon by microbes, leaving behind more recalcitrant compounds that are more resistant to decomposition. This process can result in the accumulation of recalcitrant organic matter, which can have long-term effects on soil carbon dynamics.The priming effect can have both positive and negative implications for soil health and ecosystem functioning. On the one hand, it can accelerate the release of nutrients from SOM, making them available for plant uptake. This increased nutrient availability can boost plant growth and productivity. On the other hand, the priming effect can also lead to the loss of stable SOC, which is an important component of soil carbon storage and a major contributor to the global carbon cycle.Managing the priming effect is crucial for sustainable soil management practices. One approach involves the use of organic matter amendments that are high in labile carbonand low in recalcitrant compounds. This can help tominimize the loss of stable SOC while still stimulating microbial activity and nutrient release. Additionally, maintaining a diverse soil microbial community can promote the balanced decomposition of organic matter and reduce the risk of excessive priming.中文回答:土壤有机碳(SOC)在维持陆地生态系统的生产力和健康方面发挥着至关重要的作用。
土壤修复科技作文英文
土壤修复科技作文英文Soil, the foundation of life, has been under threat due to pollution and degradation. Innovative soil remediation technologies are emerging to restore its health.Advancements in nanotechnology have paved the way for the development of nanoremediation, where nanoparticles are used to target and break down pollutants, revitalizing the soil's natural ecosystem.Bioremediation employs microorganisms to digest contaminants, turning them into less harmful substances. This sustainable approach is particularly effective for organic pollutants and is gaining popularity.Phytoremediation, the use of plants to absorb, degrade, or stabilize pollutants, is another eco-friendly method. Certain plants, known as hyperaccumulators, can extract heavy metals from the soil, making it safe for other life forms.Soil amendments, such as the addition of organic matter or specific nutrients, can improve soil structure and fertility. This traditional approach complements modern technologies by enhancing the soil's inherent capacity to recover.Monitoring and data analysis play a crucial role in soil remediation. Sensors and satellite imagery provide real-timedata, allowing for precise targeting of remediation efforts and continuous assessment of progress.Public awareness and education are vital for the success of soil restoration projects. By understanding the importance of soil health, communities can support and participate in conservation efforts.In conclusion, soil remediation technologies are evolving to meet the challenges of environmental degradation. Through a combination of innovative science and community engagement, we can ensure a sustainable future for our planet's soil.。
改良剂对镉胁迫蔬菜根际土壤养分有效性的影响
改良剂对镉胁迫蔬菜根际土壤养分有效性的影响摘要:通过根袋法盆栽试验,研究了石灰、猪粪、过磷酸钙3种改良剂高、低浓度处理对镉胁迫萝卜、莴苣、豇豆根际土壤养分有效性的影响。
结果表明,不同的改良剂对蔬菜根际土壤pH的影响不同。
与对照相比,3种改良剂均能提高3种蔬菜根际土壤有效养分的含量。
萝卜、莴苣和豇豆根际土壤碱解氮含量在猪粪高浓度处理时最高,分别为43.28、36.72、48.24 mg/kg;根际土壤速效磷含量在过磷酸钙高浓度处理时最大,分别为3.58、3.32、3.20 mg/kg;根际土壤速效钾含量也在猪粪高浓度处理时最大,分别为53.15、55.94、61.85 mg/kg。
说明猪粪对改善镉胁迫蔬菜土壤复合养分条件最有利。
关键词:改良剂;镉胁迫;土壤养分;蔬菜根际Effects of Amendments on Rhizosphere Soil Nutrient Availability of Vegetable Under Cadmium StressAbstract:The pot experiment of root bag method was used to study the effects of three amendments (lime,pig manure and superphosphate)on rhizosphere soil nutrient availability of vegetable (radish,lettuce and cowpea)under cadmium stress. The results showed that the pH value of vegetable rhizosphere soil were different due to different chemical properties of three amendments treatment. Compared with the control,three amendments improved rhizosphere soil available nutrient content of vegetable. The maximum hydrolysis nitrogen content of vegetable rhizosphere soil was high concentration treatment of pig manure,as the value was 43.28,36.72 and 48.24 mg/kg respectively. The maximum available phosphorus content of vegetable rhizosphere soil was high concentration treatment of superphosphate,as the value was 3.58,3.32 and 3.20 mg/kg respectively. The maximum available potassium content of vegetable rhizosphere soil was high treatment of pig manure,as the values was 53.15,55.94 and 61.85 mg/kg respectively. It was indicated that pig manure was the best amendment to improve soil compound nutrients of vegetable under cadmium stress.Key words:amendment;cadmium stress;soil nutrient;vegetable rhizosphere随着工业的迅猛发展,大量农田受到重金属不同程度的污染。
宿州市耕地土壤养分时空变化特征分析
Temporal and spatial characteristics of soil nutrients in cultivated land in Suzhou CityDING Qixun 1,ZHAN Xuejie 1,ZHANG Tian′en 1,XU Nuo 2,MA Xiuting 3,ZHANG Changkun 3,MA Youhua 1*(1.Key Laboratory of Farmland Ecological Conservation and Pollution Control of Anhui Province,College of Resources and Environment,Anhui Agricultural University,Hefei 230036,China;2.Suzhou Agriculture and Rural Affairs Bureau,Suzhou 234000,China;3.Anhui Huacheng Seed Co.,Ltd.,Suzhou 234000,China )Abstract :Analyzing the temporal and spatial evolution of soil nutrients is a prerequisite for implementing precision agriculture and sustainable soil management.The spatial and temporal variation characteristics of soil organic matter,total N,available P,and available K in arable soil in Suzhou City in 2010and 2019were analyzed by inverse distance weighted spatial interpolation analysis method.The results showed that the soil nutrients of arable soil in Suzhou increased slightly in 2019compared with 2010.The soil organic matter of arable soil was relatively scarce in Dangshan County,Xiaoxian County,and Sixian County,and abundant in the middle towns of YongqiaoDistrict,with an average value of 17.95g·kg -1,an increase of 6.15%.The area with intermediate soil organic matter content accounted for76.00%of the total cultivated land area;the soil total N content was the same,with an average value of 1.06g·kg -1.The area with medium宿州市耕地土壤养分时空变化特征分析丁琪洵1,詹雪洁1,张天恩1,许诺2,马秀婷3,张长坤3,马友华1*(1.农田生态保育与污染防控安徽省重点实验室,安徽农业大学资源与环境学院,合肥230036;2.宿州市农业农村局,安徽宿州234000;3.安徽华成种业股份有限公司,安徽宿州234000)收稿日期:2021-11-26录用日期:2022-03-02作者简介:丁琪洵(1997—),女,江苏泰州人,硕士研究生,主要从事耕地质量评价与提升研究。
刘满强,1975 年 8 月生,山东人,教授,博士生导师。 年
刘满强,1975年8月生,山东人,教授,博士生导师。
1998年本科毕业于南京农业大学资环学院土壤与农业化学专业,2001年和2005年先后获得硕士和博士学位,毕业后留校。
近年来主要从事环境变化条件下土壤生物多样性、群落结构与生态功能关系的研究。
研究内容包括:1)干扰条件下土壤生物群落与功能的稳定性;2)陆地生态系统地上部和地下部亚系统的相互作用;3)人为措施对土壤食物网结构、生物相互作用和土壤生态系统服务功能的影响;4)不同时空尺度及高活性微域(界面)内土壤生物群落分布和碳氮转化;5)利用土壤生物资源促进土壤生物肥力及改善作物品质的研究。
2003年赴德国李比希大学动物生态研究所短期访问,参加DFG项目“Soil as sink and sources of CO2”的有机碳研究小组。
2005年底至2006年初赴英国苏格兰作物研究所(现The James Hutton Institute),进行土壤生物群落和功能稳定性方面的研究。
2009年初赴英国The James Hutton Institute进行植物地上部和地下部多营养级交互作用的学术交流。
2009至2010年在丹麦哥本哈根大学生物系陆地生态学研究所进行外来生物入侵及土壤食物网结构与植物生长关系的博士后研究。
2011年赴爱尔兰环境研究中心进行有关土壤动物-微生物相互作用对于土壤功能稳定性影响的研究。
主讲本科生《生态学》、《土壤生物与生态学》及研究生《土壤生态学》、《生态学研究进展》和《生态学研究方法》课程。
现为中国土壤学会会员,中国生态学会会员,国际土壤生态学会会员,江苏省生态学会副秘书长。
发表的主要论文有:[1]Song, X., Liu, M., Wu, D., Griffiths, B., Jiao, J., Li, H., Hu, F., 2015. Interaction matters: synergy betweenvermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology 89, 25–34(通讯作者)[2]Ma, C., Liu, M., Wang, H., Chen, C., Fan, W., Griffiths, B., Li, H., 2015. Resource utilization capability ofbacteria predicts their invasion potential in soil. Soil Biology and Biochemistry 81, 287–290(通讯作者)[3]Huang, J., Liu, M., Chen, X., Chen, J., Li, H., Hu, F., 2015. Effects of intraspecific variation in rice resistanceto aboveground herbivore, brown planthopper, and rice root nematodes on plant yield, labile pools of plant and rhizosphere soil. Biology and Fertility of Soils 51, 417-425(通讯作者)[4]Wu, D., Liu, M., Song, X., Jiao, J., Li, H., Hu, F., 2015. Earthworm ecosystem service and dis-service in anN-enriched agroecosystem: increase of plant production leads to no effects on yield-scaled N2O emissions.Soil Biology and Biochemistry 82, 1–8(通讯作者)[5]戚琳, 刘满强,蒋林惠, 张楗峤, 李修强, 陈法军, 胡锋. 2015. 基于根际与凋落物际评价转Bt水稻对土壤线虫群落的影响. 生态学报, 35 (5): 1434-1444(通讯作者)[6]王慧, 桂娟, 刘满强, 卢焱焱, 帕提古丽·亚生, 陈小云, 胡锋. 2015. 稻草和三叶草分解对微型土壤动物群落的影响. 土壤学报, 52(5): 1124-1134.(通讯作者)[7]郑加为, 陈法军, 刘满强, 赵宗潮, 范珍珍, 周诗竹, 胡锋. 2014. 转植酸酶玉米大田种植对根际土壤磷含量及组成的影响. 土壤学报, 51(5): 1110-1119.(通讯作者)[8]张腾昊, 王楠, 刘满强, 李方卉, 祝康利, 李辉信, 胡锋. 2014.秸秆、氮肥和食细菌线虫交互作用对土壤活性碳氮和温室气体排放的影响. 应用生态学报, 25 (11): 3307-3315.(通讯作者)[9]张微, 刘满强,何园球, 樊剑波, 陈晏. 2014. 长期施用不同无机肥对旱地红壤线虫群落的影响. 应用生态学报, 25 (8): 2361-2368.(通讯作者)[10]陈婧, 陈法军, 刘满强, 冯运, 党志浩, 李辉信, 胡锋. 2014. 温度和CO2浓度升高下转Bt水稻种植对土壤活性碳氮和线虫群落的短期影响. 生态学报, 34(6): 1481-1489.(通讯作者)[11]Song, X., Liu, M., Wu, D., Qi, L., Ye, C., Jiao, J., Hu, F., 2014. Heavy metal and nutrient changes duringvermicomposting animal manure spiked with mushroom residues. Waste Management 34, 1977-1983. (通讯作者)[12]Wu, Y., Jiang, Y., Jiao, J., Liu, M., Hu, F., Griffiths, B.S., Li, H., 2014. Adsorption of Trametes versicolorlaccase to soil iron and aluminum minerals: Enzyme activity, kinetics and stability studies. Colloids and Surfaces B-Biointerfaces 114, 342-348.[13]刘满强, 陈小云, 秦江涛, 黄欠如, 余喜初, 李辉信, 胡锋. 2013. 土壤团聚结构上水溶性有机物的性质及其对有机肥的响应. 中国农业科学, 46 (5), 961–969.[14]刘雨迪, 陈小云, 刘满强, 秦江涛, 李辉信, 胡锋. 2013. 不同稻作年限下土壤微生物学性质和线虫群落特征的变化. 生物多样性, 21 (3), 334–342.(通讯作者)[15]戚琳, 陈法军, 刘满强, 陈小云, 祝向钰, 李辉信, 胡锋. 2013. 三种转Bt水稻短期种植对土壤微生物生物量和线虫群落的影响. 生态学杂志, 32(4), 975–980.(通讯作者)[16]Huang, J., Liu, M., Chen, X., Chen, J., Chen, F., Li, H., Hu, F., 2013. Intermediate herbivory intensity of anaboveground pest promotes soil labile resources and microbial biomass via modifying rice growth. Plant and Soil, 367(1-2), 437–447.(通讯作者)[17]Yang, J., Li, X., Xu, L., Hu, F., Li, H., Liu, M., 2013. Influence of the nitrification inhibitor DMPP on thecommunity composition of ammonia-oxidizing bacteria at microsites with increasing distance from the fertilizer zone. Biology and Fertility of Soils, 49(1), 23–30 (通讯作者)[18]Huang, J., Liu, M., Chen, F., Griffiths, B., Chen, X., Johnson, S., Hu, F., 2012. Crop resistance traits modifythe effects of an above-ground herbivore, brown planthopper, on soil microbial biomass and nematode community via changes to plant performance. Soil Biology and Biochemistry 49, 157–166 (通讯作者). [19]Liu, M., Chen, X., Griffiths, B.S., Huang, Q., Li, H., Hu, F., 2012. Dynamics of nematode assemblages andsoil function in adjacent restored and degraded soils following disturbance. European Journal of Soil Biology 49, 37–46.[20]Bjørnlund, L., Liu, M., Rønn, R., Christensen, S., Ekelund, F., 2012. Nematodes and protozoa affect plantsdifferently, depending on soil nutrient status. European Journal of Soil Biology 50, 28–31.[21]Liu, M., Bjørnlund, L., Rønn, R., Christensen, S., Ekelund, F., 2012. Disturbance promotes non-indigenousbacterial invasion in soil microcosms: analysis of the roles of resource availability and community structure.PLoS ONE 7, e45306.[22]李修强, 陈法军, 刘满强, 胡锋. 2012. 转Bt水稻对土壤可溶性有机碳氮及微生物学性质的影响. 应用生态学报 23, 96–102(通讯作者).[23]Liu, M., Chen, X., Chen, S., Li, H., Hu, F., 2011. Resource, biological community and soil functional stabilitydynamics at the soil-litter interface. Acta Ecologica Sinica 31, 347–352.[24]陈小云, 郭菊花, 刘满强, 焦加国, 黄欠如, 赖涛, 李辉信, 胡锋. 2011. 施肥对红壤性水稻土有机碳活性和难降解性组分的影响. 土壤学报48, 125–131(通讯作者).[25]Li, D., Liu, M., Cheng, Y., Wang, D., Qin, J., Jiao, J., Li, H., Hu, F., 2011. Methane emissions fromdouble-rice cropping system under conventional and no tillage in southeast China. Soil & Tillage Research 113, 77–81.[26]汤英,刘满强,王峰,陈法军,邵波,苏昱,葛成,黄菁华,李辉信,胡锋. 2010. 褐飞虱对水稻苗期生长及地下部土壤活性碳氮的影响. 生态学报30, 2890–2898(通讯作者)[27]刘满强,黄菁华,陈小云,王峰,葛成,苏昱,邵波,汤英,李辉信,胡锋. 2009. 地上部植食者褐飞虱对不同水稻品种土壤线虫群落的影响. 生物多样性17, 431–439.[28]Liu, M., Hu, F., Chen, X., Huang, Q., Jiao, J., Zhang, B., Li, H. 2009. Organic amendments with reducedchemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Applied Soil Ecology 42, 166–175.[29]陈石,陈小云,李辉信,胡锋,刘满强. 2009. 食真菌线虫对热或铜胁迫下土壤生态功能稳定性的影响.应用生态学报20, 435-440(通讯作者).[30]Tao, J., Chen, X., Liu, M., Hu, F., Griffiths, B., Li, H. 2009. Earthworms change the abundance andcommunity structure of nematodes and protozoa in a maize residue amended rice-wheat rotation agro-ecosystem. Soil Biology and Biochemistry 41, 898–904.[31]Liu, M., Chen, X., Qin, J., Wang, D., Griffiths, B., Hu, F. 2008. A sequential extraction procedure reveals thatwater management affects soil nematode communities in paddy fields. Applied Soil Ecology 40, 250–259. [32]Mao, X., Hu, F., Griffiths, B., Chen, X., Liu, M., Li, H., 2007. Do bacterial-feeding nematodes stimulate rootproliferation through hormonal effects? Soil Biology & Biochemistry 39, 1816-1819.[33]刘满强, 陈小云, 郭菊花, 李辉信, 胡锋. 2007. 土壤生物对土壤有机碳稳定性的影响. 地球科学进展22, 152–158.[34]刘满强, 胡锋, 陈小云. 2007. 土壤有机碳稳定机制研究进展. 生态学报27, 2642–2650.[35]Ekschmitt, K., Liu, M.,Vetter, S., Fox, O., Wolters, V. 2005. Strategies used by soil biota to overcome soilorganic matter stability-Why is dead organic matter left over in the soil? Geoderma 128, 167–176.[36]刘满强, 胡锋, 陈小云, 何圆球. 2004. 退化红壤不同植被恢复方式对蚯蚓种群的影响. 应用生态学报15, 2152–2156.[37]刘满强, 胡锋, 何圆球, 李辉信. 2003. 退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义.土壤学报 40, 937–944.[38]刘满强, 胡锋, 李辉信, 陈小云, 何圆球. 2002. 退化红壤不同植被恢复下土壤节肢动物群落特征. 生态学报 22, 54–61.参加或主持的主要科研项目:[1]国家自然科学基金面上项目“蚯蚓对农田土壤碳氮转化、平衡及作物生产力的影响”(2004-2006);[2]国家自然科学基金青年基金“水稻土有机碳的生物稳定机制及影响因素”(2006-2008);[3]教育部博士点专项基金“蚯蚓产生的可溶性有机物对重金属污染土壤植物修复效率的影响”(2008-2010);[4]国家科技支撑计划“退化红壤肥力重建及生态功能定向培育技术研究”(2009-2011);[5]转基因生物新品种培育科技重大专项“基于土壤动物及其生物标志物的转基因作物检测与安全性监测新技术”子课题(2009-2011);[6]国家重点基础研究发展计划(973)子专题“新型硝化抑制剂/脲酶抑制剂对肥际微域氮素转化和损失的影响”(2007-2011);[7]国家自然科学基金重点项目“稻田土壤有机碳固定与稳定化过程及机制:土壤-作物-微生物相互作用研究”子专题(2009-2012);[8]农业部公益性行业科研专项“农业清洁生产与农村废弃物循环利用集成配套技术体系研究与示范”(2010-2013);[9]国家自然科学基金“水稻地上和地下部植食者的相互关系、机制及调控研究”(2012-2015)。
土壤修复案例
土壤修复案例案例背景土壤污染一直是环境保护的重要议题之一。
由于人类活动和工业化的迅速发展,土壤受到了各种污染物的影响,包括重金属、有机物和放射性物质等。
这些污染物对土壤质量和生态系统健康产生了严重影响,需要采取有效措施进行土壤修复。
本文将介绍一种成功的土壤修复案例,该案例展示了使用生物修复技术来恢复污染土壤的可行性和有效性。
案例描述污染情况这个土壤修复案例发生在一个工业区域,该区域存在严重的土壤污染问题。
该区域曾经是一个化工厂的废弃场地,长期的废弃物排放导致土壤受到了重金属和有机物的污染。
土壤的污染程度很高,导致土壤生态系统失衡,对环境和人类健康构成了威胁。
修复方法针对这个土壤污染案例,专家团队决定采用生物修复技术来恢复土壤的可持续性。
具体的修复步骤如下:1.评估:对污染土壤进行详细评估,确定污染物的种类和分布情况,为后续修复提供依据。
2.物理处理:采用物理处理方法,如土壤剪切、深松和堆肥等,以改善土壤结构和通透性。
3.生物修复:引入具有生物降解能力的植物和微生物来减少土壤中的污染物浓度。
选择适应该地区环境的植物,分别种植在不同的土壤区域。
同时引入土壤中的细菌和真菌来加速有机物的分解和降解。
4.监测和评估:定期监测土壤中污染物的浓度和生态系统的健康状况,评估修复效果,适时调整修复策略。
修复效果经过一段时间的修复,该区域的土壤污染问题得到了明显改善。
物理处理方法改善了土壤结构和通透性,为生物修复提供了更好的条件。
引入的植物和微生物逐渐降解了土壤中的污染物,重金属和有机物浓度明显下降。
同时,生态系统的健康状况也得到了恢复,包括土壤微生物群落的多样性和活动性的提高。
结论通过这个土壤修复案例,我们可以看到生物修复技术在修复污染土壤方面的巨大潜力。
生物修复既可以降低修复成本,又可以保护土壤生态系统的完整性。
然而,土壤修复是一个复杂的过程,需根据具体情况制定合适的修复策略,并持续进行监测和评估,以确保修复效果的持久性和可持续性。
2015_Applied_Soil_Ecology
温室中生物肥料对抑制香蕉镰刀菌枯萎病的作用以及优化土壤微生物和化学特征的作用Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial 样本:土壤杂志:2015年4月《Applied Soil Ecology》IF:2.644合作单位:南京农业大学有机肥料国家工程研究中心研究背景生物肥料是治疗香蕉镰刀菌枯萎病的一种策略。
但是关于长期应用生物肥料对土壤健康的影响尚未有研究报导,因此本研究通过四季盆栽实验探究某种生物肥料对抑制香蕉枯萎病的长期作用以及对土壤化学特性以及微生物结构的影响;使用16S扩增子测序技术研究了生物肥料对土壤微生物群落的影响。
研究方法:取样点:万众农业公司(18°38’N, 108°47’E)样本处理•各样本均在10cm深处取100g•使用2mm筛子过滤去除大颗粒,-70℃保存理化性质•pH值、土壤总有机碳含量、总有机氮含量、碳氮比、NH4-N、NO3N、K、P浓度检测DNA提取•PowerSoil DNA Isolation Kit (MoBio Laboratories Inc., USA)提取DNA16S测序•16S V4区,引物515F/806R,诺禾致源MiSeq上机测序•OTU聚类和分析,α和β多样性分析ITS测序•ITS1,引物ITS1F/ITS2,诺禾致源MiSeq上机测序•OTU聚类和分析,α和β多样性分析研究成果1.16S测序以及ITS测序表明,高浓度生物肥料(HBIO)处理条件的土壤细菌和真菌群落显著区分与低浓度处理组(LBIO)以及化学(CF)肥料对照组;2.与化学肥料对照组相比高浓度生物肥料处理组中Firmicutes和Bacillus丰度显著升高,而Acidobacteria, Bacteroidetes和Ascomycota丰度显著降低。
不同土壤改良剂对酸性土壤的改良效果
20245不同土壤改良剂对酸性土壤的改良效果邵代兴1罗元琼1*吴正肖1李世江2张明刚2苟世新1周开芳1(1遵义市农村发展服务中心,贵州遵义563000;2绥阳县农业农村局,贵州绥阳563300)摘要为探索施用不同改良剂对酸性土壤性质、水稻吸收养分和产量、水稻吸收重金属的影响,为酸性土壤改良提供技术依据,本研究开展了水稻田间试验。
设3种不同土壤改良剂(生石灰、亿土康、楚戈)及不施土壤改良剂共4个处理,检测各处理土壤pH值、交换性铝含量、交换性酸含量、阳离子交换量及水稻植株和籽粒主要养分含量、水稻重金属含量,测定水稻产量及产量构成因子,分析土壤性质、水稻主要养分含量、水稻产量及水稻重金属含量变化。
结果表明,与不施用土壤改良剂对照相比,各土壤改良剂均能提高土壤pH值、减少土壤中交换性酸和交换性铝含量,以施用生石灰效果最佳。
不同土壤改良剂均能增加土壤阳离子含量,增幅在21%~24%之间,其中以施用亿土康处理的土壤阳离子含量最高。
改良剂能提高水稻籽粒全氮、全磷、全钾含量和植株全磷含量,但降低了植株全氮和全钾含量。
施用土壤改良剂能提高水稻有效穗数、千粒重和产量。
施用土壤改良剂减少了水稻对重金属Cd的吸收,不同改良剂对水稻吸收Cr的影响不同。
因此,适宜的改良剂能提高酸性土壤pH值,减少交换性铝和交换性酸含量,增加土壤阳离子含量,提高水稻对养分的吸收量和水稻产量,减少水稻对重金属Cd的吸收量。
关键词土壤改良剂;酸性土壤;土壤性质;水稻中图分类号S156.2文献标识码A文章编号1007-5739(2024)05-0111-04DOI:10.3969/j.issn.1007-5739.2024.05.028开放科学(资源服务)标识码(OSID):Effects of Different Soil Amendments on Acid Soil AmeliorationSHAO Daixing1LUO Yuanqiong1*WU Zhengxiao1LI Shijiang2ZHANG Minggang2GOU Shixin1ZHOU Kaifang1(1Rural Development Service Center of Zunyi City,Zunyi Guizhou563000;2Suiyang County Agriculture and Rural Affairs Bureau,Suiyang Guizhou563300) Abstract In order to explore the effects of different amendments on the properties of acid soil,nutrient absorption and yield of rice,and heavy metal absorption by rice,and provide technical basis for the amelioration of acid soil,this study conducted field experiments on rice.Four treatments including three different soil amendments(quicklime, Yitukang,Chuge)and no soil amendment,were set to test the soil pH value,exchangeable aluminum content, exchangeable acid content,cation exchange capacity,main nutrient content of rice plants and grains,and heavy metal content of rice in each treatment.The rice yield and yield composition factors,and soil properties were determined,as well as the changes of main nutrient content,yield and heavy metal content of rice.The results showed that compared with the control(no soil amendment),all soil amendment treatments could increase the soil pH value,reduce the contents of soil exchangeable acid and soil exchangeable aluminum,and the application of quicklime had the best effect. Different soil amendments could increase soil cation content,with an increasing range of21%to24%.Among them,the soil cation content was the highest in the Yitukang treatment.Soil amendments could increase the contents of total nitrogen,total phosphorus,and total potassium of rice grains,increase the total phosphorus content of rice plants,but reduce the contents of total nitrogen and total potassium of rice plants.Applying soil amendments could increase the第一作者邵代兴(1981—),男,硕士,高级农艺师,从事土壤肥料、土壤污染防治技术研究和推广工作。
园林草皮种植实验报告范文
园林草皮种植实验报告范文一、实验目的本实验旨在探究不同种植方法对园林草皮生长和土壤品质的影响,为优化园林草皮种植技术提供科学依据。
二、实验材料和方法1. 实验材料- 园林草皮- 肥料- 灌溉设备- 土壤测试仪器2. 实验方法将园林草皮分成四组,如下:1. A 组:种植在普通土壤中,施加常规肥料,定期浇水。
2. B 组:种植在改良土壤中,施加有机肥料,定期浇水。
3. C 组:种植在沙土中,不施肥,定期浇水。
4. D 组:种植在普通土壤中,不施肥,不浇水。
四组草皮种植后,进行为期一个月的观测和测试。
三、实验结果及讨论1. 草皮生长情况经过一个月的观察,四组草皮的生长情况如下:- A 组:草皮生长茂密,颜色鲜绿,叶片饱满。
- B 组:草皮生长较好,颜色稍淡,但整体较为健康。
- C 组:草皮生长受限,颜色暗淡,叶片稀疏。
- D 组:草皮生长迟钝,颜色黄绿,叶片杂乱。
通过对比分析,可以得出以下结论:- 施加常规肥料和改良土壤条件有利于草皮的生长,使草皮长势良好。
- 沙土和不施肥的情况下,草皮生长受到限制,颜色较为暗淡,叶片稀疏。
2. 土壤品质测试结果对四组土壤进行了土壤酸碱度、水分含量和有机质含量的测定,结果如下:组别土壤酸碱度土壤水分含量土壤有机质含量- -A 中性适宜适中B 中性适宜丰富C 略偏酸偏干贫乏D 略偏酸干旱贫乏通过对比测试结果,可以得出以下结论:- A 组和B 组的土壤酸碱度和水分含量均适宜草皮生长的需要,土壤有机质含量也比较丰富。
- C 组土壤酸碱度偏酸,水分含量偏干,土壤中的有机质含量较少。
- D 组土壤酸碱度偏酸,水分含量干旱,土壤中的有机质含量贫乏。
四、结论与建议从实验结果可以得出以下结论和建议:1. 施加常规肥料和改良土壤条件有利于园林草皮的生长,可以改善草皮的色泽和叶片饱满度。
2. 合理调节土壤酸碱度和水分含量,保证土壤中有机质的充足,有助于草皮的健康生长。
既然常规肥料和改良土壤条件对园林草皮的生长有明显的影响,未来应该在园林草皮的种植过程中充分考虑这些因素,选择合适的土壤改良措施和施肥方法。
土壤改良剂对小白菜品质和土壤环境的影响
接收日期:2023-12-19接受日期:2024-01-24 基金项目:厦门市科技计划项目(3502Z20226007) *通信作者。
E-mail:******************土壤改良剂对小白菜品质和土壤环境的影响卫瑾怡,王明元*,唐 易,王子澍,杨晨怡(华侨大学园艺科学与工程研究所,福建 厦门 361021)摘 要:以自研土壤改良剂为材料,按照蔬菜园每667 m 2施入改良剂0 kg (CK)、25 kg(B25)、50 kg (B50)和75 kg (B75)设置四个处理,分析土壤改良剂对土壤pH 、有机质含量以及‘小白苗’小白菜内在与外在品质的影响。
结果表明,施用土壤改良剂能维持土壤pH 7.0以上,改善土壤酸化。
不同土层的有机质含量表现为随着土层加深而降低。
31~45 cm 土层中,B25处理下有机质含量最高,为5.35 g·kg –1,显著高于CK 组(P <0.05);土壤改良剂能提高小白菜V C 、可溶性蛋白和游离氨基酸含量,降低硝酸盐含量。
其中B75处理下,V C 、可溶性蛋白和游离氨基酸的含量均为最高,与CK 组差异显著(P <0.05),硝酸盐含量最低,为0.4713 mg·g –1,与其他处理差异显著(P <0.05)。
适量施用土壤改良剂能增加小白菜叶长、叶宽和叶片数,提高小白菜外在品质,B25和B50处理下,小白菜地上部鲜重相比于CK 组分别增加了79 g 和16 g ,差异显著(P <0.05)。
使用自研的土壤改良剂能明显提高小白菜产量和品质,改善土壤环境。
关键词:土壤改良剂;土壤pH ;小白菜;品质Doi: 10.3969/j.issn.1009-7791.2024.01.005中图分类号:S156.2 文献标识码:A 文章编号:1009-7791(2024)01-0040-06Effects of Soil Amendments on Soil Environment and Baby Bok Choy QualityWEI Jin-yi, WANG Ming-yuan *, TANG Yi, WANG Zi-shu, YANG Chen-yi(Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen 361021, Fujian China)Abstract: In order to explore the effects of soil amendments on the soil environment, quality and yield of the Baby Bok Choy, the soil amendments developed by our laboratory were used as materials, and soil pH, organic matter content and the internal and external quality of ‘Xiaobaimiao’ cabbage were studied. Four treatments were designed as follows: no soil amendments (CK), and application of the soil amendments 25 kg (B25), 50 kg (B50) and 75 kg (B75) per 667 m 2 of vegetable garden. The results showed that the application of soil amendments could maintain soil pH 7.0 above and improve soil acidification. The organic matter content in different soil layers decreased with the deepening of the soil layer. In the soil layer of 31–45 cm, the highest organic matter content was observed in the B25 treatment, which was 5.35 g·kg –1, significantly higher than that in the CK group (P <0.05); soil amendments could increase the content of V C , soluble protein, and free amino acids in the Baby Bok Choy, while reducing nitrate content. Among them, under B75 treatment, the content of V C , soluble protein, and free amino acids was the highest, significantly different from the CK group (P <0.05), and the nitrate content was the lowest, 0.4713 mg·g –1, significantly different from other treatments (P <0.05). Moderate application of soil amendments could increase the length, width, and number of leaves of the Baby Bok Choy, and improve its external quality. Under B25 and B50 treatments, the fresh weight of the Baby Bok Choy above ground increased by 79 g and 16 g compared to the CK group, respectively, with significant differences (P <0.05). The application of soil amendments can improve the2024, 53(1): 40~45.Subtropical Plant Science第1期卫瑾怡等:土壤改良剂对小白菜品质和土壤环境的影响﹒41﹒yield and quality of the Baby Bok Choy, and improve the soil environment.Key words: soil amendment; soil pH; Brassica campestris; quality小白菜原产我国,主产华南和长江流域地区[1]。
研学作文,种地瓜,吃地瓜
研学作文,种地瓜,吃地瓜英文回答:My experience volunteering at a local community garden was incredibly rewarding. I had the opportunity to learn about the importance of sustainable farming practices, contribute to my community, and enjoy the fruits of my labor.One of the most valuable lessons I learned was about the importance of soil health. I discovered that healthy soil is essential for growing healthy plants. I learned about the different types of soil amendments that can be used to improve soil health, such as compost and manure. I also learned about the importance of crop rotation, which helps to prevent soil depletion and disease.Another valuable lesson I learned was about the importance of community involvement. I was amazed by the sense of community at the garden. People of all ages andbackgrounds came together to work on the garden, share ideas, and learn from each other. I met many new people and made lasting friendships.In addition to learning about sustainable farming practices and community involvement, I also had the opportunity to enjoy the fruits of my labor. I planted seeds, watered plants, and harvested vegetables. It was such a rewarding experience to see the food that I helped to grow. I was also able to share the food with my family and friends.Overall, my experience volunteering at a local community garden was incredibly rewarding. I learned valuable lessons about sustainable farming practices, community involvement, and the importance of growing your own food. I would highly recommend volunteering at a community garden to anyone who is interested in learning more about sustainable living and contributing to their community.中文回答:我在社区花园做义工的经历非常有意义。
土壤改良 案例
土壤改良案例Soil improvement is a critical issue in agriculture and land management. 土壤改良是农业和土地管理中的一个重要问题。
Healthy soil is essential for successful crops, as it provides the necessary nutrients and support for plant growth. 健康的土壤对于成功种植作物至关重要,因为它提供了植物生长所需的营养和支持。
There are various methods and techniques available for improving soil quality and fertility. 有各种各样的方法和技术可以用来改善土壤质量和肥力。
One common method is using organic matter such as compost or manure to enrich the soil. 一个常见的方法是利用有机物质,比如堆肥或粪便来丰富土壤。
Another approach is to add mineral amendments like lime or gypsum to adjust the soil pH levels.另一种方法是添加矿物改良剂,如石灰或石膏来调整土壤的酸碱平衡。
Implementing these soil improvement techniques can lead to better yields and healthier crops. 实施这些土壤改良技术可以带来更好的产量和更健康的作物。
In addition to enhancing crop production, soil improvement is also essential for environmental conservation. 除了提高作物产量外,土壤改良也对环境保护至关重要。
不同土壤改良剂对烟草黑胫病的防治效果
不同土壤改良剂对烟草黑胫病的防治效果刘怡1杜鸿波2王国良1李先锋3姚峰1(1汉中市烟草公司西乡分公司,陕西汉中723000;2汉中市烟草公司南郑分公司,陕西汉中723000;3汉中市烟草公司烟叶分公司,陕西汉中723000)摘要为探究土壤改良剂及其施用方法对烟草黑胫病的防治效果,本试验对比了10种土壤改良剂(氧化钙、咯菌腈、甲基硫菌灵、烯酰吗啉、乙酸铜、辛菌胺醋酸盐、噁霉灵、福美双、乙蒜素和敌磺钠)搭配5种不同施药方式(灌根、穴施、蘸根、行施和四合一)对烟草生长发育的影响。
结果表明,不同土壤改良剂搭配不同施用方式对烟株生育期没有明显的影响。
烟株农艺性状方面,清水、敌磺钠及氧化钙处理的烟株农艺性状表现较好;烯酰吗啉、辛菌胺醋酸盐及噁霉灵处理的烟株农艺性状表现较差;施用方法上,穴施处理的农艺性状综合表现较好,四合一处理的农艺性状表现较差。
烟株发病率方面,施用氧化钙、甲基硫菌灵的发病率较低,行施、穴施的发病率低。
综上可知,氧化钙、福美双和乙酸铜3种药剂的表现良好,从最适施用方式来看,氧化钙与福美双适用于行施,乙酸铜适用于蘸根。
关键词烟草黑胫病;土壤改良剂;农艺性状中图分类号S572;S435.72文献标识码A文章编号1007-7731(2024)01-0064-05Effects of different soil amendments on the control of Tobacco black shank diseaseLIU Yi1DU Hongbo2WANG Guoliang1LI Xianfeng3YAO Feng1(1Xixiang Branch of Hanzhong Tobacco Company,Hanzhong723000,China;2Nanzheng Branch of Hanzhong Tobacco Company,Hanzhong723000,China;3Tobacco Leaf Branch of Hanzhong Tobacco Company,Hanzhong723000,China)Abstract In order to explore the effects of soil amendments and its application methods on the control of tobacco black shank disease,the effects of10kinds of soil amendments(calcium oxide,fludioxonil,thiophanate-methyl, dimethomorph,copper acetate,octylamine,thiram,thiophanate,ethylicin and fenaminosulf)by5different application methods(root irrigation,acupoint application,dipping root,row application and four-in-one)on the growth and development of tobacco were compared.The results showed that different soil amendments combined with different application methods had no significant effect on the growth period of tobacco plants.For the agronomic characters of tobacco plant,the comprehensive effects of water,fenaminosulf and calcium oxide were better,while those of dimethomorph,octylamine and thiram were poor.In terms of application,the agronomic characters were better under hole application treatment and poor under four-in-one treatment.In terms of the incidence of tobacco,the incidence of calcium oxide and thiophanate-methyl was lower;from the method of application,the incidence of application and hole application was poor.In conclusion,it can be seen that calcium oxide,thiram and copper acetate perform well.From the most suitable application mode,calcium oxide and thiram are suitable for line application,while copper acetate is suitable for dipping root.Keywords Tobacco black shank disease;soil amendments;agronomic characters基金项目科技项目“汉中低海拔烟区烟株健康栽培关键技术配套研究”(2021610700270127-2)。
大清河流域土地利用变化的地形梯度效应分析
第37卷第5期农业工程学报V ol.37 No.52021年3月Transactions of the Chinese Society of Agricultural Engineering Mar. 2021 275 大清河流域土地利用变化的地形梯度效应分析李硕1,2,沈占锋1,3,刘克俭4※,许泽宇1,3,王浩宇1,3,焦淑慧1,3,刘相臣1,3,雷雅婷1,3(1. 中国科学院空天信息创新研究院,北京100101;2. 中国科学院大学资源与环境学院,北京100049;3. 中国科学院大学,北京100049;4. 中国人民公安大学公安遥感应用工程技术研究中心,北京100038)摘要:地形对于土地利用具有重要制约作用。
该研究选取1974-2019年的Landsat影像,从地形起伏度、坡度、地形位等级的角度,分析大清河流域土地利用类型、结构变化在地形梯度上的分布效应,对影响研究区土地利用变化的驱动力进行讨论。
结果表明:1)大清河流域土地利用类型分布具有显著的地形梯度。
建设用地、耕地与水体在低地形梯度地区分布优势明显,草地的优势分布区在中、高地形梯度地区,林地的优势分布区多集中在高地形梯度区域。
2)大清河流域土地利用结构变化类型主要包括保持恒定与后期变化2种。
其中保持恒定型以低地形梯度的耕地与高地形梯度的林地为主;后期变化型广泛分布于中高、中低地形梯度地区,建设用地挤占耕地现象愈加严重,耕地的优势分布区向更高的地形梯度区域扩张,因为“退耕还林还草”战略的实施,林地的优势分布区呈现下移趋势,耕地由单向转入演变为双向流转。
3)由于人口的增长与降水减少等原因,大清河流域在太行山麓毁林垦荒约4 866 km2,后由于城市扩张导致建设用地侵占耕地约3 727 km2,“人地矛盾”尖锐、建设用地总体设计不合理、集约化程度不高等问题突出,未来土地政策应根据不同地形梯度因地制宜。
关键词:遥感;土地利用;地形梯度;大清河;分布指数doi:10.11975/j.issn.1002-6819.2021.05.032中图分类号:TP79 文献标志码:A 文章编号:1002-6819(2021)-05-0275-10李硕,沈占锋,刘克俭,等. 大清河流域土地利用变化的地形梯度效应分析[J]. 农业工程学报,2021,37(5):275-284. doi:10.11975/j.issn.1002-6819.2021.05.032 Li Shuo, Shen Zhanfeng, Liu Kejian, et al. Analysis of terrain gradient effects of land use change in Daqing River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 275-284. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.032 0 引 言土地是包括地质、地貌、土壤、植被、水文与气候等多种自然要素在内的综合体[1],土地利用的动态演变是人与自然共同作用的结果[2],表现为土地利用类型在时间或空间上的不断变化[3]。
化学肥料和有机化肥的对比英语作文
化学肥料和有机化肥的对比英语作文英文回答:Chemical Fertilizers vs. Organic Fertilizers: A Comprehensive Comparison.Chemical fertilizers and organic fertilizers are two broad categories of soil amendments used to enhance plant growth and productivity. While both types of fertilizers provide essential nutrients to plants, they differ significantly in their composition, manufacturing processes, and environmental impacts.Composition and Manufacturing.Chemical fertilizers are synthesized from inorganic materials, primarily nitrogen, phosphorus, and potassium (NPK), and are available in various formulations. They are manufactured using industrial processes that involve the conversion of raw materials into concentrated forms ofnutrients. Organic fertilizers, on the other hand, are derived from natural sources such as animal manure, plant residues, and compost. They are produced through a natural decomposition process that converts organic matter into plant-available nutrients.Nutrient Availability and Release.Chemical fertilizers provide a readily available source of nutrients due to their high solubility in water. This allows plants to easily absorb and utilize the nutrients from chemical fertilizers. However, the rapid release of nutrients can lead to leaching and runoff into waterways, potentially contributing to water pollution. Organic fertilizers, conversely, release nutrients slowly over time as they are broken down by soil microorganisms. This slower release pattern reduces the risk of nutrient leaching and provides a more sustained supply of nutrients to plants.Soil Health and Structure.Chemical fertilizers provide essential nutrients butcan have adverse effects on soil health. The excessive use of chemical fertilizers can lead to soil acidification, reduced microbial diversity, and diminished soil structure. Organic fertilizers, on the other hand, contribute to soil health by improving soil structure, water-holding capacity, and nutrient retention. The organic matter in organic fertilizers supports soil microorganisms and enhances soil biodiversity.Environmental Impact.The production and use of chemical fertilizers have environmental implications. The manufacturing process releases greenhouse gases and requires extensive energy consumption. Additionally, nutrient runoff from chemical fertilizers can contribute to eutrophication in water bodies. Organic fertilizers, on the other hand, promotesoil carbon sequestration and minimize nutrient runoff. They also contribute to biodiversity and reduce greenhouse gas emissions.Sustainability and Long-Term Impact.Chemical fertilizers provide a quick and efficient way to boost plant growth, but they can have long-term negative consequences for soil health and environmental sustainability. Organic fertilizers, while slower-acting, offer a more sustainable and environmentally friendly approach to soil fertility management. They enhance soil health, reduce nutrient leaching, and contribute to a balanced ecosystem.Conclusion.Chemical and organic fertilizers serve distinct rolesin agricultural practices. Chemical fertilizers provide a readily available source of nutrients but can impact soil health and the environment. Organic fertilizers enhancesoil health, reduce nutrient runoff, and promote a sustainable approach to soil fertility. The choice between chemical and organic fertilizers depends on factors such as soil conditions, crop requirements, and long-term sustainability goals.中文回答:化学肥料与有机肥料的对比。
土附着在大地上就是土壤作文
土附着在大地上就是土壤作文英文回答:Soil is the foundation of life on Earth. It is the medium in which plants grow, and it provides essential nutrients for their growth. As a farmer, I have a deep appreciation for the importance of soil in agriculture. Without healthy soil, it would be impossible to grow the crops that sustain our population.Soil is not just dirt; it is a complex mixture of minerals, organic matter, water, and air. It is teeming with life, from earthworms and insects to microscopic bacteria and fungi. These organisms play a crucial role in the decomposition of organic matter and the recycling of nutrients, which are essential for plant growth.I remember a time when my crops were not doing well, and I realized that the soil was the problem. It was compacted and lacking in organic matter. I had to takesteps to improve the soil structure by adding organic amendments and practicing conservation tillage. Over time, the soil became healthier, and my crops flourished once again.Soil is also important for water retention andfiltration. Healthy soil can absorb and store water, reducing the risk of erosion and flooding. It also acts asa natural filter, removing pollutants and impurities from water as it percolates through the soil layers.In addition to its role in agriculture, soil hascultural and historical significance. Many civilizations throughout history have revered the land and soil as sacred. The soil is also a source of inspiration for artists and poets, who often use it as a metaphor for growth and fertility.Overall, soil is a precious resource that must be protected and nurtured. As the saying goes, "Take care of the land, and the land will take care of you."中文回答:土壤是地球上生命的基础。
土壤重金属固化英语
土壤重金属固化英语Soil contamination by heavy metals is a big concern, especially for farmers and environmentalists. To tacklethis issue, one effective method is soil heavy metal stabilization. Basically, it's about locking those harmful metals in place so they don't spread or get absorbed by plants.The process involves using special materials that bind to the heavy metals, kind of like a magnet attracts metal filings. It's pretty amazing how science can come up with solutions like this. With stabilization, we can make the soil safer for agriculture and reduce the risk of these metals getting into our food chain.One thing I find fascinating is the variety of stabilization techniques. Some use natural materials like clays or organic amendments, while others rely on synthetic chemicals. Each has its pros and cons, but the goal is the same: keep those metals from moving around.For farmers, it's crucial to understand the options and choose the best stabilization method for their specific situation. After all, soil health is essential for growing healthy crops. And with soil heavy metal stabilization,we're taking a step towards ensuring a safer and more sustainable agricultural future.I've heard stories from farmers who've implemented stabilization techniques and seen.。
Soil Biodiversity and Ecosystem Function
Soil Biodiversity and Ecosystem Function Soil biodiversity plays a crucial role in maintaining the health andfunctioning of ecosystems. The diversity of life below ground is vast, with a myriad of organisms such as bacteria, fungi, protozoa, nematodes, and earthworms contributing to the overall soil biodiversity. These organisms interact in complex ways and their presence or absence can significantly impact ecosystem functions such as nutrient cycling, water filtration, and carbon sequestration. Understanding the relationship between soil biodiversity and ecosystem function is essential for sustainable land management and conservation efforts. One perspective to consider is the impact of soil biodiversity on nutrient cycling.Soil organisms play a key role in decomposing organic matter and releasingnutrients such as nitrogen, phosphorus, and potassium into the soil. This processis essential for plant growth and overall ecosystem productivity. For example, earthworms enhance nutrient availability by breaking down organic matter, while mycorrhizal fungi form symbiotic relationships with plant roots, facilitating nutrient uptake. A decline in soil biodiversity can disrupt these processes, leading to nutrient imbalances and reduced ecosystem productivity. Another important perspective is the role of soil biodiversity in carbon sequestration.Soil is a significant reservoir of carbon, and the activities of soil organisms have a direct impact on carbon storage. Microorganisms in the soil decompose organic materials, releasing carbon dioxide into the atmosphere, while other organisms help to stabilize carbon in the soil through the formation of aggregates. Maintaining high levels of soil biodiversity can enhance carbon sequestration, mitigating the effects of climate change. Therefore, preserving soil biodiversityis not only crucial for ecosystem health but also for global carbon cycling. Furthermore, soil biodiversity contributes to the regulation of water flow and quality. Soil organisms such as earthworms and burrowing insects create pore spaces in the soil, improving its ability to absorb and store water. This helps to reduce the risk of flooding and erosion, especially in areas with intense rainfall. Additionally, soil microorganisms play a role in filtering contaminants and purifying water as it percolates through the soil profile. As such, a decline in soil biodiversity can compromise these vital ecosystem services, impacting wateravailability and quality. From an agricultural perspective, soil biodiversity is essential for sustainable food production. Healthy soils with high biodiversity are more resilient to environmental stresses and are better able to support diverse plant communities. This is particularly important for maintaining crop productivity in the face of climate change and increasing pressure on land resources. Practices that promote soil biodiversity, such as crop rotation, reduced tillage, and the use of organic amendments, are therefore critical for ensuring food security while minimizing the negative impacts of agriculture on the environment. In conclusion, soil biodiversity is intricately linked to ecosystem function and the provision of vital ecosystem services. The diverse community of organisms in the soil contributes to nutrient cycling, carbon sequestration, water regulation, and support for agricultural productivity. Recognizing the importance of soil biodiversity is essential for sustainable land management and conservation practices. Efforts to preserve and enhance soil biodiversity not only benefit ecosystems but also have far-reaching implications for human well-being and the health of the planet.。