BP神经网络详解(PPT)

合集下载

[课件]人工神经网络-BP神经网络PPT

[课件]人工神经网络-BP神经网络PPT

x1
y1
y2
yn 1
y1
yn
x2 xn
y2 yn
x 入1


x层 2

xn 1 xn 出


神经网络的学习方法
◆无教师学习 ◆强化学习: ◆有教师的学习方式
环境对系统输出结果只给出评价信息(奖或惩),系 学习系统按照环境提供数据的某些统计规律来调节自身 外界存在一个教师,对给定的一组输入,提供应 统通过强化受奖动作来改善自身性能 参数
1) n1=(n+m)1/2+a 2) n1=log2n n1:隐含层单元数 n:输入单元数 m:输出单元数
BP算法
• 初始权值的确定 选择-1~1之间的随机数,系统自动默认 • 初始阈值的确定 -2.5~2.5之间的随机数,系统自动默认 都可以通过语句自行设置
BP算法步骤
1. 网络初始化
给各连接权值分别赋一个区间(-1,1)内的随机数,设 定误差函数e,给定计算精度值 和最大学习次数M。
1 1 1 2 2 2
输入层
隐含层
输出层
xN1
wih
yN2
whj
z N3
N3
TN3
BP神经网络工作原理
初始化 给定输入向量和期望输出
求隐层输出层各单元输出
求期望输出与实际输出的偏 差e
e满足需 求? Y 全部e满足需 求 Y 结束
N
计算隐层误 差
求误差梯度
更新权值
BP算法
• 隐含层节点数的确定
p 1 q ( ((do (k ) f( whohoh (k ) bo )2 )) hoh (k ) 2 o1 h 1 hoh (k ) hih (k )

神经网络--BP网络ppt03

神经网络--BP网络ppt03

ˆ y m ( k 1) f ( y p ( k ),..., y p ( k n 1), u ( k ),..., u ( k m 1))
z -1
. . .
z -1
u
z -1
. . .
ym
z -1
M
^ P
3.2 网络模型使用时结构图
由图3.2可以得到网络模型的输入/输出关系式为:
ˆ y m ( k 1) f ( y m ( k ),..., y m ( k n 1), u ( k ),..., u ( k m 1))
3.2 逆模型建立
u
+ -
P
yp
z -1 z -1 z -1
C
z -1
图3.3 直接逆模型训练图
yr
z -1
. . .
z -1
u
z -1
第三章 BP网络在智能系统中的 建模与控制
• 3.1 直接正向模型建立 • 3.2 逆模型建立 • 3.3 系统中的控制
Hale Waihona Puke 3.1 直接正向模型建立假定(被控)系统离散型非线性差分方程为:
y p ( k 1) f ( y p ( k ),..., y p ( k n 1), u ( k ),..., u ( k m 1))
即由非线性函数f所确定的系统,在k + 1时刻的输出取 决于过去n个时刻的输出值,以及过去m个时刻的输入 值。
d
u
d*
yp
P
z -1
. . .
z -1
ym
z -1
. . .
-
+
z -1
M
学习规则

BP神经网络详解和实例ppt课件

BP神经网络详解和实例ppt课件
• 得到的结果见图1
• 图1飞蠓的触角长和翼长
• 思路:作一直线将两类飞蠓分开
• 例如;取A=(1.44,2.10)和 B=(1.10,1.16), 过A B两点作一条直线:

y= 1.47x - 0.017
• 其中X表示触角长;y表示翼长.
• 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
算法的目的:根据实际的输入与输出数据,计算模型的参 数(权系数) 1.简单网络的B-P算法
图6 简单网络
• 假设有P个训练样本,即有P个输入输出对 • (Ip, Tp),p=1,…,P, 其中
输入向量为 :
I p (i p1 ,...,i pm )T
目标输出向量为(实际上的):
Tp (t p1 ,...,t pn )T
神经网络研究的两个方面
• 从生理上、解剖学上进行研究 • 从工程技术上、算法上进行研究
脑神经信息活动的特征
(1)巨量并行性。 (2)信息处理和存储单元结合在一起。 (3)自组织自学习功能。
神经网络基本模型
电脉冲
输 入
树 突
细胞体 形成 轴突




信息处理
传输
图 12.2 生物神经元功能模型
• 神经元的数学模型
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp

神经网络第2章-BP神经网络

神经网络第2章-BP神经网络

考虑:1、移轴及归一化和上下限改变的影响; 2、随机数起始点改变; 3、初始数据范围(x1,x2)。
大作业1: 对基本神经网络程序NN.FOR进行修改,使之能够求 函数的极小值或极大值,然后用修改后的神经网络程序 计算自行给定的某个函数的极小值或极大值。要求对误 差进行分析,对不同的初始值(WAB,AL,MO,IIM, INN,RRR,II,Inmin,Inmax,OUTmin,OUTmax 等)进行比较分析,谈谈你对神经网络程序使用中的学 习体会。
标准BP模型由3个神经元层次组成,如图2.1所示,输入 层有L个处理单元,中间的隐层有M个处理单元,输出 层有N个处理单元。
BP网络误差反向传播算法的基本 思想 BP网络按照感知器的工作 原理进行信息处理:
图2.1 三层BP神经网络
n y(t ) f Wi (t ) xi i 1
式中 j 称为该神经元的门槛值或阈值。为了统一表达式, 可以令 将上式改写成 Woj j , x, 0 1
I j Wij xi
i 0 m
(2-4)
第j神经元的输出 y j 为
y j f j I j
(2-5)
式中 f j 为神经元j的传递函数或响应函数,是非线性 可微非递减函数,对各神经元可取同一形式。 传递函数 f j通常有 0-1型 Sigmoid型 双曲正切型
§2.3 BP网络的特点和存在的问题
(1) 是一种非线性映射关系
是静态系统而非动力学系统,故不涉及稳定性问题。 (2) BP算法收敛速度很慢 主要由于多峰优化问题,只找 到局部最优解,产生麻痹,如 图2.4。
A全局最优点
B局部优化点
图2.4 多峰优化问题寻优过程示意图
(3) 对隐层的层数及各隐层的神经元个数尚无理论上的推导 (4) 对加入的新样本,网络需要重新学习 §2.4 Kolmogorov定理 Kolmogorov(连续函数表示)定理(1957年):

BP神经网络基本原理与应用PPT

BP神经网络基本原理与应用PPT

BP神经网络的学习
• 网络结构 – 输入层有n个神经元,隐含层有q个神经元, 输出层有m个神经元
BP神经网络的学习
– 输入层与中间层的连接权值: wih
– 隐含层与输出层的连接权值: – 隐含层各神经元的阈值: bh
who
– 输出层各神经元的阈值: bo
– 样本数据个数: k 1,2, m
– 激活函数:
(二)误差梯度下降法
求函数J(a)极小值的问题,可以选择任意初始点a0,从a0出发沿着负 梯度方向走,可使得J(a)下降最快。 s(0):点a0的搜索方向。
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
直观解释
当误差对权值的 偏导数大于零时,权 值调整量为负,实际 输出大于期望输出, 权值向减少方向调整, 使得实际输出与期望 输出的差减少。当误 差对权值的偏导数小 于零时,权值调整量 为正,实际输出少于 期望输出,权值向增 大方向调整,使得实 际输出与期望输出的 差减少。
❖ 众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的网络
人工神经网络(ANN)
c
k l
c
k j
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
式中: —学习率 最终形式为:
BP神经网络的学习
(三) BP算法调整,隐藏层的权值调整
隐层各神经元的权值调整公式为:

BP神经网络模型PPT课件

BP神经网络模型PPT课件

激活函数: f()
误差函数:e

1 2
q o1
(do (k )

yoo (k ))2
BP网络的标准学习算法
第一步,网络初始化 给各连接权值分别赋一个区间(-1,1) 内的随机数,设定误差函数e,给定计 算精度值 和最大学习次数M。
第二步,随机选取第 k个输入样本及对应 期望输出
修正各单元权 值
误差的反向传播
BP网络的标准学习算法-学习过程
正向传播:
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
x(k) x1(k), x2(k), , xn(k)
do (k) d1(k),d2(k), ,dq(k)
BP网络的标准学习算法
第三步,计算隐含层各神经元的输入和
输出
n
hih (k ) wih xi (k ) bh
i 1
h 1, 2, , p
hoh (k) f(hih (k)) h 1, 2, , p

f(
yio (k)))2)
hoh (k)
hoh (k)
hih (k)

( 1 2
q
((do (k)
o1

p
f(
h1
whohoh (k)
bo )2 ))
hoh (k)
hoh (k)
hih (k)


q o1
(do (k )

神经网络BP网络课堂PPT

神经网络BP网络课堂PPT
它是一种多层前向反馈神经网络,其神经元的 变换函数是S型函数
输出量为0到1之间的连续量,它可实现从输入 6 到输出的任意的非线性映射
.
2.1 BP网络简介
BP网络主要用于下述方面 函数逼近:用输入矢量和相应的输出矢量训练一个 网络逼近一个函数 模式识别和分类:用一个特定的输出矢量将它与输 入矢量联系起来;把输入矢量以所定义的合适方式 进行分类; 数据压缩:减少输出矢量维数以便于传输或存储
利用梯度下降法求权值变化及误差的反向传播
– 输出层的权值变化
• 其中 • 同理可得
16
.
2.3 学习规则
利用梯度下降法求权值变化及误差的反向传播
– 隐含层权值变化
• 其中
• 同理可得
17
.
2.3 学习规则
对于f1为对数S型激活函数,
对于f2为线性激活函数
18 .
2.4 误差反向传播图形解释
之间的误差修改其权值,使Am与期望的Tm,(m=l,…,q) 尽可能接近
12
.
2.3 学习规则
BP算法是由两部分组成,信息的正向传递与误差 的反向传播
– 正向传播过程中,输入信息从输入层经隐含层逐层计 算传向输出层,每一层神经元的状态只影响下一层神 经元的状态
– 如果在输出层未得到期望的输出,则计算输出层的误 差变化值,然后转向反向传播,通过网络将误差信号 沿原来的连接通路反传回来修改各层神经元的权值直 至达到期望目标
38
.
4.2 附加动量法
带有附加动量因子的权值调节公式
其中k为训练次数,mc为动量因子,一般取0.95左右
附加动量法的实质是将最后一次权值变化的影响,通 过一个动量因子来传递。
当动量因子取值为零时,权值变化仅根据梯度下降法产生

BP神经网络理论基础介绍-PPT课件

BP神经网络理论基础介绍-PPT课件

2020/12/22
21
循环网
x1 x2
…… xn
输入层
o1 o2


隐藏层

……
om 输出层
2020/12/22
22
循环网
如果将输出信号反馈到输入端,就可构成一个多层 的循环网络。
输入的原始信号被逐步地加强、被修复。 大脑的短期记忆特征:看到的东西不是一下子就从
脑海里消失的。 稳定:反馈信号会引起网络输出的不断变化。我们
x1 x2 … xn
w11 w1m w2m …wn1
输入层
o1
o2
… 输出层
V
om
2020/12/22
14
单级横向反馈网
V=(vij) NET=XW+OV O=F(NET) 时间参数神经元的状态在主时钟的控制下同步变化 考虑X总加在网上的情况
NET(t+1)=X(t)W+O(t)V O(t+1)=F(NET(t+1))
x1
o1
x2
o2
……


… ……
xn 输入层
隐藏层
om 输出层
2020/12/22
18
约定 :
输出层的层号为该网络的层数:n层网络,或n级网络。
第j-1层到第j层的联接矩阵为第j层联接矩阵,输出层对应的矩 阵叫输出层联接矩阵。今后,在需要的时候,一般我们用W (j)表示第j层矩阵。
W(1)
x1
x2
o1
o2
… om
输出层
2020/12/22
12
简单单级网
W=(wij) 输出层的第j个神经元的网络输入记为netj:

BP神经网络PPTppt课件

BP神经网络PPTppt课件

输 入 至 网 络 , 由 前 向 后 , 逐 层 得 到 各 计 算 单 元 的 实 际 输 出 y:
对 于 当 前 层 l 的 第 j个 计 算 单 元 ,j 1,..., nl











n l1
n
e
t
l j
Ol l 1 ij i
i 1
O
l j
f
n
e
t
l j
1
=
1+
e
➢ 可见层
输入层 (input layer) 输入节点所在层,无计算能力
输出层 (output layer) 节点为神经元
➢ 隐含层( hidden layer) 中间层,节点为神经元
可编辑课件PPT
20
具有三层计算单 元的前馈神经网络结 构
可编辑课件PPT
21
2. 感知器神经网络(感知器)、感知器神经元
s ig n 型 函 数 , 不 可 微 ; 对 称 硬 极 限 函 数 ;




f
net
=
sgn
net
=
1
-
1
net 0 net < 0
m atlab函 数 hardlim s
D .阈 值 函 数
f
net
=
-
net net <
其 中 , , 非 负 实 数
可编辑课件PPT
单层感知器网络
感知器神经元
可编辑课件PPT
22
2. 感知器神经网络、感知器神经元(续)
感知器神经元的传递函数

BP神经网络原理ppt课件

BP神经网络原理ppt课件

精选ppt课件
6
(3)输入和输出神经元的确定
利用多元回归分析法对神经网络的输入参数 进行处理,删除相关性强的输入参数,来减 少输入节点数。
(4)算法优化
由于BP算法采用的是剃度下降法,因而易陷 于局部最小并且训练时间较长。用基于生物 免疫机制地既能全局搜索又能避免未成熟收 敛的免疫遗传算法IGA取代传统BP算法来克 服此缺点。
精选ppt课件
13
(2)学习率对收敛速度的影响 学习率的设置对BP算法的收敛性有很大的影响。
学习率过小,误差波动小,但学习速度慢,往往由于训 练时间的限制而得不到满意解;学习率过大,学习速度 加快,会引起网络出现摆动现象,导致不收敛的危险。 因此,选择一个合适的学习率是B P算法的一个较关 键的问题。学习率的主要作用是调整权值、阈值的 修正量. (3)隐层层数的选择对收敛速度的影响
精选ppt课件
12
BP神经网络收敛速度
阈值、学习率、隐层层数、隐层节点个数等对神 经网络的学习速度(收敛速度)都有较大的影响。本 文在BP网络的基础上,研究讨论了各个参数对收敛 速度的影响,以减小选取网络结构和决定各参数值的 盲目性,达到提高收敛速度的目的。
(1)初始权值和阈值对收敛速度的影响 初始权值和阈值要选得小一些。选择隐层节点数的 原则是尽量使网络结构简单,运算量小。从实验数据 分析可知:当节点数太少时,每个节点负担过重,迭代 而有的选择却要迭代几千次,或者更多,甚至不收敛。
精选ppt课件
11
BP神经网络理论应用于系统安全评价中的优点
(1)利用神经网络并行结构和并行处理的特征,通 过适当选择评价项目,能克服安全评价的片面性, 可以全面评价系统的安全状况和多因数共同作用下 的安全状态。 (2)运用神经网络知识存储和自适应特征,通过适 应补充学习样本,可以实现历史经验与新知识完满 结合,在发展过程中动态地评价系统的安全状态。 (3)利用神经网络理论的容错特征,通过选取适当 的作用函数和数据结构,可以处理各种非数值性指 标,实现对系统安全状态的模糊评价。

BP神经网络的基本原理+很清楚.pptx

BP神经网络的基本原理+很清楚.pptx
4. BP 神经网络的基本原理
BP(Back Propagation)网络是 1986 年由 Rinehart 和 McClelland 为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP 网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP 神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图 5.2 所示)。 1. BP 神经元 图 5.3 给出了第 j 个基本 BP 神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中 x1、x2…xi…xn 分别代表来自神经元 1、2…i…n 的输入;wj1、wj2…wji…wjn 则分别表示神经元 1、2…i…n 与第 j 个神经元的连接强度,即权 值;bj 为阈值;f(·)为传递函数;yj 为第 j 个神经元的输出。 第 j 个神经元的净输入值 为:
(5.20) (5.21) (5.22) (5.23) (5.24) (5.25)
3)隐层权值的变化 定义误差信号为: 其中第一项: 依链定理有:
第二项: 是隐层传递函数的偏微分。 于是: 由链定理得:
5
(5.26) (5.27) (5.28) (5.29) (5.30)
(5.31) (5.32)
式中: 为期望输出。 对于 个样本,全局误差为:
(5.17)
2)输出层权值的变化 采用累计误差 BP 算法调整 ,使全局误差 变小,即
3
(5.18)
式中: —学习率 定义误差信号为: 其中第一项:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p 1 q ( ((d o (k ) f( who hoh ( k ) bo ) 2 )) hoh (k ) 2 o1 h 1 hoh (k ) hih (k )
(d o (k ) yoo (k )) f ( yio (k )) who
o 1
q
hoh (k ) hih (k )
1 1 f '(net ) y (1 y ) -net net 2 1 e (1 e )
根据S型激活函数的图形可知,对神经网络进行训练,应该将net的值 尽量控制在收敛比较快的范围内
BP网络的标准学习算法
学习的过程: 神经网络在外界输入样本的刺激下不断改变网 络的连接权值,以使网络的输出不断地接近期 望的输出。 学习的本质: 对各连接权值的动态调整 学习规则: 权值调整规则,即在学习过程中网络中各神经 元的连接权变化所依据的一定的调整规则。
w
N 1 ho
w o (k )hoh (k )
N ho
BP网络的标准学习算法
第七步,利用隐含层各神经元的 h (k )和 输入层各神经元的输入修正连接权。
e e hih (k ) wih (k ) h (k ) xi (k ) wih hih (k ) wih w
x (k ) x1(k ), x2 (k ),, xn (k )
BP网络的标准学习算法
第三步,计算隐含层各神经元的输入和 输出
hih (k ) wih xi (k ) bh
n
h 1, 2,, p
hoh (k ) f(hih (k ))
p
i 1
h 1,的连接权值: wih 隐含层与输出层的连接权值: who 隐含层各神经元的阈值: bh 输出层各神经元的阈值: bo 样本数据个数: k 1, 2, m 激活函数: f() q 1 误差函数:e (do (k ) yoo (k ))2
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
BP网络的标准学习算法
网络结构 输入层有n个神经元,隐含层有p个神经元, 输出层有q个神经元 变量定义 x x1, x2 ,, xn 输入向量; 隐含层输入向量; hi hi1 , hi2 , , hi p 隐含层输出向量; ho ho1 , ho2 , , ho p 输出层输入向量; yi yi1 , yi2 , , yiq 输出层输出向量; yo yo1 , yo2 , , yoq 期望输出向量; d o d1 , d 2 , , d q
BP神经网络模型与学习算法
概述
Rumelhart,McClelland于1985年提出了BP网络的误差反 向后传BP(Back Propagation)学习算法
David Rumelhart
J. McClelland
BP算法基本原理 利用输出后的误差来估计输出层的直接前导层的误差, 再用这个误差估计更前一层的误差,如此一层一层的反 传下去,就获得了所有其他各层的误差估计。
m
q
BP网络的标准学习算法
BP算法直观解释 情况一直观表达
当误差对权值的偏 导数大于零时,权值 调整量为负,实际输 出大于期望输出, 权值向减少方向调整, 使得实际输出与期望 输出的差减少。
e
who
e >0,此时Δwho<0 who
BP网络的标准学习算法
BP算法直观解释 情况二直观表达
2 o1
BP网络的标准学习算法
第一步,网络初始化 给各连接权值分别赋一个区间(-1,1) 内的随机数,设定误差函数e,给定计 算精度值 和最大学习次数M。 第二步,随机选取第 k个输入样本及对应 期望输出
d o ( k ) d1 ( k ), d 2 ( k ),, d q ( k )
BP神经网络学习算法的MATLAB实现
BP网络应用于药品预测对比图
由对比图可以看出预测效果与实际存在一定误差,此误差可以通过 增加运行步数和提高预设误差精度业进一步缩小
BP神经网络的特点
非线性映射能力
能学习和存贮大量输入-输出模式映射关系,而无需事 先了解描述这种映射关系的数学方程。只要能提供足够 多的样本模式对供网络进行学习训练,它便能完成由n 维输入空间到m维输出空间的非线性映射。
BP神经网络学习算法的MATLAB实现
MATLAB中BP神经网络的重要函数和基本功能
newff()
功能 建立一个前向BP网络 格式 net = newff(PR,[S1 S2...SN1],{TF1 TF2...TFN1},BTF,BLF,PF) 说明 net为创建的新BP神经网络;PR为网络输入 取向量取值范围的矩阵;[S1 S2…SNl]表示网络 隐含层和输出层神经元的个数;{TFl TF2…TFN1} 表示网络隐含层和输出层的传输函数,默认为 ‘tansig’;BTF表示网络的训练函数,默认为 ‘trainlm’;BLF表示网络的权值学习函数,默认 为‘learngdm’;PF表示性能数,默认为‘mse’。
e
当误差对权值的偏导数 小于零时,权值调整量 为正,实际输出少于期 望输出,权值向增大方向 调整,使得实际输出与期 望输出的差减少。
who
e <0, who
此时Δwho>0
BP神经网络学习算法的MATLAB实现
MATLAB中BP神经网络的重要函数和基本 功能
函数名 newff() tansig() logsig() traingd() 功 能 生成一个前馈BP网络 双曲正切S型(Tan-Sigmoid)传输函数 对数S型(Log-Sigmoid)传输函数 梯度下降BP训练函数
( o (k )who ) f (hih (k )) h (k )
o 1
q
BP网络的标准学习算法
第六步,利用输出层各神经元的 o (k )和 隐含层各神经元的输出来修正连接权 值 who (k ) 。 e who (k ) o (k )hoh (k ) who
BP神经网络模型
三层BP网络
BP神经网络模型
激活函数 必须处处可导
一般都使用S型函数
使用S型激活函数时BP网络输入与输出关系 输入
net x1w1 x2 w2 ... xn wn
1 y f ( net ) 1 e net
输出
BP神经网络模型
输出的导数
logsig()
功能 对数Sigmoid激活函数 格式 a = logsig(N) 说明对数Sigmoid函数把神经元的输入范围从(-∞,+∞)映射 到(0,1)。它是可导函数,适用于BP训练的神经元。
BP神经网络学习算法的MATLAB实现
例2-3,下表为某药品的销售情况,现构建一个如下的三层BP神经 网络对药品的销售进行预测:输入层有三个结点,隐含层结点数 为5,隐含层的激活函数为tansig;输出层结点数为1个,输出层 的激活函数为logsig,并利用此网络对药品的销售量进行预测, 预测方法采用滚动预测方式,即用前三个月的销售量来预测第四 个月的销售量,如用1、2、3月的销售量为输入预测第4个月的销 售量,用2、3、4月的销售量为输入预测第5个月的销售量.如此反 复直至满足预测精度要求为止。 月份 销量 1 2056 2 2395 3 2600 4 2298 5 1634 6 1600
BP神经网络学习算法的MATLAB实现
MATLAB中BP神经网络的重要函数和基本功能
tansig()
功能 正切sigmoid激活函数 格式 a = tansig(n) 说明 双曲正切Sigmoid函数把神经元的输入范围从(-∞, +∞)映射到(-1,1)。它是可导函数,适用于BP训练的神经元。
i 1 n
wih
xi (k )
BP网络的标准学习算法
1 q ( ( d o ( k ) yoo (k )) 2 ) e hoh (k ) 2 o1 hih (k ) hoh ( k ) hih ( k ) 1 q ( (d o (k ) f( yio (k ))) 2 ) hoh (k ) 2 o1 hoh (k ) hih (k )
N 1 ih
w h (k ) xi (k )
N ih
BP网络的标准学习算法
第八步,计算全局误差
1 2 E (d o (k ) yo (k )) 2m k 1 o1
第九步,判断网络误差是否满足要求。当误差 达到预设精度或学习次数大于设定的最大次数, 则结束算法。否则,选取下一个学习样本及对 应的期望输出,返回到第三步,进入下一轮学 习。
p
who
yio who
o
who

ho
h
o
h
who
hoh (k )
1 q ( (do (k ) yoo (k )))2 e 2 o1 (k ) (d o (k ) yoo (k )) yoo yio yio (d o (k ) yoo (k ))f ( yio (k )) o (k )
BP网络的标准学习算法
第五步,利用隐含层到输出层的连接权 值、输出层的 o (k )和隐含层的输出计算误 差函数对隐含层各神经元的偏导数 h (k )。
e e yio o (k )hoh (k ) who yio who
e e hih (k ) wih hih (k ) wih hih (k ) wih ( wih xi (k ) bh )
月份
销量
7
1873
相关文档
最新文档