矩阵理论第一章课后习题答案

合集下载

矩阵理论

矩阵理论

由基1, 2, 3, 4到1, 2, 3, 4的过渡矩阵为 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0
设 =(x1,x2 ,x3 ,x4 )T 在1,2,3,4下的坐标为y1,y2 ,y3 ,y4 ,则
x1 y1 x2 y2 , =(1 , 2 , 3 , 4 ) =(1 , 2 , 3 , 4 ) x3 y3 x4 y4
i 1 m
xm线性相关;否则称线性无关, 即若 ki xi , 则
i 1
m
k1 km 0.
线性无关组的任一子集是线性无关的,线性相关组的 任一扩展集仍线性相关.
维数:线性空间V中不同线性无关组中向量个数不
一定相同,向量个数最大者叫做V的维数,记为 dimV. 当dim V< ∞, 称 V 为有限维空间,否则为无 限维空间,记dim V= ∞.
k1 +k2 +k3 +k4 =1 k +k -k -k =2 5 1 1 1 1 2 3 4 于是有 解之得k1 = ,k2 = ,k3 =- ,k4 =- . 4 4 4 4 k1 -k2 +k3 -k4 =1 k1 -k2 -k3 +k4 =1
1 2 1 1 1 1 练习 : 在R 中求向量A= 在基 , 1 0 1 1 1 0 1 1 1 0 , 下的坐标. 0 1 1 1
其中1, 2 ,3 , 4为R 4中的标准基.
x1 2 x2 1 即 =(1 , 2 , 3 , 4 ) =(1 , 2 , 3 , 4 ) x3 0 x4 1
0 -2 1 y1 1 1 3 y2 , 2 1 1 y3 2 2 2 y4

矩阵理论习题答案

矩阵理论习题答案

习 题 一1. 设λ为的任一特征值,则因 λλ22- 为A =-A 22O 的特征值, 故022=-λλ. 即 λ=0或2.2. A ~B , C ~D 时, 分别存在可逆矩阵P 和Q , 使得 P 1-AP =B , Q 1-CQ =D .令T =⎪⎪⎭⎫⎝⎛Q O O P 则 T 是可逆矩阵,且T 1-⎪⎪⎭⎫⎝⎛C O O A T =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--Q O O P C O O A Q O O P 11=⎪⎪⎭⎫ ⎝⎛D O O B 3. 设i x 是对应于特征值i λ的特征向量, 则 A i x =i λi x , 用1-A 左乘得i i i x A x 1-λ=.即i i i x x A 11--λ= 故 1-i λ是A 的特征值, i =1,2,, n .4. (1) 可以. A E -λ=)2)(1)(1(-+-λλλ,=P ⎪⎪⎪⎭⎫ ⎝⎛--104003214, ⎪⎪⎪⎭⎫ ⎝⎛-=-2111AP P .(2) 不可以.(3) ⎪⎪⎪⎭⎫ ⎝⎛=110101010P , ⎪⎪⎪⎭⎫⎝⎛=-1221AP P .5. (1) A 的特征值是0, 1, 2. 故A =-(b -a )2=0. 从而 b =a .又11111-λ----λ----λ=-λaa aa A I =)223(22+---a λλλ将λ=1, 2 代入上式求得 a=0.(2) P =⎪⎪⎪⎭⎫ ⎝⎛-101010101.6. A I -λ=)1()2(2+-λλ, A 有特征值 2, 2, -1.λ=2所对应的方程组 (2I -A )x =0 有解向量p 1=⎪⎪⎪⎭⎫ ⎝⎛041, p 2=⎪⎪⎪⎭⎫ ⎝⎛401λ=-1所对应的方程组 (I +A )x =0 有解向量p 3=⎪⎪⎪⎭⎫⎝⎛101令 P =(p ,1p ,2p 3)=⎪⎪⎪⎭⎫ ⎝⎛140004111, 则 P 1-=⎪⎪⎪⎭⎫ ⎝⎛---4416414030121. 于是有A 100=P ⎪⎪⎪⎭⎫ ⎝⎛122100100P 1-=⎪⎪⎪⎭⎫⎝⎛-⋅-⋅-⋅---12412244023012122431100100100100100100100. 7. (1)A I -λ=)1(2+λλ=D 3(λ), λI -A 有2阶子式172111----λ=λ-4λ-4不是D 3(λ)的因子, 所以D 2(λ)=D 1(λ)=1, A 的初等因子为λ-1, 2λ. A 的Jordan 标准形为J =⎪⎪⎪⎭⎫ ⎝⎛-000100001设A 的相似变换矩阵为P =(p 1,p 2,p 3), 则由AP =PJ 得 ⎪⎩⎪⎨⎧==-=23211pAp Ap p Ap 0 解出P =⎪⎪⎪⎭⎫ ⎝⎛-----241231111; (2) 因为),2()1()(23--=λλλD 1)()(12==λλD D ,故A ~J =⎪⎪⎪⎭⎫ ⎝⎛200010011设变换矩阵为 P =(321,,p p p ), 则⎪⎩⎪⎨⎧=+==33212112p Ap p p Ap p Ap ⇒P =⎪⎪⎪⎭⎫ ⎝⎛---502513803 (3) ),2()1()(23-+=-=λλλλA I D ,1)(2+=λλD 1)(1=λD .A 的不变因子是,11=d ,12+=λd )2)(1(3-+=λλdA ~J =⎪⎪⎪⎭⎫ ⎝⎛--211 因为A 可对角化,可分别求出特征值-1,2所对应的三个线性无关的特征向量:当λ=-1时,解方程组 ,0)(=+x A I 求得两个线性无关的特征向量,1011⎪⎪⎪⎭⎫ ⎝⎛-=p ⎪⎪⎪⎭⎫ ⎝⎛-=0122p当λ=2时,解方程组 ,0)2(=-x A I 得⎪⎪⎪⎭⎫ ⎝⎛-=1123p , P =⎪⎪⎪⎭⎫ ⎝⎛---101110221(4) 因⎪⎪⎪⎭⎫ ⎝⎛---+=-41131621λλλλA I ~⎪⎪⎪⎭⎫ ⎝⎛--2)1(11λλ, 故A ~J =⎪⎪⎪⎭⎫ ⎝⎛10111设变换矩阵为P =),,(321p p p , 则⎪⎩⎪⎨⎧+===3232211pp Ap p Ap p Ap 21,p p 是线性方程组 0=-x A I )(的解向量,此方程仴的一般解形为p =⎪⎪⎪⎭⎫ ⎝⎛+-t s t s 3 取⎪⎪⎪⎭⎫ ⎝⎛-=0111p , ⎪⎪⎪⎭⎫ ⎝⎛=1032p为求滿足方程 23)(p p A I -=-的解向量3p , 再取 ,2p p = 根据 ⎪⎪⎪⎭⎫ ⎝⎛------t s t s 3113113622~⎪⎪⎪⎭⎫⎝⎛----t s t s s 00033000311 由此可得 s =t , 从而向量 T 3213),,(x x x =p 的坐标应満足方程s x x x -=-+3213取 T 3)0,0,1(-=p , 最后得P =⎪⎪⎪⎭⎫ ⎝⎛--010001131 8. 设 f (λ)=4322458-++-λλλλ. A 的最小多项式为 12)(3+-=λλλA m ,作带余除法得 f (λ)=(149542235-+-+λλλλ))(λA m +1037242+-λλ, 于是f (A )=I A A 1037242+-=⎪⎪⎪⎭⎫ ⎝⎛----346106195026483.9. A 的最小多项式为 76)(2+-=λλλA m , 设 f(λ)=372919122234+-+-λλλλ,则f (λ)=)()52(2λλA m ++2+λ. 于是 [f (A )]1-=1)2(-+I A .由此求出[f (A )]1-=⎪⎪⎭⎫ ⎝⎛-3217231 10. (1) λI -A =⎪⎪⎪⎭⎫ ⎝⎛---+41131621λλλ标准形⎪⎪⎪⎭⎫ ⎝⎛--2)1(00010001λλ, A 的最小多项式为 2)1(-λ;2) )1)(1(+-λλ; (3) 2λ.11. 将方程组写成矩阵形式:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛321321188034011d d d d d d x x x t x t x t x , ⎪⎪⎪⎭⎫ ⎝⎛=321x x x x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t x t x t x t d d d d d d d d 321x , A =⎪⎪⎪⎭⎫ ⎝⎛----188034011则有J =PAP 1-=⎪⎪⎪⎭⎫ ⎝⎛-100010011, .其中 P =⎪⎪⎪⎭⎫⎝⎛124012001.令 x =Py , 将原方程组改写成 : ,d d Jy y=t 则⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+==3321211d d d d d d yty y y ty y t y 解此方程组得: y 1=C 1e t +C 2T e t , y 2=C 2e t , y 3=C 3e t -. 于是x =Py =⎪⎪⎪⎭⎫ ⎝⎛++++++-t t t tt t t c )t (c c )t (c c t c c e e 24e 4e 12e 2e e 3212121.12. (1) A 是实对称矩阵. A I -λ=2)1)(10(--λλ,A 有特征值 10, 2, 2.当λ=10时. 对应的齐次线性方程组 (10I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--542452228~⎪⎪⎪⎭⎫ ⎝⎛000110102由此求出特征向量p 1=(-1, -2, 2)T , 单位化后得 e 1= (32,32,31--)T . 当λ=1时, 对应的齐次线性方程组 (I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛-----442442221~⎪⎪⎪⎭⎫ ⎝⎛-000000221 由此求出特征向量 p 2=(-2, 1, 0)T , p 3=(2, 0, 1)T . 单位化后得e 2=(0,51,52-)T , e 3=(535,534,532)T. 令 U =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---53503253451325325231, 则 U 1-AU =⎪⎪⎪⎭⎫⎝⎛1110.(2) A 是Hermit 矩阵. 同理可求出相似变换矩阵U =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---2121212i 2i 2i 21210, U 1-AU =⎪⎪⎪⎭⎫⎝⎛-22. 13. 若A 是Hermit 正定矩阵,则由定理1.24可知存在n 阶酉矩阵U , 使得U H AU =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21, i λ﹥0, I =1, 2, , n . 于是A =U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21U H = U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ 21U H U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 令B =U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 则 A =B 2.反之,当 A =B 2且B 是Hermit 正定矩阵时,则因Hermit 正定矩阵的乘积仍为Hermit 正定矩阵,故A 是Hermit 正定的. 14. (1)⇒(2). 因A 是Hermit 矩阵,则存在酉矩阵U,使得U H AU =diag(n λλλ,,,21 )令x =Uy , 其中 y =e k . 则 x ≠0. 于是x H Ax =y H (U H AU )y =k λ≧0 (k =1, 2, , n ).(2)⇒(3).A =U diag(n λλλ,,,21 )U H =U diag(n λλλ,,,21 )diag(n λλλ,,,21 )U H令 P =diag(n λλλ,,,21 )U H , 则 A =P H P . (3)⇒(1). 任取x ≠0, 有x H Ax =x H P H Px =22Px ≧0.习 题 二1. 1x =01i 42i 1+++-++=7+2,2x =1i)4i(4)2(i)1i)(1(2+-+-+-+=23, ∞x =max {}1i 42i 1,,,-+=4.2. 当 x ≠0时, 有 x ﹥0; 当 x ﹦0时, 显然有 x =0. 对任意∈λC , 有x λ=x nk kk nk kk λξωλλξω==∑∑==1212.为证明三角不等式成立,先证明Minkowski 不等式: 设 1≦p ﹤∞, 则对任意实数 x k ,y k (k =1, 2, , n )有pnk pk k y x 11)(∑=+≦∑∑==+nk ppk nk ppk y x 1111)()(证 当 p =1时,此不等式显然成立. 下设 p ﹥1, 则有∑=+nk pkk y x 1≦∑∑=-=-+++nk p kk k nk p kk k y x y y x x 1111对上式右边的每一个加式分别使用H ölder 不等式, 并由 (p -1)q =p , 得∑=+nk pkky x1≦qnk q p kk pnk pk qnk q p kk pnk pk y x y y x x 11)1(1111)1(11)()()()(∑∑∑∑=-==-=+++=qnk p k k pnk pk pnk p k y x y x 111111)]()()[(∑∑∑===++再用 qnk p k k y x 11)(∑=+ 除上式两边,即得 Minkowski 不等式.现设任意 y =(n ηηη,,,21 )T ∈C n , 则有∑=+=+nk kk k y x 12ηξω=∑=+nk k k k 12)(ηξω≦∑=+nk k k k k 12)(ηωξω≦∑∑==+nk j k nk k k 1212()(ηωξω=y x +.3. (1) 函数的非负性与齐次性是显然的,我们只证三角不等式.利用最大函数的等价定义:max(A , B )=)(21b a b a -++max(),b a y x y x ++≦max(b b a a y x y x ++,)=)(21b b a a b a b a y x y x y y x x --+++++≦)(21b a b a b a b a y y x x y y x x -+-++++ =)(21)(21b a b a b a b a y y y y x x x x -+++-++ =max( b a x x ,)+max( b a y y ,)(2) 只证三角不等式.k 1a y x ++k 2b y x +≦k 1a x +k 1a y +k 2b x +k 2b y =( k 1a x +k 2b x )+( k 1a y +k 2b y ) .4. 218132i 453i 11m +=+++++++=A ;66132i 453i 1222222F =+++++++=A ; 15m =∞A ;=1A 列和范数(最大列模和)=27+;∞A =行和范数(最大行模和)=9 ;5. 非负性: A ≠O 时S 1-AS ≠O , 于是 m 1AS S A -=>0. A =O 时, 显然A =0;齐次性: 设λ∈C , 则 λλλ==-m1)(S A S A m1ASS -=λA ;三角不等式: m11m1)(BSS AS S S B A S B A ---+=+=+≦B A BSS AS S +=+--m 1m 1;相容性: m11m1)(BS ASS S SAB S AB ---==≦m1m1BSS AS S --=A B .6. 因为I n ≠O , 所以n I >0.从而利用矩阵范数的相容性得:n n n I I I =≦n I n I ,即n I ≧1.7. 设 A =(A ij )∈C n n ⨯, x =∈ξξξT 21),,,(n C n , 且 A =ij ji a ,max , 则∑∑=ikk ik Ax ξa 1≦∑∑ikk ik a ξ=∑∑kiik k a ][ξ≦n A ∑kk ξ=∞m A 1x ;∑∑=ikk ikAx 22ξa≦∑∑ikk ika2][ξ=∑∑ikka 22][ξ=n A 2x ≦n A =∞m A 2x .8. 非负性与齐次性是显然的, 我们先证三角不等式和相容性成立. A =(a ij ), B =(b ij )∈C n m ⨯, C =(c st )∈C l n ⨯且 A =ij ji a ,max , B =ij ji a ,max , C =st ts c ,max . 则MBA +=max{m ,n }ij ij ji b a +,max ≦max{m ,n })(m ax ,ij ij ji b a +≦max{m ,n }(A +B )=max{m ,n }A +max{m ,n }B =M M B A +;MAC=max{m ,l }∑kkt ik ti c a ,max ≦max{m ,n }}{max ,∑kkt ik ti c a ≦max{m ,n }}{max 22,∑∑⋅kkt kikti c a (Minkowski 不等式)=max{m ,n }n AC ≦max{m ,n }max{n ,l }AC =M M C A .下证与相应的向量范数的相容性.设 x =∈ξξξT 21),,,(n C n , d =kmax {k ξ}, 则有∑∑=ikk ik a Ax ξ1≦∑∑ikk ik a ξ=∑∑ki ikka)(ξ≦∑kk na ξ=n A ∑kk ξ≦max{m ,n }A ∑kk ξ=1M x A ;2Ax =∑∑ikkik a2ξ≦∑∑ik k ik a 2)(ξ≦∑∑∑ikkkika )(22ξ(H ölder 不等式)=∑∑∑⋅kk ikik a 22ξ≦mn A 2x≦max{m ,n }A 2x =2M x A ;}{max 1∑=∞=n k k ik iAxξa ≦∑=nk k ik ia 1}{max ξ≦}{max 22∑∑⋅kk kik ia ξ≦}max{22nd na i⋅=n AD ≦max{m ,n }AD =∞x A M .9. 只证范数的相容性公理及与向量2–范数的相容性. 设 A =(a ij )∈C n m ⨯, B =(b st )∈C l n ⨯,x =∈ξξξT 21),,,(n C n 且 A =ij ji a ,max , B =st ts b ,max , 则∑=≤≤≤≤=nk ktik lt m i AB11,1Gmaxb aml ≦}{max ,kt kik t i b a ml ∑≦}{max 22,∑∑⋅kkt kikti b a ml (Minkowski 不等式)≦ml n ab =))((b nl a mn =G G B A .∑∑===m i nk k ikAx1212ξa≦∑∑ik k ika2)(ξ≦∑∑∑⋅ikkk ik a )(22ξ (H ölder 不等式)≦∑∑⋅ikkna )(22ξ=mn A 2x=2G x A .10. 利用定理2.12得122H 2===nI UU U.11.A 1-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0110211214321cond 1(A )=225255111=⋅=-A A ; cond ∞(A )=10251=⋅=∞-∞A A .12.设x 是对应于λ的特征向量, 则A x x m m λ=.又设 v ⋅是C n 上与矩阵范数⋅相容的向量范数,那么vm vm v mx A x x ==λλ≦v m x A因 v x >0, 故由上式可得 mλ≦m A ⇒λ≦m m A .习 题 三1. 2c λc λλ))(2(+-=-A I , 当c λρ=)(﹤1时, 根据定理3.3, A 为收敛矩阵.2. 令S )N (=∑=N0)(k k A , )(lim N N S +∞→=S , 则 0)(lim lim )()()(=-=+∞→+∞→k k k k k S S A .反例: 设 A )(k =k⎪⎪⎭⎫ ⎝⎛0001k, 则因 ∑+∞=01k k发散, 故 ∑+∞=0)(k k A发散, 但)(lim k k A +∞→=O .3. 设 A =⎪⎪⎭⎫⎝⎛6.03.07.01.0, 则 )(A ρ≦=∞A 行和范数=0.9<1, 根据定理3.7,∑∞+=⎪⎪⎭⎫ ⎝⎛06.03.07.01.0k k=(I -A )1-=⎪⎪⎭⎫ ⎝⎛937432.4. 我们用用两种方法求矩阵函数e A : 相似对角化法. 22a λλ+=-A I , a -a i ,i =λ当 =λi a 时, 解方程组 (i a -A )x =0, 得解向量 p 1=(i, 1)T .当 λ=-i a 时, 解方程组 (i a +A )x =0, 得解向量 p 2=(-i, 1)T .令 P =⎪⎪⎭⎫⎝⎛-11i i , 则P 1-=⎪⎪⎭⎫ ⎝⎛-i 1i 1i 21, 于是 e A =P ⎪⎪⎭⎫⎝⎛-a ai 00i P 1-=⎪⎪⎭⎫ ⎝⎛a a a -a cos sin sin cos . 利用待定系数法. 设e λ=(2λ+a 2)q (λ)+r (λ), 且 r (λ)=b 0+b 1λ, 则由⎩⎨⎧=-=+-aaa b b a b b i 10i 10ei e i ⇒b 0=cos a , b 1=a1sin a .于是e A =b 0I +b 1A =cos a ⎪⎪⎭⎫ ⎝⎛11+a 1sin a ⎪⎪⎭⎫ ⎝⎛-a a =⎪⎪⎭⎫ ⎝⎛-a a a a cos sin sin cos . 后一求法显然比前一种方法更简便, 以后我们多用待定系数法. 设f (λ)=cos λ, 或 sin λ则有⎩⎨⎧=-=+a-a b b aa b b sini i sini i 1010 与 ⎩⎨⎧=-=+aa b b aa b b i cos i i cos i 1010 由此可得⎪⎩⎪⎨⎧-==a a b b sini i 010 与 ⎩⎨⎧==0i cos 10b ab 故 (a 2isini a )A =⎪⎪⎭⎫ ⎝⎛-0isini isini 0a a =sin A 与(cosi a )I =⎪⎪⎭⎫⎝⎛a acosi 00cosi =cos A .5. 对A 求得P = ⎪⎪⎪⎭⎫ ⎝⎛--013013111, P 1-=⎪⎪⎪⎭⎫ ⎝⎛-24633011061, P 1-AP =⎪⎪⎪⎭⎫ ⎝⎛-211根据p69方法二,e At =P diag(e t -,e t ,e t 2)P 1-=⎪⎪⎪⎭⎫⎝⎛+--++---------t t t t tt tt t t t t t t e 3e 3e 3e 30e 3e 3e 3e 30e e 3e 2e e 3e 4e 661222tsin A =P diag(sin(-1),sin1,sin2)P 1-=⎪⎪⎪⎭⎫⎝⎛--01sin 601sin 6001sin 42sin 21sin 22sin 42sin 616. D 3(λ)=101011----λλλ=2)1(-λλ, D 2(λ)=D 1(λ)=1, A ~J =⎪⎪⎪⎭⎫⎝⎛000010011.现设r (λ,t )=b 0+b 1λ+b 2λ2, 则有⎪⎩⎪⎨⎧==+=++1e 2e 021210b t b b b b b t t ⇒b 0=1, b 1=2e t -t e t -2, b 2=t e t -e t +1. 于是e t A =r (A , t )=b 0I +b 1A +b 2A 2=I +(2e `t -t e t -2)⎪⎪⎪⎭⎫⎝⎛100100011+(t e t -e t +1)⎪⎪⎪⎭⎫ ⎝⎛100100111=⎪⎪⎪⎭⎫ ⎝⎛-+--tt e 001e 101e e 1e e tt t t t同理,由⎪⎩⎪⎨⎧=-=+=++1sin 2cos 021210b t t b b t b b b ⇒b 0=1, b 1=t sin t +2cos t -2, b 2=1-t sin t -cos t . 将其代入cos A t =b 0I +b 1A +b 2A 2, 求出cos A t =⎪⎪⎪⎭⎫ ⎝⎛----t t t t t t t cos 001cos 10cos sin 11cos cos7. 设 f (A )=∑+∞=0k k A ka ,S N=∑=Nk k A 0k a .则 f (A )=N N S +∞→lim 并且由于(S N)T=T)(∑=N k k k A a =∑=Nk k k A 0T )(a所以, f (A T )=T )(lim N N S +∞→=f (A )T .8, (1) 对A 求得P =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1111, P 1-=P , J =⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111 则有e t A =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛t t tt t tt ttt t t t t t t e e e e 2e e e 6e 2e 232eP 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛t ttt t t tt t e e e 2e 60e e e 200e e 000e 232t t t t t t tsin A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin sin 2cos sin cos 6sin 2cos sin 232P 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin 2cos 6sin cos sin 2sin cos sin 232cos A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t tt t t t tt t t t t t t cos sin cos cos 2sin cos sin 6cos 2sin cos 232P=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t t t t t t t t t t t t t t cos sin cos 2sin 60cos sin cos 200cos sin 000cos 232(2) 对A 求出P =P 1-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0100100000100001, J =⎪⎪⎪⎪⎪⎭⎫⎝⎛--010212 则有e At =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛---11e e e 222t t tt t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---100010000e 000e e 222t t tt tsin A t =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛--002sin 2cos 2sin t t tt tP 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000002sin 0002cos 2sin t t tt tcos A t =P ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1012cos 2sin 2cos t t t t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛10000100002cos 0002sin 2cos t t t t 9. (1) sin 2A +cos `2A =[)e (e i 21i i A A --]2=[)(e 21i i A A e -+]2=)e e e (e 41)e e e (e 41i 2i 2i 2i 2O O A A O O A A ++++--+---=e O =I(2) sin(A +2πI )=sin A cos(2πI )+cos A sin(2πI )=sin A [I -!21(2πI )2+!41(2πI )4-…]+cos A [2πI -!31(2πI )3+!51(2πI )5-…]= sin A [1-!21(2π)2+!41(2π)4-…]I +cos A [2π-!31(2π)3+!51(2π)5-…]I=sin A cos2π+cos A sin2π (3)的证明同上.(4) 因为 A (2πi I )=(2πi I )A ,所以根据定理3.10可得 e I A i π2+=e A e I πi 2=e A [I +(2πI )+!21(2πi I )2+!31(2πi I )3+…]=e A {[1-!21(2π)2+!41(2π)4-…]+i[2π-!31(2π)3+!51(2π)5-…]}I=e A {cos2π+isin2π}I =e A此题还可用下列方法证明:e I A πi 2+=e ⋅A e I i π2=e ⋅A P ⎪⎪⎪⎪⎪⎭⎫⎝⎛i π2iπ2πi 2e e e P 1-=e ⋅A PIP 1-=e A用同样的方法可证: e I A πi 2-=e A e I πi 2-.10. A T =-A , 根据第7题的结果得 (e A )T =e TA =e A -, 于是有e A (e A )T =e A e TA =e A A -=e O =I11. 因A 是Herm(i A )H =-i A H =-i A , 于是有e A i (e A i )H =e A i e A i -=e O =I12. 根据定理3.13, A 1-tt A e d d =e At , 利用定理3.14得 ⎰tA 0d e ττ=⎰-t A A 01d e d d τττ=A 1-τττd e d d 0A t ⎰=A 1-(e -At I ). 13. t d d A (t )=⎪⎪⎭⎫ ⎝⎛---t t t t sin cos cos sin , t d d (det A (t ))=t d d (1)=0, det(t d dA (t ))=1, A 1-(t )=⎪⎪⎭⎫ ⎝⎛-t t t t cos sin sin cos , t d d A 1-(t )=⎪⎪⎭⎫⎝⎛---t t t t sin cos cos sin14. ⎰t A 0d )(ττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎰⎰⎰⎰⎰⎰-00d 30d e 2d e d d e d e 002002002t t t t t t τττττττττττττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---002301e e1311e e )1(e 212232t t t t t t t t 15. 取 m =2, A (t )=⎪⎪⎭⎫⎝⎛t t t 02, 则 A 2(t )=⎪⎪⎭⎫ ⎝⎛+22340t t t t , t d d (A (t ))2=⎪⎪⎭⎫ ⎝⎛+t t t t 2023423≠2A (t )t d dA (t )=⎪⎪⎭⎫⎝⎛+t t t t 2022423. 困为++==--21)]()[(d d)()]()[(d d )]()()([d d )]([d d m m A A A A A A A A A t t tt t t t t t t t t t m +)(d d)]([1t tt A A m -所以当(t d d A (t ))A (t )=A (t )t d dA (t )时, 有)(d d)]([)(d d )]([)(d d )]([)]([d d 111t tt t t t t t t t t A A A A A A A m m m m ---++= =m [A (t )])(d d1t tA m -16. (1) 设 B =(ij b )n m ⨯, X =(ij ξ)m n ⨯, 则 BX =(∑=nk kj ik 1ξb )m m ⨯,于是有tr(BX )=∑∑∑===++++nk km mk n k kj jk n k k k 11111ξξξb b bijBX ξ∂∂)tr(=ji b (i =1,2,…,n ;j =1,2,…,m ) ⎪⎪⎪⎭⎫ ⎝⎛=mn n m BX X b b b b 1111)(tr(d d=T B 由于 BX 与 T T T )(B X BX =的迹相同,所以T T T ))(tr(d d ))(tr(d d B BX XB X X == (2) 设A =(ij a )n n ⨯,f=tr(AX X T ), 则有⎪⎪⎪⎭⎫ ⎝⎛=nm mn X ξξξξ1111T ,AX =⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑∑k km nk k k nk km k k k k ξξξξa a a a 1111f =∑∑∑∑∑∑++++l kkm lk lm l k kj lk lj l kk lk l ξξξξξξa a a 11)]()([][∑∑∑∑∑∂∂⋅+⋅∂∂=∂∂=∂∂k kj lk l k ijlj kj lk ij lj l k kj lk lj ij ij ξξξξξξξξξξa a a f =∑∑+klj li kkj ik ξξa amn ij X ⨯⎪⎪⎭⎫⎝⎛∂∂=ξff d d =X A A X A AX )(T T +=+ 17. 设A =(ij a )m n ⨯, 则 F (x )=(∑∑∑===nk kn k nk k nk k k 1211,,,a a a 1k ξξξ ),且A d F F F x F nn n n n n n =⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a aa a a a a a 21222211121121d d d d d d d ξξξ 18. ()⎪⎪⎪⎭⎫⎝⎛---------=='t t tt t t tt t t t t t t t t tt AtAt A 222222222e 4e 3e 3e 6e 3e 6e 2e e e 4e e 2e 2e e e 2e e 4e e在上式中令t =0, 则有A =⎪⎪⎪⎭⎫ ⎝⎛---=133131113e OA19. A =⎪⎪⎪⎭⎫ ⎝⎛---502613803, x (0)=⎪⎪⎪⎭⎫⎝⎛111, A 的最小多项式为 2)1()(+=λλϕ. 记f (λ)=t λe ,并设f (λ)=g(λ))(λϕ+)(10λb b +, 则⎩⎨⎧==---tte e 110t b b b ⇒ tt --=+=e ,)1(10t b e t b 于是⎪⎪⎪⎭⎫ ⎝⎛--+=++=---t t t t t t t t 41026138041e e e )1(e t t t At A I , x (t )=Ate x (0)=⎪⎪⎪⎭⎫ ⎝⎛-++-t t t 6191121e t20. A =⎪⎪⎪⎭⎫ ⎝⎛--101024012, f (t )=⎪⎪⎪⎭⎫ ⎝⎛-1e 21t , x (0)=⎪⎪⎪⎭⎫ ⎝⎛-111, =)(λϕdet(λI -A)=23λλ-. 根据O A =)(ϕ,可得; 252423,,A A A A A A ===,….于是23232)!31!21()(!31)(!21)(e A A I A A A I At ++++=++++=t t t t t t=2)1(e A A I t t t --++=⎪⎪⎪⎭⎫⎝⎛---++--t t t e 1e e 210124021t t t t ttx (t )=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+=+⎰⎰-t t t t f e )1(11]02111[e ]d 021)0([]d )(e )0([e 00At t At tA At x e x ττττ习 题 四1. Doolite 分解的说明,以3阶矩阵为例: 11r 12r 13r 第1框 21l 22r 23r 第2框 31l 32l 33r 第3框 计算方法如下: (ⅰ) 先i 框,后i +1框,先r 后l .第1框中行元素为A 的第1行元素; (ⅱ)第2框中的j r 2为A 中的对应元素j a 2减去第1框中同行的21l 与同列的j r 1之积.第3框中的33r 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13r 之积,再减去第2框中同行的32l 与同列的23r 之积; (ⅲ)第2框中的32l 为A 中的对应元素32a 先减去第1框中同行的31l 与同列的12r 之积,再除以22r . 计算如下:1 3 02 -3 0 2 2 -6A =⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛600030031122012001 2.Crout 分解的说明,以3阶矩阵为例:11l 12u 13u 第1框 21l 22l 23u 第2框 31l 32l 33l 第3框(ⅰ) 先i 框,后i +1框.每框中先l 后r .第1框中的列元素为A 的第1列的对应元素;(ⅱ)第2框中的2i l 为A 中对应元素2i a 减去第1框中同行的1i l 与同列的12u 之积;(ⅲ)第2框中的23u 为A 中的对应元素23a 减去第1框中同行的21l 与同列的13u 之积,再除以22l .第3框中的33l 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13u 之积,再减去第2框中同行的32l 与同列的23u 之积.计算如下:1 3 02 -3 02 -6 -6A =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---100010031662032001 2. 先看下三角矩阵的一种写法:⎪⎪⎪⎭⎫⎝⎛333231222111000a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛332211223211311121000000101001a a a a a a a a a , ii a ≠0 对本题中的矩阵A 求得Crout 分解为A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--1002105452115240512005 利用下三角矩阵的写法对上面的分解变形可得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100051000512540152001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100510005100051000512540152001=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10052510545251525405152005 3.对A 的第1列向量)1(β, 构造Householder 矩阵1H 使得 =)1(1βH 12)1(e β, 31C e ∈⎪⎪⎪⎭⎫ ⎝⎛=010)1(β, ⎪⎪⎪⎭⎫ ⎝⎛-=-01112)1()1(e ββ, u =⎪⎪⎪⎭⎫ ⎝⎛-=--01121212)1()1(12)1()1(e e ββββ⎪⎪⎪⎭⎫ ⎝⎛=-=1000010102T 1uu I H , ⎪⎪⎪⎭⎫⎝⎛=2301401111A H , ⎪⎪⎭⎫⎝⎛=23141A对1A 的第1列向量⎪⎪⎭⎫ ⎝⎛=34)2(β, 类似构造Householder 矩阵2H :⎪⎪⎭⎫ ⎝⎛-=--=3110122)2)2(12)2()2ββββe u , 21C e ∈, ⎪⎪⎭⎫ ⎝⎛-=-=4334512T 22uu I H ⎪⎪⎭⎫⎝⎛-=102512A H令12001H H H ⎪⎪⎭⎫⎝⎛=, 则有 ⎪⎪⎪⎭⎫ ⎝⎛-=100250111HA =R 并且⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==---1002501115453000153540001001T2T 112111R H H R H H R H A =QR4. 对A 的第1列向量⎪⎪⎪⎭⎫⎝⎛=202)1(β, 构造Givens 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210210102102113T , ⎪⎪⎪⎪⎭⎫⎝⎛=0022)1(13βT , ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1132221210220232322A O A T 对1A 的第1列向量⎪⎪⎪⎭⎫⎝⎛-=212)2(β, 构造 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=3223131322~12T , ⎪⎪⎪⎭⎫ ⎝⎛=023~)2(12βT , ⎪⎪⎪⎪⎭⎫⎝⎛=34023723~112A T 令 ⎪⎪⎭⎫ ⎝⎛=12T12~1T O O T , 则有 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==34002372302323221312R A T T . 于是 QR R T T A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==340023723023232232231213123403223121H13H 125. 设A =),,(i i 0i 0i 0i 1321ααα=⎪⎪⎪⎭⎫ ⎝⎛----, 对向量组321,,ααα施行正交化, 令⎪⎪⎪⎭⎫ ⎝⎛--==0i 111αβ, ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛=-=i 212i 0i 12i i 0i ],[],[1111222ββββααβ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--=--=323i232i 212i 3i 0i 1211i 0],[],[],[],[222231111333ββββαββββααβ于是⎪⎪⎪⎩⎪⎪⎪⎨⎧++=+-==3213212113i 212iβββαββαβα 写成矩阵行式K ),,(1003i 10212i 1),,(),,(321321321ββββββααα=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-= ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=32632316i 203i 612i 316i 21),,(321βββ 最后得A =K ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32632316i 203i 612i 316i 21=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32006i 630212i 2316i 203i 612i 316i 21=QR 6. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==10005152********T T 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=011000520550114022011000515*******A T 再令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==305061010610305132T T , ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=3010305000061061612A T T 最后令⎪⎪⎪⎭⎫⎝⎛=0101000013T , R A T T T =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=00030103050610616123 A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=0003010305061061603056151302625230161H 3H 2H 3R T T T =QR 7. =)1(β(0, 1)T , 12)1(=β, u =2121)1(1)1(=--e e ββ(-1, 1)T ,H 1=⎪⎪⎭⎫⎝⎛=-01102T2uu I , H =⎪⎪⎭⎫⎝⎛1001H 则有HAH T =⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛010100001111210121010100001=⎪⎪⎪⎭⎫ ⎝⎛--120111211, H 是Householder 矩阵.同理, 对)1(β, 取 c =0, s =1, T 12=⎪⎪⎭⎫⎝⎛-0110, T =⎪⎪⎭⎫ ⎝⎛12001T , 则 ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=='-0101000011112101210101000011TAT T TA=⎪⎪⎪⎭⎫ ⎝⎛---120111211, T 是Givens 矩阵.8. 对 ⎪⎪⎭⎫⎝⎛=1612)1(β, 计算u =⎪⎪⎭⎫ ⎝⎛-=--2151202021)1(1)1(e e ββ, H =I -2uu T=⎪⎪⎭⎫ ⎝⎛-344351 令 Q =⎪⎪⎭⎫⎝⎛H 001, 则⎪⎪⎪⎭⎫⎝⎛=075075600200200TQAQ同理,对)1(β,为构造Givens 矩阵,令c =53, s =54, ⎪⎪⎪⎪⎭⎫ ⎝⎛-=5354545312T ,则当⎪⎪⎭⎫⎝⎛=12001T T 时,='T TA ⎪⎪⎪⎭⎫ ⎝⎛--075075600200200.1. (1) 对A 施行初等行变换⎪⎪⎪⎭⎫ ⎝⎛----100424201011200010321~⎪⎪⎪⎪⎭⎫ ⎝⎛---142000002102121100111201 S=,1420210011⎪⎪⎪⎪⎭⎫ ⎝⎛-- A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2121101201422021(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--------10001111010011110010111100011111~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000000001100000210211110021021001 S=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11000011021021021021, A =⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛----1110000111111111(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000126420100632100101264200016321~⎪⎪⎪⎪⎪⎭⎫⎝⎛---10100000010100000011000000016321 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1010010100110001S, ()63212121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 10. (1) ⎪⎪⎪⎭⎫⎝⎛=000000005T A A 的特征值是5,0,0. 分别对应特征向量321,,e e e ,从而V=I,),(11p V =∑=(5), 11AV U =∑1-=⎪⎪⎭⎫ ⎝⎛2151. 令,12512⎪⎪⎭⎫⎝⎛-=U ()21U U U =, 则I U A ⎪⎪⎭⎫⎝⎛=000005(2)⎪⎪⎭⎫⎝⎛=2112T A A 的特征值是,,1321==λλ对应的特征向量分别为TT11,11⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛.于是 ∑=⎪⎪⎭⎫⎝⎛1003, ⎪⎪⎪⎪⎭⎫⎝⎛-=21212121V =1V , 11AV U =∑1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-06221612161取 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3131312U , 构造正交矩阵()21U U U ==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---31062312161312161‘所以,A 的奇异值分解为T 001003V U A ⎪⎪⎪⎪⎭⎫ ⎝⎛=11. 根据第一章定理1.5, A A H 的特征值之和为其迹,而由第二章2.7 F-范数的定义A A A A A HH2F )tr(==的特征值之和=∑=ri i 12σ习 题 五1.设x =T 21),,,(n ηηη 为对应于特征值λ的单位特征向量,即(QD )x =λx两边取转置共轭:H H H H x Q D x λ=与上式左乘得2H H λ=Dx D x 即 22222221212n n ηηηd d d λ+++= ,由此立即有 2min iid ≤2λ≤2max i id从而i d imin ≤λ≤i d imax .后一不等式的另一证明:根据定理2.13,λ≤)(QD ρ≤2QD i d imax 最大特征值的H 22.11定理==D D D2. A 的四个盖尔园是 1G : 9-z ≤6, 2G : 8-z ≤2, 3G : 4-z ≤1, 4G : 1-z ≤1.由于4G 是一个单独的连通区域,故其中必有一个实特征值.321G G G ⋃⋃是连通区域,其中恰有三个特征值,因而含有一个实特征值 .3. A 的四个盖尔园:1G 1-z ≤2713, :2G 2-z ≤2713, :3G 3-z ≤2713, :4G 4-z ≤2713 是互相隔离的,并且都在右半平面,从而每个盖尔园中恰有一个特征值且为正实数.4.设 =λβαi +为A 的待征值,则有盖尔园k G ,使得k G ∈λ.若α≤0, 则kk a -α≤βαi )(+-kk a ≤k R 故 kk a +-)(α≤k R ,即 kk a ≤α+kk R ≤kk R , 这与A 是严格对角占优的条件矛盾.5. (1)当两个盖尔园的交集中含有两个特征值时; (2) 当两个盖尔园相切且切点是A 的单特征值时.6. A 的盖尔园 2:1-z G ≤3, 10:2-z G ≤2, 20:3-z G ≤10. 因1G 是与32G G ⋃分离的,故1G 中恰有一个实特征值∈1λ[-1, 5].A 的列盖尔园 :'1G 2-z ≤9, 10:'2-z G ≤4, 20:'3-z G ≤2. 因'3G 是与'2'1G G ⋃分离的,故 '3G 中恰有一个实特征值 ∈3λ[18, 22]. 选取 D =diag(1, 1,21), 则 1-DAD 的盖尔园 ''G 1 : 2-z ≤4, :''2G 10-z ≤3, :''3G20-z ≤5. 这三个盖尔园是相互独立的,故必然有∈1λ[-2, 6], ∈2λ[7, 13], ∈3λ[15, 25]与上面所得的结果对照可知利用Gerschgorin 定理,特征值的最隹估计区间为∈1λ[-1, 5], ∈2λ[7, 13], ∈3λ[18, 22]7. 因为det(λB -A )=)23)(2(422+-=----λλλλλλ所以广义特征值为1λ=2, 2λ=-32.分别求解齐次线性方程组0=-x A B )(1λ , 0=-x A B )(2λ可得对应于1λ与2λ的特征向量分别为⎪⎪⎭⎫⎝⎛121k (01≠k ), ⎪⎪⎭⎫ ⎝⎛-122k (02≠k ) 8. 先证明一个结果:若A 是Hermit 矩阵,n λλ,1分别是A 的最大、最小特征值,则)(m ax )(m ax 112x R x R x x =≠==λ, )(m ax )(m ax 12x R x R =≠==x x n λ事实上,Ax x x x x Axx x x x Axx x x x x H 1H 22H 220H H 002max 11max max )(max =≠≠≠===x R下证1λ>1μ, n λ>n μ. 令 Q =A -B , 则)(m ax m ax H H 1H 1122Qx x Bx x Ax x x x +====λ>Bx x x H 12max ==1μ( Q 正定,Qx x H >0 )同理可证 n λ>n μ.现在设 1<s <n , 则根据定理5.10及上面的结果,有)m ax (m in m ax m in H H H 1021Qx x Bx x Ax x x x P s +====λ>s x x P Bx x μ===H 1021max min 9. 显然,A B 1-的特征值就是A 相对于B 的广义特征值. 设为n λλλ,,,21 且j j j Bq Aq λ=, 0≠j q , j =1, 2, …,n 其中 n q q q ,,,21 是按B 标准正交的广义特征向量. 当 )(1A B -ρ<1时,对任意 x =0≠+++n n q q q c c c 2211)()(2211HH 22H 11H n n n n q q q A q q q Ax x c c c c c c ++++++==))((222111HH 22H 11n n n n n Bq Bq Bq q q q λλλc c c c c c ++++++ =2222211n n c c c λλλ+++ ≤i iλmax )(22221n c c c ++⋅=Bx x A B H 1)(-ρ<Bx x H反之,若对任意 x ≠0, Ax x H <Bx x H 成立,并且 )(1A B -=ρλ,Bq Aq λ=,0≠q ,则取 x=q , 于是有λ=Aq q H <1H =Bq q10. 若λ是BA 的特征值,q 是对应于λ的特征向量,即(BA )q =λq =λIq由此可知,λ是BA 的相对于单位矩阵I 的广义特征值 ,因此BAx x Ix x BAxx x R BA x x I x H 1H H 111222max max )(max )(======λ=)(maxH H 12Ax Bxx x x =≤)(max )(max H 1H 122Ax x Bx x x x == =)()(11A B λλ同理)(m in )(m in )(H H 1122Ax Bxx x x R BA x I x n ====λ≥)(m in )(m in H 1H 122Ax x Bx x x x == =)()(A B n n λλ11. 由于x ≠0时,12)()(==x x R x R ,从而5.24式等价于}0,1)(m in{m ax H 22)(2===-⨯∈x P x x R r n n P r C λ我们约定,下面的最小值都是对12=x 来取的. 令x =Qy , 则y y Ax x x R Qy P x P x P ΛH H H 2H 2H 2m in m in )(m in 0=====由于 n r n Q P ⨯-∈)(H 2C , 则在齐次线性方程组 0=Qy P H 2中,方程的个数小于未知量的个数,根据 Cramer 法则,它必有非零解. 设),,,,0,,0(~1n r r y ηηη +=,(1~2=y )为满足方程的解(容易证明这种形式的解必存在),则)(min ~min 22112~H ~H 2H 2n n r r r r y Q P y Q P y y ηληληλ ++=++==0Λ≤r λ 注意到 ⊆==}1~,~~{2H 2y y Q P y 0}1,{2H 2==y Qy P y 0,从而)(min H 2x R x P 0==)(min H 2y R Qy P 0=≤y y y R y Q P y Q P ΛH ~~~m in )~(m in H 2H 20===≤r λ 特别地,取),,(12n r q q P +=时,根据定理5.9)(min H 2x R x P r 0==λ故(5.24)式成立. 12. 我们约定:以下的最小值是对单位向量来取的,即证},1)(min{max H 22)(20C ===-⨯∈Bx P x x R r n n P r λ成立. 令 x =Qy , 则有y y x R BQy P B Bx P ΛHH2H 2m in )(m in === 设齐次线性方程组 0=BQy P H 2有形如 1~),,,,,0,,0(~21==+y y n r r ηηη 的解(不难证明这样的解一定存在),则因})({}~)(~{H 2H 200=⊆=y BQ P y y BQ P y所以)(min H 2x R B BxP ≤22112H ~~~min H 2n n r r r r y BQ P y y ηληληλ+++=++= Λ0≤r λ 特别地,取 ),,,(21H 2n r r q q q P ++=时,根据定理5.12可得r B Bx P x R λ==)(min H 20由此即知(5.44)成立.习 题 六求广义逆矩阵{1}的一般方法: 1)行变换、列置换法利用行变换矩阵S 和列置换矩阵P , 将矩阵A 化成SAP =⎪⎪⎭⎫⎝⎛O O K I r则。

矩阵论第一章答案

矩阵论第一章答案
n
α = (a1 , a2 ,..., an ) ,
∑a
i =1
i
= 0,
对任意 α , β ∈ L , α = (a1 , a2 ,..., an ) , β = (b1 , b2 ,..., bn ) 有
6
n
n i =1
n i =1
α + β = (a1 + b1 ,..., an + bn ),
7. 解:是线性空间.不难验证 sin t , sin 2t ,…, sin nt 是线性无关 的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所 以它们是 V 中的一个组基 . 由高等数学中傅里叶( Fourier )系数知
ci =
1 π


0
t sin itdt .
8. 解:⑴ 不是,因为公理 2 ' ) 不成立:设 r=1, s=2, α=(3, 4), 则 (r+s) o (3, 4)= (9, 4), 而 r o (3, 4) ⊕ s o (3, 4)=(3,4) ⊕ (6, 4)= (9, 8), 所以 (r+s) o α≠r o α ⊕ s o α. ⑵ 不是,因为公理 1)不成立:设α= (1,2) , β= (3,4) , 则α ⊕ β=(1,2) ⊕ (3,4) = (1,2), 所以 α ⊕ β≠β ⊕ α. ⑶ 不是,因为公理 2 ' ) 不成立:设 r=1, 则 (r+s) o α=3 o (3, 4)= (27, 36) 而 s=2, α=(3,4) , β ⊕ α= (3,4) ⊕ (1,2) = (3,4) ,
3. 解:⑴ 不是,因为 当 k∈Q 或 R 时,数乘 k α 不封闭;⑵ 有 理域上是;实数域上不是,因为当 k∈R 时,数乘 k α 不封闭.⑶ 是 ; ⑷ 是;⑸ 是;⑹ 不是,因为加法与数乘均不封闭.

矩阵论习题答案

矩阵论习题答案

自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。

矩阵理论习题解答等材料

矩阵理论习题解答等材料

西南科技大学研究生试题单(B 卷)(2014级高等工程数学A)第一部分 矩阵理论(共32分)1、(8分)填空题(1)每个n 阶矩阵都相似于一个 矩阵。

(2)n nA C⨯∈,A 为正规矩阵的充要条件是A 对角形矩阵。

(3)正交变换在规范正交基下的矩阵是 矩阵。

(4)A 的最小多项式 A 的零化多项式。

2、(6分) 求4R 的子空间1234123412341234{(,,,)|0},{(,,,)|0}V a a a a a a a a W a a a a a a a a =-+-==+++=的交V W I 的一组基。

3、(8分) 已知111111,012A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭计算5432()2822g A A A A A E =-++-。

4、(10分)求矩阵213121242A -⎛⎫⎪= ⎪ ⎪⎝⎭的Doolittle 分解和LDU 分解。

第二部分 数值分析(共36分)5、 (4分)解答下列各题 设函数2015201420131()5.2015!f x x x x =++,求差商0120142015[2,2,2,2]?f =L 6、(8分)设函数4()f x x =,不直接用拉格朗日插值公式,而用拉格朗日余项公式求出以1,0,1,2x =-为插值节点的三次插值多项式3().L x7、(8分)设有求积公式2120()(0)(1)(2)f x dx af a f a f ≈++⎰试确定系数012,,a a a 使上述公式的代数精度尽量高,且指出其代数精度。

8、(8分)已知方程组123123123102212100.51.931x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ (1) 构造Jacobi 迭代法的迭代格式,迭代格式是否收敛?说明理由; (2) 取(0)(0,0,0)T x=,用上述迭代法来计算一步迭代值(保留小数点后4位)。

9、(8分)若求解初值问题为24,015(0)1x y y x y y ⎧'=-≤≤⎪⎨⎪=⎩, 试写出Euler 方法求解的迭代格式(0.2)h =,并计算(0.2),(0.4)y y 的值(保留小数点后至少8位)。

线性代数 第一章矩阵 参考答案

线性代数 第一章矩阵 参考答案

0 A2
0 A1
0 I A11r1 , A21r2 I 0 I 0 0 I
0 A11
A2 1 0
P31 习题 1.4 1.按上课要求做,则此题中行阶梯形答案不唯一,行最简形和标准形答案唯一
1 1 1 (1) 0 2 1 0 0 0
法一
2 1 1 B ( A 2 I ) A ,求出 ( A 2 I ) 1 1 1 4 3 4 2 3 3 8 B 1 5 3 1 1 0 2 9 1 6 4 1 2 3 2 12
4.解: 4 X
4 0 0 4 8 (3) 2 14 2 (4) 3 11 5 11 5 4 10 1 1 0 1 7.解: AB ; BA 1 2 0 0 1 2
1 0 (2) 0 0 1 0 (3) 0 0 1 0 (4) 0 0
1 1 0 0 3 2 0 0 1 1 0 0
1 1 0 0 3 1 1 0 2 1 0 0
1 0 1 ,0 1 2 1 0 0 1 1 0 0 0 1 1 1 , 0 0 0 1 0 0 0 0 7 0 1 5 1 , 0 1 1 0 0 0 0 2 1 1 0 5 1 ,0 1 1 0 0 0 0 0 0 0
(法二)
A1 X1 X 2 的逆阵为 B ,则有 0 X 3 X4 A1 X 1 X 2 I 0 0 X X I 0 4 3
A21 。 0
I 0 r1 r2 A2 0 I 0 0 A21 1 所以 A 1 0 A1 A1 0

矩阵论课后习题答案

矩阵论课后习题答案

第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。

(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。

(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*)
其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和
A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U*
∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在
2 5
5 0 1 5
0 1 0
1
5
0
2 5
习题3-9
#3-9:若S,T分别为实对称,反实对称矩阵,则 A=(E+T+iS)(E-T-iS)-1为酉矩阵.
证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1
=((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
∴ A+B是正定Hermite矩阵.
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*,
其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列.
证:因为A是正规矩阵,所以存在UUnn 使得 其中1,…, ArA=n是=UUdAdi的iaag特g((征1r1,,值…….,,于nn是r))U,U**,=0 蕴∴涵Air==U0d,iia=g1(,0…,…,n,.0后)U者*=又0.蕴涵 1=…=n=0.

华东理工大学线性代数习题答案-第一章

华东理工大学线性代数习题答案-第一章

第一章 矩阵 一、习题解答1.1解:由矩阵相等即对应元素相等,可得⎪⎪⎩⎪⎪⎨⎧=-===xz u y u x 28122即得2,1,1,4-==-=-=u z y x 1.2解:依题意,⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡--=3113341131124042263X ,即得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=131311134X 1. 3(1)解:原式=10132231=⨯+⨯+⨯(2)解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---933162 (3)解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----916144102281010 (4)解:原式=323223313113212112233322222111)()()(x x a a x x a a x x a a x a x a x a ++++++++1.4解:由可交换矩阵的定义,知道所求矩阵必为3阶方阵,不妨设其为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i hg f e d c b aB ,于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i hgf e d c b aAB 000100010=,00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i h g f e d⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=h ge d b ai hgf edc b a BA 000000100010,由BA AB =,即得=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00i h g f e d ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡h g e d b a 000,由相应元素相等,则得,,,0f b i e a h g d ====== 于是c b a a b a c b a B ,,(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=均为任意常数)即为与A 可交换的所有矩阵。

1. 5证:依题意,可设两上三角形矩阵分别为[][]nn ijnn ijb B a A ⨯⨯==,,则当j i >时,成立0=ij a 及0=ij b ,若记乘积矩阵C AB ==[]nn ij c ⨯,则由矩阵乘法定义,有kj nik ik i k kj ik kjnk ik ij b a b a b ac ∑∑∑=-==+==111,因为B A ,均为上三角形矩阵,故当j i >时,上式右端第一项中的ik a 及第二项中的kj b 均为零,进而知0=ij c ,即乘积矩阵AB C =亦为上三角形矩阵。

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

第 1 章线性空间和线性变换(详解)1-1证:用 E ii表示n阶矩阵中除第i行,第i列的元素为 1外,其余元素全为 0 的矩阵 . 用E ij(i j , i1,2,, n1) 表示n阶矩阵中除第 i 行,第 j 列元素与第 j 行第 i 列元素为1 外,其余元素全为0的矩阵.显然, E ii,E ij都是对称矩阵, E ii有 n( n1)个.不难证明E ii,E ij是线性无关的,2且任何一个对称矩阵都可用这n+ n( n1)= n( n 1)个矩阵线性表示,此即对称矩阵组成n(n 1)维线性空间 .222同样可证所有n 阶反对称矩阵组成的线性空间的维数为n(n 1).2评注 : 欲证一个集合在加法与数乘两种运算下是一个n(n 1)维线性空间,只需找出n(n 1)个向量线性无关,并且集合中任何一个向量都可以用这2n(n 1)个向量线性表示即22可.1-2 解:令x1 1 x2 2x3 3x4 4解出 x1 , x2 , x3, x4即可.1-3解:方法一设A x1E1x2E2x3E3x4E4即12111111100 3x1 1 1x2 1 0x3 0 0x4 00故1 2x1x2x3x4x1x2x303x1x2x1于是x1x2x3x41, x1x2x3 2x1x20, x13解之得x1 3, x23, x32, x41A E,E,E,E(3, 3,2,1)T方法二应用同构的概念,R2 2是一个四维空间,并且可将矩阵 A 看做(1,2,0,3)T,E1,E2, E3, E4可看做(1,1,1,1)T,(1,1,1,0)T,(1,1,0,0)T,(1,0,0,0)T.于是有1111110003111020100311000001021000300011因此 A 在E1,E2,E3,E4下的坐标为(3,3,2,1)T.1-4 解:证:设k1 1k22k33k440即11111110k1 1 1k2 0 1k3 1 0k4 1 1k1k2 k3k4k1k2k3k1k3k4k1k2k4于是k1k2k3k40,k1k2k30k1k3k40, k1k2k40解之得k1k2k3k40故α,α,α,α 线性无关.1234设a b11x211x31110c d x110110x41 11x1x2x3x4x1x2x3x1x3x4x1x2x4于是x1x2x3x40, x1x2x30x1x3x40, x1x2x40解之得x1b c d2a, x2a cx3 a d , x4a bx1, x2 , x3 , x4即为所求坐标.1-5 解:方法一(用线性空间理论计算)1p( x) 1 2x31,x, x2, x302y123y 21,x 1,( x 1) ,( x1)y3y4又由于1,x1,( x1)2 ,( x1)311111,x, x2 , x30123 0013 0001于是 p( x) 在基1, x1,( x1)2 ,( x1)3下的坐标为y11111113y2012306y3001306y4000122方法二将 p(x) 12x3根据幂级数公式按x 1 展开可得p( x) 1 2x3p(1)p (1)(x1)p (1) (x1)2p (1)( x1)32!3!36(x1)6(x1)22(x1)3因此 p( x) 在基1, x1,( x1)2 ,( xT 1)3下的坐标为3,6,6, 2.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设β,β,β,βα,α,α,αP将 α1,α2 ,α3, α4 与 β1, β2, β3,β4 代入上式得2 0 5 6 1 0 0 1 13 3 6 1 1 0 01 12 1 0 1 1 P0 1 01 30 1 1故过渡矩阵10 01 10 5 62 P1 1 0 0 1 3 3 61 10 1 1 2 10 0 1 1 10 1 3121 22231 5 42 211 9 52 232 11 82 2②设1y 1ξ0 β β β β y 21 ( 1, 2, 3 , 4 )y 3y 4将 β1, β2, β3, β4 坐标代入上式后整理得719 y 1 2 0 5 6 1 8 y 2 1 3 3 6 0 27 y 3 1 1 2 1 1 1 y 411 33 227评注 :只需将iβ1,β2 ,β3, β41,2,3,4P计算出, β代入过渡矩阵的定义α α α α P .1-7 解:因为span{ α1, α2}span{ β1,β2}span{ α1, α2, β1,β2}由于秩 span{ α1,α2 , β1, β2}3 ,且α1, α2, β1是向量α1, α2, β1,β2的一个极大线性无关组,所以和空间的维数是3,基为α1,α2,β1.方法一设ξ span{α1,α2}span{ β1, β2} ,于是由交空间定义可知112121k31k41k1k210130117解之得k1l2 , k24l2 ,l13l2 (l2为任意数)于是ξ k1α1k2α2l 2[5,2,3,4] T( 很显然ξl1 1l2 2 )所以交空间的维数为 1,基为[5,2,3,4] T.方法二不难知span{ α1,α2}span{ α1,α2}, span{ β1,β2} span{ β1, β2}其中α[ 2, 2,0,1] T, β[13,2,1,0] T.又span{ α1,α2 }也是线性方程组223x1x32x4x22x3x4的解空间 . span{β1,β2}是线性方程组x113x32x4 3x22x3x4的解空间,所以所求的交空间就是线性方程组x 1 x 3 2x 4x 2 2x 3 x 4x 1 13x 3 2x 4x 2 32x 3x 4的解空间,容易求出其基础解系为[ 5,2,3,4] T ,所以交空间的维数为1,基为[ 5,2,3,4] T .评注:本题有几个知识点是很重要的.(1)span{ α1,α2 , , αn } 的 基 底 就 是α1, α2, , αn 的极大线性无关组. 维数等于秩{ α1,α2 ,,αn } . (2) span{α1, α2} span{ β1, β2} span{ α1,α2 , β1, β2} . (3) 方法一的思路,求交span{ α,α} span{ β, β} 就是求向量 ,既可由 α, α 线性表121 2ξ1 2示,又可由 β, β线性表示的那部分向量 . (4) 方法二是借用“两个齐次线性方程1 2组解空间的交空间就是联立方程组的解空间” ,将本题已知条件改造为齐次线性方程组来求解 .1-8 解:(1):解出方程组 (Ⅰ)x 1 2x 2 x 3 x 45x 1 10x 2 6x 3的基础解系 ,即是 V 1 的基 ,4 x 4 0解出方程组 (Ⅱ) x 1x 2 x 3 2 x 4 0 的基础解系 ,即是 V 2 的基 ;x 12x 2 x 3x 4 0(2): 解出方程组5x 1 10 x 2 6x 3 4 x 4 0 的基础解系 ,即为 V 1V 2的基 ;x 1 x 2x 32x 4 0(3): 设 V 1 span 1,,k,V 2 span1 ,, l ,则1 ,, k ,1 ,, l 的极大无关组即是V 1 V 2 的基 . 1-9 解 : 仿上题解 .1-10 解 : 仿上题解 . 1-11 证:设l 0ξ l 1A (ξ) l 2A2(ξ)l k 1Ak 1(ξ) 0①用 A k 1 从左侧成 ① 式两端,由 A k (ξ) 0 可得l 0A k 1 (ξ) 0因为 A k 1 (ξ) 0 ,所以 l 00,代入 ①可得l 1A (ξ) l 2A 2 (ξ)l k 1A k 1 (ξ) 0②用k 2kA从左侧乘②式两端,由Aξ0可 得 l0 0,继续下去,可得( )l 2l k 1 0 ,于是 ξ,A (ξ), A 2 (ξ), ,A k 1(ξ) 线性无关 .1-12解:由 1-11可知, n 个向量 ξ 0,A ( ),A2(ξ),,An 1 (ξ)线性无关,它是 V 的ξ一个基 . 又由ξξ2ξ,An 1ξA [,A( ),A( ),( )][A (ξ),A 2(ξ), ,A n 1(ξ)][A (ξ),A2(ξ),,An 1(ξ),0]0 0 0 010 0 ξξ2ξ ,An 1ξ 0 1[,A (),A( ),( )]0 0 0 010 n n所以 A在, (ξ),A 2(ξ), ,An 1(ξ)下矩阵表示为 n 阶矩阵ξA0 0 0 01 0 0 00 10 00 0 0 0 n0 01V 中任何一组 n个线性无关的向量组都可以构成V 的一个基,评注 : 维线性空间 因此 ξ,(ξ), A 2(ξ), ,A n1(ξ)是 V 的一个基 .A1-13 证: 设 1, , r , , s1 , , m A, A 1, , r , , s设 1 , , r 是 1,, r ,, s 的极大无关组,则可以证明1,, r 是 1, , r,,s 的极大无关组 .1-14 解: (1) 由题意知A [α1, α2,α3 ] [ α1,α2 ,α3] A1 1 1[β, β, β] [ α,α , α ] 0 1 11 231 230 0 1设 A在基 β1, β2, β3下的矩阵表示是 B ,则1 1 112 3 1 1 11BP 1AP 01 11 0 3 0 1 10 0 1 2 1 5 0 0 12 4 434 6238(2) 由于 A0 ,故 AX 0 只有零解,所以 A的核是零空间 . 由维数定理可知A 的值域是线性空间 R 3 .1-15 解 :已知 A1,2,31,2,3A(1) 求得式 1 , 2 , 3 1 ,2 ,3 P 中的过渡矩阵 P ,则BP 1AP 即为所求 ; (2) 仿教材例 1.5.1.(见<矩阵分析 >史荣昌编著 .北京理工大学出版社 .)1-16 解 :设 A1 ,2 ,3 , 则 R( A)span1 ,2 ,3 ; N ( A) 就是齐次方程组 Ax的解空间 .1-17 证 :由矩阵的乘法定义知AB 与 BA 的主对角线上元素相等 , 故知 AB 与 BA 的迹相等 ; 再由 1-18题可证 .1-18 证 :对 k 用数学归纳法证。

张跃辉-矩阵理论与应用 前第四章答案

张跃辉-矩阵理论与应用 前第四章答案

A C
B D
可逆并求其逆.
(
解:(1)
A 0
B)−1 C
=
(A−1 0
−A−1BC C −1
−1
)
.
3
(2) 由 13 题可知该分块矩阵可逆. 根据 13 题证明中的下述等式
(
)(
)(
)
I0 −CA−1 I
AB CD
=
A
B
0 D − CA−1B
,
再由本题 (1) 中的结论可知 (以下记 G = D − CA−1B)
设矩阵 )
A

A − BC
均可逆,
试用
A, A−1, B, C
表示
(A − BC)−1.(提示:
研究分块
矩阵
AB CI
的逆矩阵.)
(
)(
)( )
证明:记 X = A − BC. 由于
A C
B I
=
A − BC 0
B I
I C
0 I
, 所以
( A C
B)−1 I
=
( I
−C
)( 0 A − BC
I
0
B)−1
17. 求下列各矩阵的满秩分解:
123 0
(1) A = 0 2 1 −1 ;
102 1
1 −1 1 1
(2)
A =
−1 −1
1 −1
−1 1
−1 1
.
1 1 −1 −1
答案:
1
(1) A = 0
1
0 −1 1
(
1 0
2 −2
3 −1
)
0 1
;
1

矩阵理论(科学出版社)习题详细解答

矩阵理论(科学出版社)习题详细解答

习题 一1.(1)因 cos sin sin cos nx nx nx nx ⎡⎤⎢⎥-⎣⎦ cos sin sin cos x x x x ⎡⎤⎢⎥-⎣⎦= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++⎡⎤⎢⎥-++⎣⎦,故由归纳法知cos sin sin cos nnx nx A nx nx ⎡⎤=⎢⎥-⎣⎦。

(2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出23,A A 即可。

(3)记J=0 1 0 1 1 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则 , 112211111 () n n n nn n n n n n n n n nii n inni n nna C a C a C a C a C a A aE J Ca Ja C a a -----=-⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n∑。

2.设1122 (1,0),0 a A P P a A E λλ-⎡⎤===⎢⎥⎣⎦则由得21112111 1 1 210 0 0 a λλλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,不可能。

而由2112222 0 0 000 0 0 a λλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,知1i λ=±所以所求矩阵为1i P B P -, 其中P 为任意满秩矩阵,而1231 0 1 0 1 0,,0 10 1 0 1B B B -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦。

注:2A E =-无实解,n A E =的讨论雷同。

3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2n 个未知数时线性方程AX -XA=0有2n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,通过直接检验即发现A 为纯量矩阵。

矩阵理论黄廷祝答案

矩阵理论黄廷祝答案

矩阵理论黄廷祝答案一、职业道德1、企业文化的功能有()A、激励功能B、自律功能C、导向功能D、整合功能2、下列说法中,不符合从业人员开拓创新要求的是()A、坚定的信心和顽强的意志B、先天生理因素C、思维训练D、标新立异3、办事公道对企业活动的意义是()A、企业赢得市场、生存和发展的重要条件B、抵制不正之风的客观要求C、企业勤俭节约的重要内容D、企业能够正常运转的基本保证4、要做到平等尊重,需要处理好()之间的关系A、上下级B、同事C、师徒D、从业人员与服务对象5、以下关于'节俭“的说法,你认为正确的是()A、节俭是美德,但不利于拉动经济增长B、节俭是物质匮乏时代的需要,不适应现代社会C、生产的发展主要靠节俭来实现D、节俭不仅具有道德价值,也具有经济价值6、下列说法中,你认为正确的有()A、岗位责任规定岗位的工作范围和工作性质B、操作规划是职业活动具体而详细的次序和动作要求C、规章制度是职业活动中最基本的要求D、职业规范是员工在工作中必须遵守和履行的职业行为要求7、就职纪律的特性来说,它一般具有()A、一定的模糊性B、非强制C、明确的规定性D、法律强制性8、文明生产的具体要求包括()A、语言文雅、行为端正、精神振奋、技术熟练B、相互学习、取长补短、互相支持、共同提高C、岗位明确、纪律严明、操作严格、现场安全D、优质、低耗、高效二、职业道德个人情况表现部分1、到领导办公室汇报工作,领导示意我坐下时,我通常会()A、不坐下,站在领导办公桌前B、翘着腿坐在椅子上C、斜靠在椅子上D、端坐于椅子上2、当我的工作得到了大家的肯定时,我通常会()A、觉得可以稍微放松一下B、继续保持这样的工作状态C、觉得这是自己努力工作的回报D、想把今后的工作做得更好3、一天,顾客在就餐过程中突然大声叫道:'我的手提包不见了!“并说包内装有一张机票、一张信用卡和1、7万元人民币。

如果你是这家餐厅的经理,你会()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.按通常矩阵的加法及数与矩阵的乘法,下列数域F 上方阵集合是否构成F 上的线性空间:(1)全体形如⎪⎪⎭⎫ ⎝⎛b a-a 0的二阶方阵的集合; (2)全体n 阶对称(或反对称、上三角)矩阵的集合; (3){|0,}n n V X AX X F ⨯==∈(A 为给定的n 阶方阵).解:(1)设⎪⎪⎭⎫ ⎝⎛=111b a-a 0α⎪⎪⎭⎫ ⎝⎛-=222a 0b a β⎪⎪⎭⎫⎝⎛-=3330b a a γ ①αββα+=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+111222212121222111b a -a 0a 00a 0b a -a 0b a b b a a a a b a ②)(0b a -a 0000a 0b a -a 0)(323232111321321321333212121333222111γβαγβα++=⎪⎪⎭⎫⎝⎛+--++⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛++---++=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=++b b a a a a b b b a a a a a a b a a b b a a a a b a a b a③存在零向量V ∈0,使得对每个V a ∈,a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+111111b a -a 00000b a -a 00④对每个V a ∈,存在负向量a -,使得0b -a a -0b a -a 0)(111111=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=-+a a再令F y x ∈,⑤αα)(b a -a 0xyb xya -xya 0yb ya -ya 0b a -a 0)(111111111111xy xy x y x y x =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛= ⑥αα=⎪⎪⎭⎫⎝⎛=111b a -a 011⑦βαβαx x b a xb xb xa xa xa xa b b a a a a x b a x x +=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+--+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+222111212121212121222111a 0b a -a 000a 0b a -a 0)(⑧ya xa yb xb yaxa ya xa y x y x +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+=+111111*********yb ya -ya 0xb xa -xa 00b a -a 0)()(α所以全体形如⎪⎪⎭⎫⎝⎛b a -a 0的二阶方阵的集合构成F 上的线性空间。

(2)设V 是一个非空集合,F 是数域.因为V 为全体n 阶对称矩阵,所以令111211112111121212222122221222121212,,n n n n n n n n nn n n nn n n nn a a a b b b c c c a a a b b b c c c A B C a a a b b b c c c ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭,其中,{},,,,1,2,,ij ji ij ji ij ji a a b b c c i j n ===∈又在V 中有向量的加法,使得对任意的向量,A B V ∈,有和向量A B V +∈.对每个纯量x F ∈及向量A V ∈,有纯量积xA V ∈. ①111211112121222212221212111112121111111212121212222221122n n n n n n nn n n nn n n n n n n n n n nn nn a a a b b b a a a b b b A B a a a b b b a b a b a b b a b a b a b a b a b a b a b a b ⎛⎫⎛⎫⎪ ⎪⎪ ⎪+=+⎪ ⎪⎪ ⎪⎝⎭⎝⎭++++++⎛⎫⎪+++ ⎪== ⎪⎪+++⎝⎭ 121212222221122111211112121222212221212n n n n n n n nn nn n n n n n n nn n n nn a b a b a b a b a b a b a b b b a a a b b b a a a B A b b b a a a ⎛⎫⎪+++ ⎪⎪⎪+++⎝⎭⎛⎫⎛⎫⎪⎪⎪ ⎪=+=+ ⎪ ⎪⎪⎪⎝⎭⎝⎭②111211112111121212222122221222121212111112121121212222()n n n n n n n n nn n n nn n n nn n n a a a b b b c c c a a a b b b c c c A B C a a a b b b c c c a b a b a b a b a b ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪++=++⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+++++=111212221222112212111111121212111212121222222222111222n n n n n n n n nn nn n n nn n n n n n n n n n n n n nn nn nn c c c a b c c c a b a b a b c c c a b c a b c a b c a b c a b c a b c a b c a b c a b c ⎛⎫⎛⎫ ⎪ ⎪+ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭++++++⎛++++++=++++++ 11121111112121121222212122222212112211121111212122212n n n n n n n n nn n n n n nn nn n n n n n nn a a a b c b c b c a a a b c b c b c a a a b c b c b c a a a b b b a a a b a a a ⎫ ⎪ ⎪ ⎪ ⎪⎝⎭+++⎛⎫⎛⎫ ⎪ ⎪+++ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎛⎫ ⎪ ⎪=+ ⎪ ⎪⎝⎭ ()1112121222212221212n n n n n nn n n nn c c c b b c c c b b b c c c A B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++ ③存在零向量0V ∈,使得对每个A V ∈,111211112121222212221212000000000n n n n n n nn n n nn a a a a a a aa a a a a A A a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪⎪+=+== ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭④对每个A V ∈,存在负向量111212122212n n n n nn a a a aa a A a a a ---⎛⎫⎪--- ⎪-= ⎪ ⎪---⎝⎭ ,使得 ()111211112121222212221212000000000n n n n n n nn n n nn a a a a a a a a a a a a A A a a a a a a ---⎛⎫⎛⎫⎛⎫⎪⎪⎪--- ⎪ ⎪ ⎪+-=+== ⎪ ⎪ ⎪⎪⎪⎪---⎝⎭⎝⎭⎝⎭⑤令,,,x y F A B V ∈∈()()111211112121222212221212111211112122212n n n n n n nn n n nn n n n n nn a a a ya ya ya a a a ya ya ya x yA x y x aa a ya ya ya xya xya xya a a xya xya xya xy xya xya xya ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪ ⎪ ⎪=⋅⋅=⋅ ⎪ ⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎪ ⎪==⋅ ⎪⎪⎝⎭()212122212n n n n nn a a a a xy Aa a a ⎛⎫⎪⎪= ⎪⎪⎝⎭⑥11121111212122221222121211n n n n n n nn n n nn a a a a a a a a a a a a A A a a a a a a ⎛⎫⎛⎫⎪⎪⎪ ⎪⋅=⋅== ⎪ ⎪⎪⎪⎝⎭⎝⎭⑦()111211112121222212221212111112121121212222221122(n n n n n n nn n n nn n n n n n n n n nn nn a a a b b b aa ab b b x A B x a a a b b b a b a b a b a b a b a b x a b a b a b ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪+=+⎪⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭+++⎛⎫⎪+++ ⎪=⋅ ⎪⎪+++⎝⎭=11111212112121222222112211121111212122221222121)()()()()()()()()n n n n n n n n nn nn n n n n n n nn n a b x a b x a b x a b x a b x a b x a b x a b x a b x a x a x a x b x b x b x a x a x a x b x b x b x a x a x a x b x b +++⎛⎫⎪+++ ⎪⎪⎪+++⎝⎭⎛⎫⎪ ⎪=+⎪⎪⎝⎭2111211112121222212221212n nn n n n n n n nn n n nn x b x a a a b b b a a a b b b x x a a a b b b xA xB⎛⎫⎪⎪⎪⎪⎝⎭⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=⋅+⋅ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭=+⑧()()()()()()()()()()()11121111212122221222121211121111212122212n n n n n n nn n n nn n n n n nn a a a x y a x y a x y a a a a x y a x y a x y a x y A x y a a a x y a x y a x y a xa xa xa ya ya ya xa xa xa xa xa xa +++⎛⎫⎛⎫⎪ ⎪+++ ⎪⎪+=+⋅=⎪ ⎪⎪⎪ ⎪+++⎝⎭⎝⎭⎛⎫ ⎪ ⎪=+ ⎪⎪⎝⎭2122212111211112121222212221212n n n n nn n n n n n n nn n n nn ya ya ya ya ya ya a a a a a a a a a a a a x y a a a a a a xA yA⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪=⋅+⋅ ⎪ ⎪⎪⎪⎝⎭⎝⎭=+所以,V (全体n 阶对称矩阵的集合)是F 上的一个线性空间(或向量空间). (3)设V 是一个非空集合,F 是数域.因为{}|0,n n V X AX X F ⨯==∈(A 为给定的n 阶方阵),所以令111211112111121212222122221222111121212,,n n n n n n n n nn n n nn n n nn a a a b b b c c c a a a b bb cc c A B C a a a b b b c c c ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭, 其中,{},1,2,,i j n ∈又在V 中有向量的加法,使得对任意的向量11,A B V ∈,有和向量11A B V +∈.对每个纯量x F ∈及向量1A V ∈,有纯量积1xA V ∈. ①11121111212122221222111212111112121111111212121212222221122n n n n n n nn n n nn n n n n n n n n nn nn a a a b b b a a a b b b A B a a a b b b a b a b a b b a b a b a b a b a b a b a b a b ⎛⎫⎛⎫⎪⎪⎪ ⎪+=+⎪ ⎪⎪⎪⎝⎭⎝⎭+++++⎛⎫⎪+++ ⎪==⎪⎪+++⎝⎭12121222222112211121111212122221222111212n n n n n n n n nn nn n n n n n n nn n n nn a b a b a b a b a b a b a b b b a a a b b b a a a B A b b b a a a +⎛⎫⎪+++ ⎪⎪⎪+++⎝⎭⎛⎫⎛⎫⎪⎪⎪ ⎪=+=+ ⎪ ⎪⎪⎪⎝⎭⎝⎭②1112111121111212122221222212221111212121111121211212122()n n n n n n n n nn n n nn n n nn n n a a a b b b c c c aa ab b bc c c A B C a a a b b b c c c a b a b a b a b a b ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪++=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭+++++=11121222221222112212111111121212111212121222222222111222n n n n n n n n nn nn n n nn n n n n n n n n n n n n nn nn c c c a b c c c a b a b a b c c c a b c a b c a b c a b c a b c a b c a b c a b c a b c ⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪+ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭++++++++++++=++++++ 1112111111212112122221212222221211221112111122122212nn n n n n n n n n nn n n n n nn nn n n n n nn a a a b c b c b c a a a b c b c b c a a a b c b c b c a a a b b b a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭+++⎛⎫⎛⎫ ⎪ ⎪+++ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎛⎫ ⎪ ⎪=+ ⎪ ⎪⎝⎭ ()11112121222212221212111n n n n n n nn n n nn c c c b b b c c c b b b c c c A B C ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪+ ⎪⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭=++ ③存在零向量0V ∈,使得对每个1A V ∈,11121111212122221222111212000000000n n n n n n nn n n nn a a a a a a aa a a a a A A a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪⎪+=+== ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭④对每个1A V ∈,存在负向量1112121222112n n n n nn a a a aa a A a a a ---⎛⎫⎪--- ⎪-= ⎪ ⎪---⎝⎭ ,使得 ()11121111212122221222111212000000000n n n n n n nn n n nn a a a a a a a a a a a a A A a a a a a a ---⎛⎫⎛⎫⎛⎫⎪⎪⎪--- ⎪ ⎪ ⎪+-=+== ⎪ ⎪ ⎪⎪⎪⎪---⎝⎭⎝⎭⎝⎭⑤令11,,,x y F A B V ∈∈()()111211112121222212221121211121112122212n n n n n n nn n n nn n n n n nn a a a ya ya ya aa a yaya ya x yA x y x a a a ya ya ya xya xya xya a a xya xya xya xy xya xya xya ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪ ⎪ ⎪=⋅⋅=⋅ ⎪ ⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎪ ⎪==⋅ ⎪⎪⎝⎭()12121222112n n n n nn a a a a xy A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭⑥1112111121212222122211121211n n n n n n nn n n nn a a a a a a aa a a a a A A a a a a a a ⎛⎫⎛⎫⎪⎪⎪ ⎪⋅=⋅== ⎪ ⎪⎪⎪⎝⎭⎝⎭⑦()11121111212122221222111212111112121121212222221122n n n n n n nn n n nn n n n n n n n n nn nn a a a b b b a a a b b b x A B x a a a b b b a b a b a b a b a b a b x a b a b a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+++⎛⎫ ⎪+++ ⎪=⋅ ⎪ ⎪+++⎝⎭ 11111212112121222222112211121111212122221222121()()()()()()()()()n n n n n n n n nn nn n n n n n n nn n a b x a b x a b x a b x a b x a b x a b x a b x a b x a x a x a x b x b x b x a x a x a x b x b x b x a x a x a x b +++⎛⎫ ⎪+++ ⎪= ⎪ ⎪+++⎝⎭⎛⎫ ⎪ ⎪=+ ⎪ ⎪⎝⎭ 211121111212122221222121211n nn n n n n n n nn n n nn x b x b x a a a b b b a a a b b b x x a a a b b b xA xB ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=⋅+⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=+ ⑧()()()()()()()()()()()1112111121212222122211212111************2n n n n n n nn n n nn n n n n nn a a a x y a x y a x y a a a a x y a x y a x y a x y A x y a a a x y a x y a x y a xa xa xa ya ya ya xa xa xa xa xa xa +++⎛⎫⎛⎫⎪ ⎪+++ ⎪⎪+=+⋅=⎪ ⎪⎪⎪ ⎪+++⎝⎭⎝⎭⎛⎫ ⎪ ⎪=+ ⎪ ⎪⎝⎭1212221211121111212122221222121211n n n n nn n n n n n n nn n n nn ya ya ya ya ya ya a a a a a a a a a a a a x y a a a a a a xA yA ⎛⎫⎪⎪⎪ ⎪⎝⎭⎛⎫⎛⎫⎪ ⎪⎪ ⎪=⋅+⋅ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭=+所以,V ({}|0,n n V X AX X F ⨯==∈(A 为给定的n 阶方阵))是F 上的一个线性空间(或向量空间). 2、正实数集R += a a >0,a ∈R 。

相关文档
最新文档