双曲线的第二定义(含解析)
第三讲---双曲线的第二定义
第三讲 双曲线的第二定义知识梳理(一)双曲线的第二定义:平面内一动点 的比为常数 e 到一定点 F (c, 0) 的距离与到一定直线 L : x a2 的距离 cc (e>1) a定点 F (c, 0) 是双曲线的焦点,定直线 L 是双曲线的准线,常数 e 是双曲线的离心率。
(二)焦点三角形的面积公式。
S1 r1r2 sin b 2 tan 2 23.双曲线的方程,图形,渐进线方程,准线方程和焦半径公式: 标准方程 图像 渐进线方程x2 y 2 1(a 0.b 0) a 2 b2b x a a2 x c M 在右支上 r左 =|MF1 |=ex0 a yy 2 x2 1(a 0.b 0) a 2 b2a x b a2 y c y准线方程半径公式r右 =|MF2 |=ex 0 a M 在左支上 r左 =|MF|=-ex 1 0 a r右 =|MF2 |=-ex 0 a典例分析 题型一:与双曲线准线有关的问题 例 1.(1)若双曲线x2 y 2 1 上一点 P 到右焦点的距离等于 13 ,则点 P 到右准线的距离为______ 13 12x2 y 2 1 的离心率为 2,则该双曲线的两条准线间的距离为________ A.若双曲线 m 3练习:已知双曲线的渐进线方程为 3x 2 y 0 ,两条准线间的距离为 解:双曲线渐进线方程为 y 16 13 ,求双曲线的标准方程。
133 x 21所以双曲线方程为x2 y 2 ( 0 )在分 0 时 4 和 0 时。
。
。
4 9题型二:双曲线第二定义及其运用 例 2:设一动点到 F(1,0)和直线 x=5 的距离之比为 3 。
求动点的轨迹方程。
练习:已知双曲线x2 y 2 1(a 0, b 0) 的左右焦点分别为 F1F2 ,点 P 是左支上的一点,P 到左准线的 a 2 b2距离为 d ,若 y 3x 是已知双曲线的一条渐进线,则是否存在这样的 P 点使得 d , | PF1 |,| PF2 | 成为等比 数列?若存在,求出 P 点坐标;若不存在,说明理由。
2019-2020年高二数学双曲线的第二定义的应用
2019-2020年高二数学双曲线的第二定义的应用教学目的要求;1.求双曲线的标准方程.2.双曲线的准线及其方程.教学重点;双曲线性质的应用教学难点:性质的应用教学方法:学导式学法指导:1、渗透数形结合思想;2.、提高学生解题能力。
3、与学生展开讨论,从而使学生自己发现规律教具准备:投影片教学过程练习:1、过双曲线的右焦点作一条长为的弦AB(AB均在右支上),则A,B两点互右准线的距离和()A 8BC D2、双曲线上一点P到一个焦点的距离为4,则P到较远的距离为()A、 B、或 C、 D、或例1:已知双曲线右支上一点,F1、F2分别为左、右焦点,若,试求P坐标例2:已知双曲线的左右焦点分别为F1、F2,双曲线左支上有一点P,设点P到左准线的距离为d,且d,,恰好成等比数列。
试求点P的坐标变:例3、P为双曲线左支上一点,P到左准线的距离为分别为左右焦点,且成等比数列。
(1)当满足条件的点P存在时,求离心率的取值范围;(2)若C的一条渐近线是,问满足条件的点P是否存在,若存在,求出点P坐标,若不存在,说明理由。
投影幕例题练习2019-2020年高二数学双曲线的简单几何性质一教学目的要求;1.掌握双曲线的基本性质2.会求解有关的性质;教学重点;双曲线的基本性质教学难点:双曲线基本性质的应用教学方法:学导式学法指导:1、渗透数形结合思想;2.、提高学生解题能力。
3、与学生展开讨论,从而使学生自己发现规律教具准备:投影片教学过程一、复习旧知:1、椭圆的简单性质:范围、对称性、顶点、离心率,二、讲授新课对双曲线1、范围,|x|≥a,即x≥a,x≤-a2、对称性:双曲线关于坐标轴、原点都是对称的,坐标轴是双曲线的对称轴,原点是双曲线的对称中心,即双曲线的中心.(同椭圆)3、顶点:(±a,0).线段A1A2叫做双曲线的实轴,线段B1B2叫做双曲线的虚轴,实轴的长为2a,虚轴的长为2b,a是实半轴的长,b是虚半轴的长,焦点始终在实轴上。
第二讲 双曲线中常用的结论及解法技巧(教师版)
1a
0,b
0 交于
A,B
两点,以
AB
为
直径的圆恰好经过双曲线的右焦点 F ,若 △ABF 的面积为 4a2 ,则双曲线的离心率为( )
A. 2
B. 3
C.2
D. 5
【答案】D 【解析】由题意可得图像如下图所示: F 为双曲线的左焦点,
∵ AB 为圆的直径,∴ AFB 90 ,
根据双曲线、圆的对称性可知:四边形
则(1)|
PF1
||
PF2
|
2b2 1 cos
;(2)双曲线的焦点角形的面积为
S F1PF2
b2 .
tan
2
3.过双曲线
x2 a2
y2 b2
1a
0,b
0 上任一点
A(x0 ,
y0 ) 任意作两条倾斜角互补的直线交双
曲线于 B,C
两点,则直线 BC 有定向且 kBC
b2 x0 a2 y0
(常数).
tan
2
cot
2
(或
c c
a a
tan
2
cot
2
).
14 . 设
A, B
是双曲线
x2 a2
y2 b2
1a
0, b
0 的实轴两端点,
P
是双曲线上的一点,
PAB , PBA , BPA , c、e 分别是双曲线的半焦距离心率,则有
2
(1) |
PA
|
|
2ab2 | cos | a2 c2co s2
b2
几何性质:双曲线上任一点到左右(上下)两顶点的斜率之积为 .
a2
二.双曲线经典结论汇总
第二讲 双曲线中常用的结论及解法技巧(学生版)
第二讲 双曲线中常用的结论及解法技巧【知识要点】一.双曲线三大定义定义 1.到两定点距离之差的绝对值(小于两定点距离)为定值的点的轨迹是双曲线. 几何性质:双曲线上任一点到两焦点的距离之差的绝对值为定值.定义 2.到一个定点的距离与到一条定直线的距离之比为定值(大于1)的点的轨迹是双曲线.几何性质:双曲线上任一点到左(右)焦点的距离与到左(右)准线的距离之比为离心率e . 定义 3.到两个定点的斜率之积为定值(大于0)的点的轨迹是双曲线.几何性质:双曲线上任一点到左右(上下)两顶点的斜率之积为22ab .二.双曲线经典结论汇总1.AB 是双曲线()0,012222>>=-b a by a x 的不平行于对称轴的弦,),(00y x M 为AB 的中点,则22a b k k ABOM =⋅,即 0202y a x b k AB =. 等价形式:21,A A 是双曲线()0,012222>>=-b a by a x 上关于原点对称的任意两点,B 是双曲线上其它任意一点,直线B A B A 21,的斜率存在,则2221ab k k BA B A =⋅. 2.双曲线()0,012222>>=-b a by a x 的左右焦点分别为21,F F ,点P 为双曲线上异于实轴端点的任意一点θ=∠21PF F 则(1)2122||||1cos b PF PF θ=-;(2)双曲线的焦点角形的面积为2tan 221θb S PF F =∆.3.过双曲线()0,012222>>=-b a by a x 上任一点),(00y x A 任意作两条倾斜角互补的直线交双曲线于C B ,两点,则直线BC 有定向且0202y a x b k BC-= (常数).4.P 为双曲线()0,012222>>=-b a by a x 上任一点,21,F F 为二焦点,A 为双曲线内一定点,则||||2||12PF PA a AF +≤-,当且仅当P F A ,,2三点共线且P 和2,F A 在y 轴同侧时,等号成立.5.已知双曲线()0,012222>>=-b a by a x ,O 为坐标原点,Q P ,为双曲线上两动点,且OP OQ ⊥,(1)22221111||||OP OQ a b +=-;(2)22||||OQ OP +的最大值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -.6.双曲线()0,012222>>=-b a by a x 的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于21,P P 时11P A 与22P A 交点的轨迹方程是22221x y a b+=. 7.双曲线()0,012222>>=-b a by a x 的焦半径公式:),0,(),0,(21c F c F -当),(00y x M 在右支上时,.||,||0201a ex MF a ex MF -=+=当),(00y x M 在左支上时,.||,||0201a ex MF a ex MF --=+-=8.若),(000y x P 在双曲线()0,012222>>=-b a by a x 内,则被0P 所平分的中点弦的方程是222202020by a x b y y a x x -=-. 9.若),(000y x P 在双曲线()0,012222>>=-b a by a x 内,则过0P 的弦中点的轨迹方程是20202222byy a x x b y a x -=-. 10.若),(000y x P 在双曲线()0,012222>>=-b a by a x 上,则过0P 的双曲线的切线方程是12020=-byy a x x . 11.若),(000y x P 在双曲线()0,012222>>=-b a by a x 外 ,则过0P 作双曲线的两条切线切点为21,P P ,则切点弦 21P P 的直线方程是12020=-byy a x x . 12.设双曲线()0,012222>>=-b a by a x 的两个焦点为P F F ,,21(异于实轴端点)为双曲线上任意一点,在21F PF ∆中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.13.若P 为双曲线()0,012222>>=-b a by a x 上异于实轴端点的任一点,21,F F 是焦点,12PF F α∠=,21PF F β∠=,则2cot 2tan βα=+-a c a c (或2cot 2tan αβ=+-a c a c ).14.设B A ,是双曲线()0,012222>>=-b a by a x 的实轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,e c 、分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-; (2)2tan tan 1e αβ=-;(3) 22222cot PAB a b S b aγ∆=+.15.过双曲线()0,012222>>=-b a by a x 的右焦点F 作直线交该双曲线的右支于N M ,两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.16.已知双曲线()0,012222>>=-b a by a x ,B A ,是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点)0,(0x P ,则220a b x a +≥或220a b x a+≤-.17.点P 处的切线PT 平分21F PF ∆在点P 处的内角.18.过双曲线一个焦点F 的直线与双曲线交于两点Q P ,,21,A A 为双曲线实轴上的顶点,P A 1和Q A 2交于点M ,P A 2和Q A 1交于点N ,则NF MF ⊥.【例题解析】【例1】设双曲线()0,012222>>=-b a by a x 的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于B A ,两点,与双曲线的其中一个交点为P ,设O 为坐标原点,若),(R n m OB n OA m OP ∈+=→→→,且92=mn ,则该双曲线的离心率为( ) A .223 B .553 C .423 D .89【例2】双曲线134:22=-y x C 的左、右顶点分别为21,A A ,点P 在C 上且直线2PA 的斜率的取值范围是]2,1[,那么直线1PA 斜率的取值范围是( )A .]43,21[B .]43,83[C .]1,21[D .]1,43[【例3】已知斜率为3的直线l 与双曲线()0,01:2222>>=-b a by a x C 交于B A ,两点,若点)2,6(P 是AB 的中点,则双曲线C 的离心率等于( )A .2B .3C .2D .22【例4】已知双曲线()0,01:2222>>=-b a by a x C 的左、右焦点分别为21,F F ,直线l 过点1F 且与双曲线C 的一条渐进线垂直,直线l 与两条渐进线分别交于N M ,两点,若||2||11MF NF =,则双曲线C 的渐进线方程为( )A .x y 33±=B .x y 3±=C .x y 22±= D .x y 2±=【例5】设F 为双曲线()0,01:2222>>=-b a by a x C 的左焦点,过坐标原点的直线依次与双曲线C 的左、右支交于点Q P ,,若||3||PF FQ =,060=∠FPQ ,则该双曲线的离心率为( ) A .3 B .31+ C .32+ D .323+【例6】已知双曲线()0,012222>>=-b a by a x ,若存在过右焦点F 的直线与双曲线交于B A ,两点,且→→=BF AF 3,则双曲线离心率的最小值为( )A .2B .3C .2D .22【例7】已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于A ,B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF △的面积为24a ,则双曲线的离心率为( )A B C .2D【例8】已知双曲线()0,012222>>=-b a by a x 的左右焦点分别为21,F F ,O 为双曲线的中心,P 是双曲线右支上的点,21F PF ∆的内切圆的圆心为I ,且圆I 与x 轴相切于点A ,过2F 作直线PI 的垂线,垂足为B ,若e 为双曲线的离心率,则( )A .||||OA e OB = B .||||OB e OA =C .||||OB OA =D .||OA 与||OB 关系不确定【例9】如图,已知双曲线()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,4||21=F F ,P 是双曲线右支上的一点,P F 2与y 轴交于点A ,1APF ∆的内切圆在1PF 上的切点为Q ,若1||=PQ ,则双曲线的离心率是( )A .3B .2C .3D .2 【课堂练习】【1】如图,21,F F 是双曲线()0,012222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点B A ,.若2ABF ∆为等边三角形,则双曲线的离心率为( )A .4B .7C .332 D .3 【2】如图,21,F F 是双曲线()0,012222>>=-b a by a x 的左、右焦点,点P 在第一象限,且满足0)(2211=⋅+→→→P F F F P F ,a P F =→||2,线段2PF 与双曲线交于点Q ,若→→=Q F P F 225, 则双曲线的渐近线方程为( )A .x y 21±= B .x y 55±= C .x y 552±= D .x y 33±=【3】已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则||||21PF PF ⋅等于( )A .2B .4C .6D .8【4】已知双曲线()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,由2F 向双曲线的一条渐近线作垂线,垂足为H ,若21HF F ∆的面积为2b ,则双曲线的渐近线方程为____________.【5】已知点P 为双曲线()0,012222>>=-b a by a x 右支上一点,21,F F 分别为双曲线的左右焦点,且ab F F 221||=,I 为21F PF ∆的内心,若2121F IF IPF IPF S S S ∆∆∆+=λλ成立,则λ的值为_______.【6】设双曲线1322=-yx 的左、右焦点分别为21,F F ,若点P 在双曲线上,且21PF F ∆为锐角三角形,则||||21PF PF +的取值范围是_______.【7】已知点P 为双曲线()0,012222>>=-b a by a x 右支上一点,其右焦点为2F ,若直线2PF 的斜率为3,M 为线段2PF 的中点,且||||22M F OF =,则该双曲线的离心率为_______.【课后作业】 【1】双曲线的左右焦点分别为,,焦距,以右顶点为圆心的圆与直线相切于点,设与交点为,,若点恰为线段的中点,则双曲线的离心率为( ) A .B .C .D .【2】(2019年全国2卷理数)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( ) A .2B .3C .2D .5【3】已知双曲线)0,0(12222>>=-b a by a x C :的左右焦点分别为21,F F ,过1F 的直线与C的两条渐近线分别交于A 、B 两点,若以21F F 为直径的圆过点B ,且A 为B F 1的中点,则C 的离心率为( )A .13+B .2C .3D .2【4】设双曲线C :22221(0,0)x y a b a b-=>>的左焦点为F ,直线02034=+-y x 过点F且与C 在第二象限的交点为P ,O 为原点, OP OF =,则双曲线C 的离心率为( ) A.5 B. 5 C.53 D. 54【5】设1F ,2F 是双曲线()2222:10,0x y C a b a b -=>>的两个焦点,P 是C 上一点,若126PF PF a +=,且12PF F △的最小内角为30︒,则C 的离心率为( )A .2B .32C .3D .62【6】如图所示,已知双曲线()222210x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于,A B 两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( )A.324 B. 233 C. 305 D. 52【7】已知F 是双曲线2221x a b2y -=()0,0a b >>的左焦点,E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围为 ( )A . ()1,+∞B . ()1,2C . ()1,12+D . ()2,12+【8】双曲线的离心率,右焦点为,点是双曲线的一条渐近线上位于第一象限内的点,,AOF △的面积为,则双曲线的方程为( )A .B .C .D . 【9】已知双曲线与轴交于、两点,点,则 面积的最大值为( )A .2B .4C .6D .8【10】双曲线的右焦点为,左顶点为,以为圆心,过点的圆交双曲线的一条渐近线于两点,若不小于双曲线的虚轴长,则双曲线的离心率的取值范围为( )A. B. C. D.【11】已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A. 33⎛⎫-⎪ ⎪⎝⎭B. (C. 33⎡⎢⎣⎦D. ⎡⎣ 【12】(2019年全国1卷理数)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.【13】已知直线与双曲线交于,两点,为双曲线上不同于,的点,当直线,的斜率,存在时, .2222:1(0,0)x y C a b a b-=>>e =F A C AOF OAF ∠=∠C 2213612x y -=221186x y -=22193x y -=2213x y -=222214x y b b-=-()02b <<x A B ()0,C b ABC ∆()222210,0x y a b a b-=>>F A F A,P Q PQ (]1,2((]1,3[)3,+∞12y x =22194x y -=A B P A B PA PB PA k PB k PA PB k k ⋅=。
人教版选修21第二章双曲线双曲线的标准方程讲义
案例(二)——精析精练课堂 合作 探究重点难点突破知识点一 双曲线的定义平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小于21F F 且不等于零)的点 的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。
注意 (1)在此定义中“常数要大于0且小于21F F ”这一限制条件十分重要,不可去 掉。
(2)如果定义中常数改为等于21F F ,此时动点轨迹是以1F 、2F 为端点的两条射线(包 括端点)。
(3)如果定义中常数为0,此时动点轨迹为线段1F 2F 的垂直平分线。
(4)如果定义中常数改为大于21F F ,此时动点轨迹不存在。
(5)若定义中“差的绝对值”中的“绝对值”去掉的话,点的轨迹成为双面线的一支。
(6)设()y x M ,为双曲线上的任意一点,若M 点在双曲线右支上,则()02,2121>=->a a MF MF MF MF ;若M 在双曲线的左支上,则a MF MF MF MF 2,2121-=-<,因此得a MF MF 221±=-,这是与椭圆不同的地方。
知识点二 双曲线的标准方程1.如何正确理解双曲线的标准方程的两种形式(1)通过比较两种不同类型的双曲线方程()0,12222>>=-b a by a x (焦点在x 轴上)和()0,12222>>=-b a b x a y (焦点在y 轴上),可以看出,如果2x 项的系数是正的,那么焦点就在 x 轴上;如果2y 项的系数是正的,那么焦点就在y 轴上。
对于双曲线,a 不一定大于b ,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条 坐标轴上。
焦点在x 轴上的方程,只要将y x ,互换就能得到 焦点在y 轴上的方程。
(2)无论双曲线的焦点在哪个坐标轴上,标准方程中的c b a ,,三个量都满足222b ac +=所以c b a ,,恰好构成一个直角三角形的三边,且c 为斜边,如图所示。
高中数学 第三章第3节双曲线知识精讲 理 北师大版选修21
高中数学 第三章第3节双曲线知识精讲 理 北师大版选修21【本讲教育信息】一. 教学内容:双曲线的标准方程及简单的几何性质。
(3.1双曲线及标准方程+3.2双曲线的简单的几何性质)二. 教学目标:(1)熟练地掌握双曲线的定义及标准方程的形式。
会求双曲线标准方程。
(2)掌握双曲线的简单的几何性质及其应用。
理解渐近线的意义。
(3)体会用方程的数学思想、等价转化的数学思想及待定系数法等数学思想方法解决双曲线的问题。
三. 知识要点分析: 1. 双曲线定义:第一定义:平面内到两定点21,F F 距离之差的绝对值等于常数(小于||21F F )的点的集合叫做双曲线。
定点21,F F 叫双曲线的焦点,两焦点间距离是焦距。
M=|}F F |a 2,a 2||PF ||PF |||P {2121<=-第二定义:平面内到定点F 的距离与到定直线L 的距离之比是大于1的常数的点的集合叫双曲线,定点是双曲线的焦点,定直线是双曲线的准线。
M=}1,|||{>=e e dPF P 注意:(1)在第一定义中:若2a=||21F F ,则点的集合是以21,F F 为端点的射线,若2a>||21F F ,点的集合是空集。
(2)在第一定义中:当a PF PF 2||||21=-,则点的集合是双曲线的右支(如图1),当a PF PF 2||||12=-,点的集合是双曲线的左支(如图2)。
(3)在定义二中定点F 不在定直线L 上。
2. 双曲线的标准方程(1))0,0(,12222>>=-b a b y a x ,焦点在x 轴上(实轴在x 轴上),222c b a =+(2))0,0(,12222>>=-b a bx a y ,焦点在y 轴上(实轴在y 轴上),222c b a =+3. 双曲线几何性质图 形对称性 关于x 轴、y 轴、原点对称 范围a x -≤或a x ≥a y -≤或a y ≥顶点 A 1(-a ,0)A 2(a ,0)实轴:2a ,虚轴:2bA 1(0,-a ) A 2(0,a ) 实轴: 2a 虚轴:2b离心率 1>=ace (e :确定双曲线的开口程度) 渐近线x a b y ±= x ba y ±=焦点半径 (1)P (),00y x 点在右支上,则01||ex a PF +=,02||ex a PF +-=(2)P ),(00y x 点在左支上,则a ex PF a ex PF +-=--=0201||,||(1)),(00y x P 点在上支上 0201||,||ey a PF ey a PF +-=+=(2)P ),(00y x 点在下支上a ey PF a ey PF +-=--=0201||||,4.求双曲线标准方程常见的类型及方法: (1)定义法(已知条件满足双曲线定义)(2)待定系数法(定位:确定双曲线的焦点位置,设方程:根据焦点位置设方程,定值:确定系数)(3)已知渐进线方程0=±ay bx ,可设双曲线方程是λ=-2222y a x b ,确定λ值即可。
高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲
高三数学第一轮复习:双曲线的定义、性质及标准方程【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。
(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。
说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。
2. 双曲线的标准方程、图形及几何性质:标准方程)0b,0a(1byax2222>>=-中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。
其渐近线方程为y=±x 。
等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。
5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。
高中数学第二章2.2双曲线2.2.2双曲线的简单几何性质讲义(含解析)新人教A版选修1_1
2.2.2 双曲线的简单几何性质预习课本P49~53,思考并完成以下问题1.双曲线有哪些几何性质?2.双曲线的顶点、实轴、虚轴分别是什么?3.双曲线的渐近线、等轴双曲线的定义分别是什么?[新知初探]1.双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c性质范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 轴实轴:线段A1A2,长:2a;2.等轴双曲线实轴和虚轴等长的双曲线叫等轴双曲线,它的渐近线是y =±x ,离心率为e = 2. [点睛] 对双曲线的简单几何性质的几点认识 (1)双曲线的焦点决定双曲线的位置;(2)双曲线的离心率和渐近线刻画了双曲线的开口大小,离心率越大,双曲线的开口越大,反之亦然.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)双曲线x 22-y 24=1的焦点在y 轴上( )(2)双曲线的离心率越大,双曲线的开口越开阔( ) (3)以y =±2x 为渐近线的双曲线有2条( ) 答案:(1)× (2)√ (3)×2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)答案:B3.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 答案:B4.(2017·全国卷Ⅲ)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.答案:5双曲线的几何性质[典例] 22虚轴长、离心率和渐近线方程.[解] 双曲线的方程化为标准形式是x 29-y 24=1,∴a 2=9,b 2=4,∴a =3,b =2,c =13. 又双曲线的焦点在x 轴上, ∴顶点坐标为(-3,0),(3,0), 焦点坐标为(-13,0),(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =ca =133,渐近线方程为y =±23x .由双曲线的方程研究几何性质的解题步骤(1)把双曲线方程化为标准形式是解决本题的关键; (2)由标准方程确定焦点位置,确定a ,b 的值;(3)由c 2=a 2+b 2求出c 值,从而写出双曲线的几何性质. [注意] 求性质时一定要注意焦点的位置. 1.已知双曲线x 29-y 216=1与y 216-x 29=1,下列说法正确的是( )A .两个双曲线有公共顶点B .两个双曲线有公共焦点C .两个双曲线有公共渐近线D .两个双曲线的离心率相等解析:选C 双曲线x 29-y 216=1的焦点和顶点都在x 轴上,而双曲线y 216-x 29=1的焦点和顶点都在y 轴上,因此可排除选项A 、B ;双曲线x 29-y 216=1的离心率e 1=9+169=53,而双曲线y 216-x 29=1的离心率e 2=16+916=54,因此可排除选项D ;易得C 正确. 2.(2017·北京高考)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.解析:由双曲线的标准方程可知a 2=1,b 2=m , 所以e =1+b 2a2=1+m =3,解得m =2. 答案:2由双曲线的几何性质求标准方程[典例] (1)(2017·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1(2)过点(2,-2)且与x 22-y 2=1有相同渐近线的双曲线的标准方程为________.[解析] (1)由e =2知,双曲线为等轴双曲线, 则其渐近线方程为y =±x ,故由P (0,4),知左焦点F 的坐标为(-4,0), 所以c =4,则a 2=b 2=c 22=8.故双曲线的方程为x 28-y 28=1.(2)法一:当焦点在x 轴上时,由于b a =22. 故可设方程为x 22b 2-y 2b2=1,代入点(2,-2)得b 2=-2(舍去); 当焦点在y 轴上时,可知a b =22,故可设方程为y 2a 2-x 22a2=1,代入点(2,-2)得a 2=2. 所以所求双曲线方程为y 22-x 24=1.法二:因为所求双曲线与已知双曲线x 22-y 2=1有相同的渐近线,故可设双曲线方程为x 22-y 2=λ(λ≠0),代入点(2,-2)得λ=-2,所以所求双曲线的方程为x 22-y 2=-2,即y 22-x 24=1. [答案] (1)B (2)y 22-x 24=1求双曲线的标准方程的方法与技巧(1)一般情况下,求双曲线的标准方程关键是确定a ,b 的值和焦点所在的坐标轴,若给出双曲线的顶点坐标或焦点坐标,则焦点所在的坐标轴易得.再结合c 2=a 2+b 2及e =c a列关于a ,b 的方程(组),解方程(组)可得标准方程.(2)如果已知双曲线的渐近线方程为y =±b a x ,那么此双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).求适合下列条件的双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦点在x 轴上,离心率为2,且过点(-5,3); (3)顶点间距离为6,渐近线方程为y =±32x .解:(1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0).由题意知2b =12,c a =54且c 2=a 2+b 2,∴b =6,c =10,a =8,∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵e =ca=2,∴c =2a ,b 2=c 2-a 2=a 2. 又∵焦点在x 轴上,∴设双曲线的标准方程为x 2a 2-y 2a2=1(a >0).把点(-5,3)代入方程,解得a 2=16. ∴双曲线的标准方程为x 216-y 216=1.(3)设以y =±32x 为渐近线的双曲线方程为x 24-y 29=λ(λ≠0), 当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-4y 281=1或y 29-x 24=1.双曲线的离心率[典例] 过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.[解析] 如图所示,不妨设与渐近线平行的直线l 的斜率为b a,又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a2a 2-y 2b2=1,化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去),故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =ba(2a -c ),化简可得离心率e =c a=2+ 3.[答案] 2+ 3求双曲线离心率的两种方法(1)直接法:若已知a ,c 可直接利用e =c a求解,若已知a ,b ,可利用e = 1+⎝ ⎛⎭⎪⎫b a2求解.(2)方程法:若无法求出a ,b ,c 的具体值,但根据条件可确定a ,b ,c 之间的关系,可通过b 2=c 2-a 2,将关系式转化为关于a ,c 的齐次方程,借助于e =c a,转化为关于e 的n 次方程求解.[活学活用]1.如果双曲线x 2a 2-y 2b2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________.解析:如图,因为AO =AF ,F (c,0),所以x A =c 2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =ca >2.答案:(2,+∞)2.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,|F 1F 2|=2c ,则在△PF 1F 2中,∠PF 1F 2=30°,由余弦定理得(2a )2=(4a )2+(2c )2-2×(4a )×(2c )×cos 30°,整理得(e -3)2=0,所以e = 3.答案: 3层级一 学业水平达标1.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4D .4 2解析:选C 双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,从而2a =4,故选C.2.已知双曲线的实轴和虚轴等长,且过点(5,3),则双曲线方程为( ) A.x 225-y 225=1 B.x 29-y 29=1C.y 216-x 216=1 D.x 216-y 216=1解析:选D 由题意知,所求双曲线是等轴双曲线,设其方程为x 2-y 2=λ(λ≠0),将点(5,3)代入方程,可得λ=52-32=16,所以双曲线方程为x 2-y 2=16,即x 216-y 216=1.3.(2017·全国卷Ⅱ)若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)解析:选C 由题意得双曲线的离心率e =a 2+1a .即e 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a2<1,∴1<1+1a2<2,∴1<e < 2.4.若一双曲线与椭圆4x 2+y 2=64有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程为( )A .y 2-3x 2=36 B .x 2-3y 2=36 C .3y 2-x 2=36D .3x 2-y 2=36解析:选A 椭圆4x 2+y 2=64可变形为x 216+y 264=1,a 2=64,c 2=64-16=48,∴焦点为(0,43),(0,-43),离心率e =32, 则双曲线的焦点在y 轴上,c ′=43,e ′=23, 从而a ′=6,b ′2=12,故所求双曲线的方程为y 2-3x 2=36.5.已知双曲线x 2a2-y 2=1(a >0)的实轴长、虚轴长、焦距长成等差数列,则双曲线的渐近线方程为( )A .y =±35xB .y =±53xC .y =±34xD .y =±43x解析:选D 由双曲线方程为x 2a2-y 2=1,知b 2=1,c 2=a 2+1,∴2b =2,2c =2a 2+1.∵实轴长、虚轴长、焦距长成等差数列,∴2a +2c =4b =4,∴2a +2a 2+1=4,解得a =34.∴双曲线的渐近线方程为y =±43x .6.已知点(2,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:由题意知4a 2-9b2=1,c 2=a 2+b 2=4,解得a =1,所以e =c a=2. 答案:27.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (25,0),且离心率为e =52,则双曲线的标准方程为________.解析:由焦点坐标,知c =25,由e =c a =52,可得a =4,所以b =c 2-a 2=2,则双曲线的标准方程为x 216-y 24=1. 答案:x 216-y 24=18.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析:法一:∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3),∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上, 故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1. 答案:x 24-y 2=19.求满足下列条件的双曲线的标准方程.(1)与双曲线y 24-x 23=1具有相同的渐近线,且过点M (3,-2);(2)过点(2,0),与双曲线y 264-x 216=1离心率相等;(3)与椭圆x 225+y 216=1有公共焦点,离心率为32.解:(1)设所求双曲线方程为y 24-x 23=λ(λ≠0).由点M (3,-2)在双曲线上得44-93=λ,得λ=-2.故所求双曲线的标准方程为x 26-y 28=1.(2)当所求双曲线的焦点在x 轴上时, 可设其方程为x 264-y 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=116,故所求双曲线的标准方程为x 24-y 2=1;当所求双曲线的焦点在y 轴上时, 可设其方程为y 264-x 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去).综上可知,所求双曲线的标准方程为x 24-y 2=1.(3)法一:由椭圆方程可得焦点坐标为(-3,0),(3,0),即c =3且焦点在x 轴上.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).因为e =c a =32,所以a =2,则b 2=c 2-a 2=5,故所求双曲线的标准方程为x 24-y 25=1.法二:因为椭圆焦点在x 轴上,所以可设双曲线的标准方程为x 225-λ-y 2λ-16=1(16<λ<25).因为e =32,所以λ-1625-λ=94-1,解得λ=21.故所求双曲线的标准方程为x 24-y 25=1.10.设双曲线x 2a 2-y 2b2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,已知原点到直线l 的距离为34c ,求双曲线的离心率. 解:直线l 的方程为x a +yb=1,即bx +ay -ab =0. 于是有|b ·0+a ·0-ab |a 2+b 2=34c ,所以ab =34c 2,两边平方,得a 2b 2=316c 4. 又b 2=c 2-a 2,所以16a 2(c 2-a 2)=3c 4, 两边同时除以a 4,得3e 4-16e 2+16=0, 解得e 2=4或e 2=43.又b >a ,所以e 2=a 2+b 2a 2=1+b 2a2>2,则e =2.于是双曲线的离心率为2.层级二 应试能力达标1.若双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线方程为y =-x ,则双曲线的方程为( )A .y 2-x 2=96 B .y 2-x 2=160 C .y 2-x 2=80D .y 2-x 2=24解析:选D 设双曲线方程为x 2-y 2=λ(λ≠0),因为双曲线与椭圆有相同的焦点,且焦点为(0,±43),所以λ<0,且-2λ=(43)2,得λ=-24.故选D.2.若中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.52解析:选D 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).由题意,知过点(4,-2)的渐近线方程为y =-b a x ,所以-2=-b a×4,即a =2b .设b =k (k >0),则a =2k ,c =5k ,所以e =c a =5k 2k =52.故选D. 3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1解析:选B 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b25a2,又AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5, 所以双曲线标准方程是x 24-y 25=1.4.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2解析:选D 不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为()2a ,3a .∵M 点在双曲线上,∴4a 2a 2-3a2b2=1,a =b ,∴c =2a ,e =c a= 2.故选D.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e 的取值范围是________________________________________________________________________.解析:由题意,知b a ≥3,则b 2a 2≥3,所以c 2-a 2≥3a 2,即c 2≥4a 2,所以e 2=c 2a2≥4,所以e ≥2.答案:[2,+∞)6.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝ ⎛⎭⎪⎫175,-3215.所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 答案:32157.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线l 与双曲线C 交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求直线l 的方程.解:(1)由已知得c =2,e =2,所以a =1,b = 3.所以所求的双曲线方程为x 2-y 23=1.(2)设直线l 的方程为y =x +m ,点M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1,整理得2x 2-2mx -m 2-3=0.(*)设MN 的中点为(x 0,y 0),则x 0=x 1+x 22=m2,y 0=x 0+m =3m2,所以线段MN 垂直平分线的方程为y -3m 2=-⎝ ⎛⎭⎪⎫x -m 2,即x +y -2m =0,与坐标轴的交点分别为(0,2m ),(2m,0),可得12|2m |·|2m |=4,得m 2=2,m =±2,此时(*)的判别式Δ>0,故直线l 的方程为y =x ± 2.8.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 为坐标原点,且△AOB 的面积是2,求实数k 的值.解:(1)由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1消去y ,得(1-k 2)x 2+2kx -2=0.①由直线l 与双曲线C 有两个不同的交点,得⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k2>0,解得-2<k <2且k ≠±1.即k 的取值范围为(-2,-1)∪(-1,1)∪(1,2).(2)设A (x 1,y 1),B (x 2,y 2),由方程①,得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.因为直线l :y =kx -1恒过定点D (0,-1),则当x 1x 2<0时,S △AOB =S △OAD +S △OBD =12|x 1-x 2|=2;当x 1x 2>0时,S △AOB =|S △OAD -S △OBD |=12|x 1-x 2|= 2.综上可知,|x 1-x 2|=22,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2,即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62.由(1),可知-2<k <2且k ≠±1,故k =0或k =±62都符合题意.。
第二讲 双曲线中常用的结论及解法技巧(学生版)
C. 3
D. 2
【4】设双曲线 C
x2
:
a2
y2 b2
1(a
0,b
0)
的左焦点为 F
,直线 4x 3y 20
0 过点 F
且与 C 在第二象限的交点为 P ,O 为原点, OP OF ,则双曲线 C 的离心率为( )
【例
9】如图,已知双曲线
x2 a2
y2 b2
1a
0,b
0的左、右焦点分别为 F1, F2 ,|
F1F2
|
4,
P 是双曲线右支上的一点, F2P 与 y 轴交于点 A , APF1 的内切圆在 PF1 上的切点为 Q ,
若 | PQ | 1 ,则双曲线的离心率是( )
4
A. 3
B. 2
C. 3
D. 2
则(1)|
PF1
||
PF2
|
2b2 1 cos
;(2)双曲线的焦点角形的面积为
S F1PF2
b2 .
tan
2
3.过双曲线
x2 a2
y2 b2
1a
0,b
0 上任一点
A(x0 ,
y0 ) 任意作两条倾斜角互补的直线交双
曲线于 B,C
两点,则直线 BC 有定向且 kBC
b2 x0 a2 y0
(常数).
x a
2 2
y2 b2
1a 0,b 0上关于原点对称的任意两点, B 是双曲
线上其它任意一点,直线
A1B, A2B 的斜率存在,则 k A1B
k A2B
b2 a2
.
2.双曲线
x2 a2
y2 b2
1a
0, b
第2讲双曲线课件理课件.ppt
【互动探究】
1.设双曲线1x62-9y2=1 上的点 P 到点(5,0)的距离为 15,则 P 点到(-5,0)的距离是( D )
A.7 B.23 C.5 或 23 D.7 或 23 解析:容易知道(5,0)与(-5,0)是给出双曲线的焦点,P 是双 曲线上的点,直接从定义入手.设所求的距离为 d,则由双曲线 的定义可得:|d-15|=2a=8⇒d=7 或 23.
AB 的方程为 y=x+1,
因此 M 点的坐标为12,23, F→M=-32,32. 同理可得F→N=-32,-32. 因此F→M·F→N=-322+32×-32=0 综上F→M·F→N=0,即 FM⊥FN. 故以线段 MN 为直径的圆经过点 F.
的范围变化值需探究;
(3)运用不等式知识转化为 a、b、c 的齐次式是关键.
错源:没有考虑根的判别式 例 5:已知双曲线 x2-y22=1,问过点 A(1,1)是否存在直线 l 与双曲线交于 P、Q 两点,并且 A 为线段 PQ 的中点?若存在求 出直线 l 的方程,若不存在请说明理由.
误解分析:没有考虑根的判别式,导致出错.
y2 9
Hale Waihona Puke -2x72 =1D.以上都不对
3.已知双曲线ax22-by22=1(a>0,b>0)的离心率为 26,则双曲 线的渐近线方程为( C )
A.y=±2x B.y=± 2x
C.y=±
2 2x
D.y=±12x
4.已知双曲线ax22-by22=1(a>0,b>0)的一条渐近线方程为 x
+2y=0,则双曲线的离心率 e 的值为( A )
正解:设符合题意的直线 l 存在,并设 P(x1,y1),Q(x2,y2),
双曲线(单元教学设计) 高中数学新教材选择性必修第一册
第二单元双曲线一、内容和内容解析(一)内容双曲线的概念、双曲线的标准方程、双曲线的简单几何性质本单元内容结构图如下:(二)内容解析1.内容本质:本单元的内容本质是在双曲线的几何情境中,类比椭圆,抽象出第二个圆锥曲线即双曲线的概念,并研究其几何特征,在直角坐标系中,推导双曲线的标准方程,再利用标准方程研究其几何性质,并利用它们解决一些简单的实际问题.2.蕴含的思想方法:本单元的思想方法主要是坐标法和数形结合的思想.类比椭圆的定义、标准方程和几何性质的研究方法,得出双曲线的定义、标准方程和几何性质,蕴含了数学研究的重要思想方法:类比.3.知识的上下位关系:本单元是在研究椭圆方程和几何性质的基础上,对解析法研究圆锥曲线内容的进一步深化和提高,是研究圆锥曲线的一个组成部分,为下一单元抛物线的学习做准备。
所以说本单元的作用就是纵向承接椭圆定义和标准方程的研究,横向加深对双曲线的标准方程及简单几何性质的理解与应用.4.育人价值:通过对双曲线的定义的理解,标准方程的推导和几何性质的研究,发展学生的数学抽象、数学运算等数学核心素养,使学生在掌握知识与技能的同时,体悟知识所蕴含的数学思想和方法,积累数学地思考问题和解决问题的经验,发展理性思维.5.教学重点:解析法研究双曲线的几何特征与性质二、目标及其解析(一)单元目标1.了解双曲线的定义、几何图形和标准方程.2.了解双曲线的几何性质(范围、对称性、顶点、离心率、渐近线).3.了解双曲线的简单应用.4.理解数形结合思想.(二)目标解析达成上述目标的标志是:1.能够利用双曲线的定义辨识什么样的轨迹是双曲线,由所给条件会求双曲线的标准方程.2.能用集合的眼光观察出双曲线的范围、对称性、顶点、离心率、渐近线等几何性质,并能结合方程的特点理解这些几何性质.3.能解决与双曲线有关的简单应用问题.三、教学问题诊断分析1.从课程标准角度来讲,双曲线的定义、标准方程作为了解内容,在高考的考查当中以选择、填空为主。
解析几何(2) 双曲线(含答案)
第6课时 双曲线1.了解双曲线的定义、几何图形和标准方程及简单性质. 2.了解双曲线的实际背景及双曲线的简单应用. 3.理解数形结合的思想.【梳理自测】一、双曲线的概念已知点F 1(-4,0)和F 2(4,0),一曲线上的动点P 到F 1,F 2距离之差为6,该曲线方程是________.答案:x 29-y27=1(x≥3)◆此题主要考查了以下内容:平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M||MF 1|-|MF 2||=2a},|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0; (1)当2a <2c 时,P 点的轨迹是双曲线; (2)当2a =2c 时,P 点的轨迹是两条射线; (3)当2a >2c 时,P 点不存在. 二、双曲线标准方程及性质1.(教材改编)双曲线x 210-y22=1的焦距为( )A .3 2B .4 2C .3 3D .4 32.双曲线y 2-x 2=2的渐近线方程是( )A .y =±xB .y =±2xC .y =±3xD .y =±2x3.已知双曲线x 2a 2-y25=1的右焦点为(3,0),则该双曲线的离心率等于( )A .31414 B .324 C .32D .434.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=________.答案:1.D 2.A 3.C 4.-1 4◆此题主要考查了以下内容:考向一双曲线的定义及标准方程(1)(2014·陕西师大附中模拟)设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若|PQ|=7,则△F2PQ的周长为( ) A.19 B.26C.43 D.50(2)已知双曲线x2a2-y2b2=1(a>0,b>0)和椭圆x216+y29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.【审题视点】(1)利用双曲线定义|PF2|-|QF2|=2a及三角形周长的计算求解.(2)已知双曲线的焦点及离心率求双曲线方程.【典例精讲】(1)如图,由双曲线的定义可得⎩⎪⎨⎪⎧|PF 2|-|PF 1|=2a ,|QF 2|-|QF 1|=2a ,将两式相加得|PF 2|+|QF 2|-|PQ|=4a , ∴△F 2PQ 的周长为|PF 2|+|QF 2|+|PQ| =4a +|PQ|+|PQ|=4×3+2×7=26.(2)椭圆x 216+y 29=1的焦点坐标为F 1(-7,0),F 2(7,0),离心率为e =74.由于双曲线x 2a 2-y 2b 2=1与椭圆x 216+y 29=1有相同的焦点,因此a 2+b 2=7.又双曲线的离心率e =a 2+b 2a =7a ,所以7a =274,所以a =2,b 2=c 2-a 2=3,故双曲线的方程为x 24-y23=1.【答案】 (1)B (2)x 24-y23=1【类题通法】 (1)涉及到双曲线上的点到焦点的距离问题时,经常考虑双曲线的定义. (2)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y2n =1(mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便;(3)当已知双曲线的渐近线方程bx±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(4)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y2b 2=λ(λ≠0),据其他条件确定λ的值.1.根据下列条件,求双曲线方程:(1)与双曲线x 29-y216=1有共同的渐近线,且过点(-3,23);(2)与双曲线x 216-y24=1有公共焦点,且过点(32,2).解析:(1)设所求双曲线方程为x 29-y216=λ(λ≠0),将点(-3,23)代入得λ=14,∴所求双曲线方程为x 29-y 216=14,即x 294-y24=1. (2)设双曲线方程为x 216-k -y24+k =1,将点(32,2)代入得k =4(k =-14舍去). ∴所求双曲线方程为x 212-y28=1.考向二 双曲线的性质及应用(1)(2014·哈尔滨模拟)已知P 是双曲线x 2a 2-y2b2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且PF 1→·PF 2→=0,若△PF 1F 2的面积为9,则a +b 的值为( )A .5B .6C .7D .8(2)F 1、F 2分别是双曲线x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为( )A .2B .7C .13D .15【审题视点】 (1)利用PF 1→ ·PF 2→=0及e =54转化为a ,b 的方程组.(2)利用双曲线定义及余弦定理求a 与c 的关系. 【典例精讲】 (1)由PF 1→·PF 2→=0,得PF 1→⊥PF 2→,设|PF 1→|=m ,|PF 2→|=n ,不妨设m >n ,则m 2+n 2=4c 2,m -n =2a ,12mn =9,c a =54,解得⎩⎪⎨⎪⎧a =4,c =5, ∴b =3,∴a +b =7,故选C . (2)如图,由双曲线定义得,|BF 1|-|BF 2|=|AF 2|-|AF 1|=2a ,因为△ABF 2是正三角形,所以|BF 2|=|AF 2|=|AB|,因此|AF 1|=2a ,|AF 2|=4a ,且∠F 1AF 2=120°,在△F 1AF 2中,4c 2=4a 2+16a 2+2×2a ×4a ×12=28a 2,所以e =7,故选B .【答案】 (1)C (2)B【类题通法】 (1)求双曲线的离心率,就是求c 与a 的比值,一般不需要具体求出a ,c 的值,只需列出关于a ,b ,c 的方程或不等式解决即可.(2)双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.2.(2014·济南模拟)过双曲线x 2a 2-y2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF(O 为原点)的垂直平分线上,则双曲线的离心率为________.解析:如图所示,不妨设F 为右焦点,过F 作FP 垂直于一条渐近线,垂足为P ,过P 作PM⊥OF 于M.由已知得M 为OF 的中点,由射影定理知|PF|2=|FM||FO|,又F(c ,0),渐近线方程为bx -ay =0,∴|PF|=bcb 2+a2=b ,∴b 2=c 2·c ,即2b 2=c 2=a 2+b 2,∴a 2=b 2,∴e =c a = 1+b2a2= 2.答案: 2考向三 直线与双曲线的综合应用已知双曲线C :x 2a2-y 2=1(a >0)与l :x +y =1相交于两个不同的点A 、B ,l与y 轴交于点P ,若PA →=512PB →,则a =________.【审题视点】 联立方程组,利用P 、A 、B 坐标之间的关系,建立a 的方程. 【典例精讲】 因为双曲线C 与直线l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a2-y 2=1,x +y =1有两组不同的实数解,消去y 并整理,得(1-a 2)x 2+2a 2x -2a 2=0,实数a 应满足⎩⎪⎨⎪⎧a >0,1-a 2≠0,4a 4+8a 2(1-a 2)>0, 解得0<a <2且a≠1. 设A(x 1,y 1)、B(x 2,y 2), 由一元二次方程根与系数的关系, 得x 1+x 2=2a2a 2-1,①x 1x 2=2a2a 2-1,②又P(0,1),由PA →=512PB →,得(x 1,y 1-1)=512(x 2,y 2-1),从而x 1=512x 2,③ 由①③,解得⎩⎪⎨⎪⎧x 1=517·2a 2a 2-1,x 2=1217·2a 2a 2-1代入②, 得517×1217×⎝ ⎛⎭⎪⎫2a 2a 2-12=2a 2a 2-1, 即2a 2a 2-1=28960,解得a =1713,⎝ ⎛⎭⎪⎫a =-1713舍去. 【答案】1713【类题通法】 (1)判断直线l 与双曲线E 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入双曲线E 的方程F(x ,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0F (x ,y )=0,消去y 后得ax 2+bx +c =0.由此转化为两点坐标的关系.(2)特殊情况考虑与渐近线平行的直线与双曲线的位置关系,数形结合求解.3.已知点A(-2,0),点B(2,0),且动点P 满足|PA|-|PB|=2,则动点P 的轨迹与直线y =k(x -2)有两个交点的充要条件为k∈________.解析:由已知得动点P 的轨迹为一双曲线的右支且2a =2,c =2,则b =c 2-a 2=1,∴P 点的轨迹方程为x 2-y 2=1(x >0),其一条渐近线方程为y =x.若P 点的轨迹与直线y =k(x -2)有两个交点,则需k∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪ (1,+∞)双曲线与渐近线的关系不清致误(2014·浙江温州适应性测试)已知F 1,F 2为双曲线Ax 2-By 2=1的焦点,其顶点是线段F 1F 2的三等分点,则其渐近线的方程为( )A .y =±22xB .y =±24xC .y =±xD .y =±22x 或y =±24x 【正解】 依题意c =3a ,∴c 2=9a 2.又c 2=a 2+b 2, ∴b 2a 2=8,b a =22,a b =24.故选D . 【答案】 D【易错点】 (1)默认为双曲线焦点在x 轴其渐近线为y =±ba x ,而错选为A .(2)把双曲线认为等轴双曲线而错选为C .(3)把a ,b ,c 的关系与椭圆c 2=a 2-b 2混淆致错.【警示】 (1)对于方程x 2a 2-y 2b 2=1来说,求渐近线方程就相当于求ba 的值,但要分焦点的位置是在x 轴还是在y 轴上,此题没有给出焦点的位置,其渐近线斜率有四种情况.(2)渐近线为y =±b a x 所对应的双曲线为x 2a 2-y2b 2=λ(λ≠0).当λ>0时,表示焦点在x 轴上,当λ<0时,焦点在y 轴上.1.(2013·高考福建卷)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25B .45C .255 D .455解析:选C .求出双曲线的顶点和渐近线,再利用距离公式求解.双曲线的渐近线为直线y =±12x ,即x±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255. 2.(2013·高考广东卷)已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B .x 24-y25=1 C .x 22-y 25=1 D .x 22-y25=1 解析:选B .求双曲线的标准方程需要确定焦点位置及参数a ,b 的值.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,选B .3.(2013·高考北京卷)双曲线x 2-y2m=1的离心率大于2的充分必要条件是( )A .m >12B .m ≥1C .m >1D .m >2解析:选C .用m 表示出双曲线的离心率,并根据离心率大于2建立关于m 的不等式求解.∵双曲线x 2-y2m=1的离心率e =1+m ,又∵e >2,∴1+m >2,∴m >1.4.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y2sin 2θ-x2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D .先根据θ的范围,确定双曲线方程的类型,判断焦点所在的坐标轴,然后分析双曲线C 1和C 2的实轴长、虚轴长、焦距、离心率是否相等.双曲线C 1的焦点在x 轴上,a =cos θ,b =sin θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =sin θ,b =sin θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ. 故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等。
双曲线知识点总结及练习题
双曲线知识点总结及练习题Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))。
这两个定点叫双曲线的焦点。
要注意两点:(1)距离之差的绝对值。
(2)2a <|F 1F 2|。
当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;用第二定义证明比较简单 或两边之差小于第三边当2a >|F 1F 2|时,动点轨迹不存在。
2、第二定义:动点到一定点F 的距离与它到一条定直线l (准线2ca )的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。
这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程(222a c b -=,其中|1F 2F |=2c )焦点在x 轴上:12222=-b y a x (a >0,b >0)焦点在y 轴上:12222=-bx a y (a >0,b >0)(1)如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上。
a 不一定大于b 。
判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上(2)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (3)双曲线方程也可设为:221(0)x y mn m n-=> 三、双曲线的性质四、双曲线的参数方程:sec tan x a y b θθ=⋅⎛ =⋅⎝ 椭圆为cos sin x a y b θθ=⋅⎛=⋅⎝五、 弦长公式[提醒]解决直线与椭圆的位置关系问题时常利用数形结合法、根与系数的关系、整体代入、设而不求的思想方法。
双曲线的第二定义(含解析)
课题:双曲线的第二定义【学习目标】1、掌握双曲线的第二定义;2、能应用双曲线的第二定义解决相关问题;一、双曲线中的基本元素(1).基本量: a 、b 、c 、e几何意义: a-实半轴、b-虚半轴、c-半焦距,e-离心率;相互关系: )0(,222>>=+=a c ac e b a c (2).基本点:顶点、焦点、中心(3).基本线: 对称轴二.双曲线的第二定义的推导例1 点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c c a a>>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离.根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭|,c a =.化简,得22222222()()c a x a y a c a --=-. 设222c a b -=,就可化为22221(00)x y a b a b -=>>,,这是双曲线的标准方程,所以点M 的轨迹是实轴长、虚轴长分别为22a b ,的双曲线(如图).由例1可知,当点M 到一个定点的距离和它到一条定直线的距离的比是常数(1)c e e a=>时,这个点的轨迹是双曲线.定点是双曲线的焦点,定直线叫做双曲线的准线,常数e 是双曲线的离心率.对于双曲线22221x y a b -=,相应于焦点(0)F c ,的准线方程是2a x c=,根据双曲线的对称性,相应于焦点(0)F c '-,的准线方程是2a x c=-,所以双曲线有两条准线. 例2 一动点到定直线3x =的距离是它到定点(40)F ,的距离的12,求这个动点的轨迹方程. 解:由题设知离心率2e =,又定点(40)F ,与定直线3x =是双曲线相应的右焦点与右准线,所以2c a =,21a c c -=,解得2433a c ==,. 所以双曲线中心为803O ⎛⎫' ⎪⎝⎭,. 又243b =,故双曲线方程为22(38)3144x y --=. 评注:在应用第二定义时,应先确定定点不在定直线上,否则轨迹将是两条相交的直线,同时还应明确曲线中心的位置,因为中心不同的曲线有其不同的方程.三.第二定义的应用1、已知双曲线的焦点是()0,26±,渐近线方程是x y 23±=,则它的两条准线间的距离是___________; 2、若双曲线1366422=-y x 上点p 到右焦点的距离为8,则点p 到右准线的距离为___________; 3、设双曲线1242522=-y x 上一点的横坐标为15,则该点与左、右焦点的距离分别为________和________; 4、已知双曲线1366422=-y x 上点p 到右焦点的距离为14,则其到左准线的距离是__________; 5.双曲线16x 2―9y 2=―144的实轴长、虚轴长、离心率分别为(C )(A )4, 3, 417 (B )8, 6, 417 (C )8, 6, 45 (D )4, 3, 45 6.顶点在x 轴上,两顶点间的距离为8, e =45的双曲线的标准方程为(A ) (A )221169x y -= (B )2211625x y -= (C )221916x y -= (D )2212516x y -= 7.双曲线22134x y -=的两条准线间的距离等于(A ) (A )767 (B )737 (C )185 (D )1658.若双曲线2216436y x -=上一点P 到双曲线上焦点的距离是8,那么点P 到上准线的距离是(D )(A )10 (B )7 (C )27 (D )3259.经过点M (3, ―1),且对称轴在坐标轴上的等轴双曲线的标准方程是(D )(A )y 2―x 2=8 (B )x 2―y 2=±8 (C )x 2―y 2=4 (D )x 2―y 2=810.以y =±32x 为渐近线的双曲线的方程是(D ) (A )3y 2―2x 2=6 (B )9y 2―8x 2=1 (C )3y 2―2x 2=1 (D )9y 2―4x 2=3611.等轴双曲线的离心率为 ;等轴双曲线的两条渐近线的夹角是 (090,2)12.从双曲线)0,0( 12222>>=-b a by a x 的一个焦点到一条渐近线的距离是 .(b) 13.与2214924x y +=有公共焦点,且离心率e =45的双曲线方程是 (191622=-y x ) 14.以5x 2+8y 2=40的焦点为顶点,且以5x 2+8y 2=40的顶点为焦点的双曲线的方程是 . (15322=-y x )15.已知双曲线1366422=-x y 上一点到其右焦点距离为8,求其到左准线的距离(答案:596) 四、课后作业1.下列各对双曲线中,既有相同的离心率,又有相同的渐近线的是(B )(A )23x ―y 2=1与y 2―23x =1 (B )23x ―y 2=1与22193x y -= (C )y 2―23x =1与x 2―23y (D )23x ―y 2=1与22139y x -= 2.若共轭双曲线的离心率分别为e 1和e 2,则必有(D )(A )e 1= e 2 (B )e 1 e 2=1 (C )1211e e +=1 (D )221211e e +=1 3.若双曲线经过点(6, 3),且渐近线方程是y =±31x ,则这条双曲线的方程是(C ) (A )221369x y -= (B )221819x y -= (C )2219x y -= (D )221183x y -= 4.双曲线的渐近线为y =±43x ,则双曲线的离心率为(C ) (A )45 (B )2 (C )45或35 (D )215或35.如果双曲线221169x y -=右支上一点P 到它的右焦点的距离等于2,则P 到左准线的距离为(C ) (A )245 (B )6910(C )8 (D )10 6.已知双曲线4222=-ky kx 的一条准线是y =1,则实数k 的值是(B )(A )32 (B )―32 (C )1 (D )―1 7.双曲线2214x y k+=的离心率e ∈(1, 2),则k 的取值范围是 .)0,12(- 8.若双曲线221169x y -=上的点M 到左准线的距离为25,则M 到右焦点的距离是 .(889) 9.双曲线的离心率e =2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 .(1:3)10.在双曲线2211213y x -=的一支上有不同的三点A (x 1, y 1), B, 6), C (x 3, y 3)与焦点F 间的距离成等差数列,则y 1+y 3等于 .(12)。
第二章 2.3.1 双曲线及其标准方程
§2.3双曲线2.3.1双曲线及其标准方程学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单问题.知识点一双曲线的定义1.定义:平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹.2.定义的集合表示:{M|||MF1|-|MF2||=2a,0<2a<|F1F2|}.3.焦点:两个定点F1,F2.4.焦距:两焦点间的距离,表示为|F1F2|.知识点二双曲线标准方程焦点位置焦点在x轴上焦点在y轴上图形标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)焦点(-c,0),(c,0)(0,-c),(0,c)a,b,c的关系c2=a2+b21.平面内到两定点的距离的差等于常数(小于两定点间距离)的点的轨迹是双曲线.() 2.平面内到点F1(0,4),F2(0,-4)的距离之差等于6的点的轨迹是双曲线.()3.平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线.() 4.在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.()题型一 求双曲线的标准方程例1 根据下列条件,求双曲线的标准方程:(1)a =4,经过点A ⎝⎛⎭⎫1,-4103;(2)焦点在x 轴上,经过点P (4,-2)和点Q (26,22); (3)过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5且焦点在坐标轴上.反思感悟 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂.若双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m ,n ,避免了讨论,从而简化求解过程.跟踪训练1 求适合下列条件的双曲线的标准方程:(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8; (2)以椭圆x 28+y 25=1长轴的端点为焦点,且经过点(3,10).题型二 双曲线定义的应用命题角度1 双曲线中的焦点三角形问题 例2 若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)如图,若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. 引申探究将本例(2)中的条件“|PF 1|·|PF 2|=32”改为“∠F 1PF 2=60°”,求△F 1PF 2的面积.反思感悟 求双曲线中焦点三角形面积的方法 (1)方法一:①根据双曲线的定义求出||PF 1|-|PF 2||=2a ;②利用余弦定理表示出|PF 1|,|PF 2|,|F 1F 2|之间满足的关系式; ③通过配方,利用整体的思想求出|PF 1|·|PF 2|的值; ④利用公式12PF F S △=12×|PF 1|·|PF 2|sin ∠F 1PF 2求得面积.(2)方法二:利用公式12PF F S △=12×|F 1F 2|×|y P |(y P 为P 点的纵坐标)求得面积.跟踪训练2 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.命题角度2 利用定义确定与双曲线有关的轨迹方程例3 在△ABC 中,已知|AB |=42,A (-22,0),B (22,0),且内角A ,B ,C 满足sin B -sin A =12sin C ,求顶点C 的轨迹方程.反思感悟(1)求解与双曲线有关的点的轨迹问题,常见的方法有两种:①列出等量关系,化简得到方程;②寻找几何关系,由双曲线的定义,得出对应的方程.(2)求解双曲线的轨迹问题时要特别注意:①双曲线的焦点所在的坐标轴;②检验所求的轨迹对应的是双曲线的一支还是两支.跟踪训练3 如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.双曲线在生活中的应用典例 “神舟”九号飞船返回仓顺利到达地球后,为了及时将航天员安全救出,地面指挥中心在返回仓预计到达区域安排了三个救援中心(记A ,B ,C ),A 在B 的正东方向,相距6千米,C 在B 的北偏西30°方向,相距4千米,P 为航天员着陆点.某一时刻,A 接收到P 的求救信号,由于B ,C 两地比A 距P 远,在此4秒后,B ,C 两个救援中心才同时接收到这一信号.已知该信号的传播速度为1千米/秒,求在A 处发现P 的方位角.[素养评析] 利用双曲线解决实际问题的基本步骤如下:(1)建立适当的坐标系; (2)求出双曲线的标准方程;(3)根据双曲线的方程及定义解决实际应用问题. 注意:①解答与双曲线有关的应用问题时,除要准确把握题意,了解一些实际问题的相关概念,同时还要注意双曲线的定义及性质的灵活应用.②实际应用问题要注意其实际意义以及在该意义下隐藏着的变量范围.1.已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( )A .双曲线B .双曲线的一支C .直线D .一条射线2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为( )A .1B .1或-2C .1或12D.123.过点(1,1),且ba=2的双曲线的标准方程是( )A.x 212-y 2=1 B.y 212-x 2=1 C .x 2-y 212=1 D.x 212-y 2=1或y 212-x 2=1 4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),F 1,F 2为其两个焦点,若过焦点F 1的直线与双曲线的同一支相交,且所得弦长|AB |=m ,则△ABF 2的周长为( )A .4aB .4a -mC .4a +2mD .4a -2m5.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是________________.1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出关于a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1(mn <0)的形式求解.一、选择题1.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫62,0 C.⎝⎛⎭⎫52,0 D .(3,0) 2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=b ,且双曲线的焦距为25,则该双曲线的方程为( )A.x 24-y 2=1 B.x 23-y 22=1 C .x 2-y 24=1 D.x 22-y 23=1 3.已知双曲线x 2a -3+y 22-a=1,焦点在y 轴上,若焦距为4,则a 等于( )A.32 B .5 C .7 D.124.已知双曲线x 24-y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O 的距离为( )A .3或7B .6或14C .3D .75.“mn <0”是方程“mx 2+ny 2=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( )A.x 216-y 29=1 B.x 216-y 29=1(x ≥4) C.x 29-y 216=1 D.x 29-y 216=1(x ≥3) 7.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( )A .双曲线的一支B .圆C .椭圆D .双曲线8.若双曲线x 2n -y 2=1(n >1)的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积为( )A .1 B.12 C .2 D .4二、填空题9.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是________.10.若曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为________.11.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为______________. 三、解答题12.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程.13.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.14.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.3215.已知△OFQ 的面积为26,且OF →·FQ →=m ,其中O 为坐标原点. (1)设6<m <46,求OF →与FQ →的夹角θ的正切值的取值范围;(2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,|OF →|=c ,m =⎝⎛⎭⎫64-1c 2,当|OQ →|取得最小值时,求此双曲线的标准方程.。
双曲线知识点总结及练习题
一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长<|F 1F 2|的点的轨迹21212F F a PF PF <=-a 为常数;这两个定点叫双曲线的焦点; 要注意两点:1距离之差的绝对值;22a <|F 1F 2|;当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;用第二定义证明比较简单 或两边之差小于第三边当2a >|F 1F 2|时,动点轨迹不存在;2、第二定义:动点到一定点F 的距离与它到一条定直线l 准线2ca 的距离之比是常数ee >1时,这个动点的轨迹是双曲线;这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程222a c b -=,其中|1F 2F |=2c焦点在x 轴上:12222=-b y a x a >0,b >0焦点在y 轴上:12222=-bx a y a >0,b >01如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上; a 不一定大于b ;判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上2与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3双曲线方程也可设为:221(0)x y mn m n-=> 三、双曲线的性质四、双曲线的参数方程:sec tan x a y b θθ=⋅⎛ =⋅⎝ 椭圆为cos sin x a y b θθ=⋅⎛=⋅⎝ 五、 弦长公式2、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B 两点,则弦长ab AB 22||=;3、特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解 六、焦半径公式双曲线12222=-by a x a >0,b >0上有一动点00(,)M x y左焦半径:r=│ex+a │ 右焦半径:r=│ex-a │当00(,)M x y 在左支上时10||MF ex a =--,20||MF ex=-+当00(,)M x y 在右支上时10||MF ex a =+,20||MF ex a =- 左支上绝对值加-号,右支上不用变化双曲线焦点半径公式也可用“长加短减”原则:与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号aex MF a ex MF -=+=0201 构成满足a MF MF 221=-注:焦半径公式是关于0x 的一次函数,具有单调性,当00(,)M x y 在左支端点时1||MF c a =-,2||MF c a =+,当00(,)M x y 在左支端点时1||MF c a =+,2||MF c a =-七、等轴双曲线12222=-b y a x a >0,b >0当a b =时称双曲线为等轴双曲线 1; a b =; 2;离心率2=e ;3;两渐近线互相垂直,分别为y=x ±; 4;等轴双曲线的方程λ=-22y x ,0λ≠; 八、共轭双曲线以已知的虚轴为,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,通常称它们互为共轭双曲线;λ=-2222b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x . 九、点与双曲线的位置关系,直线与双曲线的位置关系1、点与双曲线点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的内部2200221x y a b ⇔-> 代值验证,如221x y -=点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2、直线与双曲线 代数法:设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得10m =时,b bk a a -<<,直线与双曲线交于两点左支一个点右支一个点; b k a ≥,bk a≤-,或k 不存在时,直线与双曲线没有交点;20m ≠时,k 存在时,若0222=-k a b ,abk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;相交 若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a+=直线与双曲线有一个交点;相切 k 不存在,a m a -<<时,直线与双曲线没有交点;m a m a ><-或直线与双曲线相交于两点;十、双曲线与渐近线的关系1、若双曲线方程为22221(0,0)x y a b a b -=>>⇒渐近线方程:22220x y a b -=⇔x aby ±=2>0,b >0⇒渐近线方程:22220y x a b -= ay x b=±3、若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x , 0λ≠;4、若双曲线与12222=-by a x 有公共渐近线,则双曲线的方程可设为λ=-2222b y a x 0>λ,焦点在x 轴上,0<λ,焦点在y 轴上十一、双曲线与切线方程1、双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=;2、过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b -=;3、双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=;椭圆与双曲线共同点归纳十二、顶点连线斜率双曲线一点与两顶点连线的斜率之积为K 时得到不同的曲线; 椭圆参照选修2-1P41,双曲线参照选修2-1P55;1、A 、B 两点在X 轴上时2、A 、B 两点在Y 轴上时十三、面积公式双曲线上一点P 与双曲线的两个焦点 构成的三角形 称之为双曲线焦点三角解:在12PF F ∆中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得222121212cos 2PF PF F F PF PF α+-=⋅2221212(2)2r r c r r +-=⋅ ∴21212cos 2r r r r b α=-即21221cos b r r α=-,∴12212112sin sin 221cos PF F b S r r ααα∆==⨯⨯-2sin 1cos b αα=-=2cot 2b α.图3解:在12PF F ∆中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得222121212cos 2PF PF F F PF PF α+-=⋅2221212(2)2r r c r r +-=⋅ ∴21212cos 2r r b r r α=- 即21221cos br r α=+,∴12212112sin sin 221cos PF F b S r r ααα∆==⨯⨯+2sin 1cos b αα=+=2tan 2b α. 十四、双曲线中点弦的斜率公式:设00(,)M x y 为双曲线22221x y a b -=弦AB AB 不平行y 轴的中点,则有22AB OM b k k a⋅=证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得:22221212220x x y y a b ---=整理得:2221222212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a+-=+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy y y y k x x x x +===+,所以22AB OM b k k a⋅= 椭圆中线弦斜率公式22AB OMb k k a⋅=-图1双曲线基础题1.双曲线2x2-y2=8的实轴长是A.2 B.2错误!C.4 D.4错误!2.设集合P=错误!,Q={x,y|x-2y+1=0},记A=P∩Q,则集合A中元素的个数是A.3 B.1 C.2 D.43.双曲线错误!-错误!=1的焦点到渐近线的距离为A.2 B.3 C.4 D.54.双曲线错误!-错误!=1的共轭双曲线的离心率是________.5.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点4,-2,则它的离心率为6.设双曲线错误!-错误!=1a>0的渐近线方程为3x±2y=0,则a的值为A.4 B.3 C.2 D.17.从错误!-错误!=1其中m,n∈{-1,2,3}所表示的圆锥曲线椭圆、双曲线、抛物线方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为8.双曲线错误!-错误!=1的渐近线与圆x-32+y2=r2r>0相切,则r=B.3 C.4 D.6图K51-19.如图K51-1,在等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈错误!,以A、B为焦点且过点D的双曲线的离心率为e1,以C、D为焦点且过点A的椭圆的离心率为e2,则e1·e2=________.10.已知双曲线错误!-错误!=1a>0,b>0的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是________.11.已知双曲线错误!-错误!=1a>0,b>0的一条渐近线方程为y=错误!x,它的一个焦点为F6,0,则双曲线的方程为________.12.13分双曲线C与椭圆错误!+错误!=1有相同焦点,且经过点错误!,4.1求双曲线C的方程;2若F1,F2是双曲线C的两个焦点,点P在双曲线C上,且∠F1PF2=120°,求△F1PF2的面积.13.16分已知双曲线错误!-错误!=1和椭圆错误!+错误!=1a>0,m>b>0的离心率互为倒数,那么以a,b,m为边长的三角形是A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形26分已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,且∠F1PF2=60°,则|PF1|·|PF2|=A.2 B.4 C.6 D.8双曲线综合训练一、选择题本大题共7小题,每小题5分,满分35分1.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是A .双曲线B .双曲线的一支C .两条射线D .一条射线2.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于A .2B .3C .2D .33.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=Q PF ,则双曲线的离心率e等于A .12-B .2C .12+D .22+ 4.双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A .14-B .4-C .4D .145.双曲线)0,(12222>=-b a by a x 的左、右焦点分别为F 1,F 2,点P 为该双曲线在第一象限的点,△PF 1F 2面积为1,且,2tan ,21tan 1221-=∠=∠F PF F PF 则该双曲线的方程为 A .1351222=-y x B .1312522=-y x C .1512322=-y x D .1125322=-y x 6.若1F 、2F 为双曲线12222=-by a x 的左、右焦点,O 为坐标原点,点P 在双曲线的左支上,点M 在双曲线的右准线上,且满足)(,111OMOM OF OF OP PM O F +==λ)0(>λ,则该双曲线的离心率为A .2B .3C .2D .37.如果方程221x y p q+=-表示曲线,则下列椭圆中与该双曲线共焦点的是A .2212x y q p q +=+B . 2212x y q p p+=-+C .2212x y p q q+=+ D . 2212x y p q q+=-+二、填空题:本大题共3小题,每小题5分,满分15分8.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________;9.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 ; 10.若双曲线1422=-my x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 三、解答题:本大题共2小题,满分30分11. 本小题满分10分双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程;12.本小题满分20分已知三点P5,2、1F -6,0、2F 6,0; 1求以1F 、2F 为焦点且过点P 的椭圆的标准方程;2设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程.基础热身1.C解析双曲线方程可化为错误!-错误!=1,所以a2=4,得a=2,所以2a=4.故实轴长为4.2.B解析由于直线x-2y+1=0与双曲线错误!-y2=1的渐近线y=错误!x平行,所以直线与双曲线只有一个交点,所以集合A中只有一个元素.故选B.3.B解析双曲线错误!-错误!=1的一个焦点是5,0,一条渐近线是3x-4y=0,由点到直线的距离公式可得d=错误!=3.故选B.解析双曲线错误!-错误!=1的共轭双曲线是错误!-错误!=1,所以a=3,b=错误!,所以c=4,所以离心率e=错误!.能力提升5.D解析设双曲线的标准方程为错误!-错误!=1a>0,b>0,所以其渐近线方程为y=±错误!x,因为点4,-2在渐近线上,所以错误!=错误!.根据c2=a2+b2,可得错误!=错误!,解得e2=错误!,所以e=错误!,故选D.6.C解析根据双曲线错误!-错误!=1的渐近线方程得:y=±错误!x,即ay±3x=0.又已知双曲线的渐近线方程为3x±2y=0且a>0,所以有a=2,故选C.7.B解析若方程表示圆锥曲线,则数组m,n只有7种:2,-1,3,-1,-1,-1,2,2,3,3,2,3,3,2,其中后4种对应的方程表示焦点在x轴上的双曲线,所以概率为P=错误!.故选B.8.A解析双曲线的渐近线为y=±错误!x,圆心为3,0,所以半径r=错误!=错误!.故选A.9.1解析作DM⊥AB于M,连接BD,设AB=2,则DM=sinθ,在Rt△BMD中,由勾股定理得BD=错误!,所以e1=错误!=错误!,e2=错误!=错误!,所以e1·e2=1.10.2,+∞解析依题意,双曲线的渐近线中,倾斜角的范围是60°,90°,所以错误!≥tan60°=错误!,即b2≥3a2,c2≥4a2,所以e≥2.-错误!=1解析错误!=错误!,即b=错误!a,而c=6,所以b2=3a2=336-b2,得b2=27,a2=9,所以双曲线的方程为错误!-错误!=1.12.解答1椭圆的焦点为F10,-3,F20,3.设双曲线的方程为错误!-错误!=1,则a2+b2=32=9.①又双曲线经过点错误!,4,所以错误!-错误!=1,②解①②得a2=4,b2=5或a2=36,b2=-27舍去,所以所求双曲线C的方程为错误!-错误!=1.2由双曲线C的方程,知a=2,b=错误!,c=3.设|PF1|=m,|PF2|=n,则|m-n|=2a=4,平方得m2-2mn+n2=16.①在△F1PF2中,由余弦定理得2c2=m2+n2-2mn cos120°=m2+n2+mn=36.②由①②得mn=错误!,所以△F1PF2的面积为S=错误!mn sin120°=错误!.难点突破13.1B2B解析1依题意有错误!·错误!=1,化简整理得a2+b2=m2,故选B.2在△F1PF2中,由余弦定理得,cos60°=错误!,=错误!,=错误!+1=错误!+1.因为b=1,所以|PF1|·|PF2|=4.故选B.一、选择题1.D 2,2PM PN MN -==而,P ∴在线段MN 的延长线上2.C 2222222,2,2,2a c c c a e e c a===== 3.C Δ12PF F 是等腰直角三角形,21212,22PF F F c PF c === 4.A.5. A 思路分析:设),(00y x p ,则1,2,2100000==-=+cy cx yc x y ,命题分析:考察圆锥曲线的相关运算6. C 思路分析:由PM O F =1知四边形OMP F 1是平行四边形,又11(OF OF OP λ=)OMOM +知OP 平分OM F 1∠,即OMP F 1是菱形,设c OF =1,则c PF =1.又a PF PF 212=-,∴c a PF +=22,由双曲线的第二定义知:122+=+=ec c a e ,且1>e ,∴2=e ,故选C .命题分析:考查圆锥曲线的第一、二定义及与向量的综合应用,思维的灵活性.7.D .由题意知,0pq >.若0,0p q >>,则双曲线的焦点在y 轴上,而在选择支A,C 中,椭圆的焦点都在x轴上,而选择支B,D 不表示椭圆;若0,0p q <<,选择支A,C 不表示椭圆,双曲线的半焦距平方2c p q =--,双曲线的焦点在x 轴上,选择支D 的方程符合题意.二、填空题8.221205x y -=± 设双曲线的方程为224,(0)x y λλ-=≠,焦距2210,25c c == 当0λ>时,221,25,2044x y λλλλλ-=+==;当0λ<时,221,()25,2044y x λλλλλ-=-+-==--- 9.(,4)(1,)-∞-+∞ (4)(1)0,(4)(1)0,1,4k k k k k k +-<+->><-或.10. (7,0) 渐近线方程为my x =,得3,7m c ==且焦点在x 轴上.三、解答题11.解:由共同的焦点12(0,5),(0,5)F F -,可设椭圆方程为2222125y x a a +=-; 双曲线方程为2222125y x b b +=-,点(3,4)P 在椭圆上,2221691,4025a a a +==- 双曲线的过点(3,4)P 的渐近线为225b y x b =-,即2243,1625b b b =⨯=-所以椭圆方程为2214015y x +=;双曲线方程为221169y x += 12.1由题意,可设所求椭圆的标准方程为22a x +122=by )0(>>b a ,其半焦距6=c ;||||221PF PF a +=56212112222=+++=, ∴=a 53, 93645222=-=-=c a b ,故所求椭圆的标准方程为452x +192=y ; 2点P5,2、1F -6,0、2F 6,0关于直线y =x 的对称点分别为:)5,2(P '、'1F 0,-6、'2F 0,6设所求双曲线的标准方程为212a x -1212=b y )0,0(11>>b a ,由题意知半焦距61=c ,|''||''|2211F P F P a -=54212112222=+-+=, ∴=1a 52,162036212121=-=-=a c b ,故所求双曲线的标准方程为202y -1162=x .。
双曲线的第二定义
双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数()0ce c a a=>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双曲线的准线,常数e 是双曲线的离心率。
1、离心率:(1)定义:双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率; (2)范围:1>e ;(3)双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ; 因此e 的形状就从扁狭逐渐变得开阔。
由此可知,双曲线的离心率越大,它的开口就越阔; (1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程:对于12222=-by a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=,相对于右焦点)0,(2c F 对应着右准线ca x l 22:=;位置关系:02>>≥c a a x ,焦点到准线的距离cb p 2=(也叫焦参数); 对于12222=-bx a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 21:-=;相对于上焦点),0(2c F 对应着上准线ca y l 22:=。
3双曲线上任意一点M 与双曲线焦点12F F 、的连线段,叫做双曲线的焦半径。
设双曲线)0,0( 12222>>=-b a by a x ,21,F F 是其左右焦点,e d MF =11, ∴e cax MF =+201,∴10MF a ex =+;同理 20MF a ex =-; 即:焦点在x 轴上的双曲线的焦半径公式:1020MF a ex MF a ex ⎧=+⎪⎨=-⎪⎩同理:焦点在y 轴上的双曲线的焦半径公式:1020MF a ey MF a ey ⎧=+⎪⎨=-⎪⎩( 其中12F F 、分别是双曲线的下、上焦点)点评:双曲线焦半径公式与椭圆的焦半径公式的区别在于其带绝对值符号,如果要去绝对值,需要对点的位置进行讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:双曲线的第二定义
【学习目标】
1、掌握双曲线的第二定义;
2、能应用双曲线的第二定义解决相关问题;一、双曲线中的基本元素(1).基本量:
a 、
b 、
c 、e
几何意义:a-实半轴、b-虚半轴、c-半焦距,e-离心率;
相互关系:
)
0(,2
2
2
a
c
a
c e
b a
c
(2).基本点:顶点、焦点、中心(3).基本线:
对称轴
二.双曲线的第二定义的推导
例1 点()M x y ,与定点(0)F c ,的距离和它到定直线
2
:a
l x
c
的距离的比是常数
(0)c c a
a
,求点M 的轨迹.
解:设d 是点M 到直线l 的距离.根据题意,所求轨迹就是集合
MF c P M d
a
|
,
由此得
22
2
()
x c y
c a
a
x
c
.化简,得2
22
22
22
2
()()c
a x
a y
a c
a .
设2
2
2
c
a
b ,就可化为
222
2
1(00)x y a b
a
b
,,这是双曲线的标准方程,
所以点M
的轨迹是实轴长、虚轴长分别为22a b ,的双曲线(如图).
由例1可知,当点M 到一个定点的距离和它到一条定直线的距离的比是常数(1)c e
e a
时,这个点的轨迹是双曲
线.定点是双曲线的焦点,定直线叫做双曲线的准线,常数
e 是双曲线的离心率.对于双曲线222
2
1x y a
b
,相应于焦点(0)F c ,
的准线方程是2
a
x
c
,根据双曲线的对称性,
相应于焦点(0)F c ,
的准线方程是2
a x
c
,所以双曲线有两条准线.
例2 一动点到定直线
3x 的距离是它到定点(40)F ,的距离的
12
,求这个动点的轨迹方程.
解:由题设知离心率
2e
,
又定点(40)F ,与定直线3x 是双曲线相应的右焦点与右准线,
所以2c
a ,2
1a
c
c ,解得2433a c
,.
所以双曲线中心为803O
,.
又2
43
b
,故双曲线方程为
2
2
(38)
314
4
x
y .
评注:在应用第二定义时,应先确定定点不在定直线上,否则轨迹将是两条相交的直线,同时还应明确曲线中心的位置,因为中心不同的曲线有其不同的方程.
三.第二定义的应用1、已知双曲线的焦点是
0,26,渐近线方程是
x y
2
3,则它的两条准线间的距离是___________;
2、若双曲线
136642
2
y
x
上点p 到右焦点的距离为
8,则点p 到右准线的距离为___________;
3、设双曲线
124
252
2
y
x
上一点的横坐标为
15,则该点与左、右焦点的距离分别为________和________;
4、已知双曲线
136
642
2
y
x
上点p 到右焦点的距离为
14,则其到左准线的距离是
__________;
5.双曲线16x 2
―9y 2
=―144的实轴长、虚轴长、离心率分别为(C )
(A )4, 3,
4
17(B )8, 6,
4
17(C )8, 6,
4
5(D )4, 3,
4
56.顶点在x 轴上,两顶点间的距离为8,e =
4
5的双曲线的标准方程为
(A )
(A )
2
2
1
169x
y
(B )
2
2
1
1625
x
y
(C )
2
2
1
916
x
y
(D )
2
2
1
2516
x
y
7.双曲线
2
2
134
x
y
的两条准线间的距离等于(A )
(A )
7
67(B )
7
37
(C )
185
(D )
165
8.若双曲线
2
2
16436
y
x
上一点P 到双曲线上焦点的距离是
8,那么点P 到上准线的距离是
(D )
(A )10 (B )
3277
(C )27(D )
325
9.经过点M (3, ―1),且对称轴在坐标轴上的等轴双曲线的标准方程是(D )
(A )y 2
―x 2
=8 (B )x 2
―y 2
=±8 (C )x 2
―y 2
=4 (D )x 2
―y 2
=8 10.以y =±
3
2x 为渐近线的双曲线的方程是
(D )
(A )3y 2―2x 2
=6 (B )9y 2
―8x 2
=1 (C )3y 2
―2x 2
=1 (D )9y 2
―4x 2
=36 11.等轴双曲线的离心率为
;等轴双曲线的两条渐近线的夹角是
(
90,2)
12.从双曲线
)0,0(12
22
2b
a b
y a
x 的一个焦点到一条渐近线的距离是
.(b)
13.与
2
2
149
24
x
y
有公共焦点,且离心率e =
4
5的双曲线方程是 (
19
162
2
y
x )
14.以5x 2
+8y 2
=40的焦点为顶点,且以5x 2
+8y 2
=40的顶点为焦点的双曲线的方程是
. (
15
32
2
y
x )
15.已知双曲线
136
64
2
2
x
y
上一点到其右焦点距离为8,求其到左准线的距离
(答案:
5
96)
四、课后作业
1.下列各对双曲线中,既有相同的离心率,又有相同的渐近线的是(B )
(A )
2
3
x
―y 2=1与y 2
―
2
3x
=1 (B )
2
3x
―y 2
=1与
2
2
1
93x
y
(C )y 2
―
2
3
x
=1与x 2
―
2
3
y
(D )
2
3
x
―y 2
=1与
2
2
1
39
y
x
2.若共轭双曲线的离心率分别为e 1和e 2,则必有(D
)(A )e 1= e 2
(B )e 1e 2=1 (C )
1
2
11e e =1 (D )
2
2
1
2
11e
e =1
3.若双曲线经过点(6,
3),且渐近线方程是y =±3
1
x ,则这条双曲线的方程是
(C )
(A )
2
2
1369
x
y
(B )
2
2
1819
x
y
(C )
2
2
19
x
y
(D )
2
2
1
183
x
y
4.双曲线的渐近线为
y =±
4
3x
,则双曲线的离心率为(C )
(A )
4
5(B )2 (C )
4
5或
3
5(D )
2
15或
153
5.如果双曲线
2
2
116
9
x
y
右支上一点P 到它的右焦点的距离等于
2,则P 到左准线的距离为
(C )
(A )
245
(B )
6910
(C )8 (D )10
6.已知双曲线422
2
ky
kx
的一条准线是y =1,则实数k 的值是(B )
(A )
3
2
(B )―
3
2
(C )1 (D )―1
7.双曲线
2
2
14x
y
k 的离心率e ∈(1, 2),则k 的取值范围是 .)
0,12(8.若双曲线
2
2
1169
x
y
上的点M 到左准线的距离为
2
5,则M 到右焦点的距离是 .(
8
89)
9.双曲线的离心率e =2,则它的一个顶点把焦点之间的线段分成长、短两段的比是
.
(1:3)
10.在双曲线
2
2
11213
y
x
的一支上有不同的三点A (x 1, y 1), B (26, 6), C (x 3, y 3)与焦点F 间的距离成等差数列,
则y 1+y 3等于 .
(12)。