1.2.1 标量和矢量
矢量分析【电磁场与波+电子科技大学】
面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为
或
,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记
为
或
。
说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明
高中物理必修一第一章知识点整理
第一章知识点整理1.1质点参考系和坐标系1.质点:(1)定义:研究中用来代替物体的“有质量的点”。
(2)质点的简化条件:①物体的大小和形状对所研究的问题影响可以忽略不计;②物体做平动时,各点运动情况完全相同时。
2.参考系(1)定义:观察物体的位置及其随时间变化时用来作参考(假定为不动)的“其他物体”。
描述一个物体的运动,必须选择参考系。
(2)特点:①参考系的选择是任意的,以观测和描述物体的运动尽可能简单为原则。
研究地面上物体的运动,常常选择地面为参考系。
②参考系本身可以是运动的,也可以是静止的,一旦选定后,便假设为不动的。
(化身参考系)③选择不同的参考系研究同一物体的运动,结果往往是不同的。
3.坐标系几个要素:原点、单位长度、正方向、数字、物理量的符号和单位。
1.2时间和位移1.时间(1)时刻t:是指某一瞬间,没有长短意义。
例如:第3秒末、第1秒初。
(2)时间间隔△t:是指两时刻间的一段间隔,有长短意义。
例如:前3s、3s内、第3s内、最后1s。
➢在时间轴上,时刻对应时间轴上的点,时间间隔对应时间轴上的线段。
2.位移(1)定义:从初位置指向末位置的有向线段。
表示物体位置的变化。
(2)三要素:方向、直线、长度。
3.矢量和标量(1)矢量:既有大小又有方向的物理量。
如:位移,速度,力。
(2)标量:只有大小,没有方向的物理量。
如:路程,时间、温度、质量。
4.直线运动的位置和位移位置x: 初位置x1 ,末位置x2位移(位置的变化量):末位置-初位置x: x =x1 - x2x绝对值:位移的大小;x正负:位移的方向。
1.3运动快慢的描述——速度1.速度(1)定义:位移与发生这个位移所用时间的比值。
(2)定义式:txv ∆∆=单位:m/s km/h cm/s 1m/s=3.6km/h (3)速度是矢量。
(4)速度的大小在数值上等于单位时间内物体位移的大小;速度的方向与物体位移的方向相同,即物体运动的方向。
2.平均速度(1)定义:位移与发生这个位移所用时间的比值,叫做物体在这段时间(或这段位移)内的平均速度。
第1章 矢量简介
二、矢量在直角坐标系中的正交分解
1. 直角坐标系 i 、j 、k 是一组分别沿着x
轴,y轴和z轴的单位矢量,称
为直角坐标系O-xyz的基矢。
i 、j 、k i 、j 、k
三个单位矢量之间 两两垂直(正交) 三个单位矢量满足右手螺旋关系
2.矢量在直角坐标系中的正交分解
A B A (B)
所以两个矢量相减和两个矢量相加一样,也可以 用平行四边形法则和三角形法则。
两个矢量相减的平行四边形法则: 以 A 及 B 为邻边作平行四边形,则对角线所表示 的矢量即为 A B 矢量。 B A B 以 A 及 B 为邻边的平 行四边形,一条对角线 是两个矢量的和,而另 A 一条对角线则是矢量之 B 差。 A B
0
正交特性可表示为:
i j j k k i 0 er e 0
2
2.矢量 A 与某单位矢量的标积即为矢量 A 沿该单位 矢量方向的投影。
A Ax i Ay j Az k A i Axi Ay j Az k i Ax 同理: A j Ax i Ay j Az k j Ay 同理: A k A i A j A k k A x y z z
2.矢量: 有些物理量除了知道他们的大小及单位外,还必须 指明其方向。这种除了大小和单位外,还具有方向, 并且加法遵从平行四边形法则的量称为矢量。 如位移、速度、加速度等都是矢量。 3.矢量的表示法: 书本中用黑体字来表示矢量,如 A、B、C
书写是用
A、B、C
来表示矢量
物理中常见的矢量和标量
物理中常见的矢量和标量1.引言1.1 概述矢量和标量是物理学中常见的概念。
在物理学中,我们经常需要描述和测量物体的某些特性或属性,而这些特性或属性可以被分为两类:矢量和标量。
矢量是有大小和方向的量。
它们可以用箭头表示,箭头的长度表示量的大小,箭头的方向表示量的方向。
例如,速度、力、位移和加速度等都是矢量量,它们除了有大小之外还有方向。
与此相反,标量是只有大小而没有方向的量。
标量只有数值大小,没有箭头来表示方向。
例如,时间、质量、温度和能量等都是标量量,它们只有一个数值大小而没有具体的方向。
矢量和标量在物理学中有着广泛的应用。
在运动学中,我们可以使用矢量来描述物体的运动状态,例如速度矢量可以告诉我们物体的速度和方向。
在力学中,矢量可以用来描述物体所受的力和力的作用方向。
在电磁学中,电场和磁场都可以用矢量来描述。
总结起来,物理学中常见的矢量和标量分别指的是有大小和方向的量以及只有大小而没有方向的量。
它们在描述和测量物理现象中起着关键的作用。
在接下来的文章中,我们将详细讨论矢量和标量的定义、特点以及它们在物理学中的应用。
文章结构部分的内容可以如下编写:1.2 文章结构本文将按照以下结构来介绍物理中常见的矢量和标量:第二部分将详细介绍矢量的定义和特点。
我们将从矢量的基本概念开始,解释什么是矢量以及它们的特点。
我们将探讨矢量的大小和方向,以及如何表示和运算矢量。
接着,第二部分将转向标量的定义和特点。
我们将解释什么是标量以及它们与矢量的区别。
我们将讨论标量的大小但没有方向的特点,并介绍一些常见的标量物理量。
第三部分将探讨矢量和标量在物理中的应用。
我们将以实际的例子来说明矢量和标量在物理学中的重要性和用途。
我们将讨论矢量和标量在运动学、力学和其他物理学领域中的应用,并解释它们如何帮助我们理解和描述物理现象。
最后,我们将在第三部分总结本文的主要内容和观点。
我们将强调矢量和标量在物理学中的作用,以及它们在解决物理问题时的重要性。
大学物理:矢量 (VECTOR)
设
A
2a
3b ,
B
3a
b,
a
2,
b
1
解.
(a,b)
,
求A B,
3
Pr
jA B,
A B (2a 3b) (3a b)
Pr
jB A .
6
a
2
7a
b
3
b
2
28
2 A
A
A
37,
2 B
BB
31,
Pr
jA B
A B
A
28 , 37
Pr
jB A
A B
两矢量A和B的矢量差C可看成为矢量A和矢量(-B)的矢量和
B -B
A
或者直接三角形减法
B A
C
B C
A
物理教研室,药大
2.3 多个矢量的加法
n
F F1 F2 Fn Fi
i 1
逐个矢量相加,可以采用多边形法则
A2
A4 An-1
A1
A3
An
O
2.4矢量加法的性质:
交换律(commutative
3) 两个矢量的夹角
cos A B
AB
4) 性质:
交换律(commutative law): 分配律(distributive law): 结合律(associative law):
AB B A ( A B) C AC B C ( A B) A (B), 为实数
物理教研室,药大
例3.
矢量和标量乘 矢量和矢量乘
结果是一个矢量。大小、方向? 结果是一个标量。大小? 结果是一个矢量。大小、方向?
物理教研室,药大
北京信息科技大学 电磁场与电磁波01 缪旻
1电磁场&电磁波——Ch01. 矢量分析缪旻副教授,Ph.D光电学院通信工程系,信息微系统研究所miaomin@, 648846952电磁场&电磁波——Ch01. 矢量分析第一章矢量分析3电磁场&电磁波——Ch01. 矢量分析本章学习要注意的问题:注意复习原来的场论知识,要有所提高。
参考清华大学的“电磁场理论基础”(王蔷、李国定等编,2001年第2版) 动手作习题!!4电磁场&电磁波——Ch01. 矢量分析本次课程作业:1.1, 1.2, 1.5, 1.6, 1.9,1.10, 1.12,1.14,1.15, 1.19, 1.23, 1.25, 1.275电磁场&电磁波——Ch01. 矢量分析1.1 矢量代数1.1.1 标量和矢量标量场和矢量场标量:实数域(-∞,+∞)内的任一代数量。
代数量+物理单位=具有物理意义的标量、物理量e.g. 电压V 、电流I 、电荷量Q 、面积S 、体积……矢量:既有大小(模)又有方向,即两个变量才能确定一个矢量。
矢量+物理单位=具有物理涵义的矢量e.g. 电场强度E 、磁场强度D 、作用力F 、速度V6电磁场&电磁波——Ch01. 矢量分析由于矢量具有“二变量特性”决定了它有多种表示和两种乘法:标积A·B =p,矢积A ×B =pE v矢量的写法:或者黑(粗)斜体E (书本上的印刷体)矢量的模:矢量的大小,定义域[0,+∞),通常用与相同的字母表示,用非黑斜体表示。
如:——EE v单位矢量:表示矢量的方向的、具有单位量值模的矢量,用与矢量字母相同的小写字母表示。
如:Ee E v v =7电磁场&电磁波——Ch01. 矢量分析标积(点积)矢积(叉积)θcos ||||B A B A vv v v ⋅=⋅结果为标量θsin ||||||B A B A vv v v ⋅=×结果为矢量,其方向同时垂直于矢量且与之遵循右手法则C vBv A v 8电磁场&电磁波——Ch01. 矢量分析矢量三重积CB A vv v⋅×)(结果为标量,大小等于由式中3个矢量构成的平行六边形的体积。
标量场和矢量场
第 1 章矢量分析1.2 标量场和矢量场1.2.1 场的分类1.2.2 场的表示一. 什么是场-具有某种物理量在空间的分布。
如地球周围的温度场、湿度场、重力场;另外还有气功场;百慕大三角场(洞、汇)-场在数学上用函数表示。
即场中任一个点都有一个确定的标量值或矢量。
场量在占有空间区域中,除开有限个点和某些表面外,是处处连续、可微的。
二. 场的分类标量场:具有标量特征的物理量在空间的分布,如温度场T(x,y,z)、电位Φ(x,y,z)等。
矢量场:具有矢量特征的物理量在空间的分布,如重力场F(x,y,z)、流速场v(x,y,z)等。
标量场和矢量场都有可能随时间变化。
动态场: 场量随时间变化(时变场)f ( x, y, z, t ), A( x, y, z ,t ), 四元函数静态场: 场量不随时间变化(恒定场)f ( x, y, z), A( x, y, z), 三元函数2)图示法u (x,y,z ):等值面、等值线1. 标量场的表示方法1)数学法f = f ( x, y, z)(A )等高线图(B )色码图(C )地势图三. 场的表示方法标量场Scalar Field火星夜间温度图2. 矢量场的表示方法F(x,y,z) = a x F x(x,y,z) + a y F y(x,y,z) + a z F z(x,y,z) 1)数学法2)图示法(A)矢量图箭头方向→场量的方向箭头颜色或长度→场量的大小(A )矢量图2.图示法(B)场线图切向→场量的方向疏密程度→场量的大小。
(B)场线图(C)纹理图(Grass Seeds)纹理与场方向平行(C)纹理图点电荷产生的电场无限长载流线产生的磁场TE10电场、磁场、电流TE10电场、磁场矢量场和标量场点电荷产生的电场和电位四.场源Source of Field•场是由源产生的,场不能离开场源而存在•不同的场对应不同的源•源有矢量和标量之分(旋度源和散度源)如:温度场由热源产生静止电荷电场运动电荷磁场Note:电荷及电流是产生电磁场唯一的源。
电磁场第一章1-3节
1
1.1.2 矢量的加减法 设 A=Axex+Ayey+Azez, B=Bxex+Byey+Bzez
则 A+B=(Ax+Bx)ex+(Ay+By)ey+(Az+Bz)ez A A-B
A+B
B 加减运算符合平行四边形法则 1.1.3 矢量的数乘 λA=λAxex+λAyey+λAzez
2
1.1.4 两矢量的点积 A· xBx+AyBy+AzBz=ABcosθ B=A B
ez
6
1.2 场的等值面和矢量线
1.2.1 场的基本概念 目的:为了考察某些物理量在空间的分布和变化规律而引入 场的概念。 如果空间中的每一点都对应着某个物理量一个确定的值,就 说这个空间确定了该物理量的场。 例如:温度场、电位场、速度场、力场、电场、磁场等。
由标量构成的场称为标量场。 由矢量构成的场称为矢量场。
A×B=(AyBz-AzBy)ex+(AzBx-AxBz)ey+(AxBy-AyBx)ez
ex Ax Bx
ey Ay By
ez Az AB sin en Bz
A×B B
θ
A
式中:en是A和B都垂直的单位矢量,且A、B和en构成 右手螺旋关系;θ是A、B间的夹角,取θ≤180o; ABsinθ是 A×B的模。 B A//B时等于零;A B时有最大模值。
解:(a)
A | A | 52 32 (1) 2 35 B | B | 2 2 32 (2) 2 17
(b)
A 5ex 3e y ez A 35 B 2ex 3e y 2ez B 17
电磁场与电磁波—矢量分析
两个矢量的点积:写成
A B
其值为: A B AB cos
A
点积的性质:
θ
交换律 分配律 按乘数比例
A B C A B A C k A B kA B A kB
A B B A
若该物理量为矢量,则称矢量场, 可用矢性函数表示F(x,y,z); F(x,y,z,t) f(x,y,z,t)
若该物理量与时间无关,则该场称为静态场; 若该物理量与时间有关,则该场称为动态场或称为时变场。
第一章
矢量分析
笛卡尔坐标系
我们的标量函数(标量场)通常用笛卡 尔坐标系表示,我们的矢性函数也可以 用笛卡尔坐标系来表示 根据矢量的运算规则,多个矢量可以进 行矢量相加,反过来,一个矢量以可以 分解为多个矢量的和
B
第一章
矢量分析
两个矢量的叉积:写成 r F M 其值为: r F rF sin e n
M
r
F
第一章
矢量分析
叉积的性质:
不服从交换律 但服从分配 按乘数比例
A B C A B A C kA B k A B A kB
0
第一章
矢量分析
△z
z
若函数φ=φ(x, y, z)在点M0(x0, y0, z0)处可 微, cosα 、 cosβ 、 cosγ 为 l 方向的方向余弦, 则函数 φ在点M0处沿l方向的方向导数必定存 在,且为
γ M0 α
△x
ρ
β
M
电磁场与电磁波第一章矢量分析
(Cf ) C f
有关散度的公式:
(kF ) k F (k为常量)
( f F ) f F F f
(F G) F G
电磁场与电磁波
第1章 矢量分析
26
4. 散度定理(高斯公式)
矢量场对于空间任意 闭合曲面的通量,等于矢 量场的散度在该闭合曲面 所包围体积中的体积分。
4. 各坐标系单位矢量之间的关系
直角坐标与 圆柱坐标系
eeez
ex
cos sin
0
ey
sin cos
0
ez 0 0
1
直角坐标与 球坐标系
er
ex
sin cos
e cosθ cos
e sin
ey
ez
sin sin cos
cos sin sin
cos
0
15
zy e
eeyz
eer
度规系数 hr 1, h r, h r sin
电磁场与电磁波
第1章 矢量分析
14
面元矢量
dSr
er dl dl
er r 2sin dd
dS
e dlrdl
ez
rsin
drd
dS
e dlr dl
e rdrd
球坐标系中的线元、面元和体积元
体积元
dV r2sindrdd
电磁场与电磁波
第1章 矢量分析
如果表示“场”的物理量是标量,则称为标量场。
例如:温度场、电位场、高度场等。 如果表示“场”的物理量是矢量,则称为矢量场。
例如:流速场、重力场、电场、磁场等。 如果场与时间无关,称为静态场,反之为时变场。
从数学上看,“场”是定义在空间区域上的函数:
电磁场与电磁波(第四版之第一章矢量分析)
电磁场理论
第1章 矢量分析
说明:球面坐标系下矢量运算: 说明:球面坐标系下矢量运算:
v v v v A = er Ar + eθ Aθ + eφ Aφ
v v v v B = er Br + eθ Bθ + eφ Bφ
v v v v v 加减: ± B = er ( Ar ± Br ) + eθ ( Aθ ± Bθ ) + eφ ( Aφ ± Bφ ) 加减: A v v v v v v v v 标积: 标积: • B = (er Ar + eθ Aθ + eφ Aφ ) • (er Br + eθ Bθ + eφ Bφ ) A
r er
sin θ cosθ 0
r ex
r eρ
0 0 1
r ey
r ez cosθ − sin θ 0
o
φ
直角坐标系与柱坐标系之间 坐标单位矢量的关系
x
z
r ez
θ θ
r er
r eρ
直角坐标与 直角坐标与 球坐标系
r eθ r eφ
r ez sin θ cosφ sin θ sin φ cosθ − cosθ sin φ cosθ sin φ − sin θ cosφ − sin φ 0
数学表达式;
重 点
数学表达式; 物理意义
电磁场理论
第1章 矢量分析
复习: 复习:高等数学相关内容
积分符号差异
高等数学 曲面积分 闭合曲面积分 体积分 普通物理 本教材
∫∫
∑
⇔ ⇔ ⇔
∫∫
S
⇔ ⇔ ⇔
∫
S
∫∫
∑
∫∫
电磁场与电磁波第1章矢量分析
例:已知一矢量场F=axxy-ayzx, 试求:
(1) 该矢量场的旋度;
(2) 该矢量沿半径为3的四分 之一圆盘的线积分, 如图所 示, 验证斯托克斯定理。
y B
r= 3
O
Ax
四分之一圆盘
第 7、8 学时 1.4 标量的方向导数和梯度
1.4.1标量的方向导数和梯度
一个标量场u可以用一个标量函数来表示。在直角坐标 系中, 可将u表示为
lim l A dl
SP S
称固定矢量R为矢量A的 旋度,记作
rotA=R
上式为旋度矢量在n方 向的投影,如图所示, 即
A dl
lim l
SP S
rotn A
ro tA
n
旋涡面
P l
旋度及其投影
矢量场的旋度仍为矢量。在直角坐标系中,旋度的表达式为
rotA
ax
Az y
Ay z
a
y
Ax z
Az x
z
l
式 中 , 当 Δl→0 时 δ→0 。 将 上 式 两 边 同 除 以 Δl 并 取 极限得到方向导数的计算公式:
u u cos u cos u cos
l x
y
z
ห้องสมุดไป่ตู้
其中,cosα, cosβ, cosγ为l方向的方向余弦。
1.4.4 标量场的梯度
1. 梯度的定义
方向导数为我们解决了函数u(P)在给定点处沿某个方向的 变化率问题。然而从场中的给定点P出发,标量场u在不 同方向上的变化率一般说来是不同的,那么,可以设想,
▽ ·(▽ ×A)≡0
即如果有一个矢量场B的散度等于零,则该矢量B就可 以用另一个矢量A的旋度来表示,即当 ▽ ·B=0 则有
1第一章-场论与张量基本知识
(r), a(r)
1.1 标量、矢量、场
场的几何表示
标量场可用函数等值面(线)来表示。 可直观看出函数值的大小分布,以及变 化快慢
矢量场可用矢量线来表示。 任一点的矢量方向可由矢量线的切线方 向定出;也可以从矢量线的疏密程度估 计矢量在各点的大小。
1.2 标量场的梯度
方向导数(Directional Gradient)
1. 如果一个方程式或表达式的一项中,一种下标只出现一次,则 称之为自由指标,自由指标在表达式或方程的每一项中必须只 出现一次。 2. 如果在一个表达式或方程的一项中,一种指标正好出现两次, 则称之为哑指标,它表示从1到3求和。哑指标在其他任何项中 可以刚好出现两次,也可以不出现。 3. 如果在一个表达式或方程中的一项中,一种指标出现的次数多 于两次,则是错误的。
2 3
2
ij ij ij ij
i 1 j 1
3
3
1111 1212 1313 21 21 22 22 23 23 31 31 32 32 33 33
1.4 张量表示法
自由指标: 定义:凡在同一项内不重复出现的指标。如
i j k x y z
是一个矢性微分算子,即在运算中具有矢量和微分的双重性质, 其运算规则是:
u u u u i j k x y z
Ay Ax A A i j z k x y z
Az Ay Ax Az Ay Ax A y z i z x j x y k
2 ( ) ( ),ij xi x j
uk ,ij
2uk xi x j
1.5 坐标变换与张量定义
01绪论,质点,参考系,位移,速度,加速度
Fan
3)多边形法则
有限个矢量 a1 , a 2 , L a n 相加可由矢量的三角形 求和 法则推广
开始, 自任意点 O 开始,依次引 OA1 = a1 , A1 A2 = a 2 , L , An − 1 An = a n , 由此得一折线 OA1 A2 L An , 于是矢量 OA n = a就是 n 个矢量 a1 , a 2 , L , a n的和,即 的和, OA = OA1 + A1 A2 + L + An − 1 An .
Fan
二、质点(mass point) 质点( ) 具有物体的质量,没有形状和大小的几何点。 具有物体的质量,没有形状和大小的几何点。 说明 如果我们研究某一物体的运动, 如果我们研究某一物体的运动,而可以忽略其大小和 形状对物体运动的影响,若不涉及物体的转动和形变, 形状对物体运动的影响,若不涉及物体的转动和形变, 我们就可以把物体当作是一个具有质量的点( 质点) 我们就可以把物体当作是一个具有质量的点(即质点) 来处理 . 相对性;理想模型; 相对性;理想模型;质点运动是研究物质运动的基础 一个物体能否看作质点,要根据问题的性质来决定。 一个物体能否看作质点,要根据问题的性质来决定。
Fan
1)矢量的表示: 矢量的表示:
常用黑体母或带箭头的字母表示。 常用黑体母或带箭头的字母表示。 矢量的几何表示: 矢量的几何表示:一个矢量可用一条有方向的线段来表示 v v v v A 矢量的代数表示: v 矢量的代数表示: = eA A = eA A
A
r A 矢量的大小或模: 矢量的大小或模: = A v A v eA = 矢量的单位矢量: 矢量的单位矢量: A
x cos α = , r y cos β = , r z cos γ = r
电磁场与电磁波理论思考题
《电磁场与电磁波理论》思考题第1章思考题1.1什么是标量?什么是矢量?什么是矢量的分量?1.2什么是单位矢量?什么是矢量的单位矢量?1.3什么是位置矢量或矢径?直角坐标系中场点和源点之间的距离矢量是如何表示的?1.4什么是右手法则或右手螺旋法则?1.5若两个矢量相互垂直,则它们的标量积应等于什么?矢量积又如何?1.6若两个矢量相互平行,则它们的矢量积应等于什么?标量积又如何?1.7若两个非零矢量的标量积等于零,则两个矢量应垂直还是平行?1.8若两个非零矢量的矢量积等于零,则两个矢量应垂直还是平行?1.9直角坐标系中矢量的标量积和矢量积如何计算?1.10什么是场?什么是标量场?什么是矢量场?1.11什么是静态场或恒定场?什么是时变场?1.12什么是等值面?它的特点有那些?1.13什么是矢量线?它的特点有那些?1.14哈密顿算子为什么称为矢量微分算子?1.15标量函数的梯度的定义是什么?物理意义是什么?1.16什么是通量?什么是环量?1.17矢量函数的散度的定义是什么?物理意义是什么?1.18矢量函数的旋度的定义是什么?物理意义是什么?1.19什么是拉普拉斯算子?标量和矢量的拉普拉斯运算分别是如何定义的?1.20直角坐标系中梯度、散度、旋度和拉普拉斯算子在的表示式是怎样的?1.21三个重要的矢量恒等式是怎样的?1.22什么是无源场?什么是无旋场?1.23为什么任何一个梯度场必为无旋场?为什么任何一个无旋场必为有位场?1.24为什么任何一个旋度场必为无源场?为什么任何一个无源场必为旋度场?1.25高斯散度定理和斯托克斯定理的表示式和意义是什么?1.26什么是矢量的唯一性定理?1.27在无限大空间中是否存在既无源又无旋的场?为什么?1.28直角坐标系中的长度元、面积元和体积元是如何表示的?1.29圆柱坐标系中的长度元、面积元和体积元是如何表示的?1.30球面坐标系中的长度元、面积元和体积元是如何表示的?2.1什么是体电荷、面电荷、线电荷和点电荷?他们分别是如何定义的?2.2什么是试验电荷?什么是电场强度?2.3什么是电介质、磁介质和导体或导电媒质?2.4什么是电偶极子?电偶极矩矢量是如何定义的?2.5什么是电极化强度?电介质的极化现象是怎样的?2.6什么是电位移或电通量密度?2.7什么是相对介电常数和(绝对)介电常数?什么是自由空间?2.8什么是线性各向同性的电介质?2.9什么是恒定电流?什么是时变电流?什么是传导电流?什么是运流电流?2.10什么是体电流、面电流和线电流?他们分别是如何定义的?2.11什么是微分形式欧姆定律?2.12什么是洛伦兹力?什么是磁感应强度?2.13什么是磁偶极子?磁偶极矩矢量是如何定义的?2.14什么是磁化强度? 磁介质的磁化现象是怎样的?2.15什么是顺磁质?什么是抗磁质?什么是铁磁性物质?2.16什么是相对磁导率和(绝对)磁导率?2.17什么是磁场强度?2.18什么是线性各向同性的磁介质?2.19电磁学的三大基本实验定律是哪三个?2.20什么是库仑定律?什么是静电场的环量定律?什么是高斯定律?2.21由静电场的环量定律可以什么结论?2.22穿过任一高斯面的电场强度通量与该闭合曲面所包围的哪些电荷有关?2.23穿过任一高斯面的电位移通量与该闭合曲面所包围的哪些电荷有关?2.24高斯面上的场矢量与高斯面外的电荷是否有关?为什么?2.25什么是安培定律?什么是比奥—萨伐尔定律?2.26什么是磁通连续性定律?什么是安培环路定律?2.27磁场强度沿任一闭合回路的环量与哪些电流有关?2.28磁感应强度沿任一闭合回路的环量与哪些电流有关?2.29闭合回路上的磁场强度与闭合回路以外的电流是否有关?为什么?2.30什么是感应电流?什么是感应电场?什么是感应电动势?2.31什么是法拉第电磁感应定律?2.32什么是电荷守恒定律?电荷守恒定律的数学表达式是怎样的?2.33麦克斯韦的漩涡电场假设的基本思想是什么?2.34什么是位移电流?什么是位移电流密度?2.35什么是全电流?什么是全电流密度?什么是全电流连续性定律?2.36为什么说五个基本方程不是独立的?2.37什么是电磁场的边界条件?他们是如何得到的?2.38为什么边界条件的讨论分解成法向分量和切向分量来进行?2.39在不同媒质分界面上,永远是连续的是电磁场的哪些分量?2.40电磁场的哪些分量当不存在传导面电流和自由面电荷时是连续的?2.41什么是理想介质?什么是理想导体?2.42边界条件有哪三种常用形式?他们有什么特点?2.43在理想导体表面上不存在电磁场的什么分量?2.44垂直于理想导体表面的是电力线还是磁力线?平行于理想导体表面的是电力线还是磁力线?2.45理想导体表面的面电流密度等于磁场的什么分量?理想导体表面面电荷密度等于电场的什么分量?3.1什么是静电场?如何由是麦克斯韦方程组得到静电场的基本方程?3.2静电场是无源场还是无旋场?3.3静电场边界条件有哪两种常用形式?他们有什么特点?3.4在静电场中的不同电介质分界面上,电场强度和电位移的什么分量总是连续的?3.5什么是静电场折射定律?3.6静电场的什么分量在导体表面总是为零?导体表面面电荷密度等于电场的什么分量?3.7在静电场中,电场强度沿一个开放路径的线积分与积分路径是否有关?为什么?3.8静电场中任一点的电位是如何定义的?什么是零电位参考点?3.9静电场中任一点的电位是否是唯一的?电场强度是否是唯一的?3.10什么是等位面?电场强度矢量与等位面有什么关系?为什么?3.11什么是电位的泊松方程和拉普拉斯方程?什么是电场强度的泊松方程和拉普拉斯方程?3.12电位的边界条件是如何得到的?为什么电位在界面上总是连续?3.13为什么说导体必为等位体,导体与电介质的交界面必为等位面?3.14静电场的能量和能量密度是如何计算的?3.15导体的电容与哪些因素有关?与导体的电位和所带的电量是否有关?3.16什么是电容器?电容器的电容是如何定义的?3.17电容器的电容与其电场储能有什么关系?3.18什么是静电场分布型问题?什么是静电场的边值型问题?3.19静电场的边值问题可以分为哪三类?3.20什么是静电场唯一性定理?它是如何证明的?3.21静电场边值问题主要解法有哪些?3.22什么是直接积分法?什么情况下可以采用直接积分法?直接积分法的基本步骤是什么?3.23直角坐标系中一维电位分布的拉普拉斯方程的通解是怎样的?电荷均匀分布和线性分布区域电位的通解各是怎样的?3.24圆柱坐标系中无源区域、电荷均匀分布和线性分布区域三个一维电位分布满足的二阶微分方程各是怎样的?电位的通解各是怎样的?3.25球面坐标系中无源区域、电荷均匀分布和线性分布区域三个一维电位分布满足的二阶微分方程各是怎样的?电位的通解各是怎样的?3.26什么是分离变量法?什么是分离常数?什么是分离方程?3.27直角坐标系中的分离常数有哪几个?直角坐标系中的分离方程是怎样的?3.28直角坐标系中的分离方程的通解与分离常数有什么关系?3.29直角坐标系中分离变量法的的两种常见的二维问题是指什么情况?3.30什么是直角坐标系中分离变量法的基本问题?3.31如何根据基本问题的边界条件选取通解的具体形式?3.32如何利用三角函数的正交性或者傅立叶级数的公式来确定基本问题的最终解?3.33什么是镜像法?什么是镜像电荷?如何确定镜像电荷?3.34点电荷关于无限大导体平面的镜像电荷是如何确定的?此时导体表面的感应电荷有什么特点?3.35无限大导体平面上方与其平行的无限长直的均匀线电荷的镜像是怎样的?(画图) 3.36两个无限大相交理想导体平面之间的夹角满足什么条件才能采用镜像法?镜像电荷的数目与夹角有什么关系?(画图)3.37两个平行的无限大导体平面之间的点电荷的镜像电荷有多少?(画图)3.38接地导体球外的点电荷的镜像电荷是如何确定的?导体表面的感应电荷有什么特点?(画图)3.39接地导体球内的点电荷的镜像电荷是如何确定的?导体表面的感应电荷有什么特点?(画图)3.40如果导体球或球壳没有接地,如何借助于镜像法来求各处的场分布?3.41什么是静电场的数值解法?什么是“场域型”数值方法?什么是“边界型”数值方法?3.42什么是有限差分法?有限差分法的基本步骤是什么?3.43二维泊松方程对应的差分方程是怎样的?3.44二维静电场边值问题的有限差分法的基本步骤是怎样的?3.45什么是差分方程的超松弛迭代法求解?它的基本步骤是怎样的?3.46什么是矩量法?矩量法的三个基本步骤是什么?3.47静电场边值问题的矩量法的基本步骤是怎样的?第4章思考题4.1什么是恒定电流或直流?什么是时变电流或交流?4.2什么是恒定电场?如何由是麦克斯韦方程组得到恒定电场的基本方程?4.3恒定电场是无源场还是无旋场?4.4在电导率不同的导体的分界面上,电场强度和电流密度的什么分量是连续的?4.5在不同导体的分界面上电场强度和电流密度的什么分量是不连续的?4.6恒定电场中电位与静电场的电位有什么异同点?4.7为什么在线性和各向同性的均匀媒质中恒定电场中电位总是满足的拉普拉斯方程? 4.8线性和各向同性的均匀媒质中是否存在体电荷?4.9导电媒质分界面上的面电荷的密度是如何确定的?4.10什么情况下,导电媒质分界面上的不存在面电荷?4.11什么是电流的热效应?恒定电场的功率损耗是如何计算的?4.12什么是焦耳定律的微分形式和积分形式?4.13什么是漏电流?什么是漏电导?4.14什么是静电比拟法?它有什么用处?4.15什么情况下可以将静电场与恒定电场相比拟?4.16电容器的漏电导与电容的对应关系是怎样的?4.17什么是恒定磁场?如何由是麦克斯韦方程组得到恒定磁场的基本方程?4.18恒定磁场是无源场还是无旋场?4.19在磁导率不同的磁介质的分界面上,磁场强度和磁感应强度什么分量是连续的?4.20在不同磁介质的分界面上磁场强度和磁感应强度的什么分量是不连续的?4.21什么是恒定磁场折射定律?4.22什么是恒定磁场镜像法?4.23恒定磁场的矢量磁位是如何定义的?4.24什么是库仑条件或库仑规范?为什么恒定磁场的矢量磁位要满足库仑条件或库仑规范?4.25什么是恒定磁场矢量磁位的泊松方程和拉普拉斯方程?4.26由比奥—萨伐尔定律得到的恒定磁场矢量磁位的积分表示式是否满足恒定磁场的微分方程?4.27恒定磁场的标量磁位是如何定义的?它有什么要求?4.28为什么恒定磁场的标量磁位只是满足拉普拉斯方程?4.29恒定磁场的标量磁位的边界条件是如何得到的?4.30恒定磁场的能量和能量密度是如何计算的?4.31什么是导体载流回路的电感?它与哪些因素有关?4.32什么是自感?什么是互感?什么是内自感?什么是外自感?4.33导体回路的电感与导体回路的电流是否有关?4.34导体载流回路的电感与磁场储能有什么关系?第5章思考题5.1什么是时谐电磁场?什么是时谐电磁场的复振幅和复振幅矢量?5.2如何由时变电磁场的基本方程得到时谐电磁场的基本方程(基本方程的复数形式)?5.3如何由时变电磁场的结构方程得到时谐电磁场的结构方程(结构方程的复数形式)?5.4如何由时变电磁场的边界条件得到时谐电磁场的边界条件(边界条件的复数形式)?5.5时谐电磁场边界条件有哪三种常用形式?他们有什么特点?5.6在不同媒质分界面上,永远是连续的是时谐电磁场的哪个分量?5.7在理想导体表面上不存在时谐电磁场的什么分量?5.8垂直于理想导体表面的是时谐电磁场的电力线还是磁力线?平行于理想导体表面的是时谐电磁场的电力线还是磁力线?5.9理想导体表面的面电流密度等于时谐电磁场的什么分量?理想导体表面面电荷密度等于时谐电磁场的什么分量?5.10什么是导电媒质的复介电常数?什么是导电媒质的损耗角正切?5.11时变电磁场的矢量磁位和标量电位是如何定义?5.12什么是洛伦兹条件或洛伦兹规范?洛伦兹条件与电流连续性方程是否是一致的?5.13什么情况下矢量磁位和标量电位满足齐次达兰贝尔方程?5.14什么情况下电场强度和磁场强度满足齐次达兰贝尔方程?5.15什么是滞后位?什么是超前位?为什么在无限大自由空间中只有滞后位?5.16矢量磁位和标量电位的滞后位是怎样的?5.17时谐电磁场的矢量磁位和标量电位是如何定义?5.18如何得到时谐电磁场的矢量磁位和标量电位的洛伦兹条件或洛伦兹规范?5.19如何得到时谐电磁场的矢量磁位和标量电位的亥姆霍兹方程(复波动方程)?5.20如何得到时谐电磁场的矢量磁位和标量电位的滞后位和超前位?5.21瞬时坡印廷矢量是如何定义的?它的物理意义是什么?它有什么特性?5.22什么是瞬时坡印廷定理的微分形式和积分形式?瞬时坡印廷定理的物理意义是什么?5.23什么是平均坡印廷矢量?5.24复坡印廷矢量是如何定义的?它的物理意义是什么?5.25天线的作用是什么?天线有哪些类型?5.26什么是电基本振子?什么是磁基本振子?5.27什么是线天线?什么是对称天线?什么是半波天线?5.28什么是近区场?什么是远区场?5.29电基本振子的近区场有什么特性?5.30电基本振子的远区场有什么特性?5.31磁基本振子的近区场有什么特性?5.32磁基本振子的远区场有什么特性?5.33基本振子和磁基本振子的电场有什么异同点?它们谁的辐射能力大?5.34基本振子和磁基本振子的对偶性是怎样的?5.35什么是水平极化天线?什么是垂直极化天线?5.36天线的方向性因子、方向函数和方向图指的是什么?5.37什么是天线的E面方向图?什么是天线的H面方向图?5.38什么是无方向天线?什么是全向天线?什么是定向天线?5.39基本振子、磁基本振子和半波天线的方向图有什么特点?5.40什么是天线辐射功率?天线的半功率波瓣宽度和零功率波瓣宽度是如何定义的?5.41基本振子和磁基本振子的半功率波瓣宽度和零功率波瓣宽度的大小是怎样的?5.42什么是天线阵?它的作用是什么?决定天线阵的辐射特性的主要参数有哪些?5.43天线阵方向图相乘原理是指什么?5.44什么是均匀直线式天线阵?什么是均匀直线式边射阵?什么是均匀直线式端射阵?。
矢量分析和梯度
4、矢量场的矢量线
① 矢量线(场线): 在矢量场中,若一条曲线 上每一点的切线方向与场矢量 在该点的方向重合,则该曲线 称为矢线。 一般来说,矢量场中的每 一点都有一条矢量线通过,所 以,矢量线是一族曲线,充满 整个矢量场所在的空间。
工程电磁场 第一章 矢量分析
+ -
ex ex ey ey ez ez 1 ex ey ey ez ez ex 0
位置(从原点出发)矢量:
r xex yey zez
工程电磁场 第一章 矢量分析
11
空间任一矢量可表示为:
矢量场F穿过有向曲面元dS的通量
d F dS FdS cos 1.35a
1.3 场的基本概念
1、场的定义 场概念的引入:研究某物理量在某一个空间区域的 分布情况和随时间变化规律。
场——指某物理量在空间中的分布情况,即说明该物理量在 空间区域中的每一点处的大小及方向。
比如:温度场,电位场,磁场
场:既有空间属性,又有时间属性。可表示成:x,y,z,t 的函数。F(x,y,z,t)
e ey ez 哈密顿算子: x x y z
梯度也可表示:
grad u
方向导数与梯度的关系:
u u el l
工程电磁场 第一章 矢量分析
el为l方向的单位矢量
30
梯度性质:
①标量场u的梯度是一矢量场,可称grad u是u产生的梯度场; ②标量场u中,在给定点沿任意方向l的方向导数等于梯度在该方 向的投影; ③标量场u中,在每一点M处的梯度,垂直于过该点的等值面,
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
矢量分析基础
zz
zz
y 础
圆柱坐标系与直角坐标之间单位矢量的变换关系
e cos sin 0 ex e y sin cos 0 e 0 1 ez 0 ez ex cos sin 0 e e e sin cos 0 y 0 1 ez 0 ez
电磁场理论
第2讲 矢量分析基础
本章内容
• 矢量代数
• 常用正交曲线坐标系
• 标量场的梯度 • 矢量场的散度 • 矢量场的旋度 • 无旋场与无散场 本章重点
• 拉普拉斯运算与格林定理
• 亥姆霍兹定理
电磁场理论
第2讲 矢量分析基础
1.1 矢量代数
1.1.1 标量和矢量
标量与矢量 标量:只有大小,没有方向的物理量(电压U、电荷量Q、能量W等) 矢量:既有大小,又有方向的物理量(作用力,电、磁场强度)
A B B A ( A B) C A (B C)
说明: • 矢量的加法符合交换律和结合律:
• 矢量相加和相减可用平行四边形法则求解:
A B
B
A
矢量的加法
B B
A B
矢量的减法
A
电磁场理论
A B A B Az Bz
A
ez
矢积:A B A B
e
e A B
ez Az Bz
O
B
e e
e ( A Bz Az B ) e ( Az B A Bz ) ez ( A B A B )
关于矢量的总结
1.2 矢量1.2.1 矢量、矢量基与基矢量(1)几何矢量定义(2) 几何矢量的运算(3)几何矢量的运算性质(4)一些有用的公式(5)矢量基(简称基)矢量基的定义与基矢量的右旋正交性基的矢量列阵的表达,矢量列阵的运算1.2.2 矢量的代数描述(1) 矢量在某基下的代数表达、坐标阵与坐标方阵(2) 矢量坐标阵的矩阵表达形式(3) 矢径的定义;矢量与矢径间的关系(4)几何矢量的运算与在同一个基下的坐标阵运算间的关系。
1.2.3 矢量的导数(1) 矢量对时间导数的定义,矢量在某基下对时间导数的定义(2) 在某基下矢量导数的运算与其坐标阵导数运算间的关系几何矢量定义矢量是一个具有方向与大小的量。
它的大小称为模,记为,或简写为a。
模为 1 的矢量称为单位矢量。
模为0的矢量称为零矢量,记为。
矢量在几何上可用一个带箭头的线段来描述,线段的长度表示它的模,箭头在某一空间的指向为它的方向。
利用这种方式描述的矢量又称为几何矢量。
几何矢量的运算矢量相等模相等、方向一致的两矢量与称为两矢量相等,记为(1.2-1)标量与矢量的积标量α与矢量的积为一个矢量,记为,其方向与矢量一致,模是它的α倍,即(1.2-2)矢量的和(平行四边形法则)(a)(b)图1-1 几何矢量运算两矢量与的和为一个矢量,记为,即(1.2-3)它与两矢量与的关系遵循如图1-1a的平行四边形法则矢量的点积(标积)两矢量与的点积(或称为标积)为一个标量,记为α,它的大小为(1.2-6)其中θ为两矢量与的夹角。
如果已知两矢量的点积,可以由上式计算两矢量夹角,即特殊情况,,此时α =0,有,即矢量自身的点积为其模的平方。
有时也简写为。
矢量的叉积(矢积)两矢量与的叉积(或称为矢积)为一个矢量,记为,即(1.2-8)它的方向垂直于两矢量与构成的平面,且三矢量、、的正向依次遵循右手法则(见图1-1b)。
定义矢量的模为(1.2-9)其中α为两矢量与的夹角。
几何矢量的运算性质加法运算遵循结合律与交换律矢量的和运算遵循结合律与交换律,即有结合律:(1.2-4)交换律:(1.2-5)矢量的点积的交换律矢量的点积有交换律,即(1.2-7)矢量的叉积无交换律矢量的叉积无交换律,但有(1.2-10)矢量的点积与叉积的分配律矢量的点积与叉积有分配律,即(1.2-11)(1.2-12)一些有用的公式由矢量的基本运算可以得到如下常用的较复杂的运算关系式:(1.2-13)(1.2-14)式(1.2-13)左边称为三矢量的两重叉积,式(1.2-14)左边称为三矢量的混合积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: a b a b cos
5 4 cos120
1 5 4 ( ) 10 2
变式一
| a | 4,b | 4, b 8 2, | a
求a与b的夹角
8 2 2 解:由cos 2 | a || b | 4 4 可得=45
2 解: b (a b) a
2 2 a 2a b b
62 2 6 4 cos 60 42
76 2 19
同理可得 a b 2 7
例4已知 | a | 3,| b | 4, 当且仅当k为何值时, . 向量a kb 与a kb 互相垂直?
F
θ
O 位移S A
问:
一个物体在力F 的作用下产生的位移s,那 么力F 所做的功应当怎样计算?
力做的功:W = |F||s|cos,是F与s的夹角。
二、两个向量的夹角
则 AOB
两个非零向量 a 和 b ,作 OA a, OB b,
(0 180 )
c+b· (分配律) c (3) (a+b) · = a· c
矢量的矢积或叉乘(Vector product)
A B C
A B C AB sin
两个矢量的矢积是一个矢量,其大小是第一个矢量的 大小与第二个矢量的大小以及两矢量夹角的正弦值, 这三者的乘积,方向按右手螺旋法则确定。 C 矢量与 A 、B 矢量构成的 C 平面永远垂直!它的意义 是A、 矢量构成的平行四 B 边形的有向面积。 B
ik j jk i k k 0
叉 乘 规 律
+
i
j
-
k i
j
从左往右,相邻两个单位矢量叉乘得到正的下 一个单位矢量。 从右往左,相邻两个单位矢量叉乘得到负的下 一个单位矢量。
1-28
矢量的分量(Components)
一个矢量可以分解为两个或多个矢量之和。 例如: A B C D E F 等等分法,但有意义的 是在特定的坐标系里分解。最常见的是直角坐标系。
矢量和标量乘 结果是一个矢量。大小、方向? 结果是一个标量。大小? 矢量和矢量乘 结果是一个矢量。大小、方向?
矢量的标积或点乘(Scalar product)
A B AB cos
B A
B cosθ
A B AB cos 表示:两个矢量的标积是一个标
解:a kb与a kb互相垂直的条件是
2 2 即a k 2 b 0. 2 2 a 32 9, b 42 16, 3 2 9 16k 0. k 4
(a kb) a kb ( )=0
3 因此,当k= 时,a kb与a kb 互相垂直. 4
Ax
cos Az A
cos2 cos2 cos2 1
X 因此,一个矢量可以表示为三个分矢量之和;也可以由其大小 和三个方向角决定(四个变量?)。可以写为:
A Ax i Ay j Az k ( Ax , Ay , Az )
5、矢量的分量运算 Vector Operation by Components
B B b O O B
θ
a
b
B1 B1
θ
O
B O a
b
θ
a
A A
A
O A
| b |cos = b
A
| b |cos 0
| b |cos 0
| b |cos 0
B | b |cos b
当且仅当与同向时:a b a b a b 当且仅当a与b反向时:a b a b
当θ=0 时(两矢量平行时) C=0 矢量积最小。 当θ=π/2时 C=AB 矢量积最大
A B
B
B A
A
• 单位矢量的矢量积
ii 0 j i k k i j
i j k j j 0 k j i
A
1) A B B A
2) 如果: A B 则 A B 0 反之亦成立。
3)两个矢量垂直时,矢积的模最大,方向 按右手螺旋法则。
矢量叉乘运算规则
A B B A 1)叉乘的反交换律 ( A B) C A C B C 2)叉乘的分配律 A B C A B A C
A Ax i Ay j Az k B B x i B y j Bz k
规定:零向量与任一向量的数量积为0。
注意:
一种新的运算
b 数量积 a · =| a || b |cos
a b 表示数量而不表示向量,与实数a b
不同,a b 、a b 表示向量;
“ · ”不能省略不写,也不能写成“×”
0a 0
o
a a a b 6b b 2 2 a a b 6 b
2 2 a a b cos 6 b
6 6 4 cos 60 6 4
2 2
72
变式二
已知 a 6, b 4, a与b的夹角为60 ,求 a b 和 a b .
注意公式变形,知三求一.
向量的数量积是一个数量,那么它什 么时候为正,什么时候为负?
a · =| a || b |cos b
当0°≤θ < 90°时a· b为正; 当90°<θ ≤180°时a· b为负。 当θ =90°时a· b为零。
例1.已知 a 5, b 4, a与b的夹角 120,求a b.
矢量加法遵循平行四边形法则或三角形法则
C
C
A
B
解决了矢量加法,也就解决了矢量的减法。 同时,也解决了多个矢量的加法问题。
A B A ( B) D
B
A
C
-B A B
B
记作 a b
如图,等边三角形ABC中,求:
C
'
60 (1)AB与AC的夹角____; (2)AB与BC的夹角________. 120 C
120
A
通过平移 变成共起点!
60
120 0
B
D
三、向量 a 与 b 的数量积的概念
已知两个非零向量a与b, 他们的夹角为, 我们把数量 a b cos 叫做a与b的数量积 (或内积) .记作a b, 即a b a b cos .
k
j
Ay O Ax Y
X
OP Ax Ay Az Ax i Ay j Az k
Z Az
P
i
k
j
A A
Ax Ay Az
2 2
2
cos Ax
A Ax A
O
Ay Y
cos Ay A
2
(3) a b | a || b |
平面向量的数量积的运算律:
(1)交换律 a b b a (2)数乘结合律 ( a ) b (a b ) a (b ) (3)分配律 (a b ) c a c b c
| a b | a b
向量数量积的性质
设a、 b是非零向量
(1) a b 0 a b (2) 当a与b同向时, b | a || b | ; a a 当a与b反向时, b | a || b | 特别地 a a | a | 或 | a | a a
量,其大小是第一个矢量的大小乘以第二个矢量在第 一个矢量上的投影。 是指这两个矢量的夹角。
1) A B B A
2) 如果: A B 则 A B 0 反之亦成立。
3)两个矢量平行、反平行时,
标积最大、最小。
一、向量数量积的物理背景
B
叫做向量
和 a b的夹角.
b
O
b
a
a
注意:在两向量的夹角 定义中,两向量必须是 同起点的 A B b a O A 90 a 与 b 垂直,
O b B
a
a 与 b 同向
0
A B b O 180
a
A
a 与 b 反向
其中, 、b 、c 是任意三个向量, R a
注:
(a b ) c a (b c )
例3、 已知 | a | 6,| b | 4,a 与b 的夹角为
60 , 求(a 2b ) (a 3b ) 。 解: ( a 2b) ( a 3b)
A B
A A A AA
A =A A
A =A 为大小,A 为单位矢量,大小为1。
概念:单位矢量,模
2、矢量加法(VECTOR ADDITION)
A B C
B A
重点知识回顾:
夹角的范围 数量积 性质