第4章__轴向拉伸与压缩
轴向拉伸和压缩
六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S
)
p 0.2
脆性材料
u
( bt
)
bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A
轴向拉伸与压缩教学教案
轴向拉伸与压缩教学教案第一章:轴向拉伸与压缩概念介绍教学目标:1. 让学生理解轴向拉伸与压缩的基本概念。
2. 让学生了解轴向拉伸与压缩的物理现象及其在实际中的应用。
教学内容:1. 轴向拉伸与压缩的定义。
2. 轴向拉伸与压缩的物理现象。
3. 轴向拉伸与压缩的应用实例。
教学方法:1. 采用讲授法,讲解轴向拉伸与压缩的基本概念及其物理现象。
2. 通过实物展示或图片,使学生更直观地了解轴向拉伸与压缩的应用实例。
教学评估:1. 通过课堂提问,检查学生对轴向拉伸与压缩概念的理解程度。
2. 通过布置课后作业,让学生巩固所学内容。
第二章:轴向拉伸与压缩的基本理论教学目标:1. 让学生掌握轴向拉伸与压缩的基本理论。
2. 让学生了解轴向拉伸与压缩的计算方法。
教学内容:1. 轴向拉伸与压缩的基本力学原理。
2. 轴向拉伸与压缩的计算方法。
教学方法:1. 采用讲授法,讲解轴向拉伸与压缩的基本力学原理。
2. 通过示例,让学生了解轴向拉伸与压缩的计算方法。
教学评估:1. 通过课堂提问,检查学生对轴向拉伸与压缩基本理论的理解程度。
2. 通过布置课后作业,让学生巩固所学内容。
第三章:轴向拉伸与压缩的实验研究教学目标:1. 让学生了解轴向拉伸与压缩实验的原理。
2. 培养学生进行实验操作和数据处理的能力。
教学内容:1. 轴向拉伸与压缩实验的原理。
2. 轴向拉伸与压缩实验的操作步骤。
3. 实验数据的处理方法。
教学方法:1. 采用实验教学法,让学生亲身体验轴向拉伸与压缩实验。
2. 通过实验操作和数据处理,使学生更好地理解轴向拉伸与压缩的物理现象。
教学评估:1. 通过实验报告,评估学生对轴向拉伸与压缩实验原理的理解程度。
2. 通过实验操作和数据处理的评价,培养学生进行实验的能力。
第四章:轴向拉伸与压缩在工程中的应用教学目标:1. 让学生了解轴向拉伸与压缩在工程中的应用。
2. 培养学生解决实际问题的能力。
教学内容:1. 轴向拉伸与压缩在工程中的应用实例。
工程材料力学第四章轴向拉压杆的变形
拉(压)杆的纵向变形 (轴向变形) 基本情况下(等直杆,两端受轴向力):
纵向总变形Δl = l1-l (反映绝对变形量)
l 纵向线应变 (反映变形程度) l
1
fl
f ( x x)
x
f
l
x
x
沿杆长均匀分布 的荷载集度为 f 轴力图
fx
微段的分离体
y
pbd 2b 0
pd 2
13
所以
pd (2 10 Pa)(0.2m) -3 2 2(510 m)
6
4010 Pa 40 MPa
6
14
2.
如果在计算变形时忽略内压力的影响,则可认为
薄壁圆环沿圆环切向的线应变e(周向应变)与径向截面上
的正应力s 的关系符合单轴应力状态下的胡克定律,即
ν
亦即
- n
低碳钢(Q235):n = 0.24~0.28。
7
思考:等直杆受力如图,已知杆的横截面面积A和材料的 弹性模量E。
1.列出各段杆的纵向总变形ΔlAB,ΔlBC,ΔlCD以及整个 杆纵向变形的表达式。
2.横截面B, C及端面D的纵向位移与各段杆的纵向总变
形是什么关系?
uB L1
22
作业:4-7,4-91 Pa ~ 2.101011 Pa 200GPa ~ 210GPa
l 1 FN 胡克定律的另一表达形式: l E A
E
←单轴应力状态下的胡克定律
6
横向变形因数(泊松比)(Poisson’s ratio)
单轴应力状态下,当应力不超过材料的比例极限时,
第四节:轴向拉伸和压缩时的变形
杆件在外力作用下会发生变形,当外力取消 时不消失或不完全消失而残留下来的变形。
第四节 轴向拉伸和压缩时的变形
二、纵向变形和胡克定律:
1、纵向变形 杆件在轴向力作用下,杆的长度会发生变化,杆件长度的改
变量叫做纵向变形,用△l 表示。若杆件变形前长度为l ,变形后 长度为l
1
第四节 轴向拉伸和压缩时的变形
第四节 轴向拉伸和压缩时的变形
杆件的纵向变形与杆长l 有关,在其它条件相同时, 杆件愈长则纵向变形愈大。为了消除杆长对变形的影响, 常用单位长度的变形来描述杆件变形的程度。单位长度的 变形叫做线应变,用ε表示。
NI
E I EA N 或
I
I EA E
上式是胡克定律的的另一种形式,它表明在弹性受 力范围内,应力与应变成正比。
第四节 轴向拉伸和压缩时的变形
例:图示为一两层的木排架,作用在横木上的荷载传给
立 柱 , 其 中 一 根 柱 的 受 力 图 如 图 b 所 示 , P1=30KN , P2=50KN。柱子为圆截面,直径d=150mm。木材的弹性模量 E=10Gpa。求木柱的总变形。
解:木柱AB和BC两段轴力不同,应分 别求出两段变形,然后求其总和 (1)求轴力ຫໍສະໝຸດ 第四节 轴向拉伸和压缩时的变形
三、横向变形 拉压杆产生纵向变形时,横向也产生变形。若杆件
变形前的横向尺寸为α,变形后为,则横向变形为向应变
为 : 1
横向应变为
杆件受拉时,横向尺寸缩小,ε′为负值;杆件受 压时横向尺寸变大,ε′为正值。可见,轴向拉、压杆的 线应变与横向应变的符号总是相反。
第四节 轴向拉伸和压缩时的变形
一、弹性变形与塑性变形 用手拉一根弹簧,当拉力不大时就放松,弹簧
机械设计基础 第2版 教学课件 ppt 作者 周玉丰 第4章 第4章
方法。
第 4章
截面法
基本步骤:
1. 用假想截面将构件分为两部分,取其一;
2. 将另一部分对保留部分的作用力用截面上
的内力代替;
3. 对保留部分建立平衡方程式,确定截面上 的内力。
第 4章
截面法
第 4章
4.3
轴向拉伸或压缩时的内力
4.3.1 轴向拉伸(压缩)的概念
第 4章
FN
FN1=FA=10kN FN2=10kN+40kN=50kN
x
FN3=20kN-25kN = -5kN FN4=20kN
3.画轴力图如图(c)。
第 4章
4.4 拉压杆横截面上的应力
4.4.1 应力的概念 内力在截面上分布的密集程度。
第 4章
平均应力
拉压杆横截面上的应力
p 压杆横截面上的应力
例 题 3
解: (1)求各段轴力
FN1=F1=120kN FN2=F1-F2 =120 kN-220 kN = -100kN
x
FN
FN3=F4=160 kN
(2)作轴力图 (图b)
第 4章
拉压杆横截面上的应力
例 题 3
(3)求最大应力
AB段
AB
FN1 12 104 N 75 MPa (拉应力) 2 A 1600 m m
总应力
p dp p lim A 0 A dA
正应力σ 切应力τ
第 4章
拉压杆横截面上的应力
应力的单位为“帕”,用Pa表示。 1Pa=1N/m2, 1kPa=103Pa=1kN/m2, 常用单位为兆帕MPa, 1MPa=106Pa=1MN/m2=1N/mm2,
工程力学 第四章 轴向拉伸与压缩讲诉
拉压杆的强度条件:杆件的最大工作应力不能超过材料的许用应力。即
FN max [ ]
max
A
式中: max ——横截面上的最大工作应力;
FN max ——产生最大工作应力界面的轴力,这个截面称为危险截面;
A——危险截面的横截面积;
[σ]——材料的许用应力。
对于等直杆,轴力最大的截面为危险截面;对于变截面直杆,若轴力不变, 横截面积最小的截面为危险截面;若杆件为变截面杆,且轴力也是变化的, [FN/A]max 所在的截面为危险截面。
第 9 页 共 17 页
二、胡克定律
杆件受轴向力作用时,沿杆件轴线方向会伸长或缩短,同时杆件的横向尺 寸将缩小或增大。我们把杆件沿轴线方向伸长或缩短称为纵向变形;横截面方 向尺寸的改变量称为横向变形。
F
F
l l1
杆件在拉伸或压缩时长度发生改变,其改变量称为绝对变形,用 L 表示。 设杆件变形前的长度为 L ,变形后的长度为 L1 ,则其绝对变形
结合书 P83-84 例 3-5、例 3-6 对强度计算进行详细讲解。
2、例题
例 1:一直径 d=14mm 的圆杆,许用应力[σ]=170MPa,受轴向拉力 P=2.5kN 作用,试校核此杆是否满足强度条件。
解:
max
N max A
2.5 103 142 106
162MPa <留段 A 的 m — m 截面
轴向拉伸的内力计算
上,各处作用着内力,设这些内力的合力为 N ,它是弃去部分 B 对保留部分 A
的作用力。
(3)由于整个杆件原来处于平衡状态,所以截开后的任意一部分仍应保
第 2 页 共 17 页
持平衡,故可对保留部分 A 建立平衡方程。
杆件轴向拉伸与压缩_图文
许用应力:构件安全工作时的最大应力,即构件在工作时允许承受的
最大工作应力,以符号[σ]表示。计算公式为:
式中,n为安全系数,它是一个大于1的系数,一般来说,确定安全系数 时应考虑以下几个方面的因素。(1) 实际荷载与设计荷载的出入。(2) 材料 性质的不均匀性。(3) 计算结果的近似性。(4) 施工、制造和使用时的条件 影响。可见,确定安全系数的数值要涉及工程上的各个方面,不单纯是个 力学问题。通常,安全系数由国家制定的专门机构确定。
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长 (缩短)变形是均匀的。亦即横截面上各点处的正应力 都相等。
p t
s M
10
建筑力学
拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截 面仍与杆件轴线正交。
一般来说,在采用截面法之前不要使用力的可传性原理, 6
第四章轴向拉伸与压缩
4.1 轴向拉伸和压缩的概念
当作用在等截面直杆上的外力(或者外力合力)的 作用线和杆轴重合时,杆件的主要变形是轴向拉伸 或者压缩。
经历轴向拉伸(压缩)的等截面直杆称为拉(压) 杆。
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。
轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向
O
B
C
4F 3F
D 2F
2A
2A
A
FN 3F
+ A
2F
B
+
+
–
C
D
F
4.3 拉(压)杆的应力
1. 应力的概念:
F
F
(1)问题提出:
F
F
1. 两杆的轴力都为F. 2. 但是经验告诉我们,细杆更容易被拉断。同样材料,
同等内力条件下,横截面积较大的拉杆能承受的 轴向拉力较大。
3. 内力大小不能衡量构件强度的大小。 4. 根据连续性假设,内力是连续分布于整个横截面上的, 一般而言,截面上不同点处分布的内力大小和方向都不 同。
横截面积 A 成反比。即
l Fl A
引入比例常数E,可有
l Fl F
EA
EA
这一关系称为胡克定律。
E 称为杨氏模量,也叫弹性模量。它是材料本身的性质,表征 材料抵抗变形的能力,需要用实验来测定。单位为Pa。
在拉压杆中,有
F FN
l Fl FN l FN
EA EA
EA
※ “EA”称为杆的拉伸(压缩)刚度。对于长度相等,受力也 相等的拉压杆,拉伸(压缩)刚度越大,变形越小。
d
向缩短。若拉杆为圆截面,原始
直径为d,变形后直径为d1,
材料力学轴向拉伸和压缩
F
F
在两端施加一对轴向拉力F。
2.3.2 横截面上的应力
观察现象
F
F
F
F
所有的纵向线伸长都相等, 而横向线保持为直线且与纵 向线垂直。
2.3.2 横截面上的应力
结论
F
F
F
F
(1)各纤维的伸长相同, 所以它们所受的力也相同。
(2)平面假设:变形前原为平面的横截面, 变形后仍保 持为平面且仍垂直于轴线。
2.3.2 横截面上的应力
当等直杆受几个轴向外力作用时, 由轴力图求出最大轴 力FN,max, 进一步可求得杆内的最大正应力为
max
FN,max A
最大轴力所在的截面称为危险截面, 危险截面上的正应 力称为最大工作应力。
例: 图示阶梯形圆截面杆, 同时承受轴向载荷F1与F2作用。试计 算杆的轴力与横截面上的正应力。已知F1= 20 kN, F2= 50 kN杆 件AB段与BC段的直径分别为d1=20 mm与d2=30 mm。
对于均匀连续的可变形固体, 物体内部相邻部分之间相 互作用的内力实际上是一个连续分布的内力系, 而将分 布内力系的合成(力或力偶), 简称为内力。
内力是指由外力作用所引起的、物体内相邻部分之间 分布内力系的合成。
显示拉(压)杆横截面上的内力, 沿m-m假想地把杆件 分成两部分,杆件左右两段在m-m上相互作用的内力是 一个分布力系, 其合力为FN。
FB FN3
轴力图如右图
C
FC C
FC FN4
FN
5F
2F
D
FD D
FD D
FD
F
x
3F
2.3 拉(压)杆内的应力
2.3.1 应力的概念 杆件截面上的分布内力集度称为应力。
第4章 材料力学基础
4 π π D I p (D4 d 4 ) (1 4 ) 32 32
(4-32)
3 Ip π π D Wt ( D4 d 4 ) (1 4 ) (4-33) r 16D 16
4.4 梁的弯曲
4.4.1 梁的弯曲内力
图4-12 剪切
4.2.2 挤压与挤压应力
图4-13 剪切与挤压
图4-14 挤压应力的分布
4.2.3 剪切与挤压的强度
1.剪切强度计算
由于受剪构件的变形及受力比较复 杂,剪切面上的应力分布规律很难用理 论方法确定,因而工程上一般采用实用 计算方法来计算受剪构件的应力。
在这种计算方法中,假设应力在剪 切面内是均匀分布的。 若以A表示销钉横截面面积,则应 力为 FQ (4-19)
图4-11 应力集中现象
4.2 剪切和挤压
4.2.1 剪切与剪应力
在工程实际中,经常遇到剪切和挤压 的问题。 剪切变形的主要受力特点是构件受到 与其轴线相垂直的大小相等、方向相反、 作用线相距很近的一对外力的作用,如图 4-12(a)所示。
构件的变形主要表现为沿着与外力 作用线平行的剪切面( m-n面)发生相 对错动,如图4-12(b)所示。
第4章 材料力学基础
4.1
轴向拉伸与压缩
4.2
剪切和挤压
4.3
圆轴扭转
4.4
梁的弯曲
4.5
组合变形的强度计算
【学习目标】 1.掌握受拉压杆件的强度及变形量的计 算方法 2.理解剪切与挤压的特点和实用计算 3.理解受扭转杆件的应力特点
4.理解受纯弯曲梁的内力及应力特点, 掌握弯矩图的作法 5.理解组合变形的类型及特点,了解强 度理论的涵义及应用特点
《轴向拉伸与压缩》课件
轴向拉伸的应用范围
建筑工程
轴向拉伸在钢筋混凝土结构中的应用,增加结构的承载能力。
材料制备
轴向拉伸用于制备高强度材料、纤维材料、复合材料等。
模具设计
轴向拉伸在模具设计中的应用,增强产品的形状和结构。
轴向拉伸的原理与方法
1
应力-应变关系
介绍轴向拉伸应力和应变之间的关系。
2
材料性能分析
通过实验和测试,评估材料的拉伸性能和变形行为。念 轴向拉伸的应用范围 轴向拉伸的原理与方法 轴向压缩的概念 轴向压缩的应用范围 轴向压缩的原理与方法
背景介绍
轴向拉伸和压缩是一种重要的力学变形方式,在工程应用中起着至关重要的作用。本节将介绍轴向拉伸 和压缩的背景和意义。
轴向拉伸的概念
轴向拉伸是指在材料中施加一个沿着轴向方向的拉力,使材料沿轴向伸长的 力学变形方式。
3
工程应用案例
展示轴向拉伸在工程实践中的应用案例。
轴向压缩的概念
轴向压缩是指沿着轴向方向对材料施加的压缩力,使材料沿轴向缩短的力学 变形方式。
轴向压缩的应用范围
桥梁建设
砖瓦制造
汽车制造
轴向压缩在桥梁建设中的应用, 提升桥梁的稳定性和承载能力。
轴向压缩用于砖瓦制造过程中, 提高瓦片的密度和强度。
汽车制造中的轴向压缩应用, 改善车身结构和安全性能。
轴向压缩的原理与方法
1 应变率分析
2 压缩强度测试
分析材料在轴向压缩中 的变形速率和应变过程。
通过实验和测试,评估 材料在轴向压缩条件下 的强度和稳定性。
3 工程实践案例
展示轴向压缩在工程实 践中的应用案例和成果。
chap04轴向拉伸和压缩
50kN N
I
I 50kN
+
II 150kN
100kN
II
100kN
|N|max=100kN
50kN
I NI
I
NI=50kN
II NII
100kN
II NII= 100kN
4-3 轴向拉(压)杆应力
1、应力的概念
为了描写内力的分布规律,我们将单位面积的内力称为应力。
第4章 轴向拉伸和压缩(1)
§4-1 §4-2 §4-3 §4-4
材料力学相关问题 轴向拉(压)杆内力和轴力图 轴向拉(压)杆应力 轴向拉(压)变形计算
4-1 材料力学相关问题
a 材料力学的任务
在生产实际中,各种机械和工程 结构得到广泛应用。组成机械的零 件和结构的元件,统称为构件。
EA 称为抗拉刚度
为了说明变形的程度,令 l l Dl
ll
称为纵向线应变,显然,伸长为正号,缩 短为负号
Dl Nl
EA
l l Dl
ll
)定律
N 1
EA E
E
也称为胡克定律
2、横向变形
P
hP
Dh h h
则斜截面面积为:A
A
cos
由杆左段的平衡方程 X 0
p A P 0
p
P A
P cos
A
cos
这是斜截面上与 轴线平行的应力
n
P
pα
τα
t 下面我们将该斜截面上的应力分解为正应力和剪应力
第4章轴向拉伸与压缩
第4章轴向拉伸与压缩4.1 轴向拉伸与压缩的概念在建筑物和机械等工程结构中,经常使用受拉伸或压缩的构件。
例如图4.1所示液压传动中的活塞杆,工作时以拉伸和压缩变形为主。
图4.2所示拧紧的螺栓,螺栓杆以拉伸变形为主。
图4.1 图4.2图4.3所示拔桩机在工作时,油缸顶起吊臂将桩从地下拔起,油缸杆受压缩变形,桩在拔起时受拉伸变形,钢丝绳受拉伸变形。
图4.4所示桥墩承受桥面传来的载荷,以压缩变形为主。
图4.3 图4.4图4.5所示钢木组合桁架中的钢拉杆,以拉伸变形为主。
图4.6所示厂房用的混凝土立柱以压缩变形为主。
图4.5 图4.6 在工程中以拉伸或压缩为主要变形的构件,称为拉、压杆,若杆件所承受的外力或外力合力作用线与杆轴线重合,称为轴向拉伸或轴向压缩。
4.2 轴向拉(压)杆的内力与轴力图4.2.1 拉压杆的内力在轴向外力F 作用下的等直杆,如图4.7(a )所示,利用截面法,可以确定n m -横截面上的唯一内力分量为轴力N F ,其作用线垂直于横截面并通过形心,如图4.7(b )所示。
图4.7利用平衡方程 0=∑x F得 F F =N通常规定:轴力N F 使杆件受拉为正,受压为负。
4.2.2 轴力图为了表明轴力沿杆轴线变化的情况,用平行于轴线的坐标表示横截面的位置,垂直于杆轴线的坐标表示横截面上轴力的数值,以此表示轴力与横截面位置关系的几何图形,称为轴力图。
作轴力图时应注意以下几点:1、轴力图的位置应和杆件的位置相对应。
轴力的大小,按比例画在坐标上,并在图上标出代表点数值。
2、习惯上将正值(拉力)的轴力图画在坐标的正向;负值(压力)的轴力图画在坐标的负向。
例题4.1 一等直杆及受力情况如图(a )所示,试作杆的轴力图。
如何调整外力,使杆上轴力分布得比较合理。
例题4.1图解:(1)、求AB 段轴力用假设截面在1–1处截开,设轴力F N 为拉力,其指向背离横截面,由平衡方程得kN 5N1 F (图b )(2)、同理,求BC 段轴力kN 15kN 10kN 5N2=+=F (图c )(3)、求CD 段轴力,为简化计算,取右段为分离体kN 30N3=F (图d )(4)、按作轴力图的规则,作出轴力图,如图(e )所示。
轴向拉伸与压缩的名词解释
轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。
本文将对轴向拉伸与压缩进行详细的解释与探讨。
一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。
拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。
轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。
钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。
而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。
二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。
压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。
轴向压缩现象同样广泛应用于工程领域。
例如,桥梁中的墩柱、压缩试验中的压力传感器等。
墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。
三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。
1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。
通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。
这对材料的设计和应用具有重要的指导意义。
2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。
例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。
3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。
例如,电子产品中常使用弹性材料来保护内部电路。
这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。
第四章 轴向拉伸和压缩
a
F a P pa a a pa sin a cos a sin a sin 2a a a 2 n 反映:通过构件上一点不同截面上应力变化情况。 当a = 0°时, ( a ) max (横截面上存在最大正应力)
a pa cosa cos a
2
n
联立求解得 FNAB=40(KN) FNBC=-40(KN)
2)求各杆正应力。 AB杆:截面面积AAB=254.34(mm2) σ AB=157. 3MPa(拉) BC杆:截面面积ABC=a2=1002mm2 σ BC=3MPa (压)
4.2.3 斜截面上的应力
设有一等直杆受拉力F作用。 求:斜截面m-n上的应力。 解:采用截面法 由平衡方程:FNa=F F F
轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
4.1.2 内力的概念
物体在受到外力作用而变形时,物体内部各质 点间的相对位置将发生变化。其各质点间相互作用 的力也会发生改变。这种相互作用的力由于物体受 到外力作用而引起的改变量,称为附加内力,通常 简称内力。
意 义 ①反映出轴力与截面位置变化关系,较直观; ②确定出最大轴力的数值 及其所在横截面的位置, FN F + x
即确定危险截面位置,为
强度计算提供依据。
【例4.2】
杆件受力如图4.6(a)所示,试 求杆内的轴力并作出轴力图。
【解】 1)为了运算方便,首先求出支座反力,取
整个杆为研究对象[图4.6(b)],列平衡方程 ∑x=0 一F+6 0+2 0一1 0一3 5=0 F=3 5(kN) 2)求各段杆的轴力。 求AB段轴力: 用1—1截面将杆件在AB段内截开,取左段为研究 对象[图4.6(c)],以FN1表示截面上的轴力,并假设 为拉力,由平衡方程
2020年10月自考《工程力学》2020第四章轴向拉伸与压缩习题答案及答案
第四章轴向拉伸与压缩习题答案1. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为2段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=F(拉);F N2=-F(压)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
2. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=F(拉);F N2=0;F N3=2F(拉)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
3. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)计算A端支座反力。
由整体受力图建立平衡方程:∑F x=0,2kN-4kN+6kN-F A=0F A=4kN(←)(2)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=-2kN(压);F N2=2kN(拉);F N3=-4kN(压)(3)画轴力图。
根据所求轴力画出轴力图如图所示。
4. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=-5kN(压); F N2=10kN(拉); F N3=-10kN (压)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
5. 圆截面钢杆长l=3m,直径d=25mm,两端受到F=100kN的轴向拉力作用时伸长Δl=2.5mm。
试计算钢杆横截面上的正应力σ和纵向线应变ε。
解:6. 阶梯状直杆受力如图所示。
已知AD段横截面面积A AD=1000mm2,DB段横截面面积A DB=500mm2,材料的弹性模量E=200GPa。
求该杆的总变形量Δl AB。
解:由截面法可以计算出AC,CB段轴力F NAC=-50kN(压),F NCB=30kN(拉)。
工程力学 第四章 杆件的基本变形
随外力产生或消失 随外力改变而改变 但有一定限度
截 面 法
根据空间任意力系的六个平衡方程
X 0 M
步骤: 1、切开 2、代替
x
Y 0 M
y
Z 0 M
z
0
0
0
求内力和取分离体求约束反力的方法本质 相同。这里取出的研究对象不是一个物体系统或一个完 整的物体,而是物体的一部分。
第四章 杆件的基本变形
杆件的外力与变形特点 内力及其截面法
杆件的外力与变形特点
一、杆件变形的定义 杆件在外力作用下,形状和尺寸的变化。 二、杆件变形的形式 1、基本变形 轴向拉伸与压缩 剪切变形 扭转变形 弯曲变形 2、组合变形 同时发生两种或两种以上的变形形式
轴向拉伸或压缩变形
受力特点:作用线与杆轴重合的外力引起的。
拉 伸
压 缩
变形特点:杆轴沿外力方向伸长或缩短, 主要变形是长度的改变
屋 架 结 构 中 的 拉 压 杆
塔 式 结 构 中 的 拉 压 杆
桥 梁 结 构 中 的 拉 杆
剪 切 变形
受力特点:由垂直于杆轴方向的一对大小相等、 方向相反、作用线很近的横向外力引起的。
变形特点:二力之间的横截面产生相对错动变形 主要变形是横截面沿外力作用方向发生相对错动。
螺 栓
连 接 键
销钉
螺 栓
扭 转 变 形
受力特点:由垂直于杆轴线平面内的力偶作用引起的
变形特点:相邻横截面绕杆轴产生相对旋转变形。
对称扳手拧紧镙帽
自 行 车 中 轴 受 扭
桥 体 发 生 扭 转 变 形
弯曲变形
受力特点:是由垂直于杆件轴线的横向力或作用 在杆件的纵向平面内的力偶引起的
变形特点:杆轴由直变弯,杆件的轴线变成曲线。
轴向拉伸和压缩习题附标准答案
轴向拉伸和压缩习题附标准答案第四章轴向拉伸和压缩⼀、填空题1、杆件轴向拉伸或压缩时,其受⼒特点是:作⽤于杆件外⼒的合⼒的作⽤线与杆件轴线相________.2、轴向拉伸或压缩杆件的轴⼒垂直于杆件横截⾯,并通过截⾯________.4、杆件轴向拉伸或压缩时,其横截⾯上的正应⼒是________分布的.7、在轴向拉,压斜截⾯上,有正应⼒也有剪应⼒,在正应⼒为最⼤的截⾯上剪应⼒为________.8、杆件轴向拉伸或压缩时,其斜截⾯上剪应⼒随截⾯⽅位不同⽽不同,⽽剪应⼒的最⼤值发⽣在与轴线间的夹⾓为________的斜截⾯上.9、杆件轴向拉伸或压缩时,在平⾏于杆件轴线的纵向截⾯上,其应⼒值为________.10、胡克定律的应⼒适⽤范围若更精确地讲则就是应⼒不超过材料的________极限.11、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能⼒,这说明杆件材料的弹性模量E值越⼤,其变形就越________.12、在国际单位制中,弹性模量E的单位为________.13、在应⼒不超过材料⽐例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越⼩.15、低碳钢试样据拉伸时,在初始阶段应⼒和应变成________关系,变形是弹性的,⽽这种弹性变形在卸载后能完全消失的特征⼀直要维持到应⼒为________极限的时候.16、在低碳钢的应⼒—应变图上,开始的⼀段直线与横坐标夹⾓为α,由此可知其正切tgα在数值上相当于低碳钢________的值.17、⾦属拉伸试样在屈服时会表现出明显的________变形,如果⾦属零件有了这种变形就必然会影响机器正常⼯作.18、⾦属拉伸试样在进⼊屈服阶段后,其光滑表⾯将出现与轴线成________⾓的系统条纹,此条纹称为________.19、低碳钢试样拉伸时,在应⼒-应变曲线上会出现接近⽔平的锯齿形线段,若试样表⾯磨光,则在其表⾯上关键所在可看到⼤约与试样轴线成________倾⾓的条纹,它们是由于材料沿试样的________应⼒⾯发⽣滑移⽽出现的.20、使材料试样受拉达到强化阶段,然后卸载,在重新加载时,其在弹性范围内所能随的最⼤荷载将________,⽽且断裂后的延伸率会降低,此即材料的________现象.21、铸铁试样压缩时,其破坏断⾯的法线与轴线⼤致成________的倾⾓.22、铸铁材料具有________强度⾼的⼒学性能,⽽且耐磨,价廉,故常⽤于制造机器底座,床⾝和缸体等.25、混凝⼟,⽯料等脆性材料的抗压强度远⾼于它的________强度.26、为了保证构件安全,可靠地⼯作在⼯程设计时通常把________应⼒作为构件实际⼯作应⼒的最⾼限度.27、安全系数取值⼤于1的⽬的是为了使⼯程构件具有⾜够的________储备.28、设计构件时,若⽚⾯地强调安全⽽采⽤过⼤的________,则不仅浪费材料⽽且会使所设计的结构物笨重.29、正⽅形截⽽的低碳钢直拉杆,其轴向向拉⼒3600N,若许⽤应⼒为100Mpa,由此拉杆横截⾯边长⾄少应为________mm.⼆、判断题(对论述正确的在括号内画 ,错误的画╳)1、杆件两端受到等值,反向和共线的外⼒作⽤时,⼀定产⽣轴向拉伸或压缩变形.()4、轴⼒图可显⽰出杆件各段内横截⾯上轴⼒的⼤⼩但并不能反映杆件各段变形是伸长还是缩短.()5、⼀端固定的杆,受轴向外⼒的作⽤,不必求出约束反⼒即可画内⼒图.()6、轴向拉伸或压缩杆件横截⾯上的内⼒集度----应⼒⼀定正交于横截⾯.()9、求轴向拉伸或压缩杆件的轴⼒时,⼀般地说,在采⽤了截⾯法之后,是不能随意使⽤⼒的可传性原理来研究留下部分的外⼒平衡的.()15、材料相同的⼆拉杆,其横截⾯⾯积和所产⽣的应变相等,但杆件的原始长度不⼀定相等. ()16、⼀钢杆和⼀铝杆若在相同下产⽣相同的应变,则⼆杆横截⾯上的正应⼒是相等的. ()17、弹性模量E值不相同的两根杆件,在产⽣相同弹性应变的情况下,其弹性模量E值⼤的杆件的受⼒必然⼤. ()32、在强度计算时,如果构件的⼯作和⼯作应⼒值⼤于许⽤应⼒很少,⽽且没有超过5%.则仍可以认为构件的强度是⾜够的.()三、最佳选择题(将最符合题意的⼀个答案的代号填⼊括号内)1、在轴向拉伸或压缩杆件上正应⼒为零的截⾯是()A、横截⾯B、与轴线成⼀定交⾓的斜截⾯C、沿轴线的截⾯D、不存在的2、在轴向拉伸或压缩杆件横截⾯上不在此列应⼒是均布的,⽽在斜截⾯上()A、仅正应⼒是均布的;B、正应⼒,剪应⼒都是均布的;C、仅剪应⼒是均布的;D、正应⼒,剪应⼒不是均布的;3、⼀轴向拉伸或压缩的杆件,设与轴线成45.的斜截⾯上的剪应⼒为τ,则该截⾯上的正应⼒等于()A、0;B、1.14τ;C、0.707;D、τ;6、⼀圆杆受拉,在其弹性变形范围内,将直径增加⼀倍,则杆的相对变形将变为原来的()倍.A 、41; B 、21; C 、1; D 、2 7、由两杆铰接⽽成的三⾓架(如图所⽰),杆的横截⾯⾯积为A ,弹性模量为E ,当在节点B 处受到铅垂载荷P 作⽤时,铅垂杆AB 和斜杆BC 的变形应分别为()A 、EA Pl ,EA Pl 34; B 、0,EA Pl ; C 、EA Pl 2,EA Pl 3 D 、EA Pl ,0 11、两圆杆材料相同,杆Ⅰ为阶梯杆,杆Ⅱ为等直杆,受到拉⼒P 的作⽤(如图所⽰),分析两杆的变形情况,可知杆Ⅰ的伸长()的结论是正确的.A 、为杆Ⅱ伸长的2倍; B 、⼩于杆Ⅱ的伸长;C 、为杆Ⅱ伸长的2.5倍;D 、等于杆Ⅱ的伸长;12、⼏何尺⼨相同的两根杆件,其弹性模量分别为E 1=180Gpa,E 2=60 Gpa,在弹性变形的范围内两者的轴⼒相同,这时产⽣的应变的⽐值21εε 应⼒为()A、31 B 、1; C 、2; D 、3 13、⼀钢和⼀铝杆的长度,横截⾯⾯积均相同,在受到相同的拉⼒作⽤时,铝杆的应⼒和().A 钢杆的应⼒相同,但变形⼩于钢杆;B 变形都⼩于钢杆;C 钢杆的应⼒相同,但变形⼤于钢杆;D 变形都⼤于钢杆.四、图所⽰⽀架,AB 为钢杆,横截⾯积A AB =600mm 2;BC 为⽊杆,横截⾯积A BC =300cm 2.钢的许⽤应⼒[σ]=140Mpa ,⽊材的许⽤拉应⼒[σL ]=8Mpa ,许⽤压应⼒[σy ]=4Mpa.求⽀架的许可载荷.第四章轴向拉伸和压缩答案⼀、填空题:1、重合;2、形⼼; 4、均匀;7、零;8、450;9、零;10、⽐例;11、⼩;12、Pa;13、⼤; 15、正⽐、⽐例;16、弹性模量;17、塑性;18、450、滑移线;19、450、最⼤剪;20、提⾼、冷作硬化;21、450;22、抗压;23、⾼;24、拉;25、抗拉;26、许⽤;27、强度;28、安全系数;29、6;.⼆、判断题:1、×;2、√;3、√;4、×;5、√;6、√;7、√;8、√;9、×;10、×;11、×;12、×;13、√;14、×;15、√;16、×;17、×; 32、√.三、最佳选择题:1—C;2—B;3—D;4—A;5—C;6—A;7—D;8—B;9—C;10—B;11—C;12—A;13—C;四、[P]=101KN.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点是:作用在杆端的外力或其合力的作
用线沿杆件轴线。 变形特点是:杆件沿轴线方向伸长 或缩短。这种变形形式称轴向拉伸与压 缩。
§4.1
轴向拉伸与压缩的概念与实例
§4.2
4.2.1 内力的概念
截面法、轴力与轴力图
☆材料力学中的内力是指在外力作 用下,构件杆件内部各质点之间相 互作用力的改变量,称为“附加内
力”,简称“内力”。 ☆内力:为保持物体的形状和尺寸,物体内部各质点间必定存在
着相互作用的力,该力称为内力。 观察一下手拉弹簧动画,将有助于 理解材料力学中关于内力的概念。
4.2.2
截面法
§4.2 截面法、轴力与轴力图 轴力与轴力图
*截面法:所谓截面法,是用假想截面将杆件在所需部位截开来,然后用 平衡方程由外力求算内力的方法。用截面法求算内力的步骤: (1)截开
小结
§4.1
轴向拉伸与压缩的概念与实例
联接螺栓、起重机的钢丝绳及吊钩头部都承受拉力作用,而桥墩、
门座起重机的臂架以及建筑物的立柱都承受压力作用。
§4.1
轴向拉伸与压缩的概念与实例
☆轴向拉伸与压缩的概念
以汽缸的活塞杆为例。观 察活塞杆在工作时受什么样的 外力作用?它可能发生什么样 的变形? 通过观察分析可知,杆件的受力特
试验机
§4.5 材料在轴向拉压时的力学性能 为消除试样横截面尺寸和长度的影响,将F- l 曲线的纵坐标F和 l 横坐 标分别除以试件的原始横截面面积 A 和原始标距 l 得到 曲线,称为应 力-应变曲线。
§4.5 材料在轴向拉压时的力学性能 4.5.2 低碳钢拉伸时的力学性能 低碳钢在拉伸时表现出来的力学性能具有典型性。由上图的 曲线可以 看出,整个拉伸过程大致分为以下四个阶段: (1) 弹性阶段 P
(0≤x≤2)
FN F qx 4 2 x
由轴力FN的表达式可知,轴力FN与横截面位置坐标x成线性关系,轴力 图为一斜直线。当x=0时,FN=4 kN;当x=2m时,FN=8 kN。画出轴力 图如图所示,FN.max=8 kN,发生在截面A上。 .
§4.3
横截面上的应力
4.3.1
应力的概念
胡克定律
设原长为l,直径为d的圆截面直杆,受轴向拉力F后变形,其杆纵向长度由l变为
l1,横向尺寸由d变为d1,则 杆的纵向绝对变形为 杆的横向绝对变形为
l l1 l d d1 d
§4.4
轴向拉压杆的变形
胡克定律
☆注意:同样的绝对变形,发生在不同的原始尺寸下,变形的程度显然是不
一样的。为反映杆件的变形程度,通常用单位长度的相对变化来度量,称为线应 变(或正应变),即 杆的纵向线应变 杆的横向线应变
FN 、E、A均为常量。 (2)在长为l 的杆段内,
4.4
轴向拉压杆的变形
胡克定律
例4.5 阶梯状直杆受力如图所示,试求杆的总变形量。已知其横截面面 积分别为ACD=300mm2, AAB= ABC 500mm2,E=200GPa。 解: (1)作轴力图。用截面法求
CD BC 得CD和BC段轴力 FN FN 10
FN F 20 kN
(2) 计算最大正应力。 开槽部分的横截面面积为
A (h h0 )b (25 10) 20 300mm 则杆件内的最大正应力 max为
FN 20 103 6 σ max 66 . 7 10 Pa 66.7MPa 6 A 300 10 负号表示最大应力为压应力。
§4.2
截面法、轴力与轴力图
例4.2 钢杆上端固定,下端自由,受 力如图所示。已知l = 2m,F = 4 kN, q = 2 kN/m,试画出杆件的轴力图。
解 以B点为坐标原点,BA为正方向建立x
轴;将杆件从位置坐标为x的C截面处截开。
由BC受力图建立平衡方程:
Fx 0
FN F qx 0
变而变化,若内力的大小超过某一限度,则杆件将不能正常工作。内力
分析与计算是解决杆件强度、刚度和稳定性计算的基础。 ②内力随外力增大而增大外力消失,内力也消失。 直接利用外力计算轴力的规则
杆件承受拉伸(或压缩)时,杆件任一横截面上的轴力等于截面一侧
(左侧或右侧)所有轴向外力的代数和。外力背离截面时取正号,外力指向截面 时取负号。
F2
16KN FN (x)
6KN
+ 14KN
+
x
§4.2 解:(1 )计算D 端 支座反力。由整体受力 图建立平衡方程:
截面法、轴力与轴力图
F2
Fx 0
FD F1 F2 F3 0
FD F2 F3 F1 14kN
(2)分段计算轴力 将杆件分为三段。用截面法截取如图b,c,d所示的研究对象,分别用 FN1、FN2、FN3替代另一段对研究对象的作用,一般可先假设为拉力,由 平衡方程分别求得:
*拉伸的初始阶段(OA), 曲线为一直线,直线段最高点A所对应
的应力称为比例极限,用 P 表示。
率, σ e
*应力与应变成正比,即满足胡克定律。 E ,弹性模量E是直线OA的斜
即 E tan 。 σ P
*图中的A A段,应力超过比例极限 P , 与 不再是线性关系。但当应
CD FN l CD 10 10 3 0.1 1.67 10 5 m 9 6 EACD 200 10 300 10
(3)计算杆的总变形量。
Δl Δl AB Δl BC ΔlCD (2 1 1.67) 105 0.0067mm
l l d d
☆线应变表示杆件的相对变形。 , 的正负号分别与 l , d 的正负号 一致。
, 存在正比关系,且符号相反。 ☆当应力不超过某一限度时, v 。v 称为材料的横向变形系数,或称泊松比。 即:
§4.4 4.4.2
轴向拉压杆的变形
☆横截面上的正应力:横截面上各点处的应力大小相等,其方向与横截面上 的轴力FN一致,且垂直于横截面,故称为正应力。其计算公式为
FN A
式中A为杆横截面面积。
§4.3
横截面上的应力
例4.3
如图所示,一中段正中开槽的直杆,承受轴向载荷F=20kN,b=20mm。求杆内最大正应力。 解: (1)计算轴力。用截面法 求得各截面上的轴力均为
kN,AB段的轴力
FNAB 20
kN。
(2)计算各段杆的变形量。
Δl BC
BC FN l BC 10 10 3 0.1 5 1 10 m 9 6 EABC 200 10 500 10
Δl AB
Δl CD
AB FN l AB 20 10 3 0.1 5 2 10 m 9 6 EAAB 200 10 500 10
FN 1 F1 16 kN FN 2 F1 F2 16 10 6 kN
FN 3 FD 14 kN
§4.2
截面法、轴力与轴力图
总结:
① ☆内力是由外力引起的,是原有相互作用力的“改变量”;可
见内力的大小应完全取决于外力;外力解除,内力也随之消失。
☆杆件横截面上内力的大小及其在杆件内部的分布规律随外力的改
AB CD
FNAB 20 103 MPa 40MPa AAB 500 FNCD 10 103 MPa 33.3MPa ACD 300
可见AB段内横截面上的正应力最大,其值为40MPa。
§4.4 轴向拉压杆的变形 4.4.1 纵向线应变和横向线应变 杆件受拉作用时的变形
BC,此时应力几乎不变,而应变却显著增大,暂时失去抵抗变形的能力,这种
现象称为屈服或流动。
在想要计算内力的那个截面,假想将杆件截开,留下研究对象,
弃去另一部分。 (2)替代 以作用力(即欲求算的内力)替代弃去部分对研究对象的作用。 (3)求算 画研究对象的受力图,用平衡方程由已知外力求算内力。
*轴力:由于外力的作用线与杆的轴线重合,内力的作用线也必通过杆件 的轴线并与横截面垂直,故轴向拉伸或压缩时杆件横截面上的内力称为轴力。 ☆轴力正负号规定:轴力的方向与所在截面的外法线方向一致时,轴力为 正,反之为负。既杆件受拉时轴力为正,杆件受压时轴力为负。一般计算时可先 假设轴力为正,再由计算结果确定其实际方向。
§4.3
横截面上的应力
4.3.2
横截面上的正应力
观察杆件受轴向拉伸时的变形情况。
两横截面A和B,杆件发生伸长变形后,平行移动到A´ 和B´位置 (图b),且仍与杆轴线垂直。
§4.3 横截面上的应力 ☆根据上述观察分析,可作如下假设:横截面在杆件变形后仍保持为垂直 于杆轴线的平面,仅沿轴线产生了相对平移。
杆件强度的大小与分布内力在 截面上每一点处的集度有关。 *应力:分布内力在截面上某
一点处的集度称为应力。
为确定杆件某一截面m-m(上任意一点K处的应力,在截面上任一点K周围 取微小面积,设ΔA ,设 ΔA 面积上分布内力的合力为FR ,则比值FR A 称为面
积
上的平均应力。用pm表示 即,
pm
第4 章
轴向拉伸和压缩
☆分析轴向拉(压)时杆件的受力特点和变形情况,介绍材料 力学分析内力的基本方法——截面法。
☆通过对拉(压)杆的应力和变形分析,解决拉(压)杆的强 度和刚度计算问题。 §4.1 轴向拉伸与压缩的概念和实例
§4.2 截面法、轴力与轴力图 §4.3 横截面上的应力 §4.4 轴向拉压杆的变形 胡克定律 §4.5 材料在轴向拉压时的力学性能 §4.6 轴向拉压杆的强度计算
§4.5
材料在轴向拉压时的力学性能
4.5.1
拉伸试验和应力-应变曲线