2017年最新北师大版八年级数学下册期末试卷含答案(2套)
北师大版八年级下学期数学期末试卷含答案(共5套)
北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。
2017年八年级(下)数学期末测试题及答案(北师大版
2017年八年级(下)数学期末测试题及答案(北师大版D23456716.如图,在四边形ABCD 中,对角线AC 、BD 互相垂直平分,若使四边形ABCD 是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)17.若543z y x ==,则=++-+z y x z y x 234 . 18.如图,矩形ABCD 中,3,4AB BC ==,点E 是BC 边上一点,连接AE ,把B ∠沿AE 折叠,使点B 落在点'B 处,当△'CEB 为直角三角形时,BE 的长为三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19. (本小题满分6分)(1)解分式方程:114112=---+x x xA BC DO8(2)解不等式组3(1)511242x x x x -<+⎧⎪⎨-≥-⎪⎩,并指出它的所有的非负整数解.;20. (本小题满分6分)张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.21. (本小题满分6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22. (本小题满分7分)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)若BE的延长线交AC于点F,且BF⊥AC,910 垂足为F ,如图2,∠BAC =45°,原题设其它条件不变.求证:△AEF ≌△BCF .23. (本小题满分7分) 如图,在△ABC 中,∠ABC =90°,BM 平分∠ABC 交AC 于点M ,ME ⊥AB 于点E ,MF ⊥BC 于点F . 判断四边形EBFM 的形状,并加以证明.A B C D E F (第22题图2)AB CD E(第22题图1) A BC M EF24. (本小题满分8分)直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.25. (本小题满分8分)如图,在△ABC中,D是BC边上的一点,E 是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD 是矩形?并说明理由.26. (本小题满分9分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?27. (本小题满分9分)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.答案一、选择题1-6.C D B C C B 7-12.C C D C C B二、填空题略三、解答题19(1)略(2)解: 3x2-4x-1=0, 372612164±=+±=x , 372,37221-=+=x x20、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(x+10)本,依题意,得:,解得:x=20,经检验,x=20是原方程的解,答:张明平均每分钟清点图书20本。
2017-2018学年北师大版八年级下期末测评数学试卷含答案
期末测评(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C )2.将下列多项式因式分解,结果中不含因式x-1的是(D )A.x 2-1B.x (x-2)+(2-x )C.x 2-2x+1D.x 2+2x+13.(2017·山东泰安中考)如图,在正方形网格中,线段A'B'是线段AB 绕某点逆时针旋转角α得到的,点A'与A 对应,则角α的大小为(C )A.30°B.60°C.90°D.120°4.对分式,当x=-m 时,下列说法正确的是(C )x +m2x -3A.分式的值等于0B.分式有意义C.当m ≠-时,分式的值等于032D.当m=时,分式没有意义325.下列说法不一定成立的是(C )A.若a>b ,则a+c>b+cB.若a+c>b+c ,则a>bC.若a>b ,则ac 2>bc 2D.若ac 2>bc 2,则a>b6.如图所示,在直角△ABC 中,∠BAC=90°,AB=8,AC=6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为(A )A.16B.15C.14D.137.(2017·江苏苏州中考)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为(B )A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF 的两条对角线ME ,NF 交于原点O ,点F 的坐标是(3,2),则点N 的坐标为(A )A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组的整数解有三个,则a 的取值范围是(A ){x >a ,x <3A.-1≤a<0B.-1<a ≤0C.-1≤a ≤0D.-1<a<010.导学号99804153如图所示,在▱ABCD 中,分别以AB ,AD 为边向外作等边△ABE ,△ADF ,延长CB 交AE 于点G ,点G 在点A ,E 之间,连接CG ,CF ,则下列结论不一定正确的是(C )A.△CDF ≌△EBCB.∠CDF=∠EAFC.CG ⊥AED.△ECF 是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a 3b+2a 2b 2+ab 3的值为18 .12.如图所示,在△ABC 中,点D ,E ,F 分别是AB ,BC ,AC 的中点,若平移△ADF ,则图中能与它重合的三角形是△DBE (或△FEC ) (写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA.若PC=4,则PD 的长是2 .14.若关于x 的分式方程=1的解为正数,那么字母a 的取值范围是a>1且a ≠2 .2x -ax -115.一次函数y=kx+b (k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的不等式kx+b>0的解集为x>-1 .(第15题图)(第16题图)16.如图所示,已知AB=10,点C ,D 在线段AB 上且AC=DB=2;P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是3 .三、解答题(共52分)17.(5分)(2017·天津中考)解不等式组:{x +1≥2, ①5x ≤4x +3. ②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ; (3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .x ≥1 (2)x ≤3(3)如图所示.(4)1≤x ≤318.(5分)先化简,再求值:,(x 2-yx -x -1)÷x 2-y 2x 2-2xy +y 2其中x=,y=.26(x 2-y x -x -1)÷x 2-y 2x 2-2xy +y 2=(x 2-y x -x 2x -xx )×(x -y )2(x +y )(x -y )==-.-(x +y )x×x -y x +y x -y x 当x=,y=时,原式=-=-1+.262-62319.导学号99804154(6分)如图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'位置,点B 和点C 重合.求证:四边形ACE'E 是平行四边形.DE 是△ABC 的中位线,∴DE ∥AC ,DE=AC.12∵将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'位置,∴DE=DE',∴EE'=2DE=AC ,∴四边形ACE'E 是平行四边形.20.导学号99804155(6分)(2017·江苏南京中考)如图,在▱ABCD 中,点E ,F 分别在AD ,BC 上,且AE=CF ,EF ,BD 相交于点O ,求证:OE=OF.,连接BE ,DF.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC.∵AE=CF ,∴AD-AE=BC-CF.∴DE=BF ,∴四边形BEDF 是平行四边形.∴OF=OE.BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.导学号99804157(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF ,求证:AE=AD.∵△ABC 是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB ,∴EF ∥DC.∵EF=DC ,∴四边形EFCD 是平行四边形.(2)连接BE.∵BE=EF ,∠EFB=60°,∴△EBF 是等边三角形,∴EB=EF ,∠EBF=60°.∵DC=EF ,∴EB=DC.∵△ABC 是等边三角形,∴∠ACB=60°,AB=AC ,∴∠EBF=∠ACB ,∴△AEB ≌△ADC ,∴AE=AD.24.导学号99804158(9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?设甲工程队每天修路x 千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×,15=15x -0.5解得x=1.5.经检验x=1.5是原方程的解,且x-0.5=1.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。
初二下学期期末考试数学试卷含答案(共3套,北师大版)
北师大版八年级下学期期末考试数学试卷含答案一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( )A.2个B.3个C.4个D.5个 3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( ) A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( )A.平均数B.众数C.中位数D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11. 在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12. 一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13. 在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为 。
2016~2017学年北师大版八年级数学第二学期期末测试卷及答案(精选2套)
第5题图 2016~2017学年度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是因式分解的是( )A.(a +3)(a —3)=a 2-9B.()2241026x x x ++=++ C.()22693x x x -+=- D.()()243223x x x x x -+=-++ 2. 分式293x x --的值为零,则x 的取值( ).A .3B .3-C .3±D .03. 下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=--D .22()1()a b a b --=-+ 4. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( ) A .5 BC .5D .不确定5. 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .525C .625D .9256. 下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等 7. 如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )8. 下列说法中,正确的是( )设 ( )A .∠A =∠B B .AB =BC C .∠B =∠CD .∠A =∠C10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位11. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘乘轿车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .x x 5.28158=+ B .155.288+=x xC .x x 5.28418=+D .415.288+=x x12 . 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 当x 时,分式x-31有意义 14. 在△ABC 中,∠A:∠B:∠C =1:2:3,AB =6cm ,则BC = cm . 15. 分解因式:3223x y 2x y +xy =- 16. 若关于x 的方程2222x m x x++=--有增根,则m 的值是______ 17..两个连续整数的积为42,这两个数分别为18. 如图4,正方形ABCD 中,点E 在BC 的延长线上,AC=CE,则下列结论: (1)∠ACE=1350.(2)∠E=22.50,(3)∠2=112.50.(4)AF 平分∠DAC. (5)DF=FC. 其中正确的有三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)(1)因式分解 m 3n -9mn . (2)计算 2111a a a a -++-20. (本小题满分8分)(1)解方程 )12(3)12(4+=+x x x ;(2)解分式方程22121--=--xx x21. (本小题满分8分)某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE =OF .B小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25. (本小题满分9分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26. (本小题满分10分)如图,在Rt △ABC 中,∠C =90°,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连结DE .(1)证明DE ∥CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形.一.选择CBBCD D C C CA DB二.填空13.≠3, 14. 3 15.a+b 16.0 17 6\7 或-6\-7 18. (1)(2)(3)(4)(5)19.20. -1\2 3\423. 解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ……………2′∴∠OAE=∠OCF ……………4′∵∠AOE=∠COF ……………6′∴△OAE≌△OCF(ASA)∴OE=OF ……………8′25x1=即正方形的边长为中,,=AC= AC=2016—2017学年期末测试八年级数学试卷一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里。
2017-2018学年北师大版数学八年级下册期末考试试卷含答案
2017-2018学年末教学质量监测八年级数学试卷题号-一一-二二总分得分(全卷满分120分,考试时间120分钟)得分评卷人、填空题(本大题共6个小题,每小题3分,满分18 分)1. ___________________________ 9的平方根是.2. 分解因式:2x3 _8x = ________________________ .3. 使二次根式X -2有意义的x的取值范围是 __________________4•如图,在四边形ABCD中,AB // CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是_________________5 . 不等式组2x-5 03-x :: -1的解集是A D得分评卷人、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列计算正确的是()B. 、2+, 3^. 56.正比例函数的图像经过点A (-2,3),B (a,—3),C. 3 空=3空D . .. (-16)(-9)=.帀二 P8.不等式1+x v 0的解集在数轴上表示正确的是()A .3-2-101 23C.——---9.下列说法不正确的是(I 1 >B .一一一一一A .平行四边形的对边平行且相等B.平行四边形对角线互相平分C.平行四边形是轴对称图形10.因式分解x3—2x2+ x正确的是(2A . (x—1)22C. x( x —2x+ 1)D .平行四边形是中心对称图形)2B . x (x—1) 2D . x (x+ 1) 211 .等腰三角形的一个角是30°,那么它的顶角为()A . 30B . 60C . 120D . 30° 或12012. 我县今年5月某地6天的最高气温如下(单位乜):32, 29, 30, 32, 30, 32. 则这组数据的众数和中位数分别是()A. 30, 32B. 32, 30C. 32, 31D. 32, 3213. 一次函数y二kx・b的图像如图,贝U k和b的值为()14 .下列几组数能作为直角三角形的三边长的是()A . 6, 8, 10C. 2, 3, 4得分评卷人三、解答题B . 4, 5, 7D . 1, 2, 3(本大题共9个小题,满分70分)15 . (7分)解方程组:16 . (7分)解分式方程:丄- 2x— 1 1-xA. k<0, b<0B. k>0, b<0C. k>0, b>0D. k<0, b> 0 17 . (7分)如图,点B、E、C、F在同一直线上, AC与DE相交于点G,/ A= / D, AC // DF .求证:AB // DE .20. (9分)已知一次函数y=kx+b的图象经过点A (-3, 0), B (2, 5)两点.正比例函数y=kx的图象经过点B(2,3).(1)求这两个函数的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求三角形AOB的面积.19. (8分)如图,在△ ABC中,AB=AC , D为BC的中点,点E, F分别在AB和AC上,并且AE=AF .求证:DE=DF .C第19题图y i6—5一4一3—2一1-11 II 1 11 1 1 1 1 j 1 i 1-6 -5 -4 -3 -2 -10 1 2 3 4 5 6-1—-2—-3—-4--5—-6-第20题图18(8分)先化简’再求值:&+缶卜总,其中V-21. (7分)如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度.(1)画出将△ ABC向下平移4个单位得到的△ A i B i C i;(2)画出△ ABC关于原点0的中心对称图形厶A2B2C2;(3)画出△ A i B i C i绕着点A i顺时针方向旋转90°后得到的△ A3B3C3. 23. (9分)如图,E、F是口ABCD对角线AC上两点,且AE=CF .(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE丄AC,DF丄AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?22. (8分)某学校要制作一批安全工作的宣传材料.甲公司提出:每份材料收费iO元,另收iOOO元的版面设计费;乙公司提出:每份材料收费20元,不收版面设计费.请你帮助该学校选择制作方案.参考答案2 2当x 二时,原式=3乂亠3 §亠1 、填空题(本大题共6个小题,每小题3分, 满分 18 分) 19. (8 分)1.土 32. 2x(x+2)(x- 2)3. x >24. AB=CD 或 AD //BC 或/ A= / C 或/ B= / D 或/ A+ / B=180 或/ C+ / D=180 等 5. x > 4 6. 2、选择题 (本大题共8个小题,每小题只有一个正确的选项,每小题 4分,满分32分)7. A 8. A 9. C 10. B 11. D 12. C 13.14. A三、解答题 (本大题共 9个小题,满分70分)【证明一】T AB=AC•••/ B = / C (等边对等角) 又••• AE=AF • AB - AE =AC - 即 EB=FC又••• D 为BC 的中点• BD=CDAF 15. ( 7 分) x _y =4 ........... (1 J 2x y =8 ........... ⑵ 解:(1 (2)得 3x=12 得x =4 将x =4代入(1)得y = 0 f x 二 4 所以y=0 16. (7 分)解:方程两边同乘以 x-1 解得x=0经检验x=0是原方程的根 因此原方程的解是x=0得, x-2=2(x-1)••• △ EBD FCD • DE=DF【证明二】连接AD ,•/ AB=AC • / BAD =即/ EAD = 又••• AE=AF , (SAS ) ,D 为 / CAD / FAD 且 AD=ADBC 的中点(等腰三角形三线合一定理) • △ EAD FAD ( SAS )•••DE=DF17. ( 7 分) 证明:••• AC // DF •••/ D= / EGC 20. (9 分)•••一次函数y=kx+b 的图象经过两点 A (-3, 0)、又•••/ A= / D •••/ A= /EGC • AB // DE 「3k b"解得 k = 1• y=x+32k b = 5 b = 318. ( 8 分)【解法一】 丄 2x x T x 2•••正比例函数y=kx 的图象经过点B (2, 5)D第19题图(2, 5)- +竺I1 x2 -1 x -1 x 1 xx x 2 -1 2x x 2 T = ----- » ------- r ------ 由 --x T x x 1 x =x 1 2(x-1) =3x-1 【解法二】 厶仝x_x -1 x 1 x 2 -1 IL x 2-1 x 2 -1x 2 x 2x 2 -2x x 2 -1 3x 2 -x x 2-1 x(3x -1) c --------------------- ------- ------------ ------- -------------2 A 2 Ax x 1 x x 1x 2-15• 2k=5 得 k= —25• y= x2BA “ I |Xi 2y -6 5 4 (2) (3) 函数图像如右图•/ △ AOB 的底边 OA=3,底边OA 上的高为5• △ AOB 的面积=3 X5 吃=7.5x 2 -1 x 2 -1x 2「1 3x -1x-6 -5 - -3-2 -11 2 3 4 5 6 x-5-6 第20题图21. (7 分)解:如图所示:(A i B i C i ((2、A2B2C2 (3)△ A3B3C322. (8分)解:设制作x份材料时,甲公司收费y i元,乙公司收费y2元,则y i=10x+1000 y2=20x由y i= y2,得i0x+i000=20x,解得x=i00由y i>y2,得iox+iooo>20x,解得x v ioo由y i v y2,得iOx+iOOO v 20x,解得x> i00所以,当制作材料为ioo份时,两家公司收费一样,选择哪家都可行;当制作材料超过ioo份时,选择甲公司比较合算;当制作材料少于ioo份时,选择乙公司比较合算 .【证明二】连接BD,交AC于点0•/ ABCD是平行四边形• OA=OC OB=OD (平行四边形的对角线互相平分)又••• AE=CF• OA - AE=OC - CF,即OE=OF•四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE是平行四边形•••ABCD是平行四边形• AB=CD 且AB // CD (平行四边形的对边平行且相等)•/ BAE = / DCF•/ BE丄AC , DF丄AC•/ BEA = / DFC=9o°, BE // DF•△ BAE ◎△ DCF (AAS )• BE=DF•四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)(3)四边形BFDE不是平行四边形因为把条件AE=CF改为BE=DF后,不能证明△ BAE与厶DCF全等。
北师大版2020年-2017学年八年级(下)期末数学试卷及答案
-2017学年八年级(下)期末数学试卷一、选择题1.计算的值为()A.±4 B.±2 C.4 D.22.已知直角三角形的两条直角边的边长为3和4,则它的斜边长C是()A.5 B.C.5或D.1<C<73.下面函数中,是正比例函数的是()A.y=6x B.y=C.y=x2+6x D.y=3x﹣14.下面4个点中,哪个点在直线y=﹣2x+3上()A.(﹣1,1)B.(1,﹣1)C.(2,﹣1)D.(5,13)5.某学习小组8名同学的体重分别是35、50、45、42、36、38、40、42(单位:kg),这组数据的平均数和众数分别为()A.41、42 B.41、41 C.36、42 D.36、416.七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的()A.平均数B.中位数C.极差 D.众数7.用给定长度的绳子围成下面四种几何图形,其面积一定最大的是()A.三角形B.平行四边形C.正方形D.菱形8.如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(2,0),(0.5,1),则点B的坐标是()A.(1,2) B.(0.5,2)C.(2.5,1)D.(2,0.5)9.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的之边长为1,则图中阴影部分的面积为()A.1 B.3 C.4﹣2D.4+210.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B. C.2 D.11.已知是整数,a是正整数,a的最小值是()A.0 B.3 C.6 D.2412.在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1现把这两步操作规定为一种变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(1,1)、(3,1),把三角形经过连续5次这种变换得到三角形△A5B5C5,则点A的对应点A5的坐标是()A.(5,﹣) B.(14,1+)C.(17,﹣1﹣) D.(20,1+)二、填空题13.要使在实数范围内有意义,a应当满足的条件是.14.已知点A(2,a),B(3,b)在函数y=1﹣x的图象上,则a与b的大小关系是.15.如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则直线AB′的函数解析式是.16.判断下列各式是否成立:=2;=3;=4;=5类比上述式子,再写出两个同类的式子、,你能看出其中的规律吗?用字母表示这一规律.三、解答题(共72分)17.填空,化简:(1)=;(2)=;(3)=;(4)=;(5)=;(6)=;(7)=;(8)=.18.计算:(1)(﹣4)﹣(3﹣2);(2)(5+﹣6);(3)()(2﹣);(4)(2﹣3)2.19.如图,在平行四边形ABCD中,BD是对角线,E、F是BD上的两点,DE=BF.求证:四边形AFCE是平行四边形.20.如图,在△ABC中,∠B=30°,∠C=45°,AC=2.求BC边上的高及△ABC的面积.21.某学习兴趣小组参加一次单元测验,成绩统计情况如下表.分数73 74 75 76 77 78 79 82 83 84 86 88 90 92人数1 1 5 4 3 2 3 1 1 1 2 3 1 2(1)该兴趣小组有多少人?(2)兴趣小组本次单元测试成绩的平均数、中位数、众数各是多少?(3)老师打算为兴趣小组下单元考试设定一个新目标,学生达到或超过目标给予奖励,并希望小组三分之一左右的优秀学生得到奖励,请你帮老师从平均数、中位数、众数三个数中选择一个比较恰当的目标数;如果计划让一半左右的人都得到奖励,确定哪个数作为目标恰当些?22.已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.23.A、B两乡分别由大米200吨、300吨.现将这些大米运至C、D两个粮站储存.已知C粮站可储存240吨,D粮站可储存200吨,从A乡运往C、D两处的费用分别为每吨20元和25元,B乡运往C、D两处的费用分别为每吨15元和18元.设A乡运往C粮站大米x吨.A、B两乡运往两个粮站的运费分别为y A、y B元.(1)请填写下表,并求出y A、y B与x的关系式:C站D站总计A乡x吨200吨B乡300吨总计240吨260吨500吨(2)试讨论A、B乡中,哪一个的运费较少;(3)若B乡比较困难,最多只能承受4830元费用,这种情况下,运输方案如何确定才能使总运费最少?最少的费用是多少?24.如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,﹣1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.-2017学年八年级(下)期末数学试卷参考答案与试题解析一、选择题1.计算的值为()A.±4 B.±2 C.4 D.2【考点】算术平方根.【分析】根据算术平方根的定义进行解答.【解答】解:=4.故选C.【点评】本题主要考查算术平方根的定义,关键在于熟练掌握算术平方根的定义.2.已知直角三角形的两条直角边的边长为3和4,则它的斜边长C是()A.5 B.C.5或D.1<C<7【考点】勾股定理.【分析】直接利用勾股定理求斜边长即可.【解答】解:由勾股定理可得:斜边===5,故选A.【点评】本题考查了勾股定理的运用.本题比较简单,解题的关键是熟记勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3.下面函数中,是正比例函数的是()A.y=6x B.y=C.y=x2+6x D.y=3x﹣1【考点】正比例函数的定义.【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可得出答案.【解答】解:根据正比例函数的定义,即可得出A中y=6x是正比例函数,故选A【点评】本题主要考查了正比例函数,关键是根据正比例的定义分析.4.下面4个点中,哪个点在直线y=﹣2x+3上()A.(﹣1,1)B.(1,﹣1)C.(2,﹣1)D.(5,13)【考点】一次函数图象上点的坐标特征.【分析】将A,B,C,D分别代入一次函数解析式y=﹣2x+3,根据图象上点的坐标性质即可得出正确答案.【解答】解:A.将(﹣1,1)代入y=﹣2x+3,x=﹣1时,y=6,此点不在该函数图象上,故此选项错误;B.将(1,﹣1)代入y=﹣2x+3,x=1时,y=1,此点不在该函数图象上,故此选项错误;C.将(2,﹣1)代入y=﹣2x+3,x=2时,y=﹣1,此点在该函数图象上,故此选项正确;D.将(5,13)代入y=﹣2x+3,x=5时,y=﹣7,此点不在该函数图象上,故此选项错误.故选:C【点评】此题主要考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.5.某学习小组8名同学的体重分别是35、50、45、42、36、38、40、42(单位:kg),这组数据的平均数和众数分别为()A.41、42 B.41、41 C.36、42 D.36、41【考点】众数;算术平均数.【分析】根据众数和平均数的概念求解.【解答】解:这组数据中42出现的次数最多,故众数为42,平均数为:=41.故选A.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数.6.七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的()A.平均数B.中位数C.极差 D.众数【考点】统计量的选择.【分析】根据平均数、中位数、极差及众数的意义分别判断后即可确定正确的选项.【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数,一定不会影响到中位数,故选B.【点评】本题考查了统计量的选择,解题的关键是了解平均数、中位数、极差及众数的意义,难度不大.7.用给定长度的绳子围成下面四种几何图形,其面积一定最大的是()A.三角形B.平行四边形C.正方形D.菱形【考点】认识平面图形.【分析】首先根据题意可得所围成的图形的周长相等,然后再根据若周长一定,所围成的图形越接近圆形,其面积就越大,据此解答即可.【解答】解:根据题意得:所围成的图形的周长相等,若周长一定,所围成的图形越接近圆形,其面积就越大,则用同样长的四根绳子分别围成的三角形、平行四边形、正方形、菱形,可得所围成的图形面积最大的是正方形.故选:C.【点评】此题考查了认识平面图形,关键是要明确在平面图形中,若周长一定,所围成的图形越接近圆形,其面积就越大.8.如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(2,0),(0.5,1),则点B的坐标是()A.(1,2) B.(0.5,2)C.(2.5,1)D.(2,0.5)【考点】平行四边形的性质;坐标与图形性质.【分析】延长BC交y轴于点D,由点A的坐标得出OA=2,由平行四边形的性质得出BC=OA=2,由点C的坐标得出OD=1,CD=0.5,求出BD=BC+CD=2.5,即可得出点B的坐标.【解答】解:延长BC交y轴于点D,如图所示:∵点A的坐标为(2,0),∴OA=2,∵四边形OABC是平行四边形,∴BC=OA=2,∵点C的坐标是(0.5,1),∴OD=1,CD=0.5,∴BD=BC+CD=2.5,∴点B的坐标是(2.5,1);故选:C.【点评】本题考查了平行四边形的性质,坐标与图形性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的之边长为1,则图中阴影部分的面积为()A.1 B.3 C.4﹣2D.4+2【考点】勾股定理的证明.【分析】由题意可知阴影部分的面积=大正方形的面积﹣4个小直角三角形的面积,代入数值计算即可.【解答】解:∵直角三角形斜边长为2,最短的之边长为1,∴该直角三角形的另外一条直角边长为,∴S=22﹣4××1×=4﹣2.阴影故选:C.【点评】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.10.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B. C.2 D.【考点】方差;算术平均数.【分析】先由平均数的公式计算出a的值,再根据方差的公式计算.【解答】解:由题意得:(3+a+4+6+7)=5,解得a=5,S2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2.故选C.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.已知是整数,a是正整数,a的最小值是()A.0 B.3 C.6 D.24【考点】二次根式的定义.【分析】因为是整数,且,则6a是完全平方数,满足条件的最小正整数a为6.【解答】解:∵,且是整数,∴是整数,即6a是完全平方数;∴a的最小正整数值为6.故选C.【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.把12分解成平方数与另一个因数相乘的形式是解题的关键.12.在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1现把这两步操作规定为一种变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(1,1)、(3,1),把三角形经过连续5次这种变换得到三角形△A5B5C5,则点A的对应点A5的坐标是()A.(5,﹣) B.(14,1+)C.(17,﹣1﹣) D.(20,1+)【考点】规律型:点的坐标;坐标与图形变化-对称;坐标与图形变化-平移.【分析】首先把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1得到点A1的坐标为(2+3,﹣1﹣),同样得出A2的坐标为(2+3+3,1+),…由此得出A5的坐标为(2+3×5,﹣1﹣),进一步选择答案即可.【解答】解:∵把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1得到点A1的坐标为(2+3,﹣1﹣),同样得出A2的坐标为(2+3+3,1+),…A5的坐标为(2+3×5,﹣1﹣),即(17,﹣1﹣).故选:C.【点评】此题考查点的坐标变化,解答本题的关键是读懂题意,知道一次变化的定义利用对称和平邑的特点,找出规律解决问题.二、填空题13.要使在实数范围内有意义,a应当满足的条件是a≤3.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.【解答】解:∵在实数范围内有意义,∴3﹣a≥0,解得a≤3.故答案为:a≤3.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.14.已知点A(2,a),B(3,b)在函数y=1﹣x的图象上,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】分别把点A(2,a),B(3,b)代入函数y=1﹣x,求出a、b的值,并比较出其大小即可.【解答】解:∵点A(2,a),B(3,b)在函数y=1﹣x的图象上,∴a=﹣1,b=﹣2,∵﹣1>﹣2,∴a>b.故答案为:a>b【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则直线AB′的函数解析式是y=0.5x﹣0.5.【考点】一次函数图象与几何变换.【分析】令x=0,求得点B的坐标,令y=0,求得点A的坐标,由旋转的性质可知:AO′=AO,O′B′=OB,从而可求得点B′的坐标.【解答】解:令x=0得y=2,则OB=2,令y=0得,x=1,则OA=1,由旋转的性质可知:O′A=1,O′B′=2.则点B′(3,1).设直线AB′的函数解析式为y=kx+b,把(1,0)(3,1)代入解析式,可得,解得:,所以解析式为:y=0.5x﹣0.5【点评】本题主要考查的是一次函数与图形的旋转的应用,求得OA、OB的长度是解题的关键.16.判断下列各式是否成立:=2;=3;=4;=5类比上述式子,再写出两个同类的式子、,你能看出其中的规律吗?用字母表示这一规律.【考点】二次根式的性质与化简.【专题】规律型.【分析】类比上述式子,即可两个同类的式子,然后根据已知的几个式子即可用含n的式子将规律表示出来.【解答】解:,,用字母表示这一规律为:,故答案为:,.【点评】本题主要考查了二次根式的性质与化简,根据式子的特点得到规律,是一个难度适中的题目.三、解答题(共72分)17.填空,化简:(1)=2;(2)=2;(3)=5;(4)=4;(5)=10;(6)=;(7)=18;(8)=5.【考点】二次根式的性质与化简;二次根式的乘除法.【分析】根据二次根式的性质化简,即可解答.【解答】解:(1)=2;(2)=2;(3)=5;(4)=4;(5)=10;(6)=;(7)=18;(8)=5.【点评】本题考查了二次根式的性质与化简,解决本题的关键是熟记二次根式的性质.18.计算:(1)(﹣4)﹣(3﹣2);(2)(5+﹣6);(3)()(2﹣);(4)(2﹣3)2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先进行二次根式的除法运算,然后化简后合并即可;(3)先把后面括号内提,然后利用平方差公式计算;(4)利用完全平方公式计算.【解答】解:(1)原式=4﹣﹣+=3;(2)原式=5+﹣6=20+2﹣6×=22﹣2;(3)原式=(+1)×(﹣1)=×(2﹣1)=;(4)原式=12﹣12+18=30﹣12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.如图,在平行四边形ABCD中,BD是对角线,E、F是BD上的两点,DE=BF.求证:四边形AFCE是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】连接AC,交BD于点O,由平行四边形的性质得出OA=OC,OB=OD,证出OE=OF,即可得出结论.【解答】证明:连接AC,交BD于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵DE=BF,∴OE=OF,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.20.如图,在△ABC中,∠B=30°,∠C=45°,AC=2.求BC边上的高及△ABC的面积.【考点】勾股定理.【分析】先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=2得出AD及CD 的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.【解答】解:∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵AC=2,∴2AD2=AC2,即2AD2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD===2,∴BC=BD+CD=2+2,∴S△ABC=BC•AD=(2+2)×2=2+2.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21.某学习兴趣小组参加一次单元测验,成绩统计情况如下表.分数73 74 75 76 77 78 79 82 83 84 86 88 90 92人数1 1 5 4 3 2 3 1 1 1 2 3 1 2(1)该兴趣小组有多少人?(2)兴趣小组本次单元测试成绩的平均数、中位数、众数各是多少?(3)老师打算为兴趣小组下单元考试设定一个新目标,学生达到或超过目标给予奖励,并希望小组三分之一左右的优秀学生得到奖励,请你帮老师从平均数、中位数、众数三个数中选择一个比较恰当的目标数;如果计划让一半左右的人都得到奖励,确定哪个数作为目标恰当些?【考点】众数;加权平均数;中位数.【分析】(1)将各分数人数相加即可;(2)根据平均数、中位数、众数的定义求解即可;(3)根据(2)中数据即可得出;如果计划让一半左右的人都得到奖励,确定中位数作为目标恰当些,因为中位数以上的人数占总人数的一半左右.【解答】解:(1)该兴趣小组人数为:1+1+5+4+3+2+3+1+1+1+2+3+1+2=30;(2)本次单元测试成绩的平均数为:(73+74+75×5+76×4+77×3+78×2+79×3+82+83+84+86×2+88×3+90+92×2)=80.3(分),表格中数据已经按照从小到大的顺序排列,一共有30个数,位于第15、第16的数都是78,所以中位数是(78+78)÷2=78(分),75出现了5次,次数最多,所以众数是75分;(3)由(2)可知,平均数为80.3分,中位数为78分,众数为75分,如果希望小组三分之一左右的优秀学生得到奖励,老师可以选择平均数;如果计划让一半左右的人都得到奖励,确定中位数作为目标恰当些,因为中位数以上的人数占总人数的一半左右.【点评】本题考查了平均数、中位数、众数的定义,平均数是所有数据的和除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中出现次数最多的数据叫做众数.22.已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.【考点】一次函数的性质.【分析】(1)根据题意画出图形,由x+y=5可知y=5﹣x,再由三角形的面积公式即可得出结论;(2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;(3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.【解答】解:(1)如图所示,∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵点P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).【点评】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.23.A、B两乡分别由大米200吨、300吨.现将这些大米运至C、D两个粮站储存.已知C粮站可储存240吨,D粮站可储存200吨,从A乡运往C、D两处的费用分别为每吨20元和25元,B乡运往C、D两处的费用分别为每吨15元和18元.设A乡运往C粮站大米x吨.A、B两乡运往两个粮站的运费分别为y A、y B元.(1)请填写下表,并求出y A、y B与x的关系式:C站D站总计A乡x吨200吨B乡300吨总计240吨260吨500吨(2)试讨论A、B乡中,哪一个的运费较少;(3)若B乡比较困难,最多只能承受4830元费用,这种情况下,运输方案如何确定才能使总运费最少?最少的费用是多少?【考点】一次函数的应用.【分析】(1)结合已知完善表格,再根据运费=运输单价×数量,得出y A、y B与x的关系式;(2)令y A=y B,找出二者运费相等的x,以此为界分成三种情况;(3)由B乡运费最多为4830元,找出x的取值范围,再根据y A+y B的单调性,即可得知当x取什么值时,总运费最低.【解答】解:(1)根据已知补充表格如下:C站D站总计A乡x吨200﹣x吨200吨B乡240﹣x吨x+60吨300吨总计240吨260吨500吨A乡运往两个粮站的运费y A=20x+25×(200﹣x)=﹣5x+5000(0≤x≤200);B乡运往两个粮站的运费y B=15×(240﹣x)+18×(x+60)=3x+4680(0≤x≤200).(2)令y A=y B,即﹣5x+5000=3x+4680,解得:x=40.故当x<40时,B乡运费少;当x=40时,A、B两乡运费一样多;当x>40时,A乡运费少.(3)令y B≤4830,即3x+4680≤4830,解得:x≤50.总运费y=y A+y B=﹣5x+5000+3x+4680=﹣2x+9680,∵﹣2<0,∴y=﹣2x+9680单调递减.故当x=50时,总运费最低,最低费用为9580元.【点评】本题考查了一次函数的单调性以及解一元一次不等式,解题的关键是:(1)由运费=运输单价×数量结合表格得出结论;(2)令y A=y B得出x,在分类探讨;(3)由一元一次不等式找出x 的取值范围,再根据单调性求最值.本题属于基础题,难度不大,做该类型题目时,要明确条件中的数量关系,找准关系式.24.如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,﹣1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.【考点】一次函数综合题.【分析】(1)根据折叠的性质可得AG=GH,设AG的长度为x,在Rt△HGB中,利用勾股定理求出x的值;(2)作点A关于直线y=﹣1的对称点A',连接CA'与y=﹣1交于一点,这个就是所求的点,求出此时AM+CM的值;(3)求出G、H的坐标,然后设出解析式,代入求解即可得出解析式.【解答】解:(1)由折叠的性质可得,AG=GH,AD=DH,GH⊥BD,∵AB=4,BC=3,∴BD==5,设AG的长度为x,∴BG=4﹣x,HB=5﹣3=2,在Rt△BHG中,GH2+HB2=BG2,x2+4=(4﹣x)2,解得:x=1.5,即AG的长度为1.5;(2)如图所示:作点A关于直线y=﹣1的对称点A',连接CA'与y=﹣1交于M点,∵点B(5,1),∴A(1,1),C(5,4),A'(1,﹣3),AM+CM=A'C==,即AM+CM的最小值为;(3)∵点A(1,1),∴G(2.5,1),过点H作HE⊥AD于点E,HF⊥AB于点F,如图所示,∴△AEH∽△DAB,△HFB∽△DAB,∴=,=,即=,=,解得:EH=,HF=,则点H(,),设GH所在直线的解析式为y=kx+b,则,解得:,则解析式为:y=x﹣.【点评】本题考查了一次函数的综合应用,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质以及利用待定系数法求函数解析式等知识,知识点较多,难度较大,解答本题的关键是掌握数形结合的思想.。
北师大版2016-2017学年八年级数学(下册)期末测试卷及答案
2016-2017学年八年级(下)期末数学试卷一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b23.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=04.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.85.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.427.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.28.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=39.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4C.4 D.8二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2=.12.函数的自变量x的取值范围是.13.若=,则=.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m=.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.17.先化简,再求值已知:,求的值.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)=.22.若关于x的分式方程﹣1=无解,则m的值.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第象限.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC=.25.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF 同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.参考答案与试题解析一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式=(a+)2,不合题意;B、原式=(a﹣b)2,不合题意;C、原式=(5b+a)(5b﹣a),不合题意;D、原式不能分解,符合题意.故选D.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.3.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式值为零的条件是分式的分子等于0,分母不等于0.【解答】解:∵分式的值为0,∴|x|﹣1=0,x+1≠0.∴x=±1,且x≠﹣1.∴x=1.故选:B.【点评】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于0,分母不等于0是解题的关键.4.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【解答】解:根据题意,得:(n﹣2)×180=360×3,解得n=8.故选D.【点评】解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.5.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.42【考点】规律型:图形的变化类.【分析】仔细观察发现第n个图案中,黑色正三角形的个数分别是4n.【解答】解:第1个图案中,黑色正三角形的个数分别是4;第2个图案中,黑色正三角形的个数分别是2×4=8;第3个图案中,黑色正三角形的个数分别是3×4=12;…第n个图案中,黑色正三角形的个数分别是4n.故当n=10时,4n=4×10=40.故选C.【点评】本题考查了图形的变化类问题,找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.7.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=3【考点】一元二次方程的解.【专题】压轴题.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解.把x=0代入方程式即可解.【解答】解:关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,把x=0代入得到m2﹣2m﹣3=0,解得m=3或﹣1,因为m+1≠0,则m≠﹣1,因而m=3.故本题选D.【点评】本题主要考查了方程的根的定义,就是能使方程左右两边相等的未知数的值,本题特别要注意一元二次方程的二次项系数不等于0.9.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对【考点】相似三角形的判定.【分析】已知平行四边形的对边平行,平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似.【解答】解:∵AD∥BC∴△ADG∽△ECG,△ADG∽△EBA,△ABC∽△CDA,△EGC∽△EAB;所以共有四对故选C.【点评】本题考虑平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似,注意要找全,不可漏掉任何一个.10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4C.4 D.8【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2=.【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而分解因式,将已知代入求出即可.【解答】解:∵2x﹣y=,xy=2,∴2x2y﹣xy2=xy(2x﹣y)=2×=.故答案为:.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.函数的自变量x的取值范围是x>2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.若=,则=.【考点】比例的性质.【分析】根据比例的性质,即可解答.【解答】解:∵,∴7m=11n,∴,故答案为:.【点评】本题考查了比例的性质,解决本题的关键是熟记比例的性质.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m=±4.【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,求出m的值即可.【解答】解:∵关于x的方程x2﹣mx+4=0有两个相等实根,∴△=(﹣m)2﹣4×4=0,解得m=±4.故答案为:±4.【点评】本题考查的是根的判别式,根据题意得出关于m的方程是解答此题的关键.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为81.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】压轴题.【分析】作PE⊥AD与E,过点P作FG⊥CD于G,交AB于F,根据已知条件以及正方形ABCD 的性质,易证明四边形AEPF是正方形,则其边长是2,易证得△PQG≌△BPF,则QG=PF=2,则大正方形的边长是9,进而可得其面积.【解答】解:作PE⊥AD与E,过点P作PF⊥AB于F,延长FP交CD于G,∵正方形ABCD,∴∠DAC=∠BAC=45°,∠DAB=90°=∠PEA=∠PFA,∴PE=PF,∴四边形AEPF是正方形,∴AE=PE=PF=AF,∵AP=2,由勾股定理得:AE2+PE2=,∴AE=PE=PF=AF=2,∴PG=BF,且∠PFB=∠PGQ=90°;∵∠FBP+∠FPB=90°,∴∠FBP=∠GPQ,在△PQG和△BPF中,∴△PQG≌△BPF,则QG=PF=2,∴AB=BC=CD=2+2+5=9,则大正方形的边长是9,即面积是81;故答案为81.【点评】此题主要是通过作辅助线构造正方形和全等三角形,然后求得大正方形的边长.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.【考点】解一元一次不等式组;因式分解-提公因式法;解一元二次方程-公式法;一元一次不等式组的整数解.【分析】(1)利用提公因式法分解,然后利用公式法即可分解;(2)利用求根公式即可求解;(3)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:(1)原式=4a(a﹣1)2+(a﹣1)=(a﹣1)【4a(a﹣1)+1】=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2;(2)∵a=2,b=4,c=﹣1,b2﹣4ac=16+8=24>0,∴x=,则x1=,x2=;(3),解①得x<,解②得:x≥﹣5.则不等式组的解集是﹣5≤x<.则整数解是:﹣5,﹣4,﹣3,﹣2,﹣1,0,1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.17.先化简,再求值已知:,求的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再=,设x=2k,y=3k(k≠0),再代入进行计算即可.【解答】解:原式=[﹣]×=×==;解法一:∵=,不妨设x=2k,y=3k(k≠0),∴原式==;解法二:=∵=,∴原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.【考点】作图-旋转变换;平行四边形的性质.【专题】作图题.【分析】(1)根据关于原点对称的点的坐标特征,画出点A、B、C的对应点A′、B′、C′,即可得到△A′B′C′;(2)利用网格特点,根据旋转的性质画出点A、B、C旋转后的对应点A″,B″、C″,即可得到△A″B″C″;(3)分类讨论:分别以AB、BC和AC为对角线作出平行四边形,然后写出第四个顶点D的坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所作,点B的对应点B″的坐标的坐标为(0,﹣6);(3)如图,四边形ABCD′、四边形ADBC和四边形ABD″C为所作,第四个顶点D的坐标为(3,3)或(﹣7,3)或(﹣5,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的性质.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.【考点】菱形的性质.【专题】计算题.【分析】(1)菱形的四边相等,周长是20,则边长为5;根据菱形对角线互相垂直平分,可得OC= AC,OD=3.运用勾股定理求出OC便可求出AC.(2)利用等积法求解:S△ABD=AB•DE=BD•OA.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=.∵BD=6,∴OD=3.在Rt△DOC中==4.∴AC=2OC=8.(2)∵S△ABD=AB•DE=BD•OA,∴5•DE=6×4∴DE=.【点评】此题考查了菱形的性质:对角线互相垂直平分;四边相等.问题(2)亦可运用菱形面积的两种表达式求解.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.【考点】菱形的判定;矩形的判定.【分析】(1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得OE=OC,同理可证OC=OF,则可证得OE=OF=OC;(2)根据平行四边形的判定以及矩形的判定得出即可.(3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直,进而分析求出即可.【解答】(1)证明:∵CE是∠ACB的平分线,∴∠1=∠2,∵MN∥BC,∴∠1=∠3,∴∠2=∠3,∴OE=OC,同理可证OC=OF,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,∴平行四边形AECF是矩形.(3)解:不可能.理由如下:如图,连接BF,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△DFC中,不可能存在两个角为90°,所以不存在其为菱形.【点评】本题考查了平行线的性质,角平分线的定义,等腰三角形的判定,正方形、菱形的判定,难度适中,注意掌握数形结合思想的应用.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)=15.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a变形后求出a+=3,两边平方求出a2+的值,原式第一个因式利用平方差公式化简,变形后将各自的值代入计算即可求出值.【解答】解:∵a2﹣3a+1=0,∴a+=3,两边平方得:(a+)2=a2++2=9,即a2+=7,则原式=(a+)(a﹣)2=3(a2+﹣2)=15.故答案为:15.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得m的值.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.【点评】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第三象限.【考点】一次函数与一元一次不等式.【分析】根据关于x的一元一次不等式组有解即可得到b的范围,即可判断直线经过的象限.【解答】解:根据题意得:b+2<3b﹣2,解得:b>2.当b>2时,直线经过第一、二、四象限,不过第三象限.故填:三.【点评】根据不等式组的解集的确定方法首先确定b的范围是解决本题的关键.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC=.【考点】相似三角形的判定与性质;梯形.【分析】在梯形ABCD中,由于AD∥BC,于是得到△ADO∽△BCO,求出,即可得到结论.【解答】解:在梯形ABCD中,∵AD ∥BC ,∴△ADO ∽△BCO ,∴,∴,∴==,故答案为:【点评】本题考查了梯形的性质,相似三角形的判定和性质,知道等高三角形的面积的比等于底的比是解题的关键.25.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 ﹣1 .【考点】菱形的性质;翻折变换(折叠问题).【分析】根据题意,在N 的运动过程中A ′在以M 为圆心、AD 为直径的圆上的弧AD 上运动,当A ′C取最小值时,由两点之间线段最短知此时M 、A ′、C 三点共线,得出A ′的位置,进而利用锐角三角函数关系求出A ′C 的长即可.【解答】解:如图所示:∵MA ′是定值,A ′C 长度取最小值时,即A ′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM ×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.【考点】根与系数的关系;根的判别式;勾股定理;矩形的性质.【分析】(1)根据一元二次方程根的判别式,方程有两个实数根,则判别式△≥0,得出关于k的不等式,求出k的取值范围.(2)根据勾股定理和根与系数的关系得出关于k的方程,求出k的值并检验.【解答】解:(1)设方程的两根为x1,x2则△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵方程有两个实数根,∴△≥0,即2k﹣3≥0,∴k≥∴当k≥,方程有两个实数根.(2)由题意得:,又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,(k+1)2﹣2(k2+1)=5,整理得k2+4k﹣12=0,解得k=2或k=﹣6(舍去),∴k的值为2.【点评】解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?【考点】分式方程的应用.【分析】(1)本题可根据两车的辆数的数量关系来列方程.等量关系为:装270台需A型车的数量=装300台需B型车的数量+1.由此可得出方程求出未知数.(2)可先根据(1)求出单独用两种车分别要多少费用,然后让同时用两种车时花的费用小于单独用一种车的最少的费用.得出车的数量的取值范围,然后判断出有几种运输方案,然后根据运输方案求出运费.【解答】解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.依题意得:=+1.解得:x=45,x=﹣90(舍去).经检验:x=45是原方程的解.则x+15=60.答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.(2)由(1)知.若单独用A型汽车运送,需6辆,运费为2100元;若单独用B型汽车运送,需车5辆,运费为2000元.若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.解得:y<.因汽车辆数为正整数.∴y=1或2.当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.当y=2时,y+1=3.则45×2+60×3=270.符合题意.此时运费为350×2+400×3=1900元.答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元【点评】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程或不等式,再求解.28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF 同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.【考点】相似三角形的判定与性质;根的判别式.【专题】综合题;分类讨论.【分析】(1)由于EF∥x轴,则S△PEF=EF•OE.t=15时,OE=15,关键是求EF.易证△BEF∽△BOA,则,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于160,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【解答】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴当t=15时,OE=BE=15,OA=40,OB=30,∴∴S△PEF=EF•OE=(平方单位)(2)∵△BEF∽△BOA,∴∴整理,得t2﹣30t+240=0∵△=302﹣4×1×240=﹣60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于160(平方单位)的t值(3)当∠EPO=∠BAO时,△EOP∽△BOA∴,即解得,t=12当∠EPO=∠ABO时,△EOP∽△AOB∴,即解得,∴当t=12或时,△EOP∽△BOA【点评】本题主要考查了相似三角形的判定和性质,一元二次方程根的判别式等知识点,要注意最后一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.。
2017-2018学年八年级数学下学期期末试卷(北师大版)word版含解析
2017-2018学年八年级数学下学期期末试卷一、选择题(共6小题,每小题3分,满分18分。
每小题只有一个正确选项)1.不等式2x﹣1>3的解集为()A.x<2 B.x>1 C.x<1 D.x>22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.3.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=94.如图所示,在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm5.如图,已知在平行四边形ABCD中,AE⊥BC交于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°6.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3二、填空题(共6小题,每小题3分,满分18分)7.如果分式有意义,那么x的取值范围是______.8.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=______.9.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.(如图1)小芸的作法如下:如图2(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C,D两点.(2)作直线CD老师说:“小芸的作法正确.”请回答:小芸的作图依据是______.10.分解因式(a﹣b)(a﹣4b)+ab的结果是______.11.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为______.12.在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为______.三、解答题(共5小题,每小题6分,满分30分)13.解不等式组,并写出它的所有整数解.请结合题意填空,完成本题的解答.(1)解不等式①,得______.(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为______.(5)则不等式组的所有整数解为:______.14.如图,在△ABC中,AB=AC,AD是BC上边的中线,BE⊥AC于点E,求证:∠CBE=∠BAD.15.先化简:(﹣1)÷,再选择一个恰当的x值代入求值.16.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.17.已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.求证:DE⊥BE.四、解答题(共4小题,每小题8分,满分32分)18.为解决“最后一公里”的交通接驳问题,某市投放了大量公租自行车使用,到2014年底,全市已有公租自行车25000辆,租赁点600个,预计到2016年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2014年底平均每个租赁点的公租自行车数量的1.2倍,预计到2016年底,全市将有租赁点多少个?19.如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).20.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)21.小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?五、解答题(共1小题,满分10分)22.(10分)(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.六、解答题(共1小题,满分12分)23.(12分)(2015•重庆)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).2017-2018学年八年级数学下学期期末试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分。
2017-2018学年八年级(下)期末数学试卷北师大版
2017-2018学年八年级(下)期末数学试卷一、用心选一选(本题有10个小题,每小题3分,共30分.)1.使式子有意义的条件是()A.x≥4 B.x=4 C.x≤4 D.x≠42.已知一次函数y=2x+b,其中b<0,它的函数图象可能是()3.直角三角形的两直角边长分别为6和8,则斜边上的中线长是()A.10 B.2.5 C.5 D.84.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.105.如图,在菱形ABCD中,AC与BD相交于点O,AC=6,BD=8,则菱形边长AB等于()A.10 B.C.5 D.66.“古诗•送郎从军:送郎一路雨飞池,十里江亭折柳枝;离人远影疾行去,归来梦醒度相思.”中,如果用纵轴y表示从军者与送别者行进中离原地的距离,用横轴x表示送别进行的时间,从军者的图象为O→A→B→C,送别者的图象为O→A→B→D,那么下面的图象与上述诗的含义大致吻合的是()7.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是()A.极差是7 B.众数是8 C.中位数是8.5 D.平均数是98.关于一次函数y=x﹣1,下列说法:①图象与y轴的交点坐标是(0,﹣1);②y随x 的增大而增大;③图象经过第一、二、三象限;④直线y=x﹣1可以看作由直线y=x向右平移1个单位得到.其中正确的有()A.1个 B.2个 C.3个 D.4个9.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.10.如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形A n B n C n D n的面积是.A.①②B.②③C.②③④D.①②③④二、耐心填一填(本题有6个小题,每小题4分,共24分,)11.若最简二次根式与是同类二次根式,则a=.12.若3,4,a和5,b,13是两组勾股数,则a+b的值是.13.在矩形ABCD中,AB=6cm,BC=8cm,则点A到对角线BD的距离为.14.已知关于x的方程ax﹣5=7的解为x=1,则一次函数y=ax﹣12与x轴交点的坐标为.15.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.16.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AC的中点,若AB=6,则DE的长为.三、细心答一答(本题有3小题,每小题6分,共18分.)17.计算:6﹣5﹣+3.18.已知一次函数y=kx+b的图象经过点(﹣1,﹣5)和(2,1),求一次函数的解析式.19.如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?四、细心答一答(本题有3小题,每小题7分,共21分.)20.(7分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.21.(7分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.22.(7分)已知求代数式:x=2+,y=2﹣.(1)求代数式x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?五、细心答一答(本题有3小题,每小题9分,共27分.)23.(9分)某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:设种植A种树苗x棵,承包商获得的利润为y元.(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?24.(9分)如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.25.(9分)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.参考答案一、用心选一选(本题有10个小题,每小题3分,共30分.)1-5:AACAC6-10:CBCBC二、耐心填一填(本题有6个小题,每小题4分,共24分,)11.4.12.17.13.4.8cm.14.(1,0).15.a<c<b.16.3.三、细心答一答(本题有3小题,每小题6分,共18分.)17.解:原式=(6﹣5)+(﹣1+3)=+2.18.解:∵一次函数y=kx+b经过点(﹣1,﹣5)和(2,1),∴,解得:,∴这个一次函数的解析式为y=2x﹣3.19.解:如图所示:由题意可得,AB=5m,AC=13m,在Rt△ABC中,BC==12(m),答:这条缆绳在地面的固定点距离电线杆底部12m.四、细心答一答(本题有3小题,每小题7分,共21分.)20.解:结论:BE∥DF,BE=DF.理由:连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF.∴EO=FO.∴四边形BEDF是平行四边形.∴BE∥DF,BE=DF.21.解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲校20名同学的成绩比较整齐.22.解:(1)∵x=2+,y=2﹣.∴x+y=4,xy=2,∴x2+3xy+y2=(x+y)2+xy=16+2=18.(2)菱形的面积=×(2+)(2﹣)=1.五、解:(1)由题意可得,y=150000﹣28x﹣40(3000﹣x)=30000+12x,即y与x之间的函数关系式是y=12x+30000;(2)由题意可得,90%x+95%(3000﹣x)≥3000×93%,解得,x≤1200,∵y=12x+30000,∴当x=1200时,y取得最大值,此时y=44400,即承包商购买A种树苗1200棵,B种树苗1800棵时,能获得最大利润,最大利润是44400元.24.解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8 AB=10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴M的坐标为:(0,3),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=﹣x+3.25.解:(1)∵MN∥BC,∴∠3=∠2,又∵CF平分∠GCO,∴∠1=∠2,∴∠1=∠3,∴FO=CO,同理:EO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,由(1)可知,FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,∴∠AOE=∠ACB∵∠ACB=90°,∴∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.。
2017-2018学年北师大版八年级下期末测评数学试卷含精品解析
期末测评(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C )2.将下列多项式因式分解,结果中不含因式x-1的是(D )A.x 2-1B.x (x-2)+(2-x )C.x 2-2x+1D.x 2+2x+13.(2017·山东泰安中考)如图,在正方形网格中,线段A'B'是线段AB 绕某点逆时针旋转角α得到的,点A'与A 对应,则角α的大小为(C )A.30°B.60°C.90°D.120°4.对分式,当x=-m 时,下列说法正确的是(C )x +m2x -3A.分式的值等于0B.分式有意义C.当m ≠-时,分式的值等于032D.当m=时,分式没有意义325.下列说法不一定成立的是(C )A.若a>b ,则a+c>b+cB.若a+c>b+c ,则a>bC.若a>b ,则ac 2>bc 2D.若ac 2>bc 2,则a>b6.如图所示,在直角△ABC 中,∠BAC=90°,AB=8,AC=6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为(A )A.16B.15C.14D.137.(2017·江苏苏州中考)如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为(B )A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF 的两条对角线ME ,NF 交于原点O ,点F 的坐标是(3,2),则点N 的坐标为(A )A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组的整数解有三个,则a 的取值范围是(A ){x >a ,x <3A.-1≤a<0B.-1<a ≤0C.-1≤a ≤0D.-1<a<010.导学号99804153如图所示,在▱ABCD 中,分别以AB ,AD 为边向外作等边△ABE ,△ADF ,延长CB 交AE 于点G ,点G 在点A ,E 之间,连接CG ,CF ,则下列结论不一定正确的是(C )A.△CDF ≌△EBCB.∠CDF=∠EAFC.CG ⊥AED.△ECF 是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a 3b+2a 2b 2+ab 3的值为18 .12.如图所示,在△ABC 中,点D ,E ,F 分别是AB ,BC ,AC 的中点,若平移△ADF ,则图中能与它重合的三角形是△DBE (或△FEC ) (写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA.若PC=4,则PD 的长是2 .14.若关于x 的分式方程=1的解为正数,那么字母a 的取值范围是a>1且a ≠2 .2x -ax -115.一次函数y=kx+b (k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的不等式kx+b>0的解集为x>-1 .(第15题图)(第16题图)16.如图所示,已知AB=10,点C ,D 在线段AB 上且AC=DB=2;P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是3 .三、解答题(共52分)17.(5分)(2017·天津中考)解不等式组:{x +1≥2, ①5x ≤4x +3. ②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ; (3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .x ≥1 (2)x ≤3(3)如图所示.(4)1≤x ≤318.(5分)先化简,再求值:,(x 2-yx -x -1)÷x 2-y 2x 2-2xy +y 2其中x=,y=.26(x 2-y x -x -1)÷x 2-y 2x 2-2xy +y 2=(x 2-y x -x 2x -xx )×(x -y )2(x +y )(x -y )==-.-(x +y )x×x -y x +y x -y x 当x=,y=时,原式=-=-1+.262-62319.导学号99804154(6分)如图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'位置,点B 和点C 重合.求证:四边形ACE'E 是平行四边形.DE 是△ABC 的中位线,∴DE ∥AC ,DE=AC.12∵将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E'位置,∴DE=DE',∴EE'=2DE=AC ,∴四边形ACE'E 是平行四边形.20.导学号99804155(6分)(2017·江苏南京中考)如图,在▱ABCD 中,点E ,F 分别在AD ,BC 上,且AE=CF ,EF ,BD 相交于点O ,求证:OE=OF.,连接BE ,DF.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC.∵AE=CF ,∴AD-AE=BC-CF.∴DE=BF ,∴四边形BEDF 是平行四边形.∴OF=OE.BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.导学号99804157(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF ,求证:AE=AD.∵△ABC 是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB ,∴EF ∥DC.∵EF=DC ,∴四边形EFCD 是平行四边形.(2)连接BE.∵BE=EF ,∠EFB=60°,∴△EBF 是等边三角形,∴EB=EF ,∠EBF=60°.∵DC=EF ,∴EB=DC.∵△ABC 是等边三角形,∴∠ACB=60°,AB=AC ,∴∠EBF=∠ACB ,∴△AEB ≌△ADC ,∴AE=AD.24.导学号99804158(9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?设甲工程队每天修路x 千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×,15x =15x -0.5解得x=1.5.经检验x=1.5是原方程的解,且x-0.5=1.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。
北师版数学八下期末试卷及答案
2017-2018学年八年级(下)期末数学试卷(含答案)一、选择题(每题3分,共30分)1.下面的图形是天气预报中的图标,其中既是轴对称又是中心对称图形的是()A.B.C.D.霾大雪拂尘大雨2.下列式子中:,,﹣,,,是分式的有()个.A.5 B.4 C.3 D.23.若a>b,则下列式子中一定成立的是()A.a﹣2<b﹣2 B.>C.2a>b D.3﹣a>3﹣b4.下列从左到右的变形属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1 B.a2﹣ab=a(a﹣b)C.x2﹣1=x(x﹣)D.(x+2)(x﹣2)=x2﹣4 5.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠BOE=()A.30°B.45°C.60°D.75°第5题第8题6.下列命题:①两组对边分别相等的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③一组对边相等,一组对角相等的四边形是平行四边形;④一组对边平行,另一组对边相等的四边形是平行四边形,其中正确的是()A.①②B.①②③C.①②④D.①②③④7.若关于x的分式方程的解为x=5,则m的值是()A.1 B.3 C.6 D.98.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣19.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.乙骑自行车的速度是()米/分.A.600 B.400 C.300 D.15010.如图,在菱形ABCD中,∠A=60°,AD=16,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A′E′F′.设P、P′分别是EF、E′F′的中点,当点A′与点B重合时,四边形PP′CD的面积为()A.56B.64C.112D.64﹣8二、填空题(每题3分,共18分)11.若分式的值为0,则x=.12.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B=.第12题第14题第16题13.水果店进了某种水果1000千克,进价7元/千克,出售价为11元/千克.销去一半后为尽快销完,准备打折出售.如果要使总利润不低于3450元,那么余下水果可按原价打折出售.14.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是.15.已知关于x的不等式组的整数解共有6个,则a的取值范围是.16.如图,E,F分别是正方形ABCD的边AB,AD上的点,且AE=AF,△AEF的面积为2,△ECF的面积为8,则BF的长为.三、解答题(共52分)17.(8分)分解因式:(1)﹣2x2+2x﹣(2)12a2(x﹣y)+27b2(y﹣x)18.(8分)解分式方程和一元一次不等式组(并把不等式组的解集在数轴上表示出来)(1)﹣1.(2).19.(6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.20.(6分)已知:如图a,线段,∠MAN求作:△ABC,使得∠A=∠MAN,AB=AC,且BC边上的高AD=a.(要求:运用尺规作图,保留作图痕迹,不写作法,直接在∠MAN上作图不需另行作角)作图:21.(6分)如图,在平行四边形纸片ABCD中,AB=3cm,将纸片沿对角线AC对折,BC边的对应边B′C 与AD边交于点E,此时△CDE恰为等边三角形中,求:(1)AD的长度.(2)重叠部分的面积.22.(8分)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值.(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?23.(10分)如图(1),已知正方形ABCD,△AEF是正方形ABCD的内接正三角形.(1)求证:BE=DF.(2)请你找出S△ABE ,S△ADF,S△CEF之间的数量关系,并说明理由.(3)若将(1)(2)问中的正方形改为矩形,如图(2),其余条件不变,(2)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.参考答案与试题解析一、选择题(每题3分,共30分)1.A.2.C.3.B.4.B.5.D.6.A.7.B.8.D.9.C.10.C.二、填空题(每题3分,共18分)11.(3分)若分式的值为0,则x=1.12.(3分)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B=77°.13.(3分)水果店进了某种水果1000千克,进价7元/千克,出售价为11元/千克.销去一半后为尽快销完,准备打折出售.如果要使总利润不低于3450元,那么余下水果可按原价打9折出售.14.(3分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是16.15.(3分)已知关于x的不等式组的整数解共有6个,则a的取值范围是﹣6≤a<﹣5.16.(3分)如图,E,F分别是正方形ABCD的边AB,AD上的点,且AE=AF,△AEF的面积为2,△ECF的面积为8,则BF的长为.三、解答题(共52分)17.(8分)分解因式:(1)﹣2x2+2x﹣(2)12a2(x﹣y)+27b2(y﹣x)解:(1)﹣2x2+2x﹣=﹣2(x2﹣x+)=﹣2(x﹣)2;(2)12a2(x﹣y)+27b2(y﹣x)=3(x﹣y)(4a2﹣9b2)=3(x﹣y)(2a+3b)(2a﹣3b).18.(8分)解分式方程和一元一次不等式组(并把不等式组的解集在数轴上表示出来)(1)﹣1.(2).解:(1)两边都乘x(x﹣2),得﹣6﹣x2=﹣3x﹣x(x﹣2),解得x=6,经检验:x=6是原分式方程的解;(2)由1﹣2(x﹣1)≤5,解得x≥﹣1;由<x+解得x<3,不等式组的解集在数轴上表示如图,不等式组的解集为﹣1≤x<3.19.(6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.解;原式=[]•==,当x=时,原式===220.(6分)已知:如图a,线段,∠MAN求作:△ABC,使得∠A=∠MAN,AB=AC,且BC边上的高AD=a.(要求:运用尺规作图,保留作图痕迹,不写作法,直接在∠MAN上作图不需另行作角)作图:解:如图所示,△ABC即为所求21.(6分)如图,在平行四边形纸片ABCD中,AB=3cm,将纸片沿对角线AC对折,BC边的对应边B′C 与AD边交于点E,此时△CDE恰为等边三角形中,求:(1)AD的长度.(2)重叠部分的面积.解:(1)∵△CDE为等边三角形,∴DE=DC=EC ,∠D=60°,根据折叠的性质,∠BCA=∠B′CA ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC=6cm ,AB=CD ,∴∠EAC=∠BCA ,∴∠EAC=∠ECA ,∴EA=EC ,∴∠DAC=30°,∴∠ACD=90°,∴AD=2CD=6cm ;(2)∵CD=3cm ,∠ACD=90°,∠DAC=30°,∴AC=3cm ,∴S △ACE =×AC ×CD=cm 2. 22.(8分)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a 的值.(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?解:(1)根据题意得:=,解得:a=150,经检验,a 是原分式方程的解.答:表中a 的值为150.(2)设购进餐桌x 张,则购进餐椅(5x +20)张,根据题意得:x +5x +20≤200,解得:x≤30.设销售利润为y元,根据题意得:y=[500﹣150﹣4×(150﹣110)]×x+(270﹣150)×x+[70﹣(150﹣110)]×(5x+20﹣4×x)=245x+600.∵k=245>0,∴当x=30时,y取最大值,最大值为7950.答:当购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.23.(10分)如图(1),已知正方形ABCD,△AEF是正方形ABCD的内接正三角形.(1)求证:BE=DF.(2)请你找出S△ABE ,S△ADF,S△CEF之间的数量关系,并说明理由.(3)若将(1)(2)问中的正方形改为矩形,如图(2),其余条件不变,(2)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠D,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵,∴△ABE≌△ADF(HL),∴BE=DF;(2)S△CEF=S△ABE+S△ADF,理由如下:如图2,延长EB至G,使得BG=DF,连接AC,交EF于H,过E作EP⊥AG,∵∠BAC=∠DAC=45°,∠BAE=∠DAF,∴∠EAC=∠FAC,∵△EAF是等边三角形,∴AC⊥EF在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴BG=BE=DF,∠DAF=∠BAG,AG=AF,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=90°﹣60°=30°设AE=2x,则PE=x,Rt△ECF中,EH=FH,∴CH=EF=AE=x∴S△CEF=EF×CH=x =,S△AGE=S△ABG+S△ABE =AG×PE=x =,∴S△CEF=S△AGE,即S△CEF=S△ABE+S△ABG=S△ABE+S△ADF.(3)成立.理由:如图3,设AD=BC=a,AB=CD=b,BE=x,DF=y.第11页(共12页)∵△AEF是等边三角形,∴AE=EF=AF,∴a2+y2=b2+x2=(a﹣x)2+(b﹣y)2,∴a2+y2=b2+x2=a2﹣2ax+x2+b2﹣2by+y2,∴2ax+2by=x2+b2=a2+y2,∴2by=x2+b2﹣2ax,∴4b2y2=(x2+b2﹣2ax)2=4b2(b2+x2﹣a2),∴(x2+b2)2﹣4ax(x2+b2)+4a2x2﹣4b2(x2+b2)+4a2b2,∴(x2+b2)2﹣4ax(x2+b2)﹣4b2(x2+b2)+4a2(x2+b2)=0,∴(x2+b2)(x2+b2﹣4ax﹣4b2+4a2)=0,∴x2+b2﹣4ax﹣4b2+4a2=0,∴(x﹣2a)2=3b2,∴x=2a ﹣b或2a +b(舍弃),∴y=2b ﹣a,∴S△ABE +S△ADF=ay+bx=a(2b ﹣a)+b(2a ﹣b)=2ab ﹣a2﹣b2,S△EFC =(a﹣x)(b﹣y)=(﹣a +b)(﹣b +a)=2ab ﹣a2﹣b2.∴S△CEF=S△ABE+S△ADF.第12页(共12页)。
北师大版2017-2018学年度初二下学期期末数学测试卷附答案
2017-2018学年度初二下学期期末数学测试卷(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分) 1.下列四个图形中,是中心对称图形的是( )2.不等式2x -1≤5的解集在数轴上表示为( )3.下列从左到右的变形,是分解因式的是( )A .xy 2(x -1)=x 2y 2-xy 2B .x 2+x -5=(x -2)(x +3)+1C .(a +3)(a -3)=a 2-9D .2a 2+4a =2a(a +2) 4.下列运算正确的是( )A.a a -b -b b -a =1B.m a -n b =m -n a -bC.b a -b +1a =1aD.2a -b -a +b a 2-b 2=1a -b5.一个多边形的每个内角均为120°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形 6.若实数a ,b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .507.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为( ) A .4 cm ,8 cm ,4 cm ,8 cm B .5 cm ,7 cm ,5 cm ,7 cm C .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cm D .3 cm ,9 cm ,3 cm ,9 cm8.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若△A =2△D =100°,则△α的度数是( ) A .50° B .60° C .40° D .30°9.如图,点D ,E ,F 分别为△ABC 三边的中点,若△DEF 的周长为10,则△ABC 的周长为( ) A .5 B .10 C .20 D .4010.如图所示,在△ABC 中,△ACB =90°,△B =15°,DE 垂直平分AB ,交BC 于点E ,BE =6 cm ,则AC =( )A .6 cmB .5 cmC .4 cmD .3 cm11.如图所示,在△ABCD 中,对角线AC ,BD 相交于点O ,且AB≠AD ,则下列式子不正确的是( ) A .AC△BD B .AB =CD C .BO =OD D .△BAD =△BCD12.如图,在△ABC 中,AB =AC ,△A =120°,BC =6 cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( ) A .4 cm B .3 cm C .2 cm D .1 cm13.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A.13x =18x -5B.13x =18x +5C.13x =8x -5D.13x=8x +514.如图,AD△BC ,△ABC 的平分线BP 与△BAD 的平分线AP 相交于点P ,作PE△AB 于点E ,若PE =3,则两平行线AD 与BC 间的距离为( )A .3B .4C .5D .615.如图所示,在四边形ABCD 中,AB =CD ,对角线AC ,BD 相交于点O ,AE△BD 于点E ,CF△BD 于点F ,连接AF ,CE ,若DE =BF ,则下列结论:△CF =AE ;△OE =OF ;△四边形ABCD 是平行四边形;△图中共有四对全等三角形.其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共5小题,每小题5分,共25分) 16.如图所示,小明为了测量学校里一池塘的宽度AB ,选取可以直达A ,B 两点的点O 处,再分别取OA ,OB 的中点M ,N ,量得MN =20 m ,则池塘的宽度AB 为 m.17.因式分解:ax 2-ay 2= .18.关于x 的不等式组⎩⎪⎨⎪⎧2x +1>3,a -x>1的解集为1<x<3,则a 的值为 .19.在数轴上,点A ,B 对应的数分别为4,x -5x +1,且点A 到点1的距离等于点B 到点1的距离(A ,B 为不同的点),则x 的值为 .20.如图,点A ,E ,F ,C 在一条直线上,若将△DEC 的边EC 沿AC 方向平移,平移过程中始终满足下列条件:AE =CF ,DE△AC 于点E ,BF△AC 于点F ,且AB =CD.则当点E ,F 不重合时,BD 与EF 的关系是 .三、解答题(本大题共7小题,共80分)21.(8分)解不等式组⎩⎪⎨⎪⎧x 2-1<0,△x -1≤3(x +1),△并把解集在数轴上表示出来.22.(8分)如图,在△ABC 中,AB =AC ,AD 是角平分线,点E 在AD 上,请写出图中两对全等三角形,并选择其中的一对加以证明.23.(10分)如图,在方格纸中,△ABC 的三个顶点和点P 都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.图甲 图乙(1)将△ABC 平移,使点P 落在平移后的三角形内部,在图甲中画出示意图;(2)以点C 为旋转中心,将△ABC 旋转,使点P 落在旋转后的三角形内部,在图乙中画出示意图.24.(12分)先化简代数式(1-3a +2)÷a 2-2a +1a 2-4,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值.25.(12分)如图,在△ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.26.(14分)某厂制作甲、乙两种环保包装盒.已知同样用6 m 材料制成甲盒的个数比制成乙盒的个数少2个,且制作一个甲盒比制作一个乙盒需要多用20%的材料. (1)求制作每个甲盒、乙盒各用多少米材料;(2)如果制作甲、乙两种包装盒共3 000个,且甲盒的数量不少于乙盒数量的2倍.那么请写出所需材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料.27.(16分)如图1,△ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.(1)求证:四边形EGFH 是平行四边形;(2)如图2,若EF△AB ,GH△BC ,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD 面积相等的所有平行四边形(四边形AGHD 除外).参考答案一、选择题(本大题共15小题,每小题3分,共45分) DADDC ABACD ACBDB16.40m.17.a(x +y)(x -y). 18.4. 19.1.20.互相平分.21.解:解不等式△,得x <2. 解不等式△,得x≥-2.△不等式组的解集为-2≤x <2. 不等式组的解集在数轴上表示为:22.解:图中的全等三角形有:△ABD△△ACD ,△ABE△△ACE ,△BDE△△CDE. 选△ABD△△ACD 进行证明.证明:△AB =AC ,AD 是角平分线, △BD =CD.在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,△△ABD△△ACD(SSS).23.解:(1)平移后的三角形如图所示(答案不唯一).(2)旋转后的三角形如图所示.24.解:原式=a +2-3a +2÷(a -1)2(a +2)(a -2)=a -1a +2·(a +2)(a -2)(a -1)2 =a -2a -1. △当a =-2,2时,原代数式无意义, △a =0.当a =0时,原式=0-20-1=2.25.证明:△四边形ABCD 是平行四边形,△点O 是BD 的中点.又△点E 是边CD 的中点,△OE 是△BCD 的中位线.△OE△BC ,且OE =12BC.又△CF =12BC ,△OE =CF.又△点F 在BC 的延长线上,△OE△CF. △四边形OCFE 是平行四边形. 26.解:(1)设制作每个乙盒用x m 材料,那么制作每个甲盒用(1+20%)x m 材料.根据题意,得6(1+20%)x =6x-2.解得x =12.经检验,x =12是原方程的解,且符合题意.△(1+20%)x =35.答:制作每个甲盒用35 m 材料,制作每个乙盒用12 m 材料.(2)△甲盒数量是n 个,△乙盒数量是(3 000-n)个. △l =35n +12(3 000-n)=110n +1 500.△甲盒的数量不少于乙盒数量的2倍, △n≥2(3 000-n). △n≥2 000.△当n =2 000时,所需材料最少,最少为110×2 000+1 500=1 700(m).27.解:(1)证明:△四边形ABCD 是平行四边形, △AD△BC.△△EAO =△FCO.在△OAE 和△OCF 中,⎩⎪⎨⎪⎧△EAO =△FCO ,AO =CO ,△AOE =△COF ,△△OAE△△OCF(ASA).△OE =OF.同理OG =OH.△四边形EGFH 是平行四边形.(2)与四边形AGHD 面积相等的所有平行四边形有△GBCH ,△ABFE ,△EFCD ,△EGFH.。
北师大八年级(下)数学期末考试题(含答案) (1)
济南市市中区八年级下期末试题(2017.06)一、选择题(本大题共15小题,每小题3分,共45分)1.若a>b,则下列各式中一定成立的是( )A.a+2<b+2 B.a一2<b一2;C.a2>b2D.-2a>-2b2.下面式子从左边到右边豹变形是因式分解的是( )A.x2-x-2=x(x一1)-2 B.x2—4x+4=(x一2)2C.(x+1)(x—1)=x2-1 D.x-1=x(1-1x)3下列所培图形中·既是中心对称图形又是轴对称图形的是( )A B C D4.多项式x2-1与多项式x2一2x+1的公因式是( )A.x一1 B.x+1 C.x2一1 D.(x-1)25己知一个多边形的内角和是360°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形6. 下列多项式能用完全平方公式分解因式的有( )A.m2-mn+n2B.x2+4x– 4 C. x2-4x+4 D. 4x2-4x+47.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是( )A.60°B.90°C.120°D.150°30°B'C'CB A8.运用分式的性质,下列计算正确的是( )A.x6x2=x3B.-x+yx-y=-1 C.a+xb+x=ab D.x+yx+y=09.如图,若平行四边形ABCD的周长为40cm,BC=23AB,则BC=()A.16crn B.14cm C.12cm D.8cmOCBD10.若分式方程x -3x -1=mx -1有增根,则m 等于( )A .-3B .-2C .3D .2 11.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .6EDBCA12.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )xy2-1POA .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( ) A .5B .125C .245D .185A DOBCE14.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >215.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( ) A .(22017,-22017) B .(22016,-22016) C .(22017,22017) D .(22016,22016)x y B 2A 2B 1A 1ABO二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________.17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.C D AOP19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x >4,那么m 的取值范围是_______________.20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分) (1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在〉ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2、C2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(本小题满分9分)探索发现:11×2=1-12;12×3=12-13;13×4=13-14……根据你发现的规律,回答下列问题:(1) 14×5=___________,1n ×(n +1)=___________;(2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程:1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.28.(本小题满分9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(一6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ADCB第4题图2016-2017学年末教学质量监测八年级数学试卷命题:双柏县教研室 郎绍波 (全卷满分120分,考试时间120分钟)题 号 一 二 三 总 分 得 分一、填空题(本大题共6个小题,每小题3分,满分18分)1.9的平方根是 .2.分解因式:328x x -= .3.使二次根式2x -有意义的x 的取值范围是 .4.如图,在四边形ABCD 中,AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,你添加的条件是 .5.不等式组25031x x ->⎧⎨-<-⎩的解集是 .6.正比例函数的图像经过点A (-2, 3),B (a ,-3), 则a = .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列计算正确的是( )A .45255-=B .2+3=5C .32=32+D .(16)(9)=169----8.不等式1+x <0的解集在数轴上表示正确的是( )A .B .C .D .9.下列说法不正确的是( )A .平行四边形的对边平行且相等B .平行四边形对角线互相平分C .平行四边形是轴对称图形D .平行四边形是中心对称图形 10.因式分解x 3-2x 2+x 正确的是( )A .(x -1) 2B .x (x -1) 2C .x ( x 2-2x +1)D .x (x +1) 2 11.等腰三角形的一个角是30°,那么它的顶角为( ) A .30° B .60° C .120° D .30°或120°得 分评卷人得分 评卷人AB EC FDG12.我县今年5月某地6天的最高气温如下(单位︒C ):32,29,30,32,30,32. 则这组数据的众数和中位数分别是( ) A .30,32 B .32,30C .32,31D .32,3213.一次函数y kx b =+的图像如图,则k 和b 的值为( ) A .k <0,b <0 B .k >0,b <0C .k >0,b >0D .k <0,b >014.下列几组数能作为直角三角形的三边长的是( ) A .6,8,10 B .4,5,7 C .2,3,4 D .1,2,3三、解答题(本大题共9个小题,满分70分)15.(7分)解方程组: 428x y x y -=⎧⎨+=⎩16.(7分)解分式方程:2211x x x+=--17.(7分)如图,点B 、E 、C 、F 在同一直线上,AC 与DE 相交于点G , ∠A=∠D ,AC ∥DF .求证:AB ∥DE .第13题图BDC第19题图E AF18.(8分)先化简,再求值:22111x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中23x =.19.(8分)如图,在△ABC 中,AB=AC ,D 为BC 的中点,点E ,F 分别在AB 和AC 上,并且AE=AF . 求证:DE=DF .20.(9分)已知一次函数y=kx +b 的图象经过点A (-3,0),B (2,5)两点.正比例函数y=kx 的图象经过点B (2,3). (1)求这两个函数的表达式.(2)在直角坐标系中,画出这个函数的图象. (3)求三角形AOB 的面积.x第20题图EDFABC第23题图21.(7分)如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度. (1)画出将△ABC 向下平移4个单位得到的△A 1B 1C 1; (2)画出△ABC 关于原点O 的中心对称图形△A 2B 2C 2;(3)画出△A 1B 1C 1绕着点A 1顺时针方向旋转90°后得到的△A 3B 3C 3.22.(8分)某学校要制作一批安全工作的宣传材料.甲公司提出:每份材料收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,不收版面设计费.请你帮助该学校选择制作方案.23.(9分)如图,E 、F 是□ABCD 对角线AC 上两点,且AE=CF .(1)求证:四边形BFDE 是平行四边形.(2)如果把条件AE=CF 改为B E ⊥AC ,DF ⊥AC ,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF 改为BE=DF ,试问四边形BFDE 还是平行四边形吗?为什么?B DC第19题图E AF2017学年末教学质量监测八年级数学试卷 参考答案一、填空题(本大题共6个小题,每小题3分,满分18分)1.±3 2. 2x (x +2)(x -2) 3.x ≥2 4.AB=CD 或AD ∥BC 或∠A=∠C 或∠B=∠D 或∠A+∠B=180°或∠C+∠D=180°等 5.x >4 6.2二、选择题(本大题共8个小题,每小题只有一个正确的选项,每小题4分,满分32分)7.A 8.A 9.C 10.B 11.D 12.C 13.D 14.A三、解答题(本大题共9个小题,满分70分)15.(7分) 16.(7分) 解:方程两边同乘以x -1得, x -2=2(x -1)解得x =0经检验x =0是原方程的根 因此原方程的解是x =017.(7分)证明:∵AC ∥DF∴∠D=∠EGC 又∵∠A=∠D ∴∠A=∠EGC ∴AB ∥DE 18.(8分) 2222222222222222221111111211112(1)312(1)2(1)11111122131(31)11x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -⎛⎫⎛⎫+÷=+⋅ ⎪ ⎪-+--+⎝⎭⎝⎭--=⋅+⋅-+=++-=-+--⎛⎫⎡⎤+÷=+⋅ ⎪⎢⎥-+---⎝⎭⎣⎦++-----=⋅=⋅=---【解法一】【解法二】21311x x x-⋅=-当23x =时,原式=2313113x -=⨯-= 19.(8分)【证明一】∵ AB=AC∴∠B =∠C (等边对等角) 又∵ AE=AF∴AB -AE =AC - AF 即 EB=FC又∵ D 为BC 的中点 ∴ BD=CD∴△EBD ≌△FCD (SAS ) ∴DE=DF【证明二】连接AD ,∵ AB=AC ,D 为BC 的中点∴∠BAD =∠CAD (等腰三角形三线合一定理) 即∠EAD =∠FAD又∵ AE=AF ,且AD=AD ∴△EAD ≌△FAD (SAS )∴DE=DF20.(9分)解:(1)∵一次函数y=kx +b 的图象经过两点A (-3,0)、B (2,5)∴301,253k b k k b b -+==⎧⎧⎨⎨+==⎩⎩解得 ∴y=x +3 ∵正比例函数y=kx 的图象经过点B (2,5∴2k =5 得k =52 ∴y=52x (2)函数图像如右图 (3)∵△AOB 的底边OA=3,底边OA ∴△AOB 的面积=3×5÷2=7.5x第20题图412821231244040x y x y x x x y x y -=⎧⎨+=⎩+=====⎧⎨=⎩()()解:()()得 得将代入(1)得所以EDFABC第23题图O21.(7分)解:如图所示:(1)△A 1B 1C 1 (2)△A 2B 2C 2 (3)△A 3B 3C 322.(8分)解:设制作x 份材料时,甲公司收费y 1元,乙公司收费y 2元,则y 1=10x +1000 y 2=20x由y 1= y 2,得10x +1000=20x ,解得x =100 由y 1>y 2,得10x +1000>20x ,解得x <100 由y 1<y 2,得10x +1000<20x ,解得x >100所以,当制作材料为100份时,两家公司收费一样,选择哪家都可行;当制作材料超过100份时,选择甲公司比较合算; 当制作材料少于100份时,选择乙公司比较合算.23.(9分) (1)【证明一】∵ABCD 是平行四边形∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF 又∵ AE=CF∴△BAE ≌△DCF (SAS ) ∴BE=DF ,∠AEB =∠CFD ∴∠BEF =180°-∠AEB ∠DFE =180°-∠CFD即:∠BEF=∠DFE∴BE ∥DF ,而BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形)【证明二】连接BD ,交AC 于点O∵ABCD 是平行四边形∴OA=OC OB=OD (平行四边形的对角线互相平分) 又∵ AE=CF∴OA -AE=OC -CF ,即OE=OF∴四边形BFDE 是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE 是平行四边形∵ABCD 是平行四边形∴ AB=CD 且AB ∥CD (平行四边形的对边平行且相等) ∴∠BAE =∠DCF ∵B E ⊥AC ,DF ⊥AC ∴∠BEA =∠DFC=90°,BE ∥DF∴△BAE ≌△DCF (AAS ) ∴BE=DF∴四边形BFDE 是平行四边形(一组对边平行且相等的四边形是平行四边形) (3)四边形BFDE 不是平行四边形因为把条件AE=CF 改为BE=DF 后,不能证明△BAE 与△DCF 全等。
2016~2017学年度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、①13122=-xx ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是 ( )A. ①和②B. ②和③C. ③和④D. ①和③2、 已知平行四边形ABCD 的周长为32,AB=4,则BC=( ) A 、4 B 、12 C 、24 D 、283、不能判断四边形ABCD 是平行四边形的是( ) A .AB=CD ,AD=BC B .AB=CD ,AB ∥CD C .AB=CD ,AD ∥BC D .AB ∥CD ,AD ∥BC4.某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A .()2001731127x += B .()0017312127x -= C .()2001731127x-= D .()21271173x+=5、在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A 、12 B 、13 C 、16 D 、186、如图.△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( )A . 2B . 3C . 4D . 47、.在直角三角形ABC 中(∠C =900),放置边长分别3,4,x 的三个正方形,则x 的值为 ( ) A . 5 B .6 C .7 D .128.关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B . k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种9、如图,在平行四边形ABCD 中,E 是BC 的中点,且∠AEC=∠DCE, 下列结论不正确的是( )A .S△AFD =2S△EFB B .BF=21DF C .四边形AECD 是等腰梯形 D .∠AEB=∠ADC10、如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( )A . 1B .3C . 2D .3+111、如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则第18题图 C DE HA B F PQEDBCA①②③④四个平行四边形周长的总和为( ) (A )48cm(B )36cm (C )24cm(D )18cm12、如图,菱形ABCD 中,AB=AC ,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AG 于点O .则下列结论①△ABF≌△CAE,②∠AHC=1200,③AH+CH=DH,中,正确的是【 】.A. ①②④B. ①②③C. ②③④D. ①②③④第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13.若x=2是关于x 的方程2250x x a --+=的一个根,则 a 的值为______.14、 设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.15.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼__________条16. 如图,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.17、如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点122013,,,p p p ⋯,过(1,2,i p i =⋯,2013)作i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,则111122222013201320132013PE PF P E P F P E P F ++++⋯++的值为_______________.18如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19. (本小题满分6分)(1) 解方程:x 2-2x -1=0. (2)11322xx x-=---得分 评卷人得分 评卷人 (第11题)FABCDH EG①②③④⑤ABCDE F(第40题)20. (本小题满分6分)小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去. (1)请用数状图或列表的方法求小莉去上海看世博会的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.21. (本小题满分6分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3圆;以同样的栽培条件,若每盆没增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?22. (本小题满分7分)如图3,是上海世博园内的一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图内阴影部分)种植的是不同花草.已知种植花草部分的面积为3600米2,那么花园各角处的正方形观光休息亭的周长为多少米?图323. (本小题满分7分)如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC于点F .⑴求证:△ABF ≌△ECF⑵若∠AFC=2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.24. (本小题满分8分)如图,在□ABCD 中,E 、F 分别为边ABCD 的中点,BD 是对角线,过A 点作AGDB交CB 的延长线于点G . (1)求证:DE ∥BF ;得分 评卷人 得分 评卷人得分评卷人得分评卷人(2)若∠G =90,求证四边形DEBF 是菱形.25. (本小题满分8分)已知:Rt △ABC 中,∠C =90°,∠CAB 的平分线与外角∠CBE 的平分线相交于点D .(1)如图1,若CA =CB ,则∠D =________度;(2)如图2,若CA ≠CB ,求∠D 的度数;(3) 如图3,在(2)的条件下,AD 与BC 相交于点F ,过B 作BG ⊥DF ,过D 作DH ⊥BF ,垂足分别为G ,H ,BG ,DH 相交于点M . 若FG =2,DG =4,求BH 的长.26. (本小题满分9分)有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?27. (本小题满分9分)(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE=10, 求直角梯形ABCD 的面积.得分 评卷人 得分 评卷人得分 评卷人DCFGM HAB ECD第27题图2ACDBE第27题图1(1,8)(1,7)(1,6)(1,4)小莉哥哥87641 答案:一、 选择题1、C2、B3、 C4、C5、C6、A7、C8、B9、A 10、C 11、A 12、D 二、填空题 13、 14、 7 15 、20000 16、2秒, 314秒 17、 2013 18、32三、解答题 19、【答案】(1)解方程:x 2-2x -1=0解:2212x x -+=2(1)2x -=1x -=∴11x =+21x =(2)11322xx x-=--- X=2,无解。