CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

合集下载

crc16查表法编程详解

crc16查表法编程详解

crc16查表法编程详解CRC(Cyclic Redundancy Check)是一种广泛使用的错误检测算法,用于检测数据传输或存储中的错误。

CRC16是一种常用的CRC算法,它生成一个16位的校验码。

查表法是一种实现CRC算法的快速方法,通过预计算并存储可能的CRC值,然后直接查找所需的CRC值,以减少计算量。

以下是一个使用查表法实现CRC16的简单示例:1. 预计算表:首先,我们需要预计算一个CRC表。

这个表包含了所有可能的2字节输入的CRC值。

例如,我们可以使用以下Python代码来生成这个表:```pythondef compute_crc_table():crc_table = [0] 256for i in range(256):crc = ifor _ in range(8):if crc & 0x8000:crc = (crc << 1) ^ 0x1021else:crc <<= 1crc &= 0xffffcrc_table[i] = crcreturn crc_tablecrc_table = compute_crc_table()```2. 查表法实现:有了这个表,我们就可以使用查表法快速计算CRC值了。

以下是一个Python示例:```pythondef crc16_ccitt(data):crc = 0xFFFFfor byte in data:crc = crc_table[(crc ^ byte) & 0xFF] ^ (crc >> 8)return crc ^ 0xFFFF 取反,得到最终的CRC值```在这个函数中,我们首先初始化CRC值为`0xFFFF`。

然后,对于数据中的每个字节,我们使用查表法来计算新的CRC值。

最后,我们取反得到的CRC值,以得到最终结果。

3. 使用示例:使用这个函数来计算给定数据的CRC值:```pythondata = bytes([0x12, 0x34, 0x56, 0x78]) 任意数据crc = crc16_ccitt(data)print(f"The CRC16 value of the data is: {crc}")```注意:这个示例仅适用于CCITT标准的CRC16算法。

C语言实现CRC16校验

C语言实现CRC16校验

CRC校验C语言实现,转载请注明出处,谢谢CRC(Cyclic Redundancy Check)校验应用较为广泛,以前为了处理简单,在程序中大多数采用LRC(Longitudinal Redundancy Check)校验,LRC校验很好理解,编程实现简单。

用了一天时间研究了CRC的C语言实现,理解和掌握了基本原理和C语言编程。

结合自己的理解简单写下来。

1、CRC简介CRC检验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个检验码r位(就是CRC码),附在信息后面,构成一个新的二进制码序列数共(k+r)位,最后发送出去。

接收端根据同样的规则校验,以确定传送中是否出错。

接收端有两种处理方式:1、计算k位序列的CRC码,与接收到的CRC比较,一致则接收正确。

2、计算整个k+r位的CRC码,若为0,则接收正确。

CRC码有多种检验位数,8位、16位、32位等,原理相同。

16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(即乘以2的16次方后),除以一个多项式,最后所得到的余数就是CRC码。

求CRC码所采用的是模2运算法则,即多项式除法中采用不带借位的减法运算,运算等同于异或运算。

这一点要仔细理解,是编程的基础。

CRC-16: (美国二进制同步系统中采用) G(X) = X16 + X15 + X2 + 1CRC-CCITT: (由欧洲CCITT推荐) G(X) = X16 + X12 + X5 + 1CRC-32: G(X) = X32 + X26 + X23 + X22 + X16 +X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 12、按位计算CRC采用CRC-CCITT多项式,多项式为0x11021,C语言编程时,参与计算为0x1021,这个地方得深入思考才能体会其中的奥妙,分享一下我的思路:当按位计算CRC时,例如计算二进制序列为1001 1010 1010 1111时,将二进制序列数左移16位,即为1001 1010 1010 1111 (0000 0000 0000 0000),实际上该二进制序列可拆分为1000 0000 0000 0000 (0000 0000 0000 0000) + 000 0000 0000 0000 (0000 0000 0000 0000) + 00 0000 0000 0000 (0000 0000 0000 0000) + 1 0000 0000 0000 (0000 0000 0000 0000) + ……现在开始分析运算:<1>对第一个二进制分序列求余数,竖式除法即为0x10000 ^ 0x11021运算,后面的0位保留;<2>接着对第二个二进制分序列求余数,将第一步运算的余数*2后再和第二个二进制分序列一起对0x11021求余,这一步理解应该没什么问题。

crc16 c语言代码

crc16 c语言代码
} else {
crc >>= 1; //如果为0,则只将CRC寄存器右移一位
}
}
}
return crc;
}
int main() {
unsigned char data[] = {0x01, 0x02, 0x03, 0x04, 0x05}; //要计算CRC16校验码的数据
unsigned short crc = crc16(data, sizeof(data)); //计算CRC16校验码
#include <stdio.h>
#define POLY 0x8005 // CRC-16-CCITT多项式
unsigned shoБайду номын сангаасt crc16(unsigned char *data, int length) {
unsigned short crc = 0xFFFF; //初始值为0xFFFF
printf("CRC16校验码为:%04X\n", crc); //输出CRC16校验码
return 0;
}
这个代码使用了一个简单的算法来计算CRC16校验码。它首先将初始值设置为0xFFFF,然后将数据位逐个异或到CRC寄存器中。接下来,它检查最低有效位是否为1,如果是,则将CRC寄存器右移一位并异或多项式;否则,只将CRC寄存器右移一位。最后,返回计算得到的CRC16校验码。
int i, j;
for (i = 0; i < length; i++) {
crc ^= (unsigned short)(data[i]); //将数据位异或到CRC寄存器中
for (j = 0; j < 8; j++) {

最详细易懂的CRC-16校验原理(附源程序)

最详细易懂的CRC-16校验原理(附源程序)

最详细易懂的CRC-16校验原理(附源程序)1、循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。

2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘和’取值的多项式一一对应。

例如:代码对应的多项式为X6+X4+X2+X+1,而多项式为X5+X3+X2+X+1对应的代码101111 o标准CRC生成多项式如下表:名称生成多项式简记式*标准引用CRC-4 x4+x+1 3 ITU G.704CRC-8 x8+x5+x4+1 0x31CRC-8 x8+x2+x1+1 0x07CRC-8x8+x6+x4+x3+x2+x10x5ECRC-12 x12+x11+x3+x+1 80FCRC-16 x16+x15+x2+1 8005 IBM SDLCCRC16-CCITT x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCSCRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI,IEEE 1394, PPP-FCSCRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP3、CRC-16校验码的使用:现选择最常用的CRC-16校验,说明它的使用方法。

根据Modbus协议,常规485通讯的信息发送形式如下:地址功能码数据信息校验码1byte 1byte nbyte 2byteCRC校验是前面几段数据内容的校验值,为一个16位数据,发送时,低8位在前,高8为最后。

例如:信息字段代码为:1011001,校验字段为:1010。

发送方:发出的传输字段为:1 0 1 1 0 0 1 1 0 10信息字段校验字段接收方:使用相同的计算方法计算出信息字段的校验码,对比接收到的实际校验码,如果相等及信息正确,不相等则信息错误;或者将接受到的所有信息除多项式,如果能够除尽,贝y 信息正确。

c#实现16位crc校验源代码

c#实现16位crc校验源代码

void Crc(byte[] buffer);
void Crc(byte[] buf, int off, int len);
}
}
namespace CRC
{
/// <summary>
/// CRC16 的摘要说明。
/// </summary>
public class p
{
public static void Main()
{
}
public class CRC16 : ICRC
{
#region CRC 16 位校验表
/// </summary>
public void Reset()
{
crc = 0;
}
/// <summary>
/// Crc16
Crc(buffer, 0, buffer.Length);
}
/// <summary>
/// Crc16
/// </summary>
/// <param name="buf"></param>
Crc(buf[i]);
}
}
}
}
}
/// <param name="bval"></param>
public void Crc(int bval)
{
ushort h = (ushort)((crc >> 12) & 0x0f);
/// Crc16

crc16 citt false c语言

crc16 citt false c语言

crc16 citt false c语言CRC16是一种常用的循环冗余校验算法,它可以用于检测和纠正数据传输中的错误。

在C语言中,我们可以使用CRC16算法来计算校验和,并判断数据的完整性。

CRC16算法采用的是多项式除法,具体的计算过程如下:1. 首先,我们需要定义一个16位的CRC寄存器,初始值为0xFFFF。

2. 然后,我们将待校验的数据按位进行处理,从高位到低位逐个与CRC寄存器进行异或运算。

3. 接着,我们将CRC寄存器的值右移一位,如果最低位是1,则将寄存器与一个预设的固定值(0xA001)进行异或运算。

4. 重复上述步骤,直到所有的数据位都被处理完毕。

5. 最后,CRC寄存器的值就是计算得到的校验和。

在C语言中,我们可以通过编写一个函数来实现CRC16的计算。

下面是一个示例代码:```c#include <stdio.h>#include <stdint.h>uint16_t crc16(uint8_t *data, int length){uint16_t crc = 0xFFFF;for (int i = 0; i < length; i++) {crc ^= (uint16_t)data[i];for (int j = 0; j < 8; j++) {if (crc & 0x0001) {crc = (crc >> 1) ^ 0xA001;} else {crc >>= 1;}}}return crc;}int main(){uint8_t data[] = {0x01, 0x02, 0x03, 0x04, 0x05}; int length = sizeof(data) / sizeof(data[0]);uint16_t checksum = crc16(data, length);printf("CRC16 checksum: 0x%04X\n", checksum);return 0;}```在上述代码中,我们首先定义了一个crc16函数,它接受一个指向数据数组的指针和数据的长度作为输入,返回一个16位的校验和。

CRC-16校验C#代码

CRC-16校验C#代码

CRC-16校验C#代码[csharp]01. using System;02. using System.Collections.Generic;03. using System.Text;04. using System.Runtime.Serialization.Formatters.Binary;05. using System.IO;06.07. namespace smsForCsharp.CRC08. {09. /// <summary>10. /// 消息CRC校验算法11. /// </summary>12. public class CRC13. {14.15. public static String getCrc16Code(String crcString)16. {17.18. // 转换成字节数组19. byte[] creBytes = HexString2Bytes(crcString);20.21. // 开始crc16校验码计算22. CRC16Util crc16 = new CRC16Util();23. crc16.reset();24. crc16.update(creBytes);25. int crc = crc16.getCrcValue();26. // 16进制的CRC码27. String crcCode = Convert.ToString(crc, 16).ToUpper();28. // 补⾜到4位29. if (crcCode.Length < 4)30. {31. // crcCode = StringUtil.lefgPadding(crcCode, '0', 4);32. crcCode = crcCode.PadLeft(4, '0');33. }34. return crcCode;35. }36.37.38. public static String RealHexToStr(String str)39. {40. String hText = "0123456789ABCDEF";41. StringBuilder bin = new StringBuilder();42. for (int i = 0; i < str.Length; i++)43. {44. bin.Append(hText[str[i] / 16]).Append(hText[str[i] % 16]).Append(' ');45. }46. return bin.ToString();47. }48. /**49. * ⼗六进制字符串转换成字节数组50. *51. * @param hexstr52. * @return53. */54. public static byte[] HexString2Bytes(String hexstr)55. {56. byte[] b = new byte[hexstr.Length / 2];57. int j = 0;58. for (int i = 0; i < b.Length; i++)59. {60. char c0 = hexstr[j++];61. char c1 = hexstr[j++];62. b[i] = (byte)((parse(c0) << 4) | parse(c1));63. }64. return b;65. }66.67.68. /**69. * 16进制char转换成整型70. *71. * @param c72. * @return73. */74. public static int parse(char c)77. return (c - 'a' + 10) & 0x0f;78. if (c >= 'A')79. return (c - 'A' + 10) & 0x0f;80. return (c - '0') & 0x0f;81. }82.83.84.85.86. public static string ByteArrayToHexString(byte[] data)//字节数组转为⼗六进制字符串87. {88. StringBuilder sb = new StringBuilder(data.Length * 3);89. foreach (byte b in data)90. sb.Append(Convert.ToString(b, 16).PadLeft(2, '0').PadRight(3, ' '));91. return sb.ToString().ToUpper();92. }93.94. }95.96.97.98.99. public class CRC16Util100. {101.102. /**CRC值*/103. private int value = 0xffff;104.105. private static int[] CRC16_TABLE = {106. 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,107. 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,108. 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,109. 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,110. 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,111. 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,112. 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,113. 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,114. 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,115. 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,116. 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,117. 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,118. 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,119. 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,120. 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,121. 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,122. 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,123. 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,124. 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,125. 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,126. 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,127. 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,128. 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,129. 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,130. 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,131. 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,132. 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,133. 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,134. 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,135. 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,136. 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,137. 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78138. };139.140. /**141. * 计算⼀个字节数组的CRC值142. * @param data143. */144. public void update(byte[] data)145. {146. //int fcs = 0xffff;147. for (int i = 0; i < data.Length; i++)148. {149. // 1.value 右移8位(相当于除以256)150. // 2.value与进来的数据进⾏异或运算后再与0xFF进⾏与运算151. // 得到⼀个索引index,然后查找CRC16_TABLE表相应索引的数据152. // 1和2得到的数据再进⾏异或运算。

crc16校验算法c语言

crc16校验算法c语言

crc16校验算法c语言crc16校验算法是一种常用的数据校验方法,它可以检测出数据传输或存储过程中的错误,并提供纠错的依据。

crc16校验算法的原理是将待校验的数据看作一个多项式,用一个固定的生成多项式对其进行除法运算,得到的余数就是crc16校验码。

生成多项式的选择会影响crc16校验算法的性能,不同的应用场景可能需要不同的生成多项式。

本文主要介绍一种常用的生成多项式,即CRC-CCITT,它的二进制表示为0x1021,十六进制表示为0x11021。

本文将介绍三种实现crc16校验算法c语言的方法,分别是按位计算、按半字节计算和按单字节计算。

这三种方法的原理都是基于生成多项式对数据进行除法运算,但是具体的实现方式有所不同,各有优缺点。

下面分别介绍这三种方法,并给出相应的c语言代码。

按位计算按位计算是最直接的实现方式,它是将待校验的数据和生成多项式按位进行异或运算,得到余数。

这种方法的优点是不需要额外的存储空间,缺点是效率较低,需要循环处理每一位数据。

按位计算的c语言代码如下:#include<stdint.h>#define CRC_CCITT 0x1021//生成多项式//函数名称:crc_cal_by_bit;按位计算CRC//函数参数:uint8_t * ptr;指向发送缓冲区的首字节// uint32_t len;要发送的总字节数//函数返回值:uint16_tuint16_t crc_cal_by_bit(uint8_t*ptr, uint32_t len) {uint32_t crc =0xffff; //初始值while (len--!=0) {for (uint8_t i =0x80; i !=0; i >>=1) { //处理每一位数据crc <<=1; //左移一位if ((crc &0x10000) !=0) //如果最高位为1,则异或生成多项式crc ^=0x11021;if ((*ptr & i) !=0) //如果当前数据位为1,则异或生成多项式crc ^= CRC_CCITT;}ptr++; //指向下一个字节}uint16_t retCrc = (uint16_t)(crc &0xffff); //取低16位作为结果return retCrc;}按半字节计算按半字节计算是对按位计算的优化,它是将待校验的数据和生成多项式按半字节(4位)进行异或运算,得到余数。

【转】crc16几种标准校验算法及c语言代码

【转】crc16几种标准校验算法及c语言代码

【转】crc16⼏种标准校验算法及c语⾔代码⼀、CRC16校验码的使⽤ 现选择最常⽤的CRC-16校验,说明它的使⽤⽅法。

根据Modbus协议,常规485通讯的信息发送形式如下: 地址功能码数据信息校验码 1byte 1byte nbyte 2byte CRC校验是前⾯⼏段数据内容的校验值,为⼀个16位数据,发送时,低8位在前,⾼8为最后。

例如:信息字段代码为: 1011001,校验字段为:1010。

发送⽅:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10 信息字段校验字段 接收⽅:使⽤相同的计算⽅法计算出信息字段的校验码,对⽐接收到的实际校验码,如果相等及信息正确,不相等则信息错误;或者将接受到的所有信息除多项式,如果能够除尽,则信息正确。

⼆、CRC16校验码计算⽅法 常⽤查表法和计算法。

计算⽅法⼀般都是: (1)、预置1个16位的寄存器值0xFFFF,称此寄存器为CRC寄存器; (2)、把第⼀个8位⼆进制数据(既通讯信息帧的第⼀个字节)与16位的CRC寄存器的低 8位相异或,把结果放于CRC寄存器,⾼⼋位数据不变; (3)、把CRC寄存器的内容右移⼀位(朝⾼位)⽤0填补最⾼位,并检查右移后的移出位; (4)、如果移出位为0:重复第3步(再次右移⼀位);如果移出位为1,CRC寄存器与⼀多 项式(A001)进⾏异或; (5)、重复步骤3和4,直到右移8次,这样整个8位数据全部进⾏了处理; (6)、重复步骤2到步骤5,进⾏通讯信息帧下⼀个字节的处理; (7)、将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的⾼、低 字节进⾏交换; (8)、最后得到的CRC寄存器内容即为:CRC码。

以上计算步骤中的多项式A001是8005按位颠倒后的结果。

查表法是将移位异或的计算结果做成了⼀个表,就是将0~256放⼊⼀个长度为16位的寄存器中的低⼋位,⾼⼋位填充0,然后将该寄存器与多项式0XA001按照上述3、4步骤,直到⼋位全部移出,最后寄存器中的值就是表格中的数据,⾼⼋位、低⼋位分别单独⼀个表。

C语言实现的CRC16CCITT-FALSE校验码函数

C语言实现的CRC16CCITT-FALSE校验码函数
//MODBUS CRC-16表 8005 逆序 const unsigned short g_McRctable_16[256] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,

CRC-16校验-完整代码

CRC-16校验-完整代码

CRC-16校验完整代码CRC-16校验完整代码通信领域经常用到CRC校验。

这里把CRC-16的代码转发一下。

不过,我推荐一个用于生成各种校验码的开源软件 Fsum frontend它的开源项目网址是:/下载其源代码,可看到各种算法,但不是用c写的。

该软件的用处是,可以验证你的算法。

CRC-16 IBM x 16 + x 15 + x 2 + 1CRC编码的原理,网上有很多,简单的说就是将数据用生成式进行模2除法。

这里我主要写一下,查表法的原理。

一、原理:数据项: <BnBn-1Bn-2Bn-3,...,B3B2B1>先查表获得Bn的两字节余式,将该余式的高8位与Bn-1进行模2运算,假定B'n-1,低8位与Bn-2进行模2运算,假定结构为B'n-2,得到< B'n-1B'n-2Bn-3,...,B3B2B1 >,以此类推,最终获得两字节的CRC码.(参考字节型CRC算法实现一文)二、实现以下代码中中的查表法来自于 Linux-2.6.17,定义法是根据定义编写的,我使用随机数对两种方法进行了比对,结果一致#include <stdio.h>#include <stdlib.h>#include<math.h>typedef unsigned intu16;typedef unsigned char u8;u16 const crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1,0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880,0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400,0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0,0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80,0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01,0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0,0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01,0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1,0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80,0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541,0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81,0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0,0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040};static inline u16 crc16_byte(u16 crc, const u8 data){ return (crc >> 8) ^crc16_table[(crc ^ data) & 0xff];}/*** crc16 - compute the CRC-16 for the data buffer* @crc: previous CRC value*@buffer: data pointer* @len: number of bytes in the buffer** Returns the updated CRC value.*/u16 crc16(u16 crc, u8 const *buffer, u16 len){ while (len--) crc = crc16_byte(crc, *buffer++); return crc;}/*** crc16 - compute the CRC-16 for the data buffer according to the definition* @crc: previous CRC value* @buffer: data pointer* @len: number of bytes in the buffer** Returns the updated CRC value.*/u16 crc16_calculate(u16 crc,u8 const *buffer,u16 len){ u16 i,j; u8 data; for ( j = 0; j < len; j++) { data= buffer[j]; for ( i = 0; i < 8; i++) { crc = ((data ^ (u8)crc) & 1) ? ((crc >> 1) ^ 0xA001) : (crc >> 1); data>>= 1; } } return crc;}int main(){ u16 crc1,crc2; u8 test[32] ; u8 i; while(1) { for(i=0;i<32;i++) test[i]=rand(); crc1=0; crc2=0; // crc=crc16(0,test,6); crc1=crc16(crc1,test,6);printf("CRC=%d/n",crc1); crc2=crc16_calculate(crc2,test,6); printf("CRC=%d/n",crc2); if(crc1!=crc2) break; } return 0;}。

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

CRC16校验C语⾔程序源码-(附完整的可执⾏的C语⾔代码)CRC16校验C语⾔程序源码-(附完整的可执⾏的C语⾔代码)CRC16校验C语⾔程序源码(附完整的可执⾏的C语⾔代码)//CRC16校验在通讯中应⽤⼴泛,这⾥不对其理论进⾏讨论,只对常见的2种//实现⽅法进⾏测试。

⽅法⼀:查表法(256长度的校验表)速度快,准确,但是对于单⽚机设备存储占⽤⼤,且校验表长度⼤,输⼊时容易出现错误。

// ---------------- POPULAR POLYNOMIALS ----------------// CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005const BYTE chCRCHTalbe[] = // CRC ⾼位字节值表{0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40};const BYTE chCRCLTalbe[] = // CRC 低位字节值表{0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1,0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB,0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8,0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74,0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40};WORD CRC16_1(BYTE* pchMsg, WORD wDataLen){BYTE chCRCHi = 0xFF; // ⾼CRC字节初始化BYTE chCRCLo = 0xFF; // 低CRC字节初始化WORD wIndex; // CRC循环中的索引while (wDataLen--){// 计算CRCwIndex = chCRCLo ^ *pchMsg++ ;chCRCLo = chCRCHi ^ chCRCHTalbe[wIndex];chCRCHi = chCRCLTalbe[wIndex] ;}return ((chCRCHi << 8) | chCRCLo) ;}⽅法⼀:列表法(简单表)const WORD wCRCTalbeAbs[] ={0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400,};WORD CRC16_2(BYTE* pchMsg, WORD wDataLen){WORD wCRC = 0xFFFF;WORD i;BYTE chChar;for (i = 0; i < wDataLen; i++){chChar = *pchMsg++;wCRC = wCRCTalbeAbs[(chChar ^ wCRC) & 15] ^ (wCRC >> 4); wCRC = wCRCTalbeAbs[((chChar >> 4) ^ wCRC) & 15] ^ (wCRC >> 4); }return wCRC;}⽅法⼆:定义法根据CRC16/MODBUS原理直接计算,算法简单但对单⽚机计算压⼒⼤。

crc16 modbus代码

crc16 modbus代码

crc16 modbus代码CRC16 Modbus是一种常用的循环冗余校验算法,广泛应用于Modbus 通信协议中。

本文将介绍CRC16 Modbus的原理和应用,并以代码的形式展示如何进行CRC16 Modbus校验。

一、CRC16 Modbus的原理CRC全称为Cyclic Redundancy Check,即循环冗余校验。

它是一种数据校验方法,通过对数据进行一系列的数学运算,生成一个校验值,用于检测数据传输过程中是否出现错误。

CRC16 Modbus是一种基于多项式计算的CRC校验算法,它采用了16位的校验值。

CRC16 Modbus的计算过程如下:1. 首先,需要预设一个16位的寄存器,初始值为0xFFFF。

2. 将待校验的数据按照字节进行拆分,每次取出一个字节。

3. 将每个字节与寄存器的低8位进行异或运算。

4. 对寄存器的每一位进行判断,如果最低位为1,则将寄存器右移一位,并与多项式0xA001进行异或运算;如果最低位为0,则只将寄存器右移一位。

5. 重复第2步至第4步,直到所有字节都被处理完毕。

6. 最终得到的寄存器值即为CRC16 Modbus的校验结果。

二、CRC16 Modbus的应用CRC16 Modbus广泛应用于Modbus通信协议中,用于保证数据的完整性和准确性。

在Modbus通信中,发送方会计算数据的CRC16校验值,并将其附加在发送的数据中。

接收方在接收到数据后,也会进行CRC16校验,如果接收到的校验值与计算结果不一致,则说明数据可能被篡改或传输出错,接收方需要进行相应的处理。

三、CRC16 Modbus的代码示例下面是一个使用C语言实现的CRC16 Modbus校验的代码示例:```c#include <stdint.h>uint16_t crc16_modbus(uint8_t *data, uint8_t length) {uint16_t crc = 0xFFFF;uint8_t i, j;for (i = 0; i < length; i++) {crc ^= data[i];for (j = 0; j < 8; j++) {if (crc & 0x0001) {crc >>= 1;crc ^= 0xA001;}else {crc >>= 1;}}}return crc;}int main() {uint8_t data[] = {0x01, 0x03, 0x00, 0x00, 0x00, 0x02}; uint16_t crc = crc16_modbus(data, sizeof(data));printf("CRC16 Modbus: 0x%04X\n", crc);return 0;}```上述代码中,crc16_modbus函数接收一个指向数据的指针和数据的长度作为参数,返回CRC16 Modbus的校验值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)CRC16校验C语言程序源码(附完整的可执行的C语言代码)//CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的2种//实现方法进行测试。

方法一:查表法(256长度的校验表)速度快,准确,但是对于单片机设备存储占用大,且校验表长度大,输入时容易出现错误。

// ---------------- POPULAR POLYNOMIALS ----------------// CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005const BYTE chCRCHTalbe[] = // CRC 高位字节值表{0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40};const BYTE chCRCLTalbe[] = // CRC 低位字节值表{0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40};WORD CRC16_1(BYTE* pchMsg, WORD wDataLen){BYTE chCRCHi = 0xFF; // 高CRC字节初始化BYTE chCRCLo = 0xFF; // 低CRC字节初始化WORD wIndex; // CRC循环中的索引while (wDataLen--){// 计算CRCwIndex = chCRCLo ^ *pchMsg++ ;chCRCLo = chCRCHi ^ chCRCHTalbe[wIndex];chCRCHi = chCRCLTalbe[wIndex] ;}return ((chCRCHi << 8) | chCRCLo) ;}方法一:列表法(简单表)const WORD wCRCTalbeAbs[] ={0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400,};WORD CRC16_2(BYTE* pchMsg, WORD wDataLen){WORD wCRC = 0xFFFF;WORD i;BYTE chChar;for (i = 0; i < wDataLen; i++){chChar = *pchMsg++;wCRC = wCRCTalbeAbs[(chChar ^ wCRC) & 15] ^ (wCRC >> 4);wCRC = wCRCTalbeAbs[((chChar >> 4) ^ wCRC) & 15] ^ (wCRC >> 4);}return wCRC;}方法二:定义法根据CRC16/MODBUS原理直接计算,算法简单但对单片机计算压力大。

WORD CRC16_3(BYTE* pchMsg, WORD wDataLen){BYTE i, chChar;WORD wCRC = 0xFFFF;while (wDataLen--){chChar = *pchMsg++;chChar = ByteInvert(chChar);wCRC ^= (((WORD) chChar) << 8);for (i = 0; i < 8; i++){if (wCRC & 0x8000)wCRC = (wCRC << 1) ^ CRC_16_POLYNOMIALS;elsewCRC <<= 1;}}wCRC = WordInvert(wCRC);return wCRC;}//试验数据:// 采用Metrowerks CodeWarrior在DSP56F80x平台上,对这3种方法//进行了性能测试。

相关文档
最新文档