CRC16校验C语言程序源码-(附完整的可执行的C语言代码)
crc16查表法编程详解
crc16查表法编程详解CRC(Cyclic Redundancy Check)是一种广泛使用的错误检测算法,用于检测数据传输或存储中的错误。
CRC16是一种常用的CRC算法,它生成一个16位的校验码。
查表法是一种实现CRC算法的快速方法,通过预计算并存储可能的CRC值,然后直接查找所需的CRC值,以减少计算量。
以下是一个使用查表法实现CRC16的简单示例:1. 预计算表:首先,我们需要预计算一个CRC表。
这个表包含了所有可能的2字节输入的CRC值。
例如,我们可以使用以下Python代码来生成这个表:```pythondef compute_crc_table():crc_table = [0] 256for i in range(256):crc = ifor _ in range(8):if crc & 0x8000:crc = (crc << 1) ^ 0x1021else:crc <<= 1crc &= 0xffffcrc_table[i] = crcreturn crc_tablecrc_table = compute_crc_table()```2. 查表法实现:有了这个表,我们就可以使用查表法快速计算CRC值了。
以下是一个Python示例:```pythondef crc16_ccitt(data):crc = 0xFFFFfor byte in data:crc = crc_table[(crc ^ byte) & 0xFF] ^ (crc >> 8)return crc ^ 0xFFFF 取反,得到最终的CRC值```在这个函数中,我们首先初始化CRC值为`0xFFFF`。
然后,对于数据中的每个字节,我们使用查表法来计算新的CRC值。
最后,我们取反得到的CRC值,以得到最终结果。
3. 使用示例:使用这个函数来计算给定数据的CRC值:```pythondata = bytes([0x12, 0x34, 0x56, 0x78]) 任意数据crc = crc16_ccitt(data)print(f"The CRC16 value of the data is: {crc}")```注意:这个示例仅适用于CCITT标准的CRC16算法。
C语言实现CRC16校验
CRC校验C语言实现,转载请注明出处,谢谢CRC(Cyclic Redundancy Check)校验应用较为广泛,以前为了处理简单,在程序中大多数采用LRC(Longitudinal Redundancy Check)校验,LRC校验很好理解,编程实现简单。
用了一天时间研究了CRC的C语言实现,理解和掌握了基本原理和C语言编程。
结合自己的理解简单写下来。
1、CRC简介CRC检验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个检验码r位(就是CRC码),附在信息后面,构成一个新的二进制码序列数共(k+r)位,最后发送出去。
接收端根据同样的规则校验,以确定传送中是否出错。
接收端有两种处理方式:1、计算k位序列的CRC码,与接收到的CRC比较,一致则接收正确。
2、计算整个k+r位的CRC码,若为0,则接收正确。
CRC码有多种检验位数,8位、16位、32位等,原理相同。
16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(即乘以2的16次方后),除以一个多项式,最后所得到的余数就是CRC码。
求CRC码所采用的是模2运算法则,即多项式除法中采用不带借位的减法运算,运算等同于异或运算。
这一点要仔细理解,是编程的基础。
CRC-16: (美国二进制同步系统中采用) G(X) = X16 + X15 + X2 + 1CRC-CCITT: (由欧洲CCITT推荐) G(X) = X16 + X12 + X5 + 1CRC-32: G(X) = X32 + X26 + X23 + X22 + X16 +X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 12、按位计算CRC采用CRC-CCITT多项式,多项式为0x11021,C语言编程时,参与计算为0x1021,这个地方得深入思考才能体会其中的奥妙,分享一下我的思路:当按位计算CRC时,例如计算二进制序列为1001 1010 1010 1111时,将二进制序列数左移16位,即为1001 1010 1010 1111 (0000 0000 0000 0000),实际上该二进制序列可拆分为1000 0000 0000 0000 (0000 0000 0000 0000) + 000 0000 0000 0000 (0000 0000 0000 0000) + 00 0000 0000 0000 (0000 0000 0000 0000) + 1 0000 0000 0000 (0000 0000 0000 0000) + ……现在开始分析运算:<1>对第一个二进制分序列求余数,竖式除法即为0x10000 ^ 0x11021运算,后面的0位保留;<2>接着对第二个二进制分序列求余数,将第一步运算的余数*2后再和第二个二进制分序列一起对0x11021求余,这一步理解应该没什么问题。
crc16 c语言代码
crc >>= 1; //如果为0,则只将CRC寄存器右移一位
}
}
}
return crc;
}
int main() {
unsigned char data[] = {0x01, 0x02, 0x03, 0x04, 0x05}; //要计算CRC16校验码的数据
unsigned short crc = crc16(data, sizeof(data)); //计算CRC16校验码
#include <stdio.h>
#define POLY 0x8005 // CRC-16-CCITT多项式
unsigned shoБайду номын сангаасt crc16(unsigned char *data, int length) {
unsigned short crc = 0xFFFF; //初始值为0xFFFF
printf("CRC16校验码为:%04X\n", crc); //输出CRC16校验码
return 0;
}
这个代码使用了一个简单的算法来计算CRC16校验码。它首先将初始值设置为0xFFFF,然后将数据位逐个异或到CRC寄存器中。接下来,它检查最低有效位是否为1,如果是,则将CRC寄存器右移一位并异或多项式;否则,只将CRC寄存器右移一位。最后,返回计算得到的CRC16校验码。
int i, j;
for (i = 0; i < length; i++) {
crc ^= (unsigned short)(data[i]); //将数据位异或到CRC寄存器中
for (j = 0; j < 8; j++) {
最详细易懂的CRC-16校验原理(附源程序)
最详细易懂的CRC-16校验原理(附源程序)1、循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。
2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘和’取值的多项式一一对应。
例如:代码对应的多项式为X6+X4+X2+X+1,而多项式为X5+X3+X2+X+1对应的代码101111 o标准CRC生成多项式如下表:名称生成多项式简记式*标准引用CRC-4 x4+x+1 3 ITU G.704CRC-8 x8+x5+x4+1 0x31CRC-8 x8+x2+x1+1 0x07CRC-8x8+x6+x4+x3+x2+x10x5ECRC-12 x12+x11+x3+x+1 80FCRC-16 x16+x15+x2+1 8005 IBM SDLCCRC16-CCITT x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCSCRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI,IEEE 1394, PPP-FCSCRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP3、CRC-16校验码的使用:现选择最常用的CRC-16校验,说明它的使用方法。
根据Modbus协议,常规485通讯的信息发送形式如下:地址功能码数据信息校验码1byte 1byte nbyte 2byteCRC校验是前面几段数据内容的校验值,为一个16位数据,发送时,低8位在前,高8为最后。
例如:信息字段代码为:1011001,校验字段为:1010。
发送方:发出的传输字段为:1 0 1 1 0 0 1 1 0 10信息字段校验字段接收方:使用相同的计算方法计算出信息字段的校验码,对比接收到的实际校验码,如果相等及信息正确,不相等则信息错误;或者将接受到的所有信息除多项式,如果能够除尽,贝y 信息正确。
c#实现16位crc校验源代码
void Crc(byte[] buffer);
void Crc(byte[] buf, int off, int len);
}
}
namespace CRC
{
/// <summary>
/// CRC16 的摘要说明。
/// </summary>
public class p
{
public static void Main()
{
}
public class CRC16 : ICRC
{
#region CRC 16 位校验表
/// </summary>
public void Reset()
{
crc = 0;
}
/// <summary>
/// Crc16
Crc(buffer, 0, buffer.Length);
}
/// <summary>
/// Crc16
/// </summary>
/// <param name="buf"></param>
Crc(buf[i]);
}
}
}
}
}
/// <param name="bval"></param>
public void Crc(int bval)
{
ushort h = (ushort)((crc >> 12) & 0x0f);
/// Crc16
crc16 citt false c语言
crc16 citt false c语言CRC16是一种常用的循环冗余校验算法,它可以用于检测和纠正数据传输中的错误。
在C语言中,我们可以使用CRC16算法来计算校验和,并判断数据的完整性。
CRC16算法采用的是多项式除法,具体的计算过程如下:1. 首先,我们需要定义一个16位的CRC寄存器,初始值为0xFFFF。
2. 然后,我们将待校验的数据按位进行处理,从高位到低位逐个与CRC寄存器进行异或运算。
3. 接着,我们将CRC寄存器的值右移一位,如果最低位是1,则将寄存器与一个预设的固定值(0xA001)进行异或运算。
4. 重复上述步骤,直到所有的数据位都被处理完毕。
5. 最后,CRC寄存器的值就是计算得到的校验和。
在C语言中,我们可以通过编写一个函数来实现CRC16的计算。
下面是一个示例代码:```c#include <stdio.h>#include <stdint.h>uint16_t crc16(uint8_t *data, int length){uint16_t crc = 0xFFFF;for (int i = 0; i < length; i++) {crc ^= (uint16_t)data[i];for (int j = 0; j < 8; j++) {if (crc & 0x0001) {crc = (crc >> 1) ^ 0xA001;} else {crc >>= 1;}}}return crc;}int main(){uint8_t data[] = {0x01, 0x02, 0x03, 0x04, 0x05}; int length = sizeof(data) / sizeof(data[0]);uint16_t checksum = crc16(data, length);printf("CRC16 checksum: 0x%04X\n", checksum);return 0;}```在上述代码中,我们首先定义了一个crc16函数,它接受一个指向数据数组的指针和数据的长度作为输入,返回一个16位的校验和。
CRC-16校验C#代码
CRC-16校验C#代码[csharp]01. using System;02. using System.Collections.Generic;03. using System.Text;04. using System.Runtime.Serialization.Formatters.Binary;05. using System.IO;06.07. namespace smsForCsharp.CRC08. {09. /// <summary>10. /// 消息CRC校验算法11. /// </summary>12. public class CRC13. {14.15. public static String getCrc16Code(String crcString)16. {17.18. // 转换成字节数组19. byte[] creBytes = HexString2Bytes(crcString);20.21. // 开始crc16校验码计算22. CRC16Util crc16 = new CRC16Util();23. crc16.reset();24. crc16.update(creBytes);25. int crc = crc16.getCrcValue();26. // 16进制的CRC码27. String crcCode = Convert.ToString(crc, 16).ToUpper();28. // 补⾜到4位29. if (crcCode.Length < 4)30. {31. // crcCode = StringUtil.lefgPadding(crcCode, '0', 4);32. crcCode = crcCode.PadLeft(4, '0');33. }34. return crcCode;35. }36.37.38. public static String RealHexToStr(String str)39. {40. String hText = "0123456789ABCDEF";41. StringBuilder bin = new StringBuilder();42. for (int i = 0; i < str.Length; i++)43. {44. bin.Append(hText[str[i] / 16]).Append(hText[str[i] % 16]).Append(' ');45. }46. return bin.ToString();47. }48. /**49. * ⼗六进制字符串转换成字节数组50. *51. * @param hexstr52. * @return53. */54. public static byte[] HexString2Bytes(String hexstr)55. {56. byte[] b = new byte[hexstr.Length / 2];57. int j = 0;58. for (int i = 0; i < b.Length; i++)59. {60. char c0 = hexstr[j++];61. char c1 = hexstr[j++];62. b[i] = (byte)((parse(c0) << 4) | parse(c1));63. }64. return b;65. }66.67.68. /**69. * 16进制char转换成整型70. *71. * @param c72. * @return73. */74. public static int parse(char c)77. return (c - 'a' + 10) & 0x0f;78. if (c >= 'A')79. return (c - 'A' + 10) & 0x0f;80. return (c - '0') & 0x0f;81. }82.83.84.85.86. public static string ByteArrayToHexString(byte[] data)//字节数组转为⼗六进制字符串87. {88. StringBuilder sb = new StringBuilder(data.Length * 3);89. foreach (byte b in data)90. sb.Append(Convert.ToString(b, 16).PadLeft(2, '0').PadRight(3, ' '));91. return sb.ToString().ToUpper();92. }93.94. }95.96.97.98.99. public class CRC16Util100. {101.102. /**CRC值*/103. private int value = 0xffff;104.105. private static int[] CRC16_TABLE = {106. 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,107. 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,108. 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,109. 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,110. 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,111. 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,112. 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,113. 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,114. 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,115. 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,116. 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,117. 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,118. 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,119. 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,120. 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,121. 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,122. 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,123. 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,124. 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,125. 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,126. 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,127. 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,128. 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,129. 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,130. 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,131. 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,132. 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,133. 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,134. 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,135. 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,136. 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,137. 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78138. };139.140. /**141. * 计算⼀个字节数组的CRC值142. * @param data143. */144. public void update(byte[] data)145. {146. //int fcs = 0xffff;147. for (int i = 0; i < data.Length; i++)148. {149. // 1.value 右移8位(相当于除以256)150. // 2.value与进来的数据进⾏异或运算后再与0xFF进⾏与运算151. // 得到⼀个索引index,然后查找CRC16_TABLE表相应索引的数据152. // 1和2得到的数据再进⾏异或运算。
crc16校验算法c语言
crc16校验算法c语言crc16校验算法是一种常用的数据校验方法,它可以检测出数据传输或存储过程中的错误,并提供纠错的依据。
crc16校验算法的原理是将待校验的数据看作一个多项式,用一个固定的生成多项式对其进行除法运算,得到的余数就是crc16校验码。
生成多项式的选择会影响crc16校验算法的性能,不同的应用场景可能需要不同的生成多项式。
本文主要介绍一种常用的生成多项式,即CRC-CCITT,它的二进制表示为0x1021,十六进制表示为0x11021。
本文将介绍三种实现crc16校验算法c语言的方法,分别是按位计算、按半字节计算和按单字节计算。
这三种方法的原理都是基于生成多项式对数据进行除法运算,但是具体的实现方式有所不同,各有优缺点。
下面分别介绍这三种方法,并给出相应的c语言代码。
按位计算按位计算是最直接的实现方式,它是将待校验的数据和生成多项式按位进行异或运算,得到余数。
这种方法的优点是不需要额外的存储空间,缺点是效率较低,需要循环处理每一位数据。
按位计算的c语言代码如下:#include<stdint.h>#define CRC_CCITT 0x1021//生成多项式//函数名称:crc_cal_by_bit;按位计算CRC//函数参数:uint8_t * ptr;指向发送缓冲区的首字节// uint32_t len;要发送的总字节数//函数返回值:uint16_tuint16_t crc_cal_by_bit(uint8_t*ptr, uint32_t len) {uint32_t crc =0xffff; //初始值while (len--!=0) {for (uint8_t i =0x80; i !=0; i >>=1) { //处理每一位数据crc <<=1; //左移一位if ((crc &0x10000) !=0) //如果最高位为1,则异或生成多项式crc ^=0x11021;if ((*ptr & i) !=0) //如果当前数据位为1,则异或生成多项式crc ^= CRC_CCITT;}ptr++; //指向下一个字节}uint16_t retCrc = (uint16_t)(crc &0xffff); //取低16位作为结果return retCrc;}按半字节计算按半字节计算是对按位计算的优化,它是将待校验的数据和生成多项式按半字节(4位)进行异或运算,得到余数。
【转】crc16几种标准校验算法及c语言代码
【转】crc16⼏种标准校验算法及c语⾔代码⼀、CRC16校验码的使⽤ 现选择最常⽤的CRC-16校验,说明它的使⽤⽅法。
根据Modbus协议,常规485通讯的信息发送形式如下: 地址功能码数据信息校验码 1byte 1byte nbyte 2byte CRC校验是前⾯⼏段数据内容的校验值,为⼀个16位数据,发送时,低8位在前,⾼8为最后。
例如:信息字段代码为: 1011001,校验字段为:1010。
发送⽅:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10 信息字段校验字段 接收⽅:使⽤相同的计算⽅法计算出信息字段的校验码,对⽐接收到的实际校验码,如果相等及信息正确,不相等则信息错误;或者将接受到的所有信息除多项式,如果能够除尽,则信息正确。
⼆、CRC16校验码计算⽅法 常⽤查表法和计算法。
计算⽅法⼀般都是: (1)、预置1个16位的寄存器值0xFFFF,称此寄存器为CRC寄存器; (2)、把第⼀个8位⼆进制数据(既通讯信息帧的第⼀个字节)与16位的CRC寄存器的低 8位相异或,把结果放于CRC寄存器,⾼⼋位数据不变; (3)、把CRC寄存器的内容右移⼀位(朝⾼位)⽤0填补最⾼位,并检查右移后的移出位; (4)、如果移出位为0:重复第3步(再次右移⼀位);如果移出位为1,CRC寄存器与⼀多 项式(A001)进⾏异或; (5)、重复步骤3和4,直到右移8次,这样整个8位数据全部进⾏了处理; (6)、重复步骤2到步骤5,进⾏通讯信息帧下⼀个字节的处理; (7)、将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的⾼、低 字节进⾏交换; (8)、最后得到的CRC寄存器内容即为:CRC码。
以上计算步骤中的多项式A001是8005按位颠倒后的结果。
查表法是将移位异或的计算结果做成了⼀个表,就是将0~256放⼊⼀个长度为16位的寄存器中的低⼋位,⾼⼋位填充0,然后将该寄存器与多项式0XA001按照上述3、4步骤,直到⼋位全部移出,最后寄存器中的值就是表格中的数据,⾼⼋位、低⼋位分别单独⼀个表。
C语言实现的CRC16CCITT-FALSE校验码函数
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
CRC-16校验-完整代码
CRC-16校验完整代码CRC-16校验完整代码通信领域经常用到CRC校验。
这里把CRC-16的代码转发一下。
不过,我推荐一个用于生成各种校验码的开源软件 Fsum frontend它的开源项目网址是:/下载其源代码,可看到各种算法,但不是用c写的。
该软件的用处是,可以验证你的算法。
CRC-16 IBM x 16 + x 15 + x 2 + 1CRC编码的原理,网上有很多,简单的说就是将数据用生成式进行模2除法。
这里我主要写一下,查表法的原理。
一、原理:数据项: <BnBn-1Bn-2Bn-3,...,B3B2B1>先查表获得Bn的两字节余式,将该余式的高8位与Bn-1进行模2运算,假定B'n-1,低8位与Bn-2进行模2运算,假定结构为B'n-2,得到< B'n-1B'n-2Bn-3,...,B3B2B1 >,以此类推,最终获得两字节的CRC码.(参考字节型CRC算法实现一文)二、实现以下代码中中的查表法来自于 Linux-2.6.17,定义法是根据定义编写的,我使用随机数对两种方法进行了比对,结果一致#include <stdio.h>#include <stdlib.h>#include<math.h>typedef unsigned intu16;typedef unsigned char u8;u16 const crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1,0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880,0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400,0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0,0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80,0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01,0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0,0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01,0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1,0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80,0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541,0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81,0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0,0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040};static inline u16 crc16_byte(u16 crc, const u8 data){ return (crc >> 8) ^crc16_table[(crc ^ data) & 0xff];}/*** crc16 - compute the CRC-16 for the data buffer* @crc: previous CRC value*@buffer: data pointer* @len: number of bytes in the buffer** Returns the updated CRC value.*/u16 crc16(u16 crc, u8 const *buffer, u16 len){ while (len--) crc = crc16_byte(crc, *buffer++); return crc;}/*** crc16 - compute the CRC-16 for the data buffer according to the definition* @crc: previous CRC value* @buffer: data pointer* @len: number of bytes in the buffer** Returns the updated CRC value.*/u16 crc16_calculate(u16 crc,u8 const *buffer,u16 len){ u16 i,j; u8 data; for ( j = 0; j < len; j++) { data= buffer[j]; for ( i = 0; i < 8; i++) { crc = ((data ^ (u8)crc) & 1) ? ((crc >> 1) ^ 0xA001) : (crc >> 1); data>>= 1; } } return crc;}int main(){ u16 crc1,crc2; u8 test[32] ; u8 i; while(1) { for(i=0;i<32;i++) test[i]=rand(); crc1=0; crc2=0; // crc=crc16(0,test,6); crc1=crc16(crc1,test,6);printf("CRC=%d/n",crc1); crc2=crc16_calculate(crc2,test,6); printf("CRC=%d/n",crc2); if(crc1!=crc2) break; } return 0;}。
CRC16校验C语言程序源码-(附完整的可执行的C语言代码)
CRC16校验C语⾔程序源码-(附完整的可执⾏的C语⾔代码)CRC16校验C语⾔程序源码-(附完整的可执⾏的C语⾔代码)CRC16校验C语⾔程序源码(附完整的可执⾏的C语⾔代码)//CRC16校验在通讯中应⽤⼴泛,这⾥不对其理论进⾏讨论,只对常见的2种//实现⽅法进⾏测试。
⽅法⼀:查表法(256长度的校验表)速度快,准确,但是对于单⽚机设备存储占⽤⼤,且校验表长度⼤,输⼊时容易出现错误。
// ---------------- POPULAR POLYNOMIALS ----------------// CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005const BYTE chCRCHTalbe[] = // CRC ⾼位字节值表{0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40};const BYTE chCRCLTalbe[] = // CRC 低位字节值表{0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1,0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB,0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8,0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74,0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40};WORD CRC16_1(BYTE* pchMsg, WORD wDataLen){BYTE chCRCHi = 0xFF; // ⾼CRC字节初始化BYTE chCRCLo = 0xFF; // 低CRC字节初始化WORD wIndex; // CRC循环中的索引while (wDataLen--){// 计算CRCwIndex = chCRCLo ^ *pchMsg++ ;chCRCLo = chCRCHi ^ chCRCHTalbe[wIndex];chCRCHi = chCRCLTalbe[wIndex] ;}return ((chCRCHi << 8) | chCRCLo) ;}⽅法⼀:列表法(简单表)const WORD wCRCTalbeAbs[] ={0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400,};WORD CRC16_2(BYTE* pchMsg, WORD wDataLen){WORD wCRC = 0xFFFF;WORD i;BYTE chChar;for (i = 0; i < wDataLen; i++){chChar = *pchMsg++;wCRC = wCRCTalbeAbs[(chChar ^ wCRC) & 15] ^ (wCRC >> 4); wCRC = wCRCTalbeAbs[((chChar >> 4) ^ wCRC) & 15] ^ (wCRC >> 4); }return wCRC;}⽅法⼆:定义法根据CRC16/MODBUS原理直接计算,算法简单但对单⽚机计算压⼒⼤。
crc16 modbus代码
crc16 modbus代码CRC16 Modbus是一种常用的循环冗余校验算法,广泛应用于Modbus 通信协议中。
本文将介绍CRC16 Modbus的原理和应用,并以代码的形式展示如何进行CRC16 Modbus校验。
一、CRC16 Modbus的原理CRC全称为Cyclic Redundancy Check,即循环冗余校验。
它是一种数据校验方法,通过对数据进行一系列的数学运算,生成一个校验值,用于检测数据传输过程中是否出现错误。
CRC16 Modbus是一种基于多项式计算的CRC校验算法,它采用了16位的校验值。
CRC16 Modbus的计算过程如下:1. 首先,需要预设一个16位的寄存器,初始值为0xFFFF。
2. 将待校验的数据按照字节进行拆分,每次取出一个字节。
3. 将每个字节与寄存器的低8位进行异或运算。
4. 对寄存器的每一位进行判断,如果最低位为1,则将寄存器右移一位,并与多项式0xA001进行异或运算;如果最低位为0,则只将寄存器右移一位。
5. 重复第2步至第4步,直到所有字节都被处理完毕。
6. 最终得到的寄存器值即为CRC16 Modbus的校验结果。
二、CRC16 Modbus的应用CRC16 Modbus广泛应用于Modbus通信协议中,用于保证数据的完整性和准确性。
在Modbus通信中,发送方会计算数据的CRC16校验值,并将其附加在发送的数据中。
接收方在接收到数据后,也会进行CRC16校验,如果接收到的校验值与计算结果不一致,则说明数据可能被篡改或传输出错,接收方需要进行相应的处理。
三、CRC16 Modbus的代码示例下面是一个使用C语言实现的CRC16 Modbus校验的代码示例:```c#include <stdint.h>uint16_t crc16_modbus(uint8_t *data, uint8_t length) {uint16_t crc = 0xFFFF;uint8_t i, j;for (i = 0; i < length; i++) {crc ^= data[i];for (j = 0; j < 8; j++) {if (crc & 0x0001) {crc >>= 1;crc ^= 0xA001;}else {crc >>= 1;}}}return crc;}int main() {uint8_t data[] = {0x01, 0x03, 0x00, 0x00, 0x00, 0x02}; uint16_t crc = crc16_modbus(data, sizeof(data));printf("CRC16 Modbus: 0x%04X\n", crc);return 0;}```上述代码中,crc16_modbus函数接收一个指向数据的指针和数据的长度作为参数,返回CRC16 Modbus的校验值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CRC16校验C语言程序源码-(附完整的可执行的C语言代码)CRC16校验C语言程序源码(附完整的可执行的C语言代码)//CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的2种//实现方法进行测试。
方法一:查表法(256长度的校验表)速度快,准确,但是对于单片机设备存储占用大,且校验表长度大,输入时容易出现错误。
// ---------------- POPULAR POLYNOMIALS ----------------// CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005const BYTE chCRCHTalbe[] = // CRC 高位字节值表{0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40};const BYTE chCRCLTalbe[] = // CRC 低位字节值表{0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40};WORD CRC16_1(BYTE* pchMsg, WORD wDataLen){BYTE chCRCHi = 0xFF; // 高CRC字节初始化BYTE chCRCLo = 0xFF; // 低CRC字节初始化WORD wIndex; // CRC循环中的索引while (wDataLen--){// 计算CRCwIndex = chCRCLo ^ *pchMsg++ ;chCRCLo = chCRCHi ^ chCRCHTalbe[wIndex];chCRCHi = chCRCLTalbe[wIndex] ;}return ((chCRCHi << 8) | chCRCLo) ;}方法一:列表法(简单表)const WORD wCRCTalbeAbs[] ={0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400,};WORD CRC16_2(BYTE* pchMsg, WORD wDataLen){WORD wCRC = 0xFFFF;WORD i;BYTE chChar;for (i = 0; i < wDataLen; i++){chChar = *pchMsg++;wCRC = wCRCTalbeAbs[(chChar ^ wCRC) & 15] ^ (wCRC >> 4);wCRC = wCRCTalbeAbs[((chChar >> 4) ^ wCRC) & 15] ^ (wCRC >> 4);}return wCRC;}方法二:定义法根据CRC16/MODBUS原理直接计算,算法简单但对单片机计算压力大。
WORD CRC16_3(BYTE* pchMsg, WORD wDataLen){BYTE i, chChar;WORD wCRC = 0xFFFF;while (wDataLen--){chChar = *pchMsg++;chChar = ByteInvert(chChar);wCRC ^= (((WORD) chChar) << 8);for (i = 0; i < 8; i++){if (wCRC & 0x8000)wCRC = (wCRC << 1) ^ CRC_16_POLYNOMIALS;elsewCRC <<= 1;}}wCRC = WordInvert(wCRC);return wCRC;}//试验数据:// 采用Metrowerks CodeWarrior在DSP56F80x平台上,对这3种方法//进行了性能测试。