长郡高三数学第二次月考试卷(文科)
湖南省长沙市长郡中学2024届高三下学期月考六数学试题+答案解析
长郡中学2024届高三月考试卷(六)数学本试卷共8页.时量120分钟.满分150分.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合204x A x x ⎧⎫+=≤⎨⎬-⎩⎭,{}0,1,2,4,8B =,则A B = ()A.{}1,2,4,8 B.{}0,1,2 C.{}1,2 D.{}0,1,2,4【答案】B 【解析】【分析】先求出集合A ,然后再求交集运算.【详解】由204x x +≤-,解得24x -≤<,所以集合[)2,4A =-又{}0,1,2,4,8B =,所以{}0,1,2A B = 故选:B2.复数()32z i i =-的共轭复数z 等于()A. 23i -- B. 23i -+ C. 23i - D. 23i+【答案】C 【解析】【详解】试题分析:依题意可得32,23z i z i =+∴=-.故选C.考点:复数的运算.3.设{}n a是公比为的等比数列,则“”是“{}n a 为递增数列”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D 【解析】【详解】试题分析:当时,不是递增数列;当且时,是递增数列,但是不成立,所以选D.考点:等比数列4.设E 是平行四边形ABCD 所在平面内一点,2AC DE =,则()A.122BE AB AC =-B.322BE AB AC=-+ C.1322BE AB AC =-+D.122BE AB AC=+ 【答案】B 【解析】【分析】利用向量的加减法及数乘运算直接求得.【详解】如图示:BE BA AD DE =++.而2AC DE =,所以12DE AC = .C A AD A D AC C B =+=- ,所以13222BE BA AD AB AC AC AB B A DE C A =++=-+-+=-+ .故选:B5.已知定义在R 上的函数()1y f x =+是偶函数,且在()0,∞+上单调递增,则满足()()22f x f x >+的x 的取值范围为()A.()2,∞+ B.()(),02,-∞+∞ C.2,3⎛⎫-∞- ⎪⎝⎭D.()2,2,3⎛⎫-∞-+∞ ⎪⎝⎭【答案】B 【解析】【分析】由平移法则确定函数()f x 关于直线1x =对称,且在()1,+∞上单调递增,结合函数对称性和单调性去“f ”即可.【详解】因为函数()1y f x =+是偶函数,且在()0,∞+上单调递增,所以函数()f x 的图象关于直线1x =对称,且在()1,+∞上单调递增,又()()22f x f x >+,所以2121x x ->+-,即211x x ->+,平方并化简,得22x x >,解得2x >或0x <.故选:B .6.长郡中学体育节中,羽毛球单打12强中有3个种子选手,将这12人任意分成3个组(每组4个人),则3个种子选手恰好被分在同一组的概率为()A.155B.355C.14 D.13【答案】B 【解析】【分析】利用均匀分组的原理,再结合古典概型的概率公式求解即可.【详解】由已知条件得将12人任意分成3组,不同的分组方法有444238134C C C A 种,3个种子选手分在同一组的方法有14948422C C C A 种,故3个种子选手恰好被分在同一组的概率为14484224441284339C C C A 3 C C C 55A =,故选:B .7.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形12MF NF 为矩形,且56MAN π∠=,则双曲线C 的离心率为()A.B.C.D.【答案】D 【解析】【分析】由四边形12MF NF 为矩形→122MN F F c ==,可设以MN 为直径的圆的方程为222x y c +=,设直线MN 的方程为by x a=,联立求出,M N ,进而求出,AM AN ,再对AMN 采用余弦定理即可求解.【详解】因为四边形12MF NF 为矩形,所以122MN F F c ==,(矩形的对角线相等),所以以MN 为直径的圆的方程为222x y c +=.直线MN 为双曲线的一条渐近线,不妨设其方程为b y x a =,由222b y x ax y c⎧=⎪⎨⎪+=⎩,解得x a y b =⎧⎨=⎩或x a y b =-⎧⎨=-⎩,所以(),N a b ,(),M a b --或(),N a b --,(),M a b .不妨设(),N a b ,(),M a b --,又(),0A a ,所以AM ==AN b ==.在△AMN 中,56MAN π∠=,由余弦定理得22252cos6MNAM AN AM AN π=+-⋅,即222244c a b b b =+++,则2b =,所以()222434b a b =+,则2212b a=,所以e ==.故选:D【点睛】试题综合考查双曲线的方程与性质,考查考生灵活运用所学知识分析问题、解决问题的能力,体现理性思维、数学探索学科素养.求解双曲线的离心率的方法:(1)公式法:直接求出a ,c 或找出a ,b ,c三者中任意两个的关系,代入公式c e a ==(2)构造法:由已知条件得出a ,c 关于的齐次方程,然后转化为关于e 的方程求解;(3)通过特殊值或者特殊情况求离心率,例如,令1a =,求出相应c 的值,进而求出离心率,能有效简化运算.8.m ≥对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是()A.1,2⎛⎤-∞ ⎥⎝⎦B.,2⎛-∞⎝⎦C.(-∞ D.(],2-∞【答案】B 【解析】【分析】将问题转化为直线y x =与曲线()ln f x x =上的点的距离最小值d m ≥,利用导数的几何意义求()f x 上斜率为1的切线上切点坐标,再应用点线距离公式求最小距离,即可得m 的范围.【详解】设T =T 的几何意义是直线y x =上的点(,)P a a 与曲线()ln f x x =上的点(,ln )Q b b 的距离,将直线y x =平移到与面线()ln f x x =相切时,切点Q 到直线y x =的距离最小.而()1f x x '=,令()0011f x x ='=,则01x =,可得(1,0)Q ,此时,Q 到直线y x =22=,故min 2||2PQ =,所以22m ≤.故选:B【点睛】关键点点睛:将题设不等式关系转化为求直线与曲线上点的最小距离d 且d m ≥,结合导数的几何意义、点线距离公式求m 的范围.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知,a b R ∈,下列命题为真命题的是()A.若0a b +=,则2a b e e +≥.B.若1a b >>,则log log 2a b b a +>C.若0,0a b >>且2a b +=,则213a b+≥.D.若4a b +=,则221108a b <≤+【答案】ABD 【解析】【分析】根据均值不等式最值公式对选项一一判断即可.【详解】对A,2a b e e ≥+==,当0a b ==时等号成立,故正确;对B ,因为1a b >>,所以log 1log 0a b a b >>>,则log log 2a b b a b +>,故正确;对C ,0,0a b >>且2a b +=则()(2112112133222a b a b a b a b b a ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,故错;对D ,因为222224822a b a b a b ++⎛⎫≥=⇒+≥ ⎪⎝⎭,所以221108a b <≤+,故正确.故选:ABD10.袋子中共有大小和质地相同的4个球,其中2个白球和2个黑球,从袋中有放回地依次随机摸出2个球.甲表示事件“第一次摸到白球”,乙表示事件“第二次摸到黑球”,丙表示事件“两次都摸到白球”,则()A.甲与乙互斥B.乙与丙互斥C.甲与乙独立D.甲与乙对立【答案】BC 【解析】【分析】结合互斥事件、对立事件和相互独立事件的知识确定正确选项.【详解】首先抽取方法是有放回,每次摸出1个球,共抽取2次.基本事件为:白白,白黑,黑白,黑黑,共4种情况.事件甲和事件乙可能同时发生:白黑,所以甲与乙不是互斥事件,A 错误.事件乙和事件丙不可能同时发生,所以乙与丙互斥,B 正确.事件甲和事件乙是否发生没有关系,用A 表示事件甲,用B 表示事件乙,()()()111,,224P A P B P AB ===,则()()()P AB P A P B =,所以甲与乙独立,C 正确.由于事件甲和事件乙是否发生没有关系,所以不是对立事件.故选:BC11.将函数()f x 的图象横坐标伸长为原来的2倍,再向左平移3π个单位,得到函数()()sin 2g x x ϕ=+(02πϕ<<)的部分图象(如图所示).对于[]12,,x x a b ∀∈,且12x x ≠若()()12g x g x =,都有()122+=g x x 成立,则()A.()sin 23g x x π⎛⎫=+ ⎪⎝⎭B.()sin 43f x x π⎛⎫=- ⎪⎝⎭C.()g x 在3,2ππ⎡⎤⎢⎣⎦上单调递增D.函数()f x 在40,3π⎡⎤⎢⎥⎣⎦的零点为1x ,2x ,L ,n x ,则12318522212n n x x x x x π-+++⋅⋅⋅++=【答案】ABD 【解析】【详解】对于A ,由题意可知函数()()sin 202g x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象在区间[],a b 上的对称轴为直线122x x x +=,又()122+=x x ,所以()()1202g g x x =+=,所以sin 2ϕ=,02πϕ<<,3πϕ=,故()sin 23g x x π⎛⎫=+ ⎪⎝⎭,A 正确;对于B ,()sin 23g x x π⎛⎫=+⎪⎝⎭右移3π个单位得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,再将其横坐标缩短为原来的12得到()sin 43f x x π⎛⎫=- ⎪⎝⎭的图象,故B 正确;对于C ,令222232k x k πππππ-+≤+≤+,Z k ∈,得51212k x k ππππ-+≤≤+,Z k ∈,当1k =时,7131212x ππ≤≤,所以()g x 在713,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,而3713,,21212ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦Ú,故C 错误,对于D ,今43t x π=-,则,53t ππ⎡⎤∈-⎢⎥⎣⎦,函数sin y t =在,53ππ⎡⎤-⎢⎥⎣⎦上有6个零点1t ,2t ,L ,6t ,则12t t π+=,233t t π+=,345t t π+=,457t t π+=,569t t π+=,故()12345612345622224222210253t t t t t t x x x x x x ππ+++++=+++++-⨯=,所以12318522212n n x x x x x π-+++++= ,故D 正确;故选:ABD .12.如图1,在边长为2的正方形ABCD 中,E 、F 分别为BC 、CD 中点,若沿AE 、AF 及EF 把这个正方形折成一个四面体,使得B 、C 、D 三点重合于S ,得到四面体S −AEF (图2),点G 为SE 中点.下列结论正确的是()A.四面体S −AEFB.顶点S 在面AEF 上的射影为△AEF 的重心C.SA 与面AEF 所成角的正切值为24D.过点G 的平面截四面体S −AEF 的外接球所得截面圆面积取值范围是3,42ππ⎡⎤⎢⎥⎣⎦【答案】ACD 【解析】【分析】由翻折的性质,利用SA ,SE ,SF 两两垂直,将四面体的外接球问题转化为长方体的外接球问题进行求解,即可判断选项A;利用线面垂直的判定定理和性质定理证明S 在平面AEF 上的射影为△AEF 的垂心,即可判断选项B ;由线面角的定义求解,即可判断选项C ;将四面体补成长方体,找出球心,将问题转化为过一定点作球的截面求解截面圆面积的最值问题,即可判断选项D .【详解】对于A ,由翻折的性质可知,SA 、SE 、SF 两两垂直,将其补成长方体,则长方体外接球和四面体外接球相同,因为2SA =,1SE SF ==,则其体对角线长l ==,所以长方体外接球的半径为2R =,故外接球的体积为34632V π⎛⎫=⋅= ⎪ ⎪⎝⎭,故选项A 正确;对于B ,因为SA 、SE 、SF 两两互相垂直,所以点S 在平面AEF 上的射影为AEF △的垂心,理由如下:如图,过点S 作SO ⊥平面AEF ,交平面AEF 于点O ,因为SO ⊥平面AEF ,EF ⊂平面AEF ,所以SO EF ⊥,又因为SA SE ⊥,SA SF ⊥,SE SF S = ,SE 、SF ⊂平面SEF ,则SA ⊥平面SEF ,又EF ⊂平面SEF ,故SA EF ⊥,又SO SA S = ,SO 、SA ⊂平面SAO ,所以EF ⊥平面SAO ,又AO ⊂平面SAO ,故AO EF ⊥;同理可证EO AF ⊥,FO AE ⊥,故点S 在平面AEF 上的射影为AEF △的垂心,故选项B 错误;对于C ,设M 为EF 的中点,则EF SM ⊥,AM EF ⊥,又SM AM M = ,SM ,AM ⊂平面SAM ,所以EF ⊥平面SAM ,又EF ⊂平面AEF ,故平面AEF ⊥平面SAM ,则SA 在平面AEF 上的射影为AM ,所以SA 与平面AEF 所成的角为SAM ∠,因为2SA =,22SM =,90ASM ∠=︒,所以2tan 24SM SAM SA ∠===,故选项C 正确;对于D ,设O 为四面体S AEF -的外接球的球心,则OM ⊥平面SEF ,连接MG 、OG ,当过点G 的截面经过球心O 时截面圆的面积最大,最大面积为32π,当OG 垂直截面圆时,截面圆面积最小,此时1122GM SF ==,1OM =,2OG ==,12r ==,故截面圆的面积为4π,所以截面圆面积的取值范围为[,π3π42,故选项D 正确.故选:ACD .【点睛】本题以命题的真假判断为载体考查了立体几何的综合应用,考查了空间几何体的外接球问题,线面角与截面问题,综合考查了逻辑推理能力、空间想象能力与化简运算能力,属于难题.三、填空题:本题共4小题,每小题5分,共20分.13.函数()()1ln f x x x =+的图象在点(1,()1f )处的切线方程为_________.【答案】21y x =-【解析】【分析】利用导数的几何意义即可求出答案.【详解】由题意得,()2ln f x x '=+,()12f '=,()11f =,则所求的切线方程为()121y x -=-,即21y x =-.故答案为:21y x =-.14.若()522100121022x x a a x a x a x -+=+++⋅⋅⋅+,则1210a a a ++⋅⋅⋅+=_________.【答案】3093【解析】【分析】由多项式分析知:k 为奇数,项系数为负;k 为偶数,项系数为正,可得1210a a a ++⋅⋅⋅+=312109a a a a a -+--+ ,再应用赋值法求0a 、0121390a a a a a a -+--+ ,即可得结果.【详解】由题设,含k x 的项中,当k 为奇数,项系数为负,而当k 为偶数,项系数为正,所以1210a a a ++⋅⋅⋅+=312109a a a a a -+--+ ,令0x =,则50232a ==;令=1x -,得3950121053125a a a a a a -+--+== ,所以12103125323093a a a +++=-= .故答案为:3093.15.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________.【解析】【分析】由三角形面积公式得到21sin b A=,利用角A 的三角函数表达出254cos sin A BC A-=,利用数形结合及sin sin 055cos cos 44A A A A -=--的几何意义求出最值.【详解】因为△ABC 的面积为1,所211sin 2sin sin 122bc A b b A b A =⨯==,可得21sin b A=,由BC AC AB =-,可得222222||||||22cos BC AC AB AC AB b c bc A b =+-⋅=+-=+ ()22254cos 54cos 222cos 54cos sin sin sin A Ab b b A b b A A A A--⨯=-=-=,设sin 1sin 54cos 54cos 4A A m A A ⎡⎤⎢⎥==-⨯⎢⎥-+⎢⎥-⎣⎦,其中(0,π)A ∈,因为sin sin 055cos cos 44AA A A -=--表示点5,04P ⎛⎫⎪⎝⎭与点(cos A ,sin A )连线的斜率,如图所示,当过点P的直线与半圆相切时,此时斜率最小,在直角△OAP 中,51,4OA OP ==,可得34PA =,所以斜率的最小值为4tan 3PA k APO ∠=-=-,所以m 的最大值为141433⎛⎫-⨯-= ⎪⎝⎭,所以2||3BC,所以||BC ,即BC 的最小值【点睛】解三角形中最值问题,要结合基本不等式,导函数或者数形结合,利用代数式本身的几何意义求解.16.已知数列{}n a 对任意的n *∈N ,都有n a *∈N ,且131,,2n n n nna a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数.①当18a =时,2022a =_________.②若存在m *∈N ,当n m >且n a 为奇数时,n a 恒为常数P ,则P =_________.【答案】①.2②.1【解析】【分析】根据通项公式确定{}n a 的周期性即可求2022a ,由题设可得2312n n a a ++=,讨论2n a +的奇偶性确定后续数列出现奇数项与n a 相等,列方程求P 的值.【详解】由题设通项公式,可得1234568,4,2,1,4,2,a a a a a a ====== ,故从第二项开始形成周期为3的数列,而2022167332-=⨯+,故20222a =.当n m >时,n a 为奇数时131n n a a +=+为偶数,故123122n n n a a a +++==;若2n a +为奇数,由312n n a a +=,故1n a =-,不满足;若2n a +为偶数,则2323122n n n a a a +++==直到为奇教,有31,2n n k a a k *+=∈N ,故123n ka *=∈-N ,当2k =时满足条件,此时1n a =,即1P =,故答案为:2,1【点睛】关键点点睛:讨论2312n n a a ++=的奇偶性,判断数列后续出现的奇数项与n a 相等时n a 是否为奇数.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,设角A ,B ,C 所对的边长分别为a ,b ,c ,且()sin ()(sin sin )c b C a b A B -=-+.(1)求A ;(2)若D 为BC 上点,AD 平分角A ,且3b =,AD =,求BDDC.【答案】(1)3π;(2)12.【解析】【分析】(1)由题意和正弦定理得到222b c bc a +-=,利用余弦定理求得1cos 2A =,即可求解;(2)利用111sin sin ()22224ABC A A S AC AD AB AD AD b c =⋅+⋅=⋅+ ,化简得到bc b c =+,进而求得32c =,结合因为ABD ACDS AB BD S AC DC ==△△,即可求解.【详解】(1)因为()sin ()(sin sin )c b C a b A B -=-+,由正弦定理可得()()()c b c a b a b -=-+,整理得222b c bc a +-=,由余弦定理,可得2221cos 222b c a bc A bc bc +-===,又因为(0,)A π∈,可得3A π=.(2)因为D 为BC 上点,AD 平分角A ,则13sin 24ABC S bc A bc ==△,又由111sin sin ()()222244ABC A A S AC AD AB AD AD b c b c =⋅+⋅=+=+△,可得bc b c =+,又因为3b =,可得33c c =+,解得32c =,因为ABD ACD S AB BD S AC DC ==△△,所以12BD c DC b ==.18.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【解析】【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n nb b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb bb b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1n n n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;19.接种新冠疫苗,可以有效降低感染新冠肺炎的几率,某地区有A ,B ,C 三种新冠疫苗可供居民接种,假设在某个时间段该地区集中接种第一针疫苗,而且这三种疫苗的供应都很充足.为了节省时间和维持良好的接种秩序,接种点设置了号码机,号码机可以随机地产生A ,B ,C 三种号码(产生每个号码的可能性都相等),前去接种第一针疫苗的居民先从号码机上取一张号码,然后去接种与号码相对应的疫苗(例如:取到号码A ,就接种A 种疫苗,以此类推).若甲,乙,丙,丁四个人各自独立的去接种第一针新冠疫苗.(1)求这四个人中恰有2个人接种A 种疫苗的概率;(2)记甲,乙,丙,丁四个人中接种疫苗的种数为X ,求随机变量X 的分布列和数学期望.【答案】(1)827(2)分布列见解析;期望为6527【解析】【分析】(1)首先求出所有可能接种结果,再求出恰有2人接种A 疫苗的情况种数,最后根据古典概型的概率公式计算可得;(2)依题意X 可能值为1,2,3,求出所对应的概率,列出分布列,即可求出数学期望;【小问1详解】解:依题意所有可能的接种方式有43种,恰有2人接种A 疫苗的情况有224C 2⋅种,从而恰有2人接种A 种疫苗的概率为2244C 28327⋅=.【小问2详解】解:依题意X 的可能值为1,2,3,又431(1)327P X ===,()21322324424C C C C C 14(2)327P X +===(或()2434C 2214(2)327P X -===),1213424C C C 4(3)39P X ===(或23434C A 4(3)39P X ===).综上知,X 的分布列为X 123P127142749所以()1144651232727927E X =⨯+⨯+⨯=.20.如图,正三棱柱ABC −A 1B 1C 1的所有棱长均为2,D 为棱BB 1(不包括端点)上一动点,E 是AB 的中点.(1)若AD ⊥A 1C ,求BD 的长;(2)当D 在棱BB 1(不包括端点)上运动时,求平面ADC 1与平面ABC 的夹角的余弦值的取值范围.【答案】(1)1BD =(2),72⎛⎝⎦【解析】【分析】(1)由平面ABC ⊥平面11ABB A 得到CE ⊥平面11ABB A ,进而得到AD CE ⊥,证明AD ⊥平面1A CE ,即可求出D 为1BB 的中点(2)建立空间直角坐标系,求出法向量,再结合二次函数求出余弦值的取值范围.【小问1详解】由,AC BC AE BE ==,知CE AB ⊥,又平面ABC ⊥平面11ABB A ,所以CE ⊥平面11ABB A .而AD ⊂平面11ABB A ,∴AD CE ⊥,又1AD A C ⊥,所以AD ⊥平面1A CE ,所以1AD A E ⊥.又四边形11ABB A 为正方形,故此时D 为1BB 的中点,故1BD =.【小问2详解】以E 为原点,EB 为x 轴,EC 为y 轴,过E 作垂直于平面ABC 的垂线为z 轴,建立空间直角坐标系,如图所示.设BD t =,则A (-1,0,0),D (1,0,t ),1C (02),()2,0,AD t =,()1AC = .设平面1ADC 的一个法向量为(,,)n x y z =,则12020n AD x tz n AC x z ⎧⋅=+=⎪⎨⋅=++=⎪⎩,取1x =,得2n t ⎛⎫=- ⎪⎝⎭ .平面ABC 的法向量()0,0,1m =,设平面1ADC 与平面ABC 的夹角为θ,∴2||cos ||||m n tm n ⋅==⋅ θ由于(0,2)t ∈,故cos ,72θ⎛∈⎝⎦.即平面1ADC 与平面ABC 夹角的余弦值的取值范围为212,72⎛⎝⎦.21.已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,且经过点31,2⎛⎫ ⎪⎝⎭,点12,F F 为椭圆C的左、右焦点.(1)求椭圆C 的方程.(2)过点1F 分别作两条互相垂直的直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与直线1x =交于点P .若11AF F B λ= ,且点Q 满足QA QB λ=,求1PQF △面积的最小值.【答案】(1)22143x y +=;(2)6.【解析】【分析】(1)根据椭圆的离心率为12e =,可得2234b a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程可得221914a b+=,解出22,a b 可得答案.(2)设直线1:1l x my =-,与椭圆方程联立得出韦达定理,由条件求出Q 点坐标,求出1QF 的长度,得出直线2l 的方程为:11x y m=--与直线1x =求出点P 坐标,得出1PF 长度,从而表示三角形面积,得出最值.【详解】解析:(1)由题意,得222221149141b e a a b ⎧=-=⎪⎪⎨⎪+=⎪⎩,解得:224,3a b ==,所以椭圆的方程为22143x y +=.(2)由(1)可得()11,0F -,若直线1l 的斜率为0,则2l 的方程为:=1x -与直线1x =无交点,不满足条件.设直线1:1l x my =-,若0m =,则1λ=则不满足QA QB λ= ,所以0m ≠设()()()112200,,,,,A x y B x y Q x y ,由2234121x y x my ⎧+=⎨=-⎩,得:()2234690m y my +--=,12122269,3434m y y y y m m +==-++,因为11AF F B QA QB λλ⎧=⎨=⎩ ,即()()()()1122101020201,1,,,x y x y x x y y x x y y λλ⎧---=+⎪⎨--=--⎪⎩则12y y λ-=,()1020y y y y λ-=-所以101220y y y y y y λ-=-=-,解得1201223y y y y y m==-+.于是1F Q =直线2l 的方程为:11x y m =--联立111x y m x ⎧=--⎪⎨⎪=⎩,解得(12)P m -,,所以1PF =.所以()12113111362PQF m S F Q F P m m m +⎛⎫=⋅==+≥ ⎪ ⎪⎝⎭ ,当且仅当1m =±时,()1min 6PQF S = .【点睛】关键点睛:本题考查求椭圆的方程和椭圆中三角形面积的最值问题,解答本题的关键是根据向量条件得出1201223y y y y y m==-+,进而求出点的坐标,得到1QF 的长度,从而表示出三角形的面积,属于中档题.22.已知函数()()223x f x x x e =-,()ln g x a x =,其中a e ≤.(1)求()f x 的最小值;(2)记()f x '为()f x 的导函数,设函数()()()23f x h x g x x '=-+有且只有一个零点,求a的取值范围.【答案】(1)min ()e f x =-(2){0}{e}aa ≤⋃∣【解析】【分析】(1)求导,分析导函数正负,结合极值和单调性分析即得解;(2)求导,分0a ≤,0e a <<,a e =分析单调性,结合极值点,边界情况,分析即得解【小问1详解】由题得()()3212x f x x x e ⎛⎫'=+- ⎪⎝⎭,令()0f x '=,得123,12x x =-=,所以,当3,2x ⎛⎫∈-∞-⎪⎝⎭时,()0f x ¢>,函数f (x )单调递增,当3,12x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,函数f (x )单调递减,当(1,)x ∈+∞时,()0f x ¢>,,函数f (x )单调递增,所以1x =是f (x )的极小值点;又当0x <时,()0f x >,当302x <<时,()0f x <,当32x >时,()0f x >,所以f (x )只能在30,2⎛⎫ ⎪⎝⎭内取得最小值,因为1x =是f (x )在(0,32)内的极小值点,也是最小值点,所以min ()(1)e f x f ==-.【小问2详解】由题得()(1)e ln ,0x h x x a x x =-->,因为(1)0h =且函数h (x )有且仅有1个零点,故这个零点为1,且2e ()e x xa x a h x x x x -=-=';①当0a ≤时,()0h x '>,函数h (x )在(0,+∞)上单调递增,且(1)0h =,所以符合函数h (x )有且仅有1个零点,且这个零点为1;②当0e a <<时,令2()e ,(0)x m x x a x =->,()22()2e e 2e 0x x x m x x x x x ='+=+>,所以在(0,+∞)上,函数m (x )单调递增,因为(0)0,(1)e 0m a m a =-=-><,所以0(0,1)x ∃∈,使得()00m x =,即020e x x a=所以在()00,x 上()0m x <,即()0h x '<,所以h (x )单调递减;在()0,1x 上()0m x >,因为0e a <<,所以在[1,+∞)上也有()0m x >,所以在()0,x +∞上()0m x >,即()0h x '>,所以h (x )单调递增,所以()()00022min 00000020011()1e e ln e ln x x x h x h x x x x x x x x ⎛⎫==--=-+- ⎪⎝⎭令211()ln (01)t x x x x x =+-<<,则32121121()110t x x x x x x x '⎛⎫⎛⎫=-+=-+-< ⎪⎪⎝⎭⎝⎭,所以t (x )在区间(0,1)上单调递减,所以()(1)0t x t >=,所以020011ln 0x x x +->,即()00h x <,因为0e a <<且a 为常数,显然当0x →时,()h x →+∞,当x →+∞时,()h x →+∞,所以函数h (x )在区间()00,x 和()0x +∞上各有一个零点;③当a e =时,()(1)e eln ,0x h x x x x =-->,所以2e e e ()e x xx h x x x x -=-=',令2()e e,(0)x n x x x =->,所以()22()2e e 2e 0x x x n x x x x x ='+=+>,所以在(0,)+∞上,()n x 单调递增,因为(1)e e 0n =-=,故在(0,1)上()0n x <,即()0h x '<,所以在区间(0,1)上h (x )单调递减,在(1,)+∞上()0n x >,即()0h x '>,所以在区间(1,+∞)上h (x )单调递增,所以min ()(1)0h x h ==,符合题意,故所求a 的取值范围是{0}{e}aa ≤⋃∣。
湖南省长沙市长郡中学2024届高三月考试卷(二)数学试题+答案解析
长郡中学2024届高三月考试卷(二)数学得分:____________本试卷共8页。
时量120分钟。
满分150分。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设{}|21A x x =-≤,(){}|ln 321B x x =-<,则A B =I ()A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤⎥⎝⎦2.若复数z 满足()21811z i i -=+,则4z i -=()A .13B .15C .13D .153.我国古代数学著作《九章算术》中记述道:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢.问:几日相逢?结合二马相逢的问题设计了一个程序框图如图所示.已知a 为良马第n 天行驶的路程,b 为驽马第n 天行驶的路程,S 为良马、驽马n 天行驶的路程和,若执行该程序框图后输出的结果为9n =,则实数m 的取值范围为()A .51252250,2⎡⎫⎪⎢⎣⎭B .51252250,2⎡⎤⎢⎥⎣⎦C .(]1950,2250D .[]1950,22504.已知函数()f x 的定义域为R .当0x <时,()31f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()6f =()A .-2B .-1C .0D .25.等差数列{}n a 的前n 项和为n S ,已知261116203a a a a a ---+=,则21S 的值为()A .63B .-21C .-63D .216.设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的()A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件7.若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则实数a 的取值范围为()A .5,4⎛⎫-∞ ⎪⎝⎭B .5,4⎛⎫+∞⎪⎝⎭C .(),1-∞D .()1,+∞8.将函数()cos 26f x x π⎛⎫=- ⎪⎝⎭的图象向左平移3π个单位,得到函数()y g x =的图象,那么下列说法正确的是()A .函数()g x 的最小正周期为2πB .函数()g x 是奇函数C .函数()g x 的图象关于点,012π⎛⎫⎪⎝⎭对称D .函数()g x 的图象关于直线3x π=对称9.已知x ,y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数()0,0z ax by a b =+>>在该约束条件下取到最小值25时,22a b +的最小值为()A .5B .4C .5D .210.已知函数()f x 是定义域为R 的奇函数,且满足()()22f x f x -=+,当()0,2x ∈时,()()2ln 1f x x x =-+,则方程()0f x =在区间[]0,8上的解的个数是()A .3B .5C .7D .911.已知a r ,b r ,e r 是平面向量,e r 是单位向量,若非零向量a r 与e r 的夹角为3π,向量b r 满足2430b e b -⋅+=r r r,则a b -r r 的最小值是()A .31-B .31+C .2D .23-12.已知函数()2,0,0x x x f x e x >⎧=⎨≤⎩,()xg x e =(e 是自然对数的底数),若关于x 的方程()()0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为()A .()11ln 22-B .1ln 22+C .1ln 2-D .()11ln 22+二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a r ,b r 的夹角为120o,且2a =r ,227a b -=r r ,则b =r ______.14.正项等比数列{}n a 中,存在两项()*,,m n a a m n N ∈使得2116m na aa =,且7652a a a =+,则125m n+的最小值为______.15.在研究函数()()120xf x x =≠的单调区间时,有如下解法:设()()ln 2ln g x f x x==,()g x 在区间(),0-∞和区间()0,+∞上是减函数,因为()g x 与()f x 有相同的单调区间,所以()f x 在区间(),0-∞和区间()0,+∞上是减函数.类比上述作法,研究函数()0xy xx =>的单调区间,其单调增区间为______.16.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,()1sin cos sin 2B BC C =+,当角B 取最大值时,ABC ∆的周长为233+,则a =______.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知向量()sin ,cos a x x =r ,()sin ,sin b x x =r ,函数()f x a b =⋅r r.(1)求()f x 的对称轴方程;(2)若对任意实数,63x ππ⎡⎤∈⎢⎥⎣⎦,不等式()2f x m -<恒成立,求实数m 的取值范围.18.如图,在ABC ∆中,点P 在BC 边上,60PAC ∠=o,2PC =,4AP AC +=.(1)求边AC 的长;(2)若APB ∆的面积是23,求sin BAP ∠的值.19.已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式.(2)若对任意的t R ∈,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.20.已知数列{}n a 的首项135a =,1321n n n a a a +=+,*n N ∈.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)记12111n nS a a a =++⋅⋅⋅+,若100n S <,求最大正整数n ;(3)是否存在互不相等的正整数m ,s ,n ,使m ,s ,n 成等差数列,且1m a -,1s a -,1n a -成等比数列?如果存在,请给以证明;如果不存在,请说明理由.21.已知函数()()ln af x x x a R x=++∈.(1)若函数()f x 在[)1,+∞上为增函数,求a 的取值范围;(2)若函数()()()21g x xf x a x x =-+-有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312x x e ⋅>(e 为自然对数的底数).22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2324x ty t=-⎧⎨=-+⎩(t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos tan ρθθ=.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)若1C 与2C 交于A 、B 两点,点P 的极坐标为22,4π⎛⎫-⎪⎝⎭,求11PA PB+的值.长郡中学2024届高三月考试卷(二)数学参考答案一、选择题1-5:BCCDC6-10:CCBBD11-12:AD1.B 【解析】∵{}{}|21|13A x x x x =-≤=≤≤,(){}33|ln 32122eB x x x -⎧⎫=-<=<<⎨⎬⎩⎭,∴33|11,22A B x x ⎧⎫⎡⎫=≤<=⎨⎬⎪⎢⎩⎭⎣⎭I .故选B .3.C 【解析】由题意,得良马n 天的行程为()1311032n n n -+,驽马n 天的行程为()1974n n n --,所以良马、驽马n 天的总路程为()2520014S n n n =+-,当8n =时,1950S =;当9n =时,2250S =.因为输出9n =,所以19502250m <≤.故选C .4.D 【解析】当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以当12x >时,函数()f x 是周期为1的周期函数,所以()()61f f =,又由题知()f x 在区间[]1,1-上是奇函数,所以()()()311112f f ⎡⎤=--=---=⎣⎦,故选D .5.C 【解析】∵261116203a a a a a ---+=,∴()()220616113a a a a a +-+-=,∴113a =-,∴21112163S a ==-,故选C .6.C 【解析】由题意得,()2221212100n n n n a a a q q ---+<⇔+<()()()2110,1n qq q -⇔+<⇔∈-∞-,故是必要不充分条件,故选C .7.C【解析】若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则[]1,2x ∀∈,212x ax +>,即211122x a x x x +⎛⎫<=+ ⎪⎝⎭恒成立,∵11112x x x x⎛⎫+≥⋅= ⎪⎝⎭,当且仅当1x =时等号成立,∴1a <,即实数a 的取值范围是(),1-∞,故选C .8.B【解析】将函数()cos 26f x x π⎛⎫=-⎪⎝⎭的图象向左平移3π个单位,得到函数()2cos 2sin 236y g x x x ππ⎛⎫==+-=- ⎪⎝⎭的图象,故()g x 为奇函数,且最小正周期为22ππ=,故A 错误,B 正确;当12x π=时,1sin 062y π=-=-≠,故C 错误;当3x π=时,23sin132y π=-=-≠±,故D 错误,故选B .10.D【解析】由()()22f x f x -=+得,()()4f x f x =+,∵()f x 的周期为4,∵()0,2x ∈时,()()2ln 1f x x x =-+,()f x 为奇函数,当0x =时,()00f =,当20x -<<时,()()2ln 1f x x x =-++,∴当22x -<<时,()()()22ln 1,02ln 1,20x x x f x x x x ⎧-+<<⎪=⎨-++-<≤⎪⎩,当22x -<<时,令()0f x =,则0x =,或1x =±,又()()()222f f f -==-,故()20f =,则()60f =.∴当[]0,8x ∈时,()f x 的零点为:0,1,3,4,5,7,8,2,6共9个,故选D .11.A 【解析】设()1,0e =r ,(),b x y =r ,则222430430b e b x y x -⋅+=⇒+-+=r r r ()2221x y ⇒-+=.如图所示,a OA =r uu r ,b OB =r uu u r (其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=),∴min131a b CD -=-=-r r (其中CD OA ⊥).12.D【解析】∵()2,0,0xx x f x e x >⎧=⎨≤⎩,∴()0f x >恒成立,∴()()f xg f x em ==⎡⎤⎣⎦,∴()ln f x m =.作函数()f x ,ln y m =的图象如下,结合图象可知,存在实数()ln 01t m t =<≤,使得122x x e t ==,故211ln 2x x t t -=-,令()1ln 2h t t t =-,则()1'12h t t=-,故()h t 在10,2⎛⎤ ⎥⎝⎦递减,在1,12⎛⎤ ⎥⎝⎦递增,∴()111ln 2222h t h ⎛⎫≥=+ ⎪⎝⎭,故选D.二、填空题13.214.615.1,e⎛⎫+∞ ⎪⎝⎭16.313.2【解析】∵227a b -=r r,∴()2228a b -=r r ,即224428a a b b -⋅+=r r r r ,∴2442cos120428b b -⨯⨯⨯+=or r ,解得2b =r ,故答案为2.14.6【解析】先由已知求出公比2q =,再得出6m n +=,于是()125112566m n m n m n ⎛⎫+=++≥ ⎪⎝⎭,所以所求最小值为6.15.1,e⎛⎫+∞ ⎪⎝⎭【解析】设()()ln ln g x f x x x ==,则()'ln 1g x x =+,令()'0g x >,则1x e>,即()g x 在1,e⎛⎫+∞ ⎪⎝⎭上为增函数,又由复合函数单调性同增异减的原则,()0xy xx =>的单调增区间为1,e ⎛⎫+∞⎪⎝⎭,故答案为1,e⎛⎫+∞ ⎪⎝⎭.16.3【解析】ABC ∆中,()1sin cos sin 2B B C C =+,∴()1cos 2b B C c =+⋅,即cos 02bA c=-<,∴A 为钝角,∴cos cos 0A C ≠;由()sin sin sin cos cos sin B A C A C A C =+=+2cos sin A C =-,可得tan 3tan A C =-,且tan 0C >,∴()tan tan tan tan 1tan tan A C B A C A C +=-+=--22tan 223113tan 3233tan tan CCC C==≤=++,当且仅当3tan 3C =时取等号,∴B 取得最大值6π时,6c =,6C B π==,∴23A π=,由2222cos a b c bc A =+-,可得:3a b =.∵三角形的周长为3233a b c b b b ++=++=+.解得:233332b +==+,∴33a b ==.故答案为3.三、解答题17.【解析】(1)()2sin sin cos f x a b x x x =⋅=+⋅r r 1cos 2121sin 2sin 222242x x x π-⎛⎫=+=-+ ⎪⎝⎭,令242x k πππ-=+,k Z ∈,解得328k x ππ=+,k Z ∈.∴()f x 的对称轴方程为328k x ππ=+,k Z ∈.(2)∵,63x ππ⎡⎤∈⎢⎥⎣⎦,∴5212412x πππ≤-≤,又∵sin y x =在0,2π⎡⎤⎢⎥⎣⎦上是增函数,∴5sin sin 2sin 12412x πππ⎛⎫≤-≤ ⎪⎝⎭,又562sinsin 12644πππ+⎛⎫=+=⎪⎝⎭,∴()f x 在,63x ππ⎡⎤∈⎢⎥⎣⎦上的最大值是()max 2621332424f x ++=⨯+=,∵()2f x m -<恒成立,∴()max 2m f x >-,即354m ->,∴实数m 的取值范围是35,4⎛⎫-+∞⎪ ⎪⎝⎭.18.【解析】(1)在ABC ∆中,点P 在BC 边上,60PAC ∠=o,2PC =,4AP AC +=.则:设AC x =,利用余弦定理得:2222cos PC AP AC AP AC PAC =+-⋅⋅∠,则:()()22144242x x x x =+---⋅,整理得:2312120x x -+=,解得:2x =,故:2AC =.(2)由于2AC =,4AP AC +=,所以:2AP =,所以APC ∆为等边三角形.由于APB ∆的面积是23,则1sin 232AP BP BPA ⋅⋅∠=,解得4BP =.在APB ∆中,利用余弦定理:2222cos AB BP AP BP AP BPA =+-⋅⋅⋅∠,解得:27AB =,在APB ∆中,利用正弦定理得:sin sin BP ABBAP BPA=∠∠,所以:427sin 32BAP =∠,解得:21sin 7BAP ∠=.19.【解析】(1)当0x <时,0x ->,∴()23x xf x ---=-,又函数()f x 是奇函数,∴()()f x f x -=-,∴()23xx f x -=+.又()00f =.综上所述()2,030,02,03xx x x f x x xx -⎧->⎪⎪==⎨⎪⎪+<⎩.(2)()f x 为R 上的单调函数,且()()51003f f -=>=,∴函数()f x 在R 上单调递减.∵()()22220f t t f t k -+-<,∴()()2222f t t f t k -<--,∵函数()f x 是奇函数,∴()()2222f t t f k t -<-.又()f x 在R 上单调递减,∴2222t t k t ->-对任意t R ∈恒成立,∴2320t t k -->对任意t R ∈恒成立,∴4120k ∆=+<,解得13k <-.∴实数k 的取值范围为1,3⎛⎫-∞- ⎪⎝⎭.20.【解析】(1)因为112133n n a a +=+,所以1111133n n a a +-=-.又因为1110a -≠,所以()*110n n N a -≠∈.所以数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列.(2)由(1)可得1121133n n a -⎛⎫-=⋅ ⎪⎝⎭,所以11213nn a ⎛⎫=⋅+ ⎪⎝⎭.2121111112333n n n S n a a a ⎛⎫=++⋅⋅⋅+=+++⋅⋅⋅+ ⎪⎝⎭111133211313n n n n +-=+⨯=+--,若100n S <,则111003n n +-<,所以最大正整数n 的值为99.(3)假设存在,则2m n s +=,()()()2111m n s a a a --=-,因为332n n n a =+,所以2333111323232n m s n m s ⎛⎫⎛⎫⎛⎫--=- ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭,化简得3323m n s +=⨯.因为332323m n m n s ++≥⨯=⨯,当且仅当m n =时等号成立,又m ,s ,n 互不相等,所以不存在.21.【解析】(1)由题可知,函数()f x 的定义域为()0,+∞,()22'x x a f x x +-=,因为函数()f x 在区间[)1,+∞上为增函数,所以()'0f x ≥在区间[)1,+∞上恒成立,等价于()2min a x x ≤+,即2a ≤,所以a 的取值范围是(],2-∞.(2)由题得,()2ln g x x x ax a x =-+-,则()'ln 2g x x ax =-,因为()g x 有两个极值点1x ,2x ,所以11ln 2x ax =,22ln 2x ax =,欲证2312x x e >等价于证()2312ln ln 3x x e ⋅>=,即12ln 2ln 3x x +>,所以12322ax ax +>,因为120x x <<,所以原不等式等价于12324a x x >+.由11ln 2x ax =,22ln 2x ax =,可得()2211ln 2x a x x x =-,则()2121ln 2x x a x x =-,由此可知,原不等式等价于212112ln 32x x x x x x >-+,即()2211221121313ln 221x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++.设21x t x =,则1t >,则上式等价于()()31ln 112t t t t ->>+.令()()()31ln 112t h t t t t -=->+,则()()()()2141'12t t h t t t --=+,因为1t >,所以()'0h t >,所以()h t 在区间()1,+∞上单调递增,所以当1t >时,()()10h t h >=,即()31ln 12t t t ->+,所以原不等式成立,即2312x x e ⋅>.22.【解析】(1)曲线1C 的普通方程为4320x y +-=;曲线2C 的直角坐标方程为:2y x =.(2)1C 的参数方程转化为标准形式为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),代入2y x =得29801500t t -+=,点P 的直角坐标为()2,2-,设1t ,2t 是A 、B 对应的参数,则12809t t +=,12503t t =.∴121211815PA PB t t PA PB PA PB t t +++===⋅.23.【解析】(1)当2a =时,()21f x x x =-+-,()2f x ≤,即212x x -+-≤,故1212x x x ≤⎧⎨-+-≤⎩或12212x x x <<⎧⎨-+-≤⎩或2212x x x ≥⎧⎨-+-≤⎩,解得:112x ≤≤或12x <<或522x ≤≤,故不等式的解集是15|22x x ⎧⎫≤≤⎨⎬⎩⎭.(2)∵()1f x x ≤+的解集包含[]1,2,∴当[]1,2x ∈时,不等式()1f x x ≤+恒成立,即11x a x x -+-≤+在[]1,2x ∈上恒成立,∴11x a x x -+-≤+,即2x a -≤,∵22x a -≤-≤,∴22x a x -≤≤+在[]1,2x ∈上恒成立,∴()()max min 22x a x -≤≤+,∴03a ≤≤,∴a 的取值范围是[]0,3.。
湖南省长沙市2025届高三上学期第二次月考数学试卷含答案
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
湖南省长沙市长郡中学2022-2023学年高三上学期月考(二)数学试题(含解析)
长郡中学2022-2023届高三月考试卷(二)数学2022.10一、选择题1.已知全集U =R ,集合{}2,3,4A =,集合{}0,2,4,5B =,则图中的阴影部分表示的集合为()A.{}2,4 B.{}0 C.{}5 D.{}0,52.若i1ia z +=-(i 为虚数单位)是纯虚数,则=a ()A.-1B.0C.1D.23.已知函数()y f x =的图像在点()()33P f ,处的切线方程是27y x =-+,则()()33f f '-=()A.2- B.2C.3- D.34.命题p :“2R,240x ax ax ∃∈+-≥”为假命题,则a 的取值范围是()A.40a -<£B.40a -≤< C.30a -≤≤ D.40a -≤≤5.当102x <≤时,4log xa x <,则a 的取值范围是()A.0,2⎛⎫ ⎪ ⎪⎝⎭B.,12⎛⎫ ⎪ ⎪⎝⎭C.D.2)6.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是()A.81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B.111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C.111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D.141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭7.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()(注:()()22221211236n n n n ++++++=)A.1624B.1198C.1024D.15608.已知函数()3f x x ax b =++,a 、b R ∈.1x 、()2,x m n ∈且满足()()1f x f n =,()()2f x f m =,对任意的[],x m n ∈恒有()()()f m f x f n ≤≤,则当a 、b 取不同的值时,()A.12n x +与22m x -均为定值B.12n x -与22m x +均为定值C.12n x -与22m x -均为定值D.12n x +与22m x +均为定值二、选择题9.已知奇函数())cos()(0,0π)f x x x ωϕωϕωϕ=+-+><<的最小正周期为π,将函数()f x 的图象向右平移π6个单位长度,可得到函数()y g x =的图象,则下列结论正确的是()A.函数π()2sin(2)3g x x =- B.函数()g x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称C.函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递增 D.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,函数()g x10.正四棱锥P ABCD -的所有棱长为2,用垂直于侧棱PC 的平面α截该四棱锥,则()A.PC BD⊥ B.四棱锥外接球的表面积为8πC.PA 与底面ABCD 所成的角为60︒D.当平面α经过侧棱PC 中点时,截面分四棱锥得到的上、下两部分几何体体积之比为3:111.已知数列{}n a 满足18a =,21a =,2,2,n n na n a a n +-⎧=⎨-⎩为偶数为奇数,n T 为数列{}n a 的前n 项和,则下列说法正确的有()A.n 为偶数时,()221n n a -=- B.229n T n n =-+C.992049T =- D.n T 的最大值为2012.设定义在R 上的函数()f x 与()g x 的导函数分别为()f x '和()g x ',若()()212f x g x +--=,()()1f x g x ''=+,且()1g x +为奇函数,则下列说法中一定正确的是()A.()10g = B.函数()g x '的图象关于2x =对称C.()20221k g k ==∑ D.()()20211k f k g k ==∑三、填空题13.若22log log 6a b +=,则a b +的最小值为________.14.已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足22,3BE EC AE BD =⋅=- ,则AF EF ⋅的最小值为______.15.已知等差数列{}n a 和正项等比数列{}n b 满足117332,2a b a b a ====,则数列{}2(2)n n a b -的前n 项和为______.16.已知函数()ln xf x x =,()x xg x e=,若存在1>0x ,2x R ∈,使得()()120f x g x =<成立,则12x x 的最小值为______.四、解答题17.已知数列{}n a 中,n S 为{}n a 的前n 项和,13n n a S n +=-+,*n N ∈,12a =.(1)求{}n a 的通项公式;(2)设()*2n n n b n N S n =∈-+,数列{}n b 的前n 项和为n T ,求证:()*1433n T n N <∈.18.如图,在梯形ABCD 中,//AB CD ,2AB =,5CD =,23ABC π∠=.(1)若AC =,求梯形ABCD 的面积;(2)若AC BD ⊥,求tan ABD ∠.19.如图,在三棱柱111ABCA B C ﹣中点,E 在棱1BB 上,点F 在棱CC 1上,且点,E F 均不是棱的端点,1,AB AC BB ⊥=平面,AEF 且四边形11AA B B 与四边形11AAC C 的面积相等.(1)求证:四边形BEFC 是矩形;(2)若2,3AE EF BE ==,求平面ABC 与平面AEF 所成角的正弦值.20.统计与概率主要研究现实生活中的数据和客观世界中的随机现象,通过对数据的收集、整理、分析、描述及对事件发生的可能性刻画,来帮助人们作出合理的决策.(1)现有池塘甲,已知池塘甲里有50条鱼,其中A 种鱼7条,若从池塘甲中捉了2条鱼.用ξ表示其中A 种鱼的条数,请写出ξ的分布列,并求ξ的数学期望()E ξ;(2)另有池塘乙,为估计池塘乙中的鱼数,某同学先从中捉了50条鱼,做好记号后放回池塘,再从中捉了20条鱼,发现有记号的有5条.(ⅰ)请从分层抽样的角度估计池塘乙中的鱼数.(ⅱ)统计学中有一种重要而普遍的求估计量的方法─最大似然估计,其原理是使用概率模型寻找能够以较高概率产生观察数据的系统发生树,即在什么情况下最有可能发生已知的事件.请从条件概率的角度,采用最大似然估计法估计池塘乙中的鱼数.21.已知椭圆C :22221(0)x y a b a b+=>>的四个顶点构成的四边形的面积为312⎛⎫ ⎪⎝⎭,在椭圆C 上.(1)求椭圆C 的方程;(2)若矩形MNPQ 满足各边均与椭圆C 相切.求证:矩形MNPQ 对角线长为定值.22.已知函数2()e ,2xmx f x m =-∈R .(1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.长郡中学2023届高三月考试卷(二)数学一、选择题1.已知全集U=R ,集合{}2,3,4A =,集合{}0,2,4,5B =,则图中的阴影部分表示的集合为()A.{}2,4 B.{}0 C.{}5 D.{}0,5【答案】D 【解析】【分析】根据给定条件,利用韦恩图表达的集合运算直接计算作答.【详解】依题意,图中的阴影部分表示的集合是()U A B ð,而全集U =R ,{}2,3,4A =,{}0,2,4,5B =,所以(){0,5}UA B ⋂=ð.故选:D2.若i1ia z +=-(i 为虚数单位)是纯虚数,则=a ()A.-1B.0C.1D.2【答案】C 【解析】【分析】根据复数的除法运算化简复数,进而根据纯虚数实部为0,虚部不为0即可求解.【详解】()()()i 1i 11i i ==1i 22a a a a z ++-+++=-,由于z 为纯虚数,因此10a -=且10a +,故1a =,故选:C3.已知函数()y f x =的图像在点()()33P f ,处的切线方程是27y x =-+,则()()33f f '-=()A.2- B.2C.3- D.3【答案】D 【解析】【分析】利用导数的几何意义求出()3f 和()3f ',即可求得.【详解】函数()f x 的图像在点()()33P f ,处的切线的斜率就是在该点处的导数,即()3f '就是切线27y x =-+的斜率,所以()32f '=-.又()32371f =-⨯+=,所以()()()33123f f -=--='.故选:D4.命题p :“2R,240x ax ax ∃∈+-≥”为假命题,则a 的取值范围是()A.40a -<£ B.40a -≤< C.30a -≤≤ D.40a -≤≤【答案】A 【解析】分析】存在命题为假命题,则其否定是全称命题且为真命题,写出命题的否定,由不等式的性质可得结论.【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a=时,40-<恒成立,符合题意;其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a -<<,综上可知,-4<0a ≤故选:A 5.当102x <≤时,4log xax <,则a 的取值范围是()A.0,2⎛⎫ ⎪ ⎪⎝⎭B.,12⎛⎫⎪ ⎪⎝⎭C.D.2)【答案】B 【解析】【分析】利用指数函数以及对数函数的单调性,结合已知条件可得关于a 的不等式,即可求得答案.【详解】由题意得,当1a>时,log a y x =是增函数,102x <≤时,log 0a x <,不合题意;当01a <<时,log a y x =在102x <≤时单调递减,4xy =递增,要使得4log xa x <成立,需满足1214log 2a<,即21log 2log 2a a a >=,则212a>,解得12a <<,故选:B6.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是()A.81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭ B.111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C.111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭ D.141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】C 【解析】【分析】先由零点个数求出36ω≤<,再用整体法得到不等式组,求出ω的取值范围.【详解】π,π3x ⎡⎤∈⎢⎥⎣⎦,ππππ,π3333x ωωω⎡⎤+∈++⎢⎥⎣⎦,其中2ππ4ππ3ωω≤-<,解得:36ω≤<,则ππ4π333ω+≥,要想保证函数在π,π3⎡⎤⎢⎥⎣⎦恰有三个零点,满足①1111πππ+2π2π+2π33π4π+2π<π5π+2π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,1k Z ∈,令10k =,解得:1114,33ω⎡⎫∈⎪⎢⎣⎭;或要满足②2222ππ2ππ+2π33π2π+3π<π2π+4π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,2k Z ∈,令21k =,解得:175,3ω⎛⎫∈ ⎪⎝⎭;经检验,满足题意,其他情况均不满足36ω≤<条件,综上:ω的取值范围是111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭.故选:C 【点睛】三角函数相关的零点问题,需要利用整体思想,数形结合等进行解决,通常要考虑最小正周期,确定ω的范围,本题中就要根据零点个数,先得到ππ23TT ≤-<,从而求出36ω≤<,再进行求解.7.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()(注:()()22221211236n n n n ++++++=)A.1624B.1198C.1024D.1560【答案】C 【解析】【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++- 所以11nn b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n n b C ++=+=+,所以()21133222nn n n bn -=+=-+,()()()()2221111121233226n n n n B n n n n+-=+++-++++= 同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++-- 11n n a a B +-=所以11n n a B +=+,所以191024a =.故选:C【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.8.已知函数()3f x x ax b =++,a 、b R ∈.1x 、()2,x m n ∈且满足()()1f x f n =,()()2f x f m =,对任意的[],x m n ∈恒有()()()f m f x f n ≤≤,则当a 、b 取不同的值时,()A.12n x +与22m x -均为定值 B.12n x -与22m x +均为定值C.12n x -与22m x -均为定值D.12n x +与22m x +均为定值【答案】D 【解析】【分析】分析得出0a<,利用导数分析函数()f x 的单调性,可得知1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点,再由()()1f x f n =、()()2f x f m =结合因式分解可得出结论.【详解】当0a≥时,()230f x x a '=+≥,此时,函数()f x 在R 上为增函数,当1x 、()2,x m n ∈时,()()1f x f n <,()()2f x f m >,不合乎题意,所以,0a <.由()0f x '=可得x =,当x <x >()0f x '>;当x <<()0f x '<.所以,函数()f x 的单调递增区间为,⎛-∞ ⎝,⎫+∞⎪⎪⎭,单调递减区间为⎛ ⎝.对任意的[],x m n ∈恒有()()()f m f x f n ≤≤,()()min f x f m =,()()max f x f n =,又当1x 、()2,x m n ∈且满足()()1f x f n =,()()2f x f m =,所以,1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点,则1x =,2x =,由()()1f x f n =可得3311x ax b n an b ++=++,可得()()33110x n a x n -+-=,即()()221110x n x nx n a -+++=,因为1x n ≠,则22110x nx n a +++=,1x = ,可得213ax =-,所以,221120n nx x +-=,即()()1120n x n x -+=,所以,120n x +=,同理可得220m x +=,故选:D.【点睛】关键点点睛:解本题的关键在于以下两点:(1)利用已知条件分析出1x 、2x 为函数()f x 的极值点;(2)利用等式()()1f x f n =,()()2f x f m =结合因式化简得出结果.二、选择题9.已知奇函数())cos()(0,0π)f x x x ωϕωϕωϕ=+-+><<的最小正周期为π,将函数()f x 的图象向右平移π6个单位长度,可得到函数()y g x =的图象,则下列结论正确的是()A.函数π()2sin(2)3g x x =- B.函数()g x 的图象关于点π,03⎛⎫-⎪⎝⎭对称C.函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递增 D.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,函数()g x 【答案】AB 【解析】【分析】利用两角差的正弦公式将()f x 化为π()2sin()6f x x ωϕ=+-,根据函数的最小正周期确定ω,根据奇偶性确定π6ϕ=,可得其解析式,根据三角函数的平移变换可得函数()g x 的解析式,判断A;代入验证可判断B ;根据x 的范围,确定π23x -的范围,结合正弦函数性质,可判断C,D.【详解】由题意可得π())cos()2sin(6f x x x x ωϕωϕωϕ=+-+=+-,因为()f x 的最小正周期为π,所以2π2πω==,又因为()f x 为奇函数,所以πππ,π,Z 66k k k ϕϕ-=∴=+∈,而0πϕ<<,故π6ϕ=,所以()2sin 2f x x =,则将函数()f x 的图象向右平移π6个单位长度,可得到函数()y g x =的图象,故ππ()2sin[2()]2sin(2)63g x x x =-=-,A 正确;将π3x =-代入π()2sin(2)3g x x =-中,有ππ2sin[2()]033---=,即函数()g x 的图象关于点π,03⎛⎫-⎪⎝⎭对称,B 正确;当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2[,]333x -∈-,由于正弦函数sin y x =在2ππ[,]33-上不单调,故()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上不是单调递增函数,故C 错误;当π0,2x ⎡⎤∈⎢⎣⎦时,ππ2π2[,333x -∈-,π()2sin(2)[2]3g x x =-∈,函数最大值为2,D 错误,故选:AB 10.正四棱锥P ABCD -的所有棱长为2,用垂直于侧棱PC 的平面α截该四棱锥,则()A.PC BD⊥ B.四棱锥外接球的表面积为8πC.PA 与底面ABCD 所成的角为60︒D.当平面α经过侧棱PC 中点时,截面分四棱锥得到的上、下两部分几何体体积之比为3:1【答案】ABD 【解析】【分析】根据BD ⊥平面PAC 即可判断A,由PO ⊥底面ABCD ,即可判断外接球的球心在PO 上,利用勾股定理即可求半径,进而可判断B,PAO ∠即为PA 与底面ABCD 所成角,根据几何法即可判断C,取PC 的中点E ,连接BE ,DE ,BD ,能证明PC ⊥面BDE ,分别求出截面分四棱锥得到的上下两部分几何体体积,能判断D .【详解】过P 作PO ⊥底面ABCD 于O ,则O 为AC 中点,由于BD ⊂底面ABCD ,所以PO BD ⊥,又,,,AC BD AC PO O AC PO ⊥⋂=⊂平面PAC ,故BD ⊥平面PAC ,PC ⊂平面PAC ,故BD PC ⊥,故A 正确,由正四棱锥的特征可知,其外接球的球心在PO 上,设半径为R ,则()222OCOP R R +-=,又PO ==,解得R =,故外接球的表面积为24π8πR =,故B 正确,过P 作PO ⊥底面ABCD 于O ,则O 为AC 中点,则PAO ∠即为PA 与底面ABCD 所成角,正四棱锥P ABCD -所有棱长为2,2AP ∴=,12AO AC ==cos AO PAO AP ∴∠==,45PAO ∴∠=︒,故C 错误,取PC 的中点E ,连接BE ,DE ,BD ,正四棱锥P ABCD -的所有棱长为2,PBC ∴ 为正三角形,PC DE ∴⊥,PC BE ⊥,又DE BE E ⋂=,,DE BE ⊂平面BDE所以PC ⊥面BDE ,故当平面α经过侧棱PC 中点时,平面α即为平面BDE ,此时111112232322E BCDBCD VS OP -=⋅=⨯⨯⨯⨯⨯,1122333P ABCD ABCD V S OP -=⋅=⨯⨯⨯,P ABCD E BCD V V V --∴=-=上,∴3E BCDV V -=上,故D 正确.故选:ABD11.已知数列{}n a 满足18a =,21a =,2,2,n n na n a a n +-⎧=⎨-⎩为偶数为奇数,n T 为数列{}n a 的前n 项和,则下列说法正确的有()A.n 为偶数时,()221n n a -=- B.229n T n n =-+ C.992049T =- D.n T 的最大值为20【答案】AC 【解析】【分析】对选项A ,偶数项构成等比数列,即可求得通项;对选项B ,检验当1n =时,所给表达式不满足;对选项C ,按照n为奇数和偶数分别讨论,根据10099100T T a -=,可直接求得;对选项D ,n T 的最大值为71021T T ==【详解】根据递推关系可知,n 为奇数时,()18292nn a n-⎛⎫=+⨯-=- ⎪⎝⎭n 为偶数时,()221n n a -=-,故A 对;()()212342121321242n n n n n T a a a a a a a a a a a a --=++++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅+根据奇数项构成等差数列可得:()21321862109n a a a n n n -++⋅⋅⋅+=++⋅⋅⋅+-+=-+而又:2421,0,n n a a a n ⎧++⋅⋅+=⎨⎩当为奇数当为偶数则有:2229,91,n n n n T n n n ⎧-+=⎨-++⎩为偶数为奇数,故B 错误;()100222991010005095012049a T T -=-=-+⨯--=-,故C 对;根据n T 中的奇数项构成等差数列,而偶数项之和不是1就是0,因此根据n T 特点可知:n T 的最大值在奇数项之和取得最大值的附近,26393119T =-+⨯+=,76719221T T a =+=+=,2849420T =-+⨯=,98920020T T a =+=+=,210595121T =-+⨯+=,11101119T T a =+=,n T 的最大值为71021T T ==,故D 错故选:AC12.设定义在R 上的函数()f x 与()g x 的导函数分别为()f x '和()g x ',若()()212f x g x +--=,()()1f x g x ''=+,且()1g x +为奇函数,则下列说法中一定正确的是()A.()10g = B.函数()g x '的图象关于2x =对称C.()20221k g k ==∑ D.()()20211k f k g k ==∑【答案】AD 【解析】【分析】由()1g x +为奇函数可得()10g =,由()()212f x g x +--=取导数可得()()30f x g x ''+-=,结合条件()()1f x g x ''=+,判断B ,再由条件判断函数()f x ,()g x 的周期,由此计算()20221k g k =∑,()()20211k f k g k =∑,判断C ,D.【详解】因为()1g x +为奇函数,所以()()11g x g x +=--+,取0x =可得()10g =,A 对,因为()()212f x g x +--=,所以()()210f x g x ''++-=所以()()30f x g x ''+-=,又()()1f x g x ''=+()()130g x g x ''++-=,故()()220g x g x ''++-=,所以函数()g x '的图象关于点(2,0)对称,B 错,因为()()1f x g x ''=+,所以()()10f xg x '-+=⎡⎤⎣⎦所以()()1f x g x c -+=,c 为常数,因为()()212f x g x +--=,所以()()32f x g x --=,所以()()132g x g x c +--=-,取1x =可得2c =,所以()()13g x g x +=-,又()()11g x g x +=--+,所以()()31g x g x -=--+,所以()()2g x g x =--,所以()()42()g x g x g x +=-+=,故函数()g x 为周期为4的函数,因为()()2g x g x +=-,所以()()310g g =-=,()()42g g =-,所以(1)(2)(3)(4)0g g g g +++=,所以()[][]20221(1)(2)(3)(4)(5)(6)(7)(8)k g k g g g g g g g g ==++++++++⋅⋅⋅∑[](2017)(2018)(2019)(2020)(2021)(2022)g g g g g g ++++++,所以()202215050(2021)(2022)(1)(2)(2)k g k g g g g g ==⨯++=+=∑,由已知无法确定(2)g 的值,故()20221k g k =∑的值不一定为0,C 错;因为()()212f x g x +--=,所以()()221f x g x +=-+,()()625f x g x +=-+,所以()2(6)f x f x +=+,故函数()f x 为周期为4的函数,(4)(4)()()f xg x f x g x ++=所以函数()()f x g x 为周期为4的函数,又(1)2(0)f g =-,(2)2(1)2f g =-=,(3)2(2)2(0)f g g =-=+,(4)2(3)2f g =-=,所以(1)(1)(2)(2)(3)(3)(4)(4)02(2)2(4)0f g f g f g f g g g +++=++=,所以()()[]20211505(1)(1)(2)(2)(3)(3)(4)(4)(2021)(2021)k f k g k f g f g f g f g f g ==++++∑()()20211(1)(1)0k f k g k f g ===∑,D 对,故选:AD.【点睛】本题解决的关键在于根据条件判断函数的周期性,对称性,并结合函数性质求函数值得和.三、填空题13.若22log log 6a b +=,则a b +的最小值为________.【答案】16【解析】【分析】由题得62ab =,再利用基本不等式求解.【详解】因为22log log 6a b +=,所以2log 6ab =.所以62ab=所以622216a b ab +≥≥=.当且仅当8ab ==时取等.故答案为:1614.已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足22,3BE EC AE BD =⋅=- ,则AF EF ⋅ 的最小值为______.【答案】7336-【解析】【分析】由22,3BE EC AE BD =⋅=- ,根据向量的线性运算以及数量积的运算律,可求得∠DAB =π3;以菱形对角线交点为原点,对角线所在直线为坐标轴建立平面直角坐标系,利用坐标表示出AF EF ⋅,得到关于t 的二次函数,求得二次函数最小值即为所求.【详解】由题意知:2=3BE BC,设=DAB θ∠,所以()()22222333AE BD AB BE AD AB AB AD AB BC BC AB ⋅=+⋅-=⋅-+-⋅=-故()22214cos 444cos cos 3332θθθ-+⨯-⨯=-⇒=由于()0,πθ∈,所以π=3θ,以AC 与BD 交点为原点,AC 为x 轴,BD 为y 轴建立如图所示的直角坐标系,所以A (﹣3,0),C (3,0),D (0,1),B (0,﹣1),E (231,33-),设F (0,t ),则AF =(3,t ),EF =23133,t ⎛⎫-+ ⎪ ⎪⎝⎭,所以2117323636AF EF t t t ⎛⎫⎛⎫⋅=-++=+- ⎪ ⎪⎝⎭⎝⎭ 当t =16-时,AF EF ⋅ 取最小值7336-,故答案为:7336-15.已知等差数列{}n a 和正项等比数列{}n b 满足117332,2a b a b a ====,则数列{}2(2)n n a b -的前n 项和为______.【答案】212n n +⋅【解析】【分析】根据等差等比数列基本量的计算可得公比和公差,进而得1,2nn na nb =+=,因此可得()22(2)=212n n n a b n n -+-,根据裂项求和即可求解.【详解】设公差和公比分别为(),0d q q >,由117332,2a b a b a ====得()2262222d q d +==+,解得1,2d q ==,因此1,2n nn an b =+=,所以()22(2)=212nnn a b n n -+-()()()()22222221212=2122212212n n n n n nnn n n n n n n +⎡⎤+---=⋅--⋅=⋅--⋅⎣⎦,设{}2(2)nn a b -的前n 项和为n S ,因此()2222123222112022212212n n nS n n +⎡⎤⎡⎤⎡⎤⋅-⋅+⋅-⋅++⋅--⋅⎣⎦⎦=⎣⎦⎣ 212=n n +⋅故答案为:212n n +⋅16.已知函数()ln xf x x =,()xx g x e =,若存在1>0x ,2x R ∈,使得()()120f x g x =<成立,则12x x 的最小值为______.【答案】1e-【解析】【分析】利用导数研究函数()f x 可得函数()f x 的单调性情况,且(0,1)x ∈时,()0f x <,(1,)x ∈+∞时,()0f x >,同时注意()()x x xx x lne g x f e e e===,则21xx e =,所以2122x x x x e =,构造函数()x h x xe =,0x <,利用导数求其最小值即可.【详解】函数()f x 的定义域为(0,)+∞,21()lnxf x x -'=,∴当(0,)x e ∈时,()0f x '>,()f x 单调递增,当(,)x e ∈+∞时,()0f x '<,()f x 单调递减,又(1)f 0=,所以(0,1)x ∈时,()0f x <;(1,)x e ∈时,()0f x >;(,)x e ∈+∞时,()0f x >,同时注意到()()xx xx x lne g x f e e e===,所以若存在1(0,)x ∈+∞,2x R ∈,使得12()()0f x g x =<成立,则101x <<且212()()()x f x g x f e ==,所以21x x e =2(0)x <,所以2122xx x x e =,所以构造函数()x h x xe =(0)x <,而()(1)x h x e x '=+,当(1,0)x ∈-时,()0h x '>,()h x 单调递增;当(,1)x ∈-∞-时,()0h x '<,()h x 单调递减,所以1()(1)h x h e=-=-最小值,即12)1(x x e =-最小值.故答案为:1e-.【点睛】关键点睛:利用同构的方式将12x x ,联系起来,这样就构造了新函数,然后利用导数研究函数的单调性及最值.四、解答题17.已知数列{}n a 中,n S 为{}n a 的前n 项和,13n n a S n +=-+,*n N ∈,12a =.(1)求{}n a 的通项公式;(2)设()*2nn nb n N S n =∈-+,数列{}n b 的前n 项和为n T ,求证:()*1433n T n N <∈.【答案】(1)22,13·21,1nn n a n -=⎧=⎨+>⎩.(2)证明见解析.【解析】【分析】(1)由已知得13n n a S n +=-+,即有14n n a S n -=-+,两式相减得()1121n n a a +-=-,根据等比数列的定义得数列{}1n a -为第二项起为等比数列,由等比数列的通项公式可得答案;(2)由(1)得123·2nn n n nb S n -==-+,运用错位相减法和数列的单调性可得证.【小问1详解】解:当1n =时,2111324a S a =-+=+=,13n n a S n +=-+,得()142n n a S n n -=-+≥,两式相减得,11n n n a a a +-=-,即有()1121n n a a +-=-,即为数列{}1n a -为第二项起为等比数列,则213·2n na--=,1n >,n N ∈,即有22,13·21,1n n n a n -=⎧=⎨+>⎩;【小问2详解】解:13n n a S n +=-+,得13·22n n S n -=-+,则123·2n n n n nb S n -==-+,即有前n 项和为2112333·23·23·2n n nT -=+++⋯+,23112323·23·23·23·2n n n T =+++⋯+,两式相减可得,2111111233·23·23·23·2nn nnT -=+++⋯+-1112·133·212nn n ⎛⎫- ⎪⎝⎭=--,化简得4412·3323·2nn nn T ⎛⎫=-- ⎪⎝⎭,由于{}n b 各项大于0,得113nT T =,由不等式的性质可得43nT <.故()*1433n T n N <∈.18.如图,在梯形ABCD 中,//AB CD ,2AB =,5CD =,23ABC π∠=.(1)若AC =ABCD 的面积;(2)若AC BD ⊥,求tan ABD ∠.【答案】(1)(2)tan 3ABD ∠=.【解析】【分析】(1)ABC 中,利用含ABC ∠的余弦定理表达式建立BC 的方程,求出BC 而得ABC 面积,再利用面积关系求ADC 的面积得解;(2)由题设中角的信息用ABD ∠表示出ABC 与BDC 中的相关角,再在这两个三角形中利用正弦定理建立两个方程,联立整理得tan ABD ∠的方程,解之即得.【详解】(1)设BC x =,在ABC 中,由余弦定理2222cos AC AB BC AB BC ABC =+-⋅∠得:22228222cos3x x π=+-⋅⋅⋅,即22240x x +-=,而x>0,解得4x =,所以4BC =,则ABC的面积11sin 24222ABC S AB BC ABC =⋅⋅∠=⋅⋅⋅=△,梯形ABCD 中,//AB CD ,ABC 与ADC 等高,且52ABCD =,所以ADC的面积52ABCADCS S ==△△,则梯形ABCD的面积ABC ADC S S S =+=△△;(2)在梯形ABCD 中,设ABD α∠=,而AC BD ⊥,则BDC α∠=,2BAC πα∠=-,23DBC a π∠=-,6BCA πα∠=-,在ABC 中,由正弦定理sin sin AB BC BCA BAC=∠∠得:2sin()sin()62BCππαα=--,在BDC 中,由正弦定理sin sin CD BC DBC BDC=∠∠得:52sin sin()3BCπαα=-,两式相除得:212sin()2cos sin )sin sin 3cos 5sin()sin()6222παααααππααα-⋅+=⇒--,整理得227sin cos 0αααα--=,即27tan 0αα--=解得tan 3α=或tan 5α=-,因为(,62ππα∈,则tan 3α=,即tan 3ABD ∠=.【点睛】(1)三角形中已知两边及一边对角求第三边,利用余弦定理建立关于第三边的一元二次方程求解;(2)涉及平面多边形问题,把图形拆分成若干个三角形,再在各个三角形内利用正弦、余弦定理求解.19.如图,在三棱柱111ABC A B C ﹣中点,E 在棱1BB 上,点F 在棱CC 1上,且点,E F 均不是棱的端点,1,AB AC BB ⊥=平面,AEF 且四边形11AA B B 与四边形11AAC C 的面积相等.(1)求证:四边形BEFC 是矩形;(2)若2,3AE EF BE ==,求平面ABC 与平面AEF 所成角的正弦值.【答案】(1)证明见解析;(2)10【解析】【分析】(1)由1BB ⊥平面AEF ,知1CC ⊥平面AEF ,求得2AEB AFC π∠=∠=,由四边形11AA B B 与四边形11AAC C 面积相等知,AE AF =,则AEB AFC ≅△△,故BE CF =,结合1BB EF⊥,从而有四边形BEFC 为矩形.(2)证得AG ⊥平面11BB C C ,取BC 的中点H ,以G 点为坐标原点,,,GF GA GH→→→的方向分别为x ,y ,z 轴建立空间直角坐标系,求得平面AEF 和平面ABC 的一个法向量,利用向量夹角求得二面角的正弦值.【详解】(1)在三棱柱中,11//BB CC ,则由1BB ⊥平面AEF ,知1CC ⊥平面AEF ,故1BB AE ^,1BB EF ⊥,1CC AF ⊥,从而2AEB AFC π∠=∠=,由四边形11AA B B 与四边形11AAC C 面积相等知,AE AF=又AB AC =,则AEB AFC ≅△△,故BE CF =结合//BE CF ,知四边形BEFC 为平行四边形,又1BB EF ⊥,故四边形BEFC 为矩形.(2)取EF 的中点G ,联结AG ,由(1)知AE AF =,且1BB ⊂平面11BB C C ,则平面AEF ⊥平面11BB C C ,又平面AEF 平面11BB C C EF=,则AG ⊥平面11BB C C ,取BC 的中点H ,以G 点为坐标原点,,,GF GA GH→→→的方向分别为x ,y ,z 轴建立如图所示空间直角坐标系,由2AE AF EF ===知,AEF 为正三角形,故AG =故A,(1,0,)3B -,(1,0,3C,(1,3AB →=-,(1,3AC →=-,设平面ABC 的一个法向量为(,,)a x y z →=则00a AB a AC ⎧⋅=⎪⎨⋅=⎪⎩,故0303x z x z ⎧--+=⎪⎪⎨⎪+=⎪⎩,取1y =,则0,3x z ==,(0,1,3)a →=因为平面AEF 的一个法向量为(0,0,1)b →=则cos ,10a ba b a b→→→→→→⋅<>===则二面角的余弦值为10,故二面角的正弦值为1020.统计与概率主要研究现实生活中的数据和客观世界中的随机现象,通过对数据的收集、整理、分析、描述及对事件发生的可能性刻画,来帮助人们作出合理的决策.(1)现有池塘甲,已知池塘甲里有50条鱼,其中A 种鱼7条,若从池塘甲中捉了2条鱼.用ξ表示其中A 种鱼的条数,请写出ξ的分布列,并求ξ的数学期望()E ξ;(2)另有池塘乙,为估计池塘乙中的鱼数,某同学先从中捉了50条鱼,做好记号后放回池塘,再从中捉了20条鱼,发现有记号的有5条.(ⅰ)请从分层抽样的角度估计池塘乙中的鱼数.(ⅱ)统计学中有一种重要而普遍的求估计量的方法─最大似然估计,其原理是使用概率模型寻找能够以较高概率产生观察数据的系统发生树,即在什么情况下最有可能发生已知的事件.请从条件概率的角度,采用最大似然估计法估计池塘乙中的鱼数.【答案】(1)分布列见解析,()725E =ξ(2)(i )200;(ii )199或200【解析】【分析】(1)根据超几何概率公式即可求解概率,进而得分布列和期望,(2)根据抽样比即可求解总数,根据最大似然思想结合概率的单调性即可求解最大值.【小问1详解】0,1,2ξ=,2112434377222505050C C C C 129433(0),(1),(2),C 175C 175C 175P P P ξξξ⋅=========故分布列为:ξ012P129175431753175()129433701217517517525E =⨯+⨯+⨯=ξ.【小问2详解】(i )设池塘乙中鱼数为m ,则50520m =,解得200m =,故池塘乙中的鱼数为200.(ii )设池塘乙中鱼数为n ,令事件B =“再捉20条鱼,5条有记号”,事件C =“池塘乙中鱼数为n ”则515505020C C ()C n n np P B C -⋅==∣,由最大似然估计法,即求n p 最大时n 的值,其中65n ,1(49)(19)(64)(1)n n p n n p n n +--∴=-+当65,......198n =时11n n p p +>,当199n =时11n n pp +=,当200,201,...n =时11n np p +<所以池塘乙中的鱼数为199或200.21.已知椭圆C :22221(0)x y a b a b+=>>的四个顶点构成的四边形的面积为,点312⎛⎫ ⎪⎝⎭,在椭圆C 上.(1)求椭圆C 的方程;(2)若矩形MNPQ 满足各边均与椭圆C 相切.求证:矩形MNPQ 对角线长为定值.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)利用待定系数法求解;(2)对当MN 的斜率的情况进行分类讨论,当MN 的斜率存在且不为0时,设直线MN :ykx t =+,与椭圆方程联立,根据0∆=,求得,k t的关系,利用两平行线之间的距离公式分别求得矩形边长,从而可求得对角线,即可得证.【小问1详解】解:由已知2212221914a b a b ⎧⋅⋅=⎪⎪⎨⎪+=⎪⎩,解得2a b =⎧⎪⎨=⎪⎩所以椭圆方程C :22143x y +=;【小问2详解】证明:当MN 的斜率为0或不存在时,对角线MP NQ ===,当MN 的斜率存在且不为0时,设直线MN :y kx t =+,联立223412y kx t x y =+⎧⎨+=⎩消去y 得()2223484120k x ktx t +++-=,()()222264163430k t t k ∆=--+=,化简得2243k t +=,所以两平行线MN 和PQ的距离1dNP ===,以1k -代替k ,两平行线MQ 和NP的距离2d MN ===,所以矩形MNPQ的对角线MP NQ ==综上所述,矩形MNPQ对角线长为定值22.已知函数2()e ,2xmx f x m =-∈R .(1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.【答案】(1)见解析(2)见解析【解析】【分析】(1)分类讨论导函数e ()xf x x m x ⎛⎫'=- ⎪⎝⎭的实数根即可求解极值点,(2)构造函数()()(2),(0,1)F x g x g x x =--∈和2e ()(3)e e,(0,1)xxxG x x x x-=-+-∈,通过判断函数的单调性,求解最值,当导数正负不好确定的时候,需要构造新的函数,不断的通过求导判断单调性.【小问1详解】2()e 2xmx f x =-,则()e x f x mx '=-,0x = 显然不是()'f x 的零点,e (),x f x x m x '⎛⎫∴=- ⎪⎝⎭令e ()=xg x x,则2e (1)()-'=x x g x x ,()g x ∴在(,0)-∞单调递减,在(0,1)单调递减,在(1,)+∞单调递增.当0x <时,()0g x <,当0x >时,()0>g x ,且()(1)eg x g ==极小值(,0)m ∴∈-∞时,e=x m x只有一个实数根,所以此时()f x 有1个极值点,[)0,e m ∈时,e=x m x没有实数根,故()f x 有0个极值点,当e m =时,e =x m x ,有一个实数根1x =,但1x =不是极值点,故此时()f x 没有极值点,(e,)m ∈+∞时,e =x m x有两个不相等的实数根,故()f x 有2个极值点.【小问2详解】由(1)知,(e,)m ∈+∞,且()()121201,,()x x g x g x m g x <<<==在(0,1)单调递减,在(1,)+∞单调递增,先证:122x x +>,即证:212x x >-,1201x x <<< 121x ∴->即证:()()212g x g x >-.即证:()()112g x g x >-.令()()(2),(0,1)F x g x g x x =--∈,即证:(0,1),()0x F x ∀∈>,2'22e e ()(1)()(2)x xF x x x x -=---令2(1,2)t x =-∈则x t<令2e ()h =λλλ,则4)(e (2)h'⋅⋅-=λλλλλ,则()h λ在(0,2)λ∈单调递减()()(2)h x h t h x ∴>=-,()0F x '∴<,即()F x 在(0,1)x ∈单调递减,()(1)0F x F ∴>=,证毕.再证:()()122e f x f x m +<-,1201x x <<< ,且122x x +>1122x x x ∴<-<.()f x 在()10,x 单调递增,在()12,x x 单调递减,在()2,x +∞单调递增,()()122f x f x ∴->.即证:()()1122e f x f x m +-<-,又11e x m x =,即证:()()()11121111e 23e e2e x x x f x f x m x x -+-+=-+-<.令2e ()(3)e e,(0,1)xx xG x x x x-=-+-∈,()23222222e 21e e (1)()(2)e e exx x xxxx x x x G x x x x '--+-+--∴=---=.令()23222()e 21e x p x x x x x =-+-+-,()2322()e 2212e x p x x x x x '∴=-+++-,令()()q x p x '=()2322()2e 22322e x x q x x x ∴=-+--'-,令()()r x q x '=()232()2e 41027x x x x r x ∴=-'+--令32()41027,(0,1)m x x x x x =+--∈,2()12202m x x x '∴=+-,11(0,1),()x m x ∴∃∈在()110,x 单调递减,在()11,1x 单调递增.(0)7,(1)5m m =-= ,12(0,1)x ∴∃∈,当()120,x x ∈时,()()0,r x q x >''单调递增;当()12,1x x ∈时,()()0,r x q x <''单调递减.()()2042e 0,10q q '<'=-= ,13(0,1),()x p x '∴∃∈在()130,x 单调递减,在()13,1x 单调递增.(0)10,(1)0p p ''=>= ,14(0,1),()x p x ∴∃∈在()140,x 单调递增,在()14,1x 单调递减.(0)1,(1)0p p == ,()0p x ∴>,()0G x '∴>,()G x ∴在(0,)x x ∈单调递增,()(1)2e G x G ∴<=,所以原命题得证.【点睛】本题考查了导数的综合运用,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.。
湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案
湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案第一部分:选择题(共计120分)请将答案填写在答题卡上。
1. 已知函数$f(x) = 2^x + 4^{-x}$,则$f(1)+f(-1)$的值为()。
A. 3B. 3/2C. 1D. 1/22. 已知集合$A=\{x | x\in\mathbb{R}, x^2-4x<0\}$,则$A$的解集为()。
A. $(-\infty, 0) \cup (4, +\infty)$B. $(0, 4)$C. $[0, 4]$D. $(0, +\infty)$3. 设等差数列$\{a_n\}$的公差为2,$a_1=3$,若$a_m+a_n=16$,其中$m,n$为正整数,且满足$m\neq n$,则$m+n$的值为()。
A. 8B. 9C. 10D. 114. 若$f(x) = \frac{1}{x}-\frac{1}{x+1}$,则$f(x+1)-f(x)$的值为()。
A. -1B. 1C. $\frac{1}{(x+1)^2}$D. $\frac{1}{(x+1)(x+2)}$5. 已知正方形$ABCD$的边长为1,点$E$为边$AB$上一点,$F$为边$BC$上一点,且满足$\angle EFD=90^\circ$,则$\triangle EFD$的面积为()。
A. $\frac{1}{8}$B. $\frac{1}{6}$C. $\frac{1}{4}$D.$\frac{1}{3}$第二部分:填空题(共计60分)请将答案填写在答题卡上。
1. 若$a, b$为实数,且满足$a^2+b^2=5$,则$a^3+b^3$的值为__________。
2. 已知集合$A = \{x | x\in\mathbb{R}, x^2-4x\leq 0\}$,则集合$A$的元素个数为__________。
湖南省长沙市长郡中学2023届高三二模数学试题
x0 2.706 3.841 6.635 7.879 10.828
( ) 22.已知函数 f ( x) = (cos x -1) e-x , g ( x) = ax2 + 1- ex x (a Î R ) .
(1)当 x Î(0,π ) 时,求函数 f ( x) 的最小值;
(2)当
x Î éêë-
π 2
=
1
+ 3i 2
=
1 2
+
3 2
i
,
故
z
=
1 2
-
3 2
i
,虚部为
-
3 2
,
故选:C. 3.A 【分析】列出从 5 个点选 3 个点的所有情况,再列出 3 点共线的情况,用古典概型的概率 计算公式运算即可.
【详解】如图,从 O, A, B, C, D 5 个点中任取 3 个有 {O, A, B},{O, A,C},{O, A, D},{O, B,C} {O, B, D},{O, C, D},{A, B,C},{A, B, D}
C
相交于点
H
æ çè
-
2 3
,
4 3
ö ÷ø
,与
y
轴相交于点
S
,过点
S
的另一
条直线 l 与 C 相交于 M , N 两点,且△ASM 的面积是△HSN 面积的 3 倍,求直线 l 的方 2
程. 21.人工智能(AI)是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某
校成立了 A, B 两个研究性小组,分别设计和开发不同的 AI 软件用于识别音乐的类别.
【详解】
取 BP 的中点为 O ,连接 OA,OC , 因为 PA ^ 平面 ABC ,而 AB Ì 平面 ABC ,故 PA ^ AB , 故OP = OA = OB . 同理 PA ^ BC ,而 CA ^ BC , CA I PA = A,CA, PA Ì 平面 PAC , 故 BC ^ 平面 PAC ,而 PC Ì 平面 PAC ,故 BC ^ PC , 故 OP = OC = OB ,
2021届湖南省长沙长郡中学高三上学期第二次月考文科数学试卷
2021年湖南省长沙长郡中学高三上学期第二次月考文科数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知集合1|28,2x A x x R ⎧⎫=<<∈⎨⎬⎩⎭,{}|11,B x x m x R =-<<+∈,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是 .2.已知数列{}n a 的前n 项和29n S n n =-,则其通项公式n a =____________.3.给出下列关于互不相同的直线,,m n l 和平面,αβ的四个命题: ①,,,m l A A m l m αα⊂=∉点则与不共面;②//,//,,,l m l m n l n m n ααα⊥⊥⊥、是异面直线,且则;③,,,//,//.//l m l m A l m ααββαβ⊂⊂=若点则;④//,//,//,//.l m l m αβαβ若则其中真命题是_____________(填序号)4.已知线段AB 两个端点 ()()2,3,3,2A B ---,直线l 过点 ()1,2P 且与线段AB 相交,则 l 的斜率k 的取值范围为________________.5.已知圆C 过双曲线且圆心在此双曲线上,则圆心到双曲线中心的距离是__________.6.定义在区间[],a b 上的函数()y f x =,'()f x 是函数()f x 的导数,如果[],a b ξ∃∈,使得()()()'()f b f a f b a ξ-=-,则称ξ为[],a b 上的“中值点”.下列函数:①()21,f x x =+②2()1f x x x =-+,③()()ln 3f x x =+,④中在区间[]2,2-上的“中值点”多于一个的函数是___________(请写出你认为正确的所有结论的序号)[二、单选题7.若直线1ax by +=与不等式组1210210y x y x y ≤⎧⎪--≤⎨⎪++≥⎩表示的平面区域无公共点,则23a b +的取值范围是A .()7,1--B .()3,5-C .()7,3-D .R8.如图,在一个正方体内放入两个半径不相等的球12,O O ,这两个球相外切,且球1O 与正方体共顶点A 的三个面相切,球2O 与正方体共顶点1B 的三个面相切,则两球在正方体的面11AAC C 上的正投影是A .B .C .D . 9.已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=-( ) A .25 B .3510- C .31010- D 25 10.已知()()()()130f x a x x a =--<,定义域为D ,任意,m n D ∈,点(),()P m f n 组成的图形为正方形,则实数a 的值为A . 1-B . 2-C . 3-D .4-11.已知M 是ABC ∆内的一点,且23,30AB AC BAC ⋅=∠=,若,MBC MCA ∆∆和MAB ∆的面积分别为1,,2x y ,则14x y+的最小值是 A .20 B . 18 C . 16 D . 912.一束光线从点()1,1A -出发,经x 轴反射到圆()()22:231C x y -+-=上的最短路程是A .321-B .26C .4D .5 13.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k=( )A .13B .23C .23D .22314.函数()f x 的导函数是'()f x ,若对任意的x R ∈,都有()2'()0f x f x +<成立,则A .(2ln 2)(2ln 3)32f f < B . (2ln 2)(2ln 3)32f f > C . (2ln 2)(2ln 3)32f f = D .无法比较15.在平面直角坐标系xOy 中,点()5,0A ,对于某个正实数k ,存在函数()2()0f x ax a =>,使得OA OQ OP OA OQ λ⎛⎫ ⎪=+ ⎪⎝⎭(λ为常数),这里点,P Q 的坐标分别为()()1(,1),()P f Q k f k ,,,则k 的取值范围为A .()2,+∞B . ()3,+∞C . [)4,+∞D .[)8,+∞三、解答题16.(本小题满分12分)已知函数()()sin 0,0,,2f x A x A x R πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的图像的一部分如图所示.(1)求函数()f x 的解析式;(2)求函数()(2)y f x f x =++的最小正周期和最值.17.如图,AB 为圆O 的直径,点E 、F 在圆O 上,且//AB EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==.(1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求证://OM 平面DAF ;(3)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为F ABCD V -,F CBE V -, 求:F ABCD F CBE V V --18.已知以点C 2(,)t t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O 和点B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.19.(本小题满分13分)已知{}n a 为等差数列,且5714,20a a ==,数列{}n b 的前n 项和为n S ,且22n n b S =-.(1)求数列{}{},n n a b 的通项公式;(2)若n n n c a b =⋅,n T 为数列{}n c 的前n 项和,求证: 20.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(−√3,0)、F 2(√3,0),椭圆上的点P 满足∠PF 1F 2=900,且ΔPF 1F 2的面积为S ΔPF 1F 2=√32. (1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 、B ,过点Q(1,0)的动直线l 与椭圆C 相交于M 、N 两点,直线AN 与直线x =4的交点为R ,证明:点R 总在直线BM 上.21.(本小题满分14分)已知函数()ln 3()f x a x ax a R =--∈.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图像在点()2,(2)f 处的切线的倾斜角为45,对于任意的[]1,2t ∈,在区间(),3t 上总不是单调函数,求m 的取值范围;(3ln n n ⨯⨯<参考答案1.2+∞(,)【解析】 试题分析:1|28,{|13}2x A x x R x x ⎧⎫=<<∈=-⎨⎬⎩⎭<<,因为x B ∈成立的一个充分不必要的条件是x A ∈,所以13m +>,即2m >.所以实数m 的取值范围是2+∞(,)考点:充分条件和必要条件的应用2.102-n【解析】试题分析:由已知得,811-==S a 当2≥n 时102)1(9)1(9221-=-+---=-=-n n n n n S S a n n n ,对n=1也适用,故n a =102-n . 考点:数列通项公式.3.①②③【解析】试题分析:由题意①m ⊂α,l∩α=A ,A ∉m ,则l 与m 不共面,此条件是异面直线的定义的符号表示,故正确; ②l 、m 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α,此条件下可以在α找到两条相交线,使得它们都与n 垂直,故可得n ⊥α,此命题正确;③若l ⊂α,m ⊂α,l∩m=A ,l ∥β,m ∥β,则α∥β,此命题是面面平行的判定定理的符号表示式,故正确;④若l ∥α,m ∥β,α∥β,则l ∥m ,在此条件下,l 与m 两条直线平行、相交、异面都有可能,故此命题是假命题.故答案为①②③考点:空间中直线与平面之间的位置关系.4.5k ≤-或1k【详解】试题分析:如图所示:由题意得,所求直线l 的斜率k 满足k≥k PB ;或k≤k PA ,根据斜率公式可知k PA =, k PB =则l 的斜率k 的取值范围为k≤-5或k≥1故答案为k≤-5或k≥1.考点:直线的图象特征与倾斜角、斜率的关系.5.316 【解析】试题分析:由双曲线的几何性质易知圆C 过双曲线同一支上的顶点和焦点,所以圆C 的圆心的横坐标为4.故圆心坐标为(4,±374). ∴它到中心(0,0)的距离为d==+911216316. 故答案为:316 考点:双曲线的简单性质.6.①④【解析】试题分析:根据题意,“中值点”的几何意义是在区间[a ,b]上存在点,使得函数在该点的切线的斜率等于区间[a ,b]的两个端点连线的斜率值.对于①,根据题意,在区间[a ,b]上的任一点都是“中值点”,f′(x )=2,满足f (b )-f (a )=f′(x )(b-a ),∴①正确;对于②,根据“中值点”函数的定义,抛物线在区间[a ,b]只存在一个“中值点”,∴②不正确; 对于③,f (x )=ln (x+3)在区间[a ,b]只存在一个“中值点”,∴③不正确;对于④,∵f′(x )2)21(3-=x ,且f (2)-f (-2)=19,2-(-2)=4; ∈±=⇒=⨯-∴121921194)21(32x x [-2,2],∴存在两个“中值点”,④正确. 故答案为:①④考点:导数的运算.7.C【解析】试题分析:不等式组1210210y x y x y ≤⎧⎪--≤⎨⎪++≥⎩表示的平面区域是由A (1,1),B (-1,1),C (0,-1)围成的三角形区域(包含边界).∵直线ax+by=1与1210210y x y x y ≤⎧⎪--≤⎨⎪++≥⎩表示的平面区域无公共点,∴a ,b 满足:⎪⎩⎪⎨⎧<--<-+-<-+⎪⎩⎪⎨⎧>-->-+->-+010101,010101b b a b a b b a b a 或.(a ,b )在如图所示的三角形区域(除边界且除原点).设z=2a+3b ,平移直线z=2a+3b ,当直线经过点A 1(0,1)时,z 最大为z=3, 当经过点B 1时,z 最小,由⎩⎨⎧-=-=⇒⎩⎨⎧=-+-=--120101b a b a b ,即B 1(-2,-1), 此时z=-4-3=-7,故2a+3b 的取值范围是(-7,3).故选:C考点:简单线性规划的应用.8.B【解析】试题分析:由题意可以判断出两球在正方体的面AA 1C 1C 上的正投影与正方形相切,排除C 、D ,把其中一个球扩大为与正方体相切,则另一个球被全挡住,由于两球不等,所以排除A ;B 正确;故选B考点:简单空间图形的三视图.9.A【分析】由条件利用两角和的正切公式求得tan α的值,再利用同角三角函数的基本关系与二倍角公式,求得2224sin sin cos ααπα+⎛⎫- ⎪⎝⎭的值. 【详解】解:∵tan (α4π+)1112tan tan αα+==-,则tan α13=-, ∵tan αsin cos αα=,sin 2α+cos 2α=1,α∈(2π-,0), 可得 sinα= ∴()2222cos cos 44sin sin cos sin sin αααααππαα++==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭4sin sin cos ααα+=sin α=()= 故选A .【点睛】 本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,二倍角公式,考查计算能力,属于基础题.10.D【解析】试题分析:要使函数有意义,则a (x-1)(x-3)≥0,∵a <0,<br />∴不等式等价为(x-1)(x-3)≤0,即1≤x≤3,∴定义域D=[1,3],∵任意m ,n ∈D ,点P (m ,f (n ))组成的图形为正方形,∴正方形的边长为2,∵f (1)=f (3)=0,∴函数的最大值为2,即a (x-1)(x-3)的最大值为4, 设f (x )=a (x-1)(x-3)=ax 2-4ax+3a , ∴当x=2时,f (2)=-a=4, 即a=-4, 故选:D .考点:函数的定义域及其求法. 11.B 【解析】试题分析:由23,30ABAC ⋅=得⇒=3230cos 04=1300==∆S ABC 从而有:x >0,y >0,且x+y=21,所以2x+2y=1,=+∴y x 41×1=(2x+2y )y x x y 8210++= 又x >0,y >0 ∴y x 41+∴y x x y 8210++=≥yxx y 82210⨯+=10+8=18 当⎪⎪⎩⎪⎪⎨⎧==+y x xy y x 8221,即当⎪⎩⎪⎨⎧=-=121y x (舍) 或⎪⎩⎪⎨⎧==3161y x 时等号成立,取得最小值18 故选B考点:基本不等式. 12.C 【详解】由反射定律得点A (-1,1)关于x 轴的对称点B (-1,-1)在反射光线上,当反射光线过圆心(2,3)时,最短距离为|BC|-R=故光线从点A 经x 轴反射到圆周C 的最短路程为4. 故选C .考点:直线与圆的位置关系. 13.D 【解析】将y=k(x+2)代入y 2=8x,得 k 2x 2+(4k 2-8)x+4k 2=0. 设交点的横坐标分别为x A ,x B , 则x A +x B =28k-4,① x A ·x B =4.又|FA|=x A +2,|FB|=x B +2, |FA|=2|FB|, ∴2x B +4=x A +2. ∴x A =2x B +2.② ∴将②代入①得x B =283k -2, x A =283k -4+2=283k -2. 故x A ·x B =228162233k k ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭=4. 解之得k 2=89.而k>0,∴k=3,满足Δ>0.故选D. 14.B 【解析】试题分析:令h (x )=xf (2lnx ),则h′(x )=f (2lnx )+xf′(2lnx )=f (2lnx )+2f′(2lnx ) ∵对任意的x ∈R 都有f (x )+2f′(x )<0成立, ∴f (2lnx )+2f′(2lnx )<0,即h′(x )<0,h (x )在定义域上单调递减, ∴h (2)>h (3),即2f (2ln2)>3f (2ln3).故选:B .考点:导数的运算. 15.A 【解析】试题分析:由题设知,点P (1,a ),Q (k ,ak 2),A (5,0), ∴向量),,1(a OP =),0,5(=OA ),,(2ak k OQ =),0,1(=∴OAOA ),11,11(2222ka ka OQOQ ++=∴又因为OA OQ OP OA OQ λ⎛⎫⎪=+⎪⎝⎭(λ为常数), 22221)111(1ka ak a ka +=⇒++=∴λλ.两式相除得2,2)1(02112222>=-∴>=-⇒+=-k a k k a k k a k 且,110,1222<-<-=∴a a k 且 2122>-=∴a k 故选A .考点:平面向量的综合题. 16.(1));44sin(2)(ππ+=x x f ;(2)最小正周期是8,22,22min max -==y y . 【解析】试题分析: (1)由图象知,A 、T 的值,求出ω及φ的值,即得f (x )的解析式; (2)由三角恒等变换,化简函数y ,求出它的最小正周期与最值. 试题解析:(1)由图象知,A=2, ∵482πωωπ=∴=∵函数f (x )的图象过点(1,2), ∴ππφπk 2214+=+⨯;4,2πφπφ=∴<);44sin(2)(ππ+=∴x x f(2)由题意,函数]4)2(4sin[2)44sin(2ππππ++++=x x y x x x 4cos 22)44cos(2)44sin(2πππππ=+++=∴最小正周期是8,22,22min max -==y y .考点:1.由y=Asin (ωx+φ)的部分图象确定其解析式;2.三角函数的周期性及其求法. 17.(1)证明:平面平面,, 平面平面=,平面,平面,…………… 2分 又为圆的直径,,平面…………………… 4分(2)设的中点为,则,又,则,为平行四边形, …………………… 6分 ,又平面,平面,平面……… 8分 (3)过点作于,平面平面,平面,, ………… 10分平面,,……………11分. 【解析】 (1)证明:平面平面,,平面平面=,平面, 平面,,……… 2分 又为圆的直径,,平面.……… 5分(2)设的中点为,则,又,则,为平行四边形, ……… 7分,又平面,平面,平面.……… 9分(3)过点作于,平面平面, 平面,,……… 11分平面,,……… 13分. ……… 14分18.(1)证明见解析(2)圆C 的方程为(x -2)2+(y -1)2=5 【分析】(1)先求出圆C 的方程(x -t )2+22)y t-(=t 2+24t,再求出|OA|,|0B|的长,即得△OAB 的面积为定值;(2)根据212t =t 得到t =2或t =-2,再对t 分类讨论得到圆C 的方程. 【详解】(1)证明:因为圆C 过原点O ,所以OC 2=t 2+24t. 设圆C 的方程是(x -t )2+22)y t-(=t 2+24t , 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t , 所以S △OAB =12OA ·OB =12×|2t |×|4t|=4, 即△OAB 的面积为定值.(2)因为OM =ON ,CM =CN ,所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12. 所以212t =t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC ,此时,圆心C 到直线y =-2x +4的距离d圆C 与直线y =-2x +4相交于两点.符合题意,此时,圆的方程为(x -2)2+(y -1)2=5.当t =-2时,圆心C 的坐标为(-2,-1),OC C 到直线y =-2x +4的距离d>.圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去.所以圆C 的方程为(x -2)2+(y -1)2=5. 【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系的求法,意在考查学生对这些知识的理解掌握水平.19.(1) a n =3n-1;nn b 312⋅=;(2)祥见解析. 【解析】试题分析:(1)由题设条件知92,3221==b b ,22n n b S =-,;2)(211n n n n n b S S b b =--=---311=⇒-n n b b 此可求出数列{b n }的通项公式. (2)数列{a n }为等差数列,公差3)(2157=-=a a d ,可得a n =3n-1.从而n n n n n b a c 31)13(2⋅-=⋅=,由此能证明数列{c n }的前n试题解析:(1)数列{a n }为等差数列,公差3)(2157=-=a a d ,可得a n =3n-1.由22n n b S =-,令n=1,则b 1=2-2S 1,又S 1=b 1, 所以,321=b b 2=2-2(b 1+b 2),则922=b 当n≥2时,由22n n b S =-,可得;2)(211n n n n n b S S b b =--=---.即311=-n n b b 所以{b n }是以为321=b 首项,31为公比的等比数列,于是n n b 312⋅=. (2)由(1)得n •b n =2(3n-1)•n 31.273312727]31)13(318315312[2132<-⨯-=⋅-++⋅+⋅+⋅=∴-n n n n n n T考点:1.等差数列与等比数列的综合. 20.(1)x 24+y 2=1;(2)祥见解析.【解析】试题分析:(1)由已知,可求,,故方程为x 24+y 2=1;(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =k(x −1),M(x,y)、N(x 2,y 2),R(4,y 0),由{y =k(x −1)x 24+y 2=1 得(1+4k 2)x 2−8k 2x +4k 2−4=0,由A,N,R 共线,得y 0=6y 2x 2+2,又,则(x 1−1)(x 2+2)−3(x 2−1)(x 1−2)=−2x 1x 2+5(x 1+x 2)−8,代入可得结论.试题解析:(1)由题意知:|F 1F 2|=2c =2√3, ∵椭圆上的点P 满足∠PF 1F 2=900,且S ΔPF 1F 2=√32, ∴S ΔPF 1F 2=12|F 1F 2|·|PF 1|=12×2√3×|PF 1|=√32, ∴|PF 1|=12,|PF 2|=√|F 1F 2|2+|PF 1|2=72.∴2a =|PF 1|+|PF 2|=4,a =2 又∵c =√3,∴b =√a 2−c 2=1. ∴椭圆C 的方程为x 24+y 2=1, (2)由题意知A(−2,0)、B(2,0), ①当直线l 与x 轴垂直时,M(1,√32)、N(1,−√32),则AN 的方程是:y =−√36(x +2),BM 的方程是:y =−√32(x −2),直线AN 与直线x =4的交点为R(4,−√3),∴点R 在直线BM 上.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =k(x −1),M(x,y)、N(x 2,y 2),R(4,y 0), 由{y =k(x −1)x 24+y 2=1 得(1+4k 2)x 2−8k 2x +4k 2−4=0, ∴x 1+x 2=8k 21+4k2,x 1x 2=4k 2−41+4k 2.,A,N,R 共线,∴y 0=6y 2x2+2.又,需证明B,M,R 共线,需证明2y 1−y 0(x 1−2)=0,只需证明2k(x 1−1)−6k(x 2−1)x 2+2(x 1−2)=0,若k =0,显然成立,若k ≠0,即证明(x 1−1)(x 2+2)−3(x 2−1)(x 1−2)=−2x 1x 2+5(x 1+x 2)−8=−2(4k 2−4)1+4k 2+5×8k 21+4k 2−8=0成立.∴B,M,R 共线,即点R 总在直线BM 上. 考点:直线与圆锥曲线的位置关系.【方法点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意直线斜率不存在的情况及不要忽视判别式的作用.21.(1)当a >0时,f (x )的单调增区间为(0,1],减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1]; 当a=0时,f (x )不是单调函数; (2)337-<m <-9;(3)祥见解析. 【解析】试题分析:利用导数求函数的单调区间的步骤是①求导函数f′(x );②解f′(x )>0(或<0);③得到函数的增区间(或减区间),对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a 的讨论情况;(2)点(2,f (2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a 值,代入得g (x )的解析式,由t ∈[1,2],且g (x )在区间(t ,3)上总不是单调函数可知:⎪⎩⎪⎨⎧>'<'<'0)3(0)2(0)1(g g g ,于是可求m 的范围.(3)与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n 有某些结论成立,进而解答出这类不等式问题的解.试题解析:(1))0(,)1()(>-='x xx a x f (2分) 当a >0时,f (x )的单调增区间为(0,1],减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1]; 当a=0时,f (x )不是单调函数(4分)(2)12)2(=-='af 得a=-2,f (x )=-2lnx+2x-3 ∴x x mx x g 2)22()(23-++=,∴g'(x )=3x 2+(m+4)x-2(6分)∵g (x )在区间(t ,3)上总不是单调函数,且g′(0)=-2 ∴⎩⎨⎧>'<'0)3(0)(g t g (8分)由题意知:对于任意的t ∈[1,2],g′(t )<0恒成立,所以有:⎩⎨⎧<'<'0)2(0)1(g g ,337-∴<m <-9(10分)(3)令a=-1此时f (x )=-lnx+x-3,所以f (1)=-2, 由(1)知f (x )=-lnx+x-3在(1,+∞)上单调递增, ∴当x ∈(1,+∞)时f (x )>f (1),即-lnx+x-1>0, ∴lnx <x-1对一切x ∈(1,+∞)成立,(12分) ∵n≥2,n ∈N*,则有0<lnn <n-1,n n n n 1ln 0-<<∴ ∴ln 22⋅ln33⋅ ln 44⋅ln n n ⋅12<⋅23⋅34⋅11n n n-⋅= (n≥2,n ∈N*) 考点:1.利用导数研究函数的单调性;2.利用导数研究曲线上某点切线方程.。
湖南省长沙市长郡中学2022-2023学年高三上学期月考 数学
长郡中学2023届高三月考试卷数 学本试卷共8页。
时量120分钟,满分150分。
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合||1|1,{} ==--∈A y y x x R ,{}3|log 1,=≥B x x ,则A∩=RBA .{|1}≥-x xB .{}|3<x xC .}{|13-≤≤x xD .{}|13-≤<x x2.若复数z 满足||2,3-=⋅=z z z z ,则2z 的实部为A -2B .-1C .1D . 2★3.函数()()241--=-x x x e e f x x 的部分图象大致是★4.如图,在边长为2的正方形ABCD 中,其对称中心O 平分线段MN ,且2MN BC =,点E 为DC 的中点,则⋅=EM ENA . 12-B .32-C . -2D .-3★5.随着北京冬奥会的举办,中国冰雪运动的参与人数有了突飞猛进的提升。
某校为提升学生的综合素养、大力推广冰雪运动,号召青少年成为“三亿人参与冰雪运动的主力军”,开设了“陆地冰壶”“陆地冰球”“滑冰”“模拟滑雪”四类冰雪运动体验课程,甲、乙两名同学各自从中任意挑选两门课程学习,设事件A=“甲乙两人所选课程恰有一门相同”事件B=“甲乙两人所选课程完全不同”,事件C=“甲乙两人均未选择陆地冰壶课程”,则 A . A 与B 为对立事件 B .A 与C 互斥 C . B 与C 相互独立D . A 与C 相互独立★6.已知三棱锥P-ABC 中,PA ⊥平面ABC ,底面△ABC 是以B 为直角顶点的直角三角形,且23,π=∠=BC BCA ,三棱锥P-ABC的体积为3,过点A 作⊥AM PB 于M ,过M 作MN ⊥PC 于N ,则三棱锥P-AMN 外接球的体积为A .323π B.3C.3D .43π 7.若sin 2sin ,sin()tan()1αβαβαβ=+⋅-=,则tan tan αβ=A .2B .32C . 1D .128.已知函数f (x ),g (x )的定义域为R 。
湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷
湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3πB.2C .12πD .24π2.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆B .双曲线C .抛物线D .圆3.若不等式22ln x x x ax -+对[1,)x ∈+∞恒成立,则实数a 的取值范围是( ) A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥5.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .206.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( )A .[2,4]B .[4,6]C .[5,8]D .[6,7]7.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=,则AOB ∠的最小值为( )A .6π B .3π C .2π D .23π 8.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-9.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q 为( ) A .[0,2)B .(2,3]C .[2,3]D .(0,2]10.已知31(2)(1)mx x--的展开式中的常数项为8,则实数m =( )A .2B .-2C .-3D .311.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)12.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .4二、填空题:本题共4小题,每小题5分,共20分。
2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)(含答案)
2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x||x|⩽2},B ={t|1⩽2t ⩽8(t ∈Z)},则A ∩B =( )A. [−1,3]B. {0,1}C. [0,2]D. {0,1,2}2.已知复数z 满足|z−i|=1,则|z|的取值范围是( )A. [0,1]B. [0,1)C. [0,2)D. [0,2]3.已知p :f(x)=ln(21−x +a)(−1<x <1)是奇函数,q :a =−1,则p 是q 成立的( )A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.若锐角α满足sinα−cosα=55,则sin (2α+π2)=( )A. 45B. −35 C. −35或35D. −45或455.某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生6.如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且AP =BP ,O 为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )A. 2B. 12C.5D.557.在平面直角坐标系xOy 中,已知直线l :y =kx +12与圆C :x 2+y 2=1交于A ,B 两点,则△AOB 的面积的最大值为( )A. 1B. 12C.32D.348.设函数f(x)=(x 2+ax +b)lnx ,若f(x)≥0,则a 的最小值为( )A. −2B. −1C. 2D. 1二、多选题:本题共3小题,共18分。
长郡中学数学月考试卷高三
一、选择题(每题5分,共50分)1. 若函数$f(x) = x^3 - 3x + 2$在区间$[0,1]$上存在极值,则下列说法正确的是()A. $f(x)$在$x=0$处取得极大值B. $f(x)$在$x=1$处取得极小值C. $f(x)$在$x=0$处取得极小值D. $f(x)$在$x=1$处取得极大值2. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 20$,$S_9 = 60$,则$a_6$的值为()A. 8B. 10C. 12D. 143. 设函数$f(x) = \frac{x^2 - 4x + 4}{x - 2}$,则$f(x)$的图像不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 在平面直角坐标系中,若点$A(2,3)$关于直线$l$对称的点$B$的坐标为$(0,-1)$,则直线$l$的方程是()A. $x + y = 1$B. $x - y = 1$C. $x + y = 3$D. $x - y = 3$5. 已知复数$z = a + bi$(其中$a$,$b$是实数),若$\overline{z} + z = 8$,则$|z|$的值为()A. 2B. 4C. 6D. 86. 若等比数列$\{a_n\}$的前$n$项和为$S_n$,公比为$q$,且$S_4 = 16$,$S_8 = 128$,则$q$的值为()A. $\frac{1}{2}$B. $\frac{1}{4}$C. 2D. 47. 已知函数$f(x) = x^3 - 3x^2 + 2$,则$f(x)$在区间$[-1,1]$上的最大值为()A. 1B. 2C. 3D. 48. 在平面直角坐标系中,若直线$l$与圆$x^2 + y^2 = 4$相切,且直线$l$的斜率为$-\frac{1}{2}$,则直线$l$的方程是()A. $x + 2y = 2$B. $x - 2y = 2$C. $2x + y = 2$D. $2x - y = 2$9. 设函数$f(x) = \frac{x^2}{x - 1}$,则$f(x)$的图像不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,公差为$d$,且$S_5 = 20$,$S_9 = 60$,则$a_6$的值为()A. 8B. 10C. 12D. 14二、填空题(每题5分,共50分)11. 函数$f(x) = 2^x - 1$的图像上,过点$(1,1)$的切线斜率为______。
长郡中学2025届高三上学期月考(二)数学试卷(解析版)
长郡中学2025届高三月考试卷(二)数学得分__________.本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}(){}2,128tAxx B t t ==∈Z ∣∣ ,则A B = ( )A. []1,3−B. {}0,1C. []0,2D. {}0,1,2【答案】D 【解析】【分析】解绝对值不等式与指数不等式可化简集合,A B ,再利用交集的定义求解即可.【详解】{}{}|2=22A x x xx =≤−≤≤∣, 由指数函数的性质可得(){}{}1280,1,2,3tB t t =≤≤∈=Z ∣,所以{}{}{}220,1,2,30,1,2A B xx ∩−≤≤∩∣. 故选:D.2. 已知复数z 满足i 1z −=,则z 的取值范围是( ) A. []0,1 B. [)0,1C. [)0,2D. []0,2【答案】D 【解析】【分析】利用i 1z −=表示以(0,1)为圆心,1为半径的圆,z 表示圆上的点到原点的距离可得答案. 【详解】因为在复平面内,i 1z −=表示到点(0,1)距离为1的所有复数对应的点, 即i 1z −=表示以(0,1)为圆心,1为半径的圆, z 表示圆上的点到原点的距离,所以最短距离为0,最长距离为112+=,则z 的取值范围是[0,2]. 故选:D3. 已知()2:ln (11)1p f x a x x=+−<< −是奇函数,:1q a =−,则p 是q 成立的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】当p 成立,判断q 是否成立,再由q 成立时,判断p 是否成立,即可知p 是q 成立何种条件.【详解】由()f x 奇函数,则()00f =,即()ln 20a +=,解得1a =−, 所以p q ⇒,当1a =−时,()21ln 1ln 11x f x x x +=−=−−,11x −<<, ()()1111ln ln ln 111x x x f x f x x x x −−++∴−===−=− +−−,所以()f x 是奇函数, 所以p q ⇐, 所以p 是q 的充要条件. 故选:A.4. 若锐角α满足sin cos αα−sin 22πα+=( ) A.35B. 35C. 35 或35D. 45−或45【答案】B 【解析】【分析】先利用辅助角公式求出πsin 4α−,再利用角的变换ππsin 2sin 2π24αα+=−+,结合诱导公式和二倍角公式求解即可.【详解】由题意可得πsin cos 4ααα−=−=πsin 4α−.是因为α是锐角,所以πππ,444α −∈−,πcos 4α −所以πππππsin 2sin 2πsin 22sin cos 24444ααααα+=−+=−−=−−−325=−=−. 故选:B.5. 某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生【答案】C 【解析】【分析】将问题转化不等式问题,利用不等式性质求解. 【详解】根据已知条件设理科女生有1x 人,理科男生有2x 人, 文科女生有1y 人,文科男生有2y 人;根据题意可知1212x x y y +>+,2211x y x y +<+,根据异向不等式可减的性质有()()()()12221211x x x y y y x y +−+>+−+, 即有12x y >,所以理科女生多于文科男生,C 正确.其他选项没有足够证据论证. 故选:C.6. 如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且,AP BP O =为上底面圆的圆心,则OP 与平面ABC所成的角的正切值为( )为A. 2B.12C.D.【答案】A 【解析】【分析】作出直线OP 与平面ABC 所成的角,通过解直角三角形来求得直线OP 与平面ABC 所成的角的正切值.【详解】设O ′为下底面圆的圆心,连接,OO CO ′′和CO , 因为AP BP =,所以AB OP ⊥,又因为,,AB OO OP OO O OP OO ′′⊥=⊂′ 、平面OO P ′,所以AB ⊥平面OO P ′, 因为PC 是该圆台的一条母线,所以,,,O O C P ′四点共面,且//O C OP ′, 又AB ⊂平面ABC ,所以平面ABC ⊥平面POC ,又因为平面ABC 平面POC OC =,所以点P 在平面ABC 的射影在直线OC 上, 则OP 与平面ABC 所成的角即为POC OCO ∠=∠′,过点C 作CD OP ⊥于点D ,因为4cm,2cm OP O C ′==, 所以tan tan 2OO POC OCO O C∠=′′∠==′. 故选:A7. 在平面直角坐标系xOy 中,已知直线1:2l y kx =+与圆22:1C x y +=交于,A B 两点,则AOB 的面积的最大值为( )A. 1B.12C.D.【答案】D 【解析】【分析】求得直线过定点以及圆心到直线的距离的取值范围,得出AOB 的面积的表达式利用三角函数单调性即可得出结论.【详解】根据题意可得直线1:2l y kx =+恒过点10,2E,该点在已知园内, 圆22:1C x y +=的圆心为()0,0C ,半径1r =,作CD l ⊥于点D ,如下图所示:易知圆心C 到直线l 的距离为12CD CE ≤=,所以1cos 2CD DCB CB ∠=≤, 又π0,2DCB∠∈,可得ππ,32DCB∠∈; 因此可得2π2,π3ACB DCB∠=∠∈,所以AOB 的面积为112πsin 11sin 223AOB S CA CB ACB =∠≤×××= 故选:D 8. 设函数()()2ln f x xax b x =++,若()0f x ≥,则a 的最小值为( )A. 2−B. 1−C. 2D. 1【答案】B 【解析】【分析】根据对数函数性质判断ln x 在不同区间的符号,在结合二次函数性质得1x =为该二次函数的一个零点,结合恒成立列不等式求参数最值.【详解】函数()f x 定义域为(0,)+∞,而01ln 0x x <<⇒<,1ln 0x x =⇒=,1ln 0x x >⇒>, 要使()0f x ≥,则二次函数2y x ax b =++,在01x <<上0y <,在1x >上0y >, 所以1x =为该二次函数的一个零点,易得1b a =−−, 则2(1)(1)[(1)]y x ax a x x a =+−+=−++,且开口向上, 所以,只需(1)0101a a a −+≤⇒+≥⇒≥−,故a 的最小值为1−.故选:B二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知2n >,且*n ∈N ,下列关于二项分布与超几何分布的说法中,错误的有( ) A. 若1(,)3X B n ,则()22113E X n ++ B. 若1(,)3X B n ,则()4219D X n += C. 若1(,)3X B n ,则()()11P X P X n ===−D. 当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布 【答案】BC 【解析】【分析】利用二项分布的期望、方差公式及期望、方差的性质计算判断AB ;利用二项分布的概率公式计算判断C ;利用二项分布与超几何分布的关系判断D.【详解】对于A ,由1(,)3X B n ,得()13E X n =,则()22113E X n ++,A 正确; 对于B ,由1(,)3X B n ,得()122339D X n n =×=,则()()82149D X D X n +==,B 错误; 对于C ,由1(,)3X B n ,得11111221(1)C (),(1)C ()3333n n n n n P X P X n −−−==××=−=××,故(1)(1)P X P X n =≠=−,C 错误;对于D ,当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布,D 正确. 故选:BC10. 已知函数()sin cos (,0)f x x a x x ωωω=+∈>R 的最大值为2,其部分图象如图所示,则( )A. 0a >B. 函数π6f x−为偶函数 C. 满足条件的正实数ω存在且唯一 D. ()f x 是周期函数,且最小正周期为π 【答案】ACD 【解析】【分析】根据题意,求得函数π()2sin(2)3f x x =+,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由函数()sin cos )f x x a x x ωωωϕ=++,且tan a ϕ=,因为函数()f x 的最大值为22=,解得a =,又因为(0)0f a =>,所以a =A 正确; ()πsin 2sin 3f x x x x ωωω ==+因为πππ2sin 1443f ω=+= ,且函数()f x 在π4的附近单调递减,所以ππ5π2π,Z 436k k ω++∈,所以28,Z k k ω=+∈,又因为π24T >,可得π2T >π2>,解得04ω<<,所以2ω=, 此时π()2sin(2)3f x x =+,其最小正周期为πT =,所以C 、D 正确; 设()πππ2sin 22sin 2663F x f x x x=−=−+=,()()2sin[2()]2sin 2F x x x F x −=−=−=−,所以FF (xx )为奇函数,即函数π()6f x −为奇函数,所以B 不正确. 故选:ACD.11. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线交x 轴于点D ,直线l 经过F 且与C 交于,A B 两点,其中点A 在第一象限,线段AF 的中点M 在y 轴上的射影为点N .若MN NF =,则( )A. lB. ABD △是锐角三角形C. 四边形MNDF2 D. 2||BF FA FD ⋅> 【答案】ABD 【解析】【分析】根据题意分析可知MNF 为等边三角形,即可得直线l 的倾斜角和斜率,进而判断A ;可知直线l 的方程,联立方程求点,A B 的坐标,求相应长度,结合长度判断BD ;根据面积关系判断C.【详解】由题意可知:抛物线的焦点为,02p F,准线为2px =−,即,02p D −,设()()112212,,,,0,0A x y B x y y y ><, 则111,,0,2422x y y p M N+,可得, 因为MN NF =,即MN NF MF ==,可知MNF 为等边三角形,即60NMF ∠=°,且MN ∥x 轴,可知直线l 的倾斜角为60°,斜率为tan 60k =°=,故A 正确;则直线:2p l y x =− ,联立方程222p yx y px=− =,解得32p x y ==或6p x y p= =,即32p A,,6p B p,则,M p p N p,可得28,,,2,,33DFp AD p BDp FA p FB p AB p ======,在ABD △中,BD AD AB <<,且2220BD AD AB +−<, 可知ADB ∠为最大角,且为锐角,所以ABD △是锐角三角形,故B 正确;四边形MNDF 的面积为21122MNDF BDF MNF S S S p p p p p =+=×+×=△△,故C 错误; 因为224,3FB FA p FD p ⋅==,所以2||BF FA FD ⋅>,故D 正确; 故选:ABD.【点睛】方法点睛:有关圆锥曲线弦长、面积问题的求解方法(1)涉及弦长的问题中,应熟练地利用根与系数的关系、设而不求计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解; (2)面积问题常采用12S =× 底×高,其中底往往是弦长,而高用点到直线距离求解即可,选择底很重要,选择容易坐标化的弦长为底.有时根据所研究三角形的位置,灵活选择其面积表达形式,若求多边形的面积问题,常转化为三角形的面积后进行求解;(3)在求解有关直线与圆锥曲线的问题时,应注意数形结合、分类与整合、转化与化归及函数与方程思想的应用.三、填空题(本大题共3小题,每小题5分,共15分.) 12. 在ABC 中,AD 是边BC 上的高,若()()1,3,6,3AB BC==,则AD =______.【解析】【分析】设()6,3BD mBC m m == ,表达出()61,33AD m m =++ ,根据垂直关系得到方程,求出13m =−,进而得到答案.【详解】设()6,3BD mBC m m == ,则()()()1,36,361,33AD AB BD m m m m =+=+=++,由0AD BC = 得6(61)3(33)366990AD BC m m m m =+++=+++=,解得13m =−,故()()12,311,2AD =−−=− ,所以||AD ..13. 已知定义在RR 上的函数()f x 满足()()23e xf x f x =−+,则曲线yy =ff (xx )在点()()0,0f 处的切线方程为_____________. 【答案】3y x =+ 【解析】【分析】利用方程组法求出函数解析式,然后利用导数求切线斜率,由点斜式可得切线方程. 【详解】因为()()23e xf x f x =−+,所以()()23e x f x f x −−=+,联立可解得()=e 2e xx f x −+,所以()03f =,所以()()e2e ,01xx f x f −=′−+=′. 所以曲线()y f x =在点()()0,0f 处的切线方程为3y x −=, 故所求的切线方程为3y x . 故答案为:3y x .14. 小澄玩一个游戏:一开始她在2个盒子,A B 中分别放入3颗糖,然后在游戏的每一轮她投掷一个质地均匀的骰子,如果结果小于3她就将B 中的1颗糖放入A 中,否则将A 中的1颗糖放入B 中,直到无法继续游戏.那么游戏结束时B 中没有糖的概率是__________. 【答案】117【解析】【分析】设最初在A 中有k 颗糖,B 中有6k −颗糖时,游戏结束时B 中没有糖的概率为()0,1,,6k a k = ,归纳找出递推关系,利用方程得出0a ,再由递推关系求3a .【详解】设A 中有k 颗糖,B 中有6k −颗糖,游戏结束时B 中没有糖的概率为()0,1,,6k a k = . 显然0113a a =,()65112112,153333k k k a a a a a k +−=+=+≤≤,可得()112k k k k a a a a +−−=−,则()566510022a a a a a −=−=,()65626765040010002222221a a a a a a a a a a ∴=+=++=+++=− ,同理()256510002221a a a a a =+++=− ,()()760021212133a a ∴−=−+,解得011385255a ==× ()430112115.25517a a ∴=−=×=故答案为:117【点睛】关键点点睛:本题的关键在于建立统一的一个6颗糖果放入2个盒子不同情况的模型,找到统一的递推关系,利用递推关系建立方程求出0a ,即可得出这一统一模型的答案.四、解答题(本大题共5小题,共77分,解签应写出文字说明、证明过程或演算步骤.) 15. 已知数列{}n a 中,11a =,且0,n n a S ≠为数列{}n a 的前nn a =.(1)求数列{}n a 的通项公式;(2)若1(1)n n n n n c a a +−=,求数列{}n c 的前n 项和. 【答案】(1)21na n =− (2)421,42n n n n T n n n − += + − + ,为偶数为奇数 【解析】【分析】(1)1={aa nn }的通项公式; (2) 求出(1)1142121n n c n n − =+ −+,再讨论n 为奇、偶数,利用裂项相消法即可求数列{}n c 的前n 项和. 【小问1详解】 根据题意知1,2n n n a S S n −=−≥0n a +≠=②,1,2n =≥,所以可得1=为首项,1为公差的等差数列,11n n =+−=,所以2n S n =,121,2n n n a n S S n −−==−≥,当1n =时11a =也满足该式,所以21na n =−. 【小问2详解】由(1)结论可知21n a n =−,所以()()1(1)(1)(1)11212142121n n n n n n n n c a a n n n n +−−− ===+ −+−+, 设{}n c 的前n 项和为n T ,则当n 为偶数时,111111111111433557212142142n n T n n n n =−+++−++++=−+=− −+++则当n 为奇数时,1111111111111433557212142142n n T n n n n + =−+++−++−+=−−=− −+++所以421,42n n n n T n n n − += + − + ,为偶数为奇数.16. 如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形CDEF 均为等腰梯形,AB∥,CD EF ∥,224CD CD AB EF ===,AD DE AE ===.(1)证明:平面ABCD ⊥平面CDEF ;(2)若M 为线段CD 1=,求二面角A EM B −−的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)通过勾股定理及全等得出线线垂直,应用线面垂直判定定理得出OE ⊥平面ABCD ,由OE ⊂平面CDEF 进而得出面面垂直;(2)由面面垂直建立空间直角坐标系,分别求出法向量再应用向量夹角公式计算二面角余弦值.【小问1详解】证明:在平面CDEF 内,过E 做EO 垂直于CD 交CD 于点O ,由CDEF 为等腰梯形,且24CD EF ==,则1,DO =又OE =,所以2OE ,连接AO ,由ADO EDO ≅ ,可知AO CD ⊥且2AO =,所以在三角形OAE 中,222AE OE OA =+,从而OE OA ⊥,又,,,OE CD OA CD O OA CD ⊥∩=⊂平面ABCD ,,所以OE ⊥平面ABCD , 又OE ⊂平面CDEF ,所以平面ABCD ⊥平面CDEF【小问2详解】由(1)知,,,OE OC OA 两两垂直,以O 为坐标原点,建立如图所示的空间直角坐标系,则()()()()0,0,2,2,0,0,0,2,0,0,2,2A E M B ,()()()2,0,2,2,2,0,0,0,2AE EM MB =−=−= ,设平面AEM 的一个法向量为(),,n x y z =, 则00n AE n EM ⋅= ⋅=,即220220x z x y −= −+= , 取1z =,则()1,1,1n = ,设平面BEM 的一个法向量为()111,,m x y z =, 则00m MB m EM ⋅= ⋅=,即11120220z x y = −+= , 取11y =,则()1,1,0m = ,所以cos,m nm nm n⋅==⋅由图可以看出二面角A EM B−−为锐角,故二面角A EM B−−.17. 已知函数2()e2,Rxf x ax a=−∈.(1)求函数()f x的单调区间;(2)若对于任意的0x>,都有()1f x≥恒成立,求a的取值范围.【答案】(1)答案见解析(2)(],1−∞【解析】【分析】(1)对2()e2xf x ax=−求导,可得2()2e2xf x a′=−,再分类讨论a的取值,得出导数的正负即可得出单调区间;(2)对a进行分类讨论,根据导数正负求得()f x的最小值,判断是否满足()1f x≥,即可求解.【小问1详解】对2()e2xf x ax=−求导,可得2()2e2xf x a′=−,令()0f x′=,即22e20x a−=,即2e x a=,当0a≤时,ff′(xx)>0恒成立,()f x在R上单调递增;当0a>时,21e,2ln,ln2x a x a x a===,当1ln2x a<时,()()0,f x f x′<在1,ln2a∞−上单调递减;当1ln2x a>时,ff′(xx)>0,()f x在1ln,2a∞+上单调递增;综上,当0a≤时,()f x单调递增区间为R;当0a>时,()f x的单调递减区间为1,ln2a∞−,单调递增区间为1ln,2a∞+.【小问2详解】因为对于任意的0x>,都有()1f x≥恒成立,的的对2()e 2x f x ax =−求导,可得2()2e 2x f x a ′=−,令()0f x ′=,即22e 20x a −=,即2e x a =,①当0a ≤时,ff ′(xx )>0,则()f x 在(0,+∞)单调递增,()()01f x f >=,符合题意; ②当01a <≤时,2e x a =,则1ln 02x a ≤, 则()0f x ′>,()f x 在(0,+∞)单调递增,()()01f x f >=,符合题意; ③当1a >时,2e x a =,则1ln 02xa >, 当10,ln 2x a∈ 时,()0f x ′<,则()f x 在10,ln 2a单调递减, 当1ln ,2x a ∞ ∈+ 时,()0f x ′>,则()f x 在1ln ,2a ∞ +单调递增, 所以()ln 11ln e 2ln ln 22a f x f a a a a a a ≥=−⋅=−, 令()ln ,1g a a a a a =−>,则()ln 0g a a ′=−<, 所以()g a 在(1,+∞)上单调递减,所以()()11g a g <=,不合题意; 综上所述,(],1a ∞∈−.18. 已知双曲线()2222:10,0x y E a b a b−=>>的左、右焦点分别为12,,F F E 的一条渐近线方程为y =,过1F 且与x 轴垂直的直线与E 交于P ,Q 两点,且2PQF 的周长为16.(1)求E 的方程;(2),A B 为双曲线E 右支上两个不同的点,线段AB 的中垂线过点()0,4C ,求ACB ∠的取值范围.【答案】(1)22:13y E x −=; (2)2π0,3. 【解析】 【分析】(1)将x c =−代入曲线E 得2b y a =±,故得211b PF QF a==,从而结合双曲线定义以及题意得24416b a b a a = +=,解出,a b 即可得解. (2)设:AB y kx m =+,联立双曲线方程求得中点坐标,再结合弦长公式求得ACM ∠的正切值,进而得ACM ∠范围,从而由2ACB ACM ∠=∠即可得解.【小问1详解】将x c =−代入2222:1(0,0)x y E a b a b −=>>,得2b y a=±, 所以211b PF QF a==,所以2222b PF QF a a ==+,所以由题得24416b a b a a= +=,1a b = ⇒ = 所以双曲线E 的方程为22:13y E x −=. 【小问2详解】由题意可知直线AB斜率存在且k ≠,设:AB y kx m =+,AA (xx 1,yy 1),BB (xx 2,yy 2),设AB 的中点为M . 由2233y kx m x y =+ −=消去y 并整理得222(3)230k x kmx m −−−−=,230k −≠, 则22222(2)4(3)(3)12(3)0km k m m k ∆=+−+=+−>,即223m k >−, 12223km x x k+=−,212233m x x k +=−−,12122226()2233km m y y k x x m k m k k +=++=⋅+=−−,于是M 点为2(3km k −,23)3m k −,2223431243M C MC M m y y m k k k km x kmx k −−−+−===−. 由中垂线知1A MC B k k ⋅=−,所以231241m k km k−+=−,解得:23m k =−. 所以由,A B 在双曲线的右支上可得:22221220333033m m x x m k k k m+−<+=−=>⇒⇒=−>−, 且12222003km x x k k k+>⇒>−, 且()()()()()22222222Δ43390333403m k k k k k k =−+>⇒−+−=−−>⇒<或24k >, 综上24k >即2k >,又CM =, 所以tan AM ACM CM ∠===因为24k >,所以213m k =−<−,故2333k 0−−<<(, 所以π0,3ACM∠∈. 所以2π20,3ACB ACM∠=∠∈ . 19. 对于集合,A B ,定义运算符“Δ”:Δ{,A B x x A x B =∈∈∣两式恰有一式成立},A 表示集合A 中元素的个数.(1)设][1,1,0,2A B =−= ,求ΔA B ;(2)对于有限集,,A B C ,证明ΔΔΔA B B C A C +≥,并求出固定,A C 后使该式取等号的B 的数量;(用含,A C 的式子表示)(3)若有限集,,A B C 满足ΔΔΔA B B C A C +=,则称有序三元组(),,A B C 为“联合对”,定义{}*1,2,,,I n n ∈N ,(){},,,,u A B C A B C I ⊆∣. ①设m I ∈,求满足ΔA C m =的“联合对”(),,A B C u ⊆的数量;(用含m 的式子表示) ②根据(2)及(3)①的结果,求u 中“联合对”的数量.【答案】(1)[1,0)(1,2]−∪(2)||2A C ∆(3)①C 2m n m n +⋅②6n【解析】【分析】(1)根据新定义,对区间逐一分析即可得解;(2)利用韦恩图及新定义,求出不等式等号成立的条件,利用集合的性质转化为求子集个数; (3)①分别求出(),A C ,B 取法的种数,再由分步乘法计数原理得解②结合(2)及(3)①的结果,利用二项式定理求解.【小问1详解】对于,,[1),0x x A x B −∈∈∉,故x A B ∈∆;对于,,[0,1]x x A x B ∈∈∈,故x A B ∉∆;对于,,(1,2]x x A x B ∉∈∈,故x A B ∈∆;对于,,[1],2x x A x B ∉−∉∉,故x A B ∉∆,即[10)(12],,A B −∆ .【小问2详解】画出Venn 图,如图,将A B C 划分成7个集合17,,S S ,则14562547||||||||||,||||||||||A B S S S S B C S S S S ∆=+++∆=+++,1267||||||||||A C S S S S ∆=+++,故45||||||2||2||0A B B C A C S S ∆+∆−∆=+≥不等式成立,当且仅当45S S ==∅时取等号, 4S =∅等价于()A C B ∩⊆,5S =∅等价于()B A C ⊆∪,故当且仅当()()A C B A C ∩⊆⊆∪取等号. 设()B A C D =∩∪,其中集合D 与A C 无交集,由于()\()A C A C A C ∆= ,故有()()\ΔD A C A C A C ∅⊆⊆∪∩=,即D 为A C ∆的某一子集,有||2A C ∆种,从而使上式取等的B 有||2A C ∆个.【小问3详解】①设X A C u =∆⊆,有||X m =,故X 有C m n 种取法,对于每一个x ,知X 中每一个元素x 有两种情形:,x A x C ∈∉或,x A x C ∉∈,且/I X 中每一个元素x 有两种情形:,x A x C ∈∉或,x A x C ∉∈,故,x I x ∀∈共有两种选择,也就是这样的(),A C 有||22I n =种,对于每一个(),A C ,由(2)知B 有||22A C m ∆=种取法.故由乘法原理,这样的“联合对(),,A B C 有C 2m n m n +⋅个.②由①知,u 中“联合对”的数量为()00C 22C 212216n n n m n m n m m n m n n nnm m +−===⋅=+=∑∑(二项式定理), 故u 中“联合对”(),,A B C 的数量为6n .【点睛】关键点点睛:集合新定义问题的关键在于理解所给新定义,会抽象的利用集合的知识,分步乘法计数原理,二项式定理推理运算,此类问题难度大.。
【数学】湖南省长郡十五校2021届高三第二次联考试卷(解析版)
∴由抛物线的定义知则 = =3+2 ,
如果x2>x1,
∴x2= ,x1= ,
∴由抛物线的定义知则 = =3﹣2 ,
故选:BC.
11.已知函数f(x)=﹣sin(2x+ ),g(x)=cos(2x﹣ ),则( )
【答案】B
【解析】根据题意,分2步进行分析:
①将6名教师分为5组,要求乙与丙不在同一组,有C62﹣1=14种分组方法,
②将甲所在的组分到A山区,剩下的4组安排到其他4个山区,有A44=24种情况,
则有14×24=336种安排方法,
故选:B.
8.当x∈R时,不等式 ≤ax﹣1恒成立,则实数a的取值范围为( )
A.a=2B.a=
C.a≥2D.e ≤a≤e
【答案】A
【解析】令f(x)= ,
∵x>1时,f(x)>0,∴a≤0时不合条件;
令h(x)= ,得h′(x)= ,
令g(x)=2﹣x﹣aex,知g(x)在R上单调递减,
∵h(0)=0,∴h(x)要在x=0处取得最大值,∴g(0)=2﹣a=0,即a=2.
故选:A.
由图可知电视动画节目播出时间的方差最小,故D正确,
故选:BD.
10.过抛物线C:y2=2px(p>0)的焦点F作斜率为1的直线交抛物线C于A,B两点,
则 =( )
A.5﹣2 B.3﹣2 C.3+2 D. Nhomakorabea+2
【答案】BC
【解析】设A(x1,y1)B(x2,y2)
由 可得x2﹣3px+ =0,
如果x1>x2,
∴B={0,2,4,6,8}.
故选:C.
2.已知复数z满足:z2= +6i(i为虚数单位),且z在复平面内对应的点位于第三象限,
(全国I)2021届高三第二次模拟考试卷 文科数学(一) Word版含答案【KS5U 高考】
2021届高三第二次模拟考试卷文 科 数 学(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,(){}20,B x x x x =-≥∈Z ,则A B =( )A .{}0,2,3,4B .{}0,2C .{}3,4D .{}0,1,22.复数4i1+3i的虚部为( )A .1B .1-C .i -D .i3.已知2log 7a =,3log 8b =,0.20.3c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .c b a <<C .b c a <<D .c a b <<4.命题:{|19}p x x x ∃∈≤≤,2360x ax -+≤,若p 是真命题,则实数a 的取值范围为( ) A .37a ≥B .13a ≥C .12a ≥D .13a ≤5.已知函数()π2sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭π2ϕ⎛⎫< ⎪⎝⎭图象的一个对称中心为()3,0,为了得到函数()π2cos 4g x x =的图象,只需将函数()f x 的图象( )A .向左平移1个单位长度B .向左平移π4个单位长度 C .向右平移1个单位长度D .向右平移π4个单位长度6.已知函数()22cos sin x xx xf x e e--=+,则函数()f x 的大致图象是( ) A .B .C .D .7.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列说法不正确的是( )A .小寒比大寒的晷长长一尺B .春分和秋分两个节气的晷长相同C .小雪的晷长为一丈五寸D .立春的晷长比立秋的晷长长8.中国古代几何中的勾股容圆,是阐述直角三角形中内切圆问题.此类问题最早见于《九章算术》“勾股”章,该章第16题为:“今有勾八步,股十五步,间勾中容圆,径几何?”意思是“直角三角形的两条直角边分别为8和15,则其内切圆直径是多少?”若向上述直角三角形内随机抛掷100颗米粒(大小忽略不计,取π3=),落在三角形内切圆内的米粒数大约为( ) A .55B .50C .45D .409.已知抛物线()2:20C x py p =>的焦点为圆()2212x y +-=的圆心,又经过抛物线C 的焦点且倾斜角为60°的直线交抛物线C 于A 、B 两点,则AB =( ) A .12B .14C .16D .1810.已知向量≠a e ,1=e ,对任意t ∈R 恒有t -≥-a e a e ,则( ) A .⊥a e B .()⊥-a a e C .()⊥-e a eD .()()+⊥-a e a e11.已知四棱锥P ABCD -中,底面ABCD 是矩形,侧面PAD 是正三角形,且侧面PAD ⊥底面此卷只装订不密封班级 姓名 准考证号 考场号 座位号ABCD ,2AB =,若四棱锥P ABCD -,则该四棱锥的表面积为( ) A.B.C.D.12.已知函数()()221ln 202x aa xf x e ex a x a --=++-->,若()f x 有2个零点,则a 的取值范围是( ) A.(B .()20,eC.)+∞D .)2,e ⎡+∞⎣第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.正实数x ,y 满足:21x y +=,则当21x y+取最小值时,x =________. 14.已知圆222)1)5:((C x y -+-=及点(0,2)A ,点P 、Q 分别是直线20x y ++=和圆C 上的动点,则||||PA PQ +的最小值为___________.15.设函数()212221xx f x x--=++,若对x ∀∈R ,不等式()()24f mx f x ≥+成立,则实数m 的取值范围是_________.16.在ABC △中,a ,b ,c ,分别为角A ,B ,C 的对边,cos sin tan c B b C a C ⎫-=⎪⎭.若ABC △的内切圆面积为4π,则ABC △面积S 的最小值_______.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{}n a 的前n 项和为n S ,若2n S n kn =-+(*k ∈N ),且n S 的最大值为25.(1)求k 的值及通项公式n a ; (2)求数列{}112n a n -⋅的前n 项和nT .18.(12分)在某地区的教育成果展示会上,其下辖的一个数育教学改革走在该地区前列的县级民族中学近几年升入“双一流”大学的学生人数(单位:个)有如下统计表:(1)根据表中数据,建立y 关于x 的线性回归方程ˆˆˆybx a =+; (2)根据线性回归方程预测2021年该民族中学升入“双一流”大学的学生人数(结果保留整数). 附:对于一组数据()()()1122,,,,,,n n x y x y x y ,其回归直线方程ˆˆy bx a =+的斜率和截距的最小二乘估计分别为()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆa y bx=-;(参考数据:61628i ii x yxy =-=∑).19.(12分)如图,在直三棱柱111ABC A B C -中,底面ABC 是等边三角形,D 是AC 的中点. (1)证明:1AB ∥平面1BC D ;(2)若12AA AB =,求点1B 到平面1BC D 的距离.20.(12分)已知椭圆()2222:10x yC a b a b+=>>的两焦点为()11,0F -,()21,0F ,点P 在椭圆C 上,且12PF F △3 (2)点M 为椭圆C 的右顶点,若不平行于坐标轴的直线l 与椭圆C 相交于,A B 两点(,A B 均不是椭圆C 的右顶点),且满足AM BM ⊥,求证:直线l 过定点,并求出该定点的坐标.21.(12分)已知函数()1xf x e ax =--.(1)当1a =时,求()f x 的极值;(2)若2()f x x ≥在[0,)+∞上恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线1C 的参数方程为sin cos 2x y αα=⎧⎨=⎩(α为参数),直线2C 的极坐标方程为π6θ=-.(1)将1C 的参数方程化为普通方程,2C 的极坐标方程化为直角坐标方程; (2)求与直线2C 平行且与曲线1C 相切的直线l 的直角坐标方程.23.(10分)【选修4-5:不等式选讲】 已知函数()|31|2|3|f x x x =-+-.(1)若关于x 的方程|31|2|3|x x a -+-=有两个不同的实数根,求a 的取值范围; (2)如果不等式()f x bx ≤的解集非空,求b 的取值范围.文 科 数 学 答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】由集合()(){}150,A x x x x =+-<∈Z ,得{}0,1,2,3,4A =,(){}20,{|0B x x x x x x =-≥∈=≤Z 或2,}x x ≥∈Z ,所以{}0,2,3,4AB =,故选A .2.【答案】A()4i 1i 4==,所以虚部为1,故选A . 3.【答案】B【解析】因为2log y x =在()0,∞+上单调递增,因为478<<,所以2222log 4log 7log 83=<<=,所以23a <<, 因为3log y x =在()0,∞+上单调递增,389<<, 所以3331log 3log 8log 92=<<=,所以12b <<, 因为0.3xy =在R 上单调递减,0.20>, 所以0.2000.30.31<<=,即01c <<, 所以c b a <<,故选B . 4.【答案】C 【解析】命题:{|19}p x x x ∃∈≤≤,使2360x ax -+≤为真命题,即{|19}x x x ∃∈≤≤,使2360x ax -+≤成立,即36a x x≥+能成立, 设36()f x x x =+,则36()12f x x x =+≥=,当且仅当36x x=,即6x =时,取等号,即min ()12f x =,12a ∴≥, 故a 的取值范围是12a ≥,故选C . 5.【答案】A【解析】因为函数()f x 图象的一个对称中心为()3,0,所以3ππ4k ϕ+=,k ∈Z ,所以3ππ4k ϕ=-,k ∈Z , 又π2ϕ<,所以π4ϕ=,所以()ππ2sin 44f x x ⎛⎫=+ ⎪⎝⎭,因为()()πππππ2cos2sin 2sin 144244g x x x x ⎛⎫⎛⎫==+=++ ⎪ ⎪⎝⎭⎝⎭, 所以为了得到()π2cos 4g x x =的图象,只需将函数()f x 的图象向左平移1个单位长度,故选A . 6.【答案】B【解析】函数()22cos sin x xx xf x e e--=+的定义域为R ,且()()f x f x -=, 所以函数()f x 为偶函数,其图象关于y 轴对称, 排除选项A ,D ; 因为()1012f =<,所以排除选项C , 故选B . 7.【答案】C【解析】由题意可知,夏至到冬至的晷长构成等差数列{}n a , 其中115a =寸,13135a =寸,公差为d 寸, 则1351512d =+,解得10d =(寸);同理可知,由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸),故小寒与大寒相邻,小寒比大寒的晷长长10寸,即一尺,选项A 正确; 春分的晷长为7b ,7161356075b b d ∴=+=-=,秋分的晷长为7a ,716156075a a d ∴=+=+=,故春分和秋分两个节气的晷长相同, 所以B 正确;小雪的晷长为11a ,1111015100115a a d ∴=+=+=,115寸即一丈一尺五寸, 故小雪的晷长为一丈一尺五寸,C 错误; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故立春的晷长比立秋的晷长长,故D 正确, 故选C . 8.【答案】C【解析】17=,设三角形内切圆的半径为r ,面积为S , 利用等面积法可知()118158151722S r =⨯⨯=⨯++,解得3r =, 向该直角三角形内随机抛掷100颗米粒,设落在三角形内切圆内的米粒数大约为x ,则利用几何概型可知2π311008152x ⨯=⨯⨯,解得2π31004518152x ⨯⨯==⨯⨯颗, 所以落在三角形内切圆内的米粒数大约为45,故选C . 9.【答案】C【解析】由题可得抛物线焦点为()0,1,则12p=,即2p =,则抛物线方程为24x y =, 直线AB 的倾斜角为60°,故直线AB的方程为1y =+,联立直线与抛物线241x yy ⎧=⎪⎨=+⎪⎩,可得240x --=,设()11,A x y ,()22,B x y,则12x x +=124x x =-,则16AB ==,故选C .10.【答案】C【解析】对任意t ∈R 恒有t -≥-a e a e ,22t ∴-≥-a e a e ,即2222222t t -⋅+≥-⋅+a a e e a a e e ,即()22210t t -⋅+⋅-≥a e a e 对任意t ∈R 恒成立,则()()()222421410Δ=⋅-⋅-=⋅-≤a e a e a e ,1∴⋅=a e ,故a 和e 不垂直,故A 错误;≠a e ,1=e ,22()10∴⋅-=-⋅=-≠a a e a a e a ,故B 错误;2()110⋅-=⋅-=-=e a e a e e ,()∴⊥-e a e ,故C 正确; 222()()10+⋅-=-=-≠a e a e a e a ,故D 错误,故选C . 11.【答案】B【解析】设四棱锥P ABCD -外接球的球心为O ,过O 作底面ABCD 的垂线,垂足为M , 因为四边形ABCD 是长方形,所以M 为底面中心,即对角线AC BD 、的交点, 过O 作三角形APD 的垂线,垂足为N ,所以N 是正三角形APD 外心,设外接球半径为r ,外接球的体积为34π33r=,所以r =OA = 过N 作NE AD ⊥,则E 是AD 的中点,连接EM ,所以112EM AB ==,EM AD ⊥, 因为平面APD ⊥平面ABCD ,平面APD平面ABCD AD =,所以NE ⊥平面ABCD ,所以//NE OM ,所以EM ⊥平面APD ,所以//EM ON , 所以四边形MENO 是平行四边形,即OM NE =,设2AD x =,则AM ==,113323NE PE AD x ==⨯=,所以OM NE x ==,由勾股定理得222OA OM AM =+,即221213x x =++,解得x =所以AD =21sin 602PAD S AD =︒=△,因为////CD AB OM ,所以AB ⊥平面APD ,CD ⊥平面APD , 所以PA AB ⊥,PD CD ⊥,132PAB PCD S S AB AP ==⨯⨯=△△, 因为227PB PC PA AB ==+=,3BC =,作PH BC ⊥于H ,所以H 为BC 的中点,所以221357242PH PB BC ⎛⎫=-=-= ⎪⎝⎭, 所以1532PBC S PH BC =⨯⨯=△,23ABCD S =矩形, 所以63PAD PAB PCD ABCD S S S S S =+++=△△△表矩形,故选B .12.【答案】C【解析】()0f x =可转化为2212ln 2x a a xe x a x e --+-=-+. 设()2x aa x g x ee --=+-,由基本不等式得2220x a a x x a a x e e e e ----+-≥⋅=, 当且仅当x a =时,()g x 取到最小值0.设()()221ln 02h x x a x a =-+>,则()222a a x h x x x x-'=-+=, 当0x a <<时,()0h x '>,()h x 单调递增; 当x a >时,()0h x '<,()h x 单调递减,所以当x a =时,()h x 取到最大值221ln 2a a a -+.若()f x 有2个零点,则()g x 与()h x 有两个交点,此时221ln 02a a a -+>,解得a e >,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】13【解析】0x >,0y >,21x y +=,()2121222225525249y x y x x y x y x y x y x y∴+=++=++≥+⋅=+⎛⎫ ⎝⎭=⎪, 当且仅当22y x x y =,即13x y ==时,等号成立. 故答案为13. 14.【答案】25 【解析】如图所示:设点A 关于直线:20l x y ++=的对称点为(),A x y ',则2202221x y y x+⎧++=⎪⎪⎨-⎪=⎪⎩,解得42x y =-⎧⎨=-⎩,则()4,2A '--, 因为PA PA '=,所以PA PQ+的最小值为()()22422155A C r '-=--+--=故答案为 15.【答案】[]4,4- 【解析】函数()212221xx f x x--=++的定义域为R , ()()()()221122222211xxx x f x f x xx -------=+=+=++-,所以,函数()f x 为偶函数, 当0x ≥时,()()2122312321121x x x f x x x--+=+=+-++, 由于函数122x y =为减函数,2231y x =+在[)0,+∞上为减函数, 所以,函数()212221xx f x x--=++在[)0,+∞上单调递减, 由()()24f mx f x ≥+可得()()24fmx f x≥+,可得24mx x ≤+,所以,240x m x -⋅+≥对任意的x ∈R 恒成立, 设0t x =≥,则240t m t -+≥对任意的0t ≥恒成立, 由于二次函数24y t m t =-+的对称轴为直线02mt =≥, 2160Δm ∴=-≤,解得44m -≤≤,因此,实数m 的取值范围是[]4,4-,故答案为[]4,4-.16.【答案】【解析】cos sin tan c B b C a C ⎫-=⎪⎭)sin sin cos cos sin B C B C A -=,即()sin B C A +=sin A A =,即tan A =π3A ∴=, 由题意知ABC △内切圆的半径为2,如图,内切圆的圆心为I ,,M N 为切点,则4AI =,AM AN ==从而43a b c =+-(22243b c b c bc +-=+-,整理得)34883163bc b c bc +=+≥,解得48≥bc 或163≤bc (舍去), 从而113sin 4812322S bc A =≥⨯=, 即ABC △面积S 的最小值为123123三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)10k =,211n a n =-+(*n ∈N );(2)434993n n n T +=-⋅. 【解析】(1)由题可得2224n k k S n ⎫⎛=--+ ⎪⎝⎭,*k ∈Z , 所以当k 为偶数时,()2max2254n k k S S ===,解得10k =;当k 为奇数时,()21max 21254n k k S S +-===,此时k 无整数解,综上可得:10k =,210n S n n =-+.①1n =时,119a S ==.②当2n ≥时,()()()()221101101211n n n n n n n n a S S -=-+---+-=-+=-,当1n =时也成立. 综上可得211n a n =-+,所以10k =,211n a n =-+(*n ∈N ). (2)112224n a n n n n n --⋅=⋅=,1212444n n n T =++⋅⋅⋅+① 231112144444n n n n n T +-=++⋅⋅⋅++② 两式相减得21311144444n n n nT +=++⋅⋅⋅+-,1111131144144334414n n n n n n n T ++⎫⎛- ⎪⎝⎭=-=--⋅-, 则14199434n n n n T -=--⋅⋅,则434993n n n T +=-⋅. 18.【答案】(1) 1.664.4y x =+;(2)75. 【解析】(1)由题意,123456 3.56x +++++==,666770717274706y +++++==,()()()()7222222212.5 1.50.50.5 1.5 2.517.5i i x x=-=-+-+-+++=∑,()171277281.617.5i i i iix x x y x yb ==--∴===∑∑,70 1.6 3.564.4a y bx =-=-⨯=, ∴y 关于x 的线性回归方程为 1.664.4y x =+.(2)由(1)可知,当年份为2021年时,年份代码7x =,此时 1.6764.475.6y =⨯+=, 保留整数为75人,所以2021年该民族中学升入“双一流”大学的学生人数为75人. 19.【答案】(1)证明见解析;(2. 【解析】(1)设11B CBC E =,连接DE ,由直棱柱的性质可知四边形11BCC B 是矩形,则E 为1B C 的中点, 因为D 是AC 的中点,所以1//DE AB ,因为1AB ⊄平面1BC D ,DE ⊂平面1BC D ,所以1//AB 平面1BC D . (2)连接1AC ,由(1)知1//AB 平面1BC D ,所以点1B 到平面1BC D 的距离等于点A 到平面1BC D 的距离, 因为底面ABC 是等边三角形,D 是AC 的中点,所以BD AC ⊥,因为2AB =,所以1AD =,则3BD =, 从而ABD △的面积为13132⨯⨯=, 故三棱锥1C ABD -的体积为132343⨯⨯=, 由直棱柱的性质可知平面ABC ⊥平面11ACC A ,则BD ⊥平面11ACC A , 因为1C D ⊂平面11ACC A ,所以1BD C D ⊥, 又221117C D CC CD =+=,所以1BC D △的面积为1513172⨯⨯=, 设点A 到平面1BC D 的距离为h ,则151233h ⨯=,解得417h =, 故点1B 到平面1BC D 的距离为41717.20.【答案】(1)22143x y +=;(2)证明见解析,定点坐标为2,07⎛⎫ ⎪⎝⎭. 【解析】(1)由椭圆的对称性可知:当点P 落在椭圆的短轴的两个端点时,12PF F △的面积最大,此时1232b ⨯⨯=3b = 由222a bc =+,得2314a =+=,∴椭圆C 的标准方程为22143x y +=. (2)设()11,A x y ,()22,B x y ,直线l 的方程为y kx m =+,联立22143y kx m x y =+⎧⎪⎨+=⎪⎩,得()()222348430k x mkx m +++-=,则()()222264163430Δm k km=-+->,即22340k m +->,122834mk x x k ∴+=-+,()21224334m x x k-=+.()()()()22221212121223434m k y y kx m kx m k x x mk x x m k -∴=++=+++=+.椭圆的右顶点为()2,0M ,AM BM ⊥,0MA MB ∴⋅=,()()1212220x x y y ∴--+=,即()121212240y y x x x x +-++=, ()()22222234431640343434m k m mkk k k--∴+++=+++, 整理可得2271640m km k ++=, 解得12m k =-,227k m =-,(1m ,2m 均满足22340k m +->). 当2m k =-时,l 的方程为()2y k x =-,直线l 过右顶点()2,0,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,过定点2,07⎛⎫⎪⎝⎭,∴直线l 过定点,定点坐标为2,07⎛⎫⎪⎝⎭.21.【答案】(1)极小值0,无极大值;(2)(,2]e -∞-.【解析】(1)当1a =时,()1x f x e x =--,所以()1x f x e =-'.当0x <时,()0f x '<;当0x >时,()0f x '>, 所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 所以当0x =时,函数()f x 有极小值(0)0f =,无极大值.(2)因为2()f x x ≥在[0,)+∞上恒成立,所以210x e x ax ---≥在[0,)+∞上恒成立. 当0x =时,00≥恒成立,此时a ∈R ;当0x >时,1()x e a x x x≤-+在(0,)+∞上恒成立.令1()()x e g x x x x =-+,则2222(1)1(1)((1))()()x x e x x x e x g x x x x ----+'=-=. 由(1)知0x >时,()0f x >,即(1)0xe x -+>.当01x <<时,()0g x '<;当1x >时,()0g x '>, 所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增, 所以当1x =时,min ()2g x e =-,所以2a e ≤-, 综上可知,实数a 的取值范围是(,2]e -∞-.22.【答案】(1)2112:y x C =-,()230,0C y x +=≥;(2)25324y x =-+. 【解析】(1)因为曲线1C 的参数方程为sin cos 2x y αα=⎧⎨=⎩(α为参数),所以2sin 12sin x y αα=⎧⎨=-⎩,消去α,得212y x =-. 因为直线2C 的极坐标方程为π6θ=-,所以πsin tan tan 6cos ρθθρθ⎛⎫=-== ⎪⎝⎭,即3y x =-()30,0y x +=≥. (2)设切线方程为33yx b,由212y x b y x ⎧=+⎪⎨⎪=-⎩,得2210x x b +-=,所以()238103Δb ⎛⎫=--⨯-= ⎪ ⎪⎝⎭,解得2524b =, 所以切线方程是325324y x =-+. 23.【答案】(1)16|3a a ⎧⎫>⎨⎬⎩⎭;(2){5b b <-∣或83b ⎫≥⎬⎭. 【解析】(1)57,31()31235,33157,3x x f x x x x x x x ⎧⎪-≥⎪⎪=-+-=+≤<⎨⎪⎪-+<⎪⎩, 当3x ≥时,函数()f x 单调递增,并且()8f x ≥; 当133x ≤<时,函数()f x 单调递增,并且16()3f x ≥; 当13x <时,函数()f x 单调递减,并且16()3f x >, 综上:当13x >时,函数()f x 单调递增,当13x <时,函数()f x 单调递减,且16()3f x ≥.作出()f x 的图象如图所示:要使关于x 的方程|31|2|3|x x a -+-=有两个不同的根, 则a 的取值范围16|3a a ⎧⎫>⎨⎬⎩⎭.(2)因为(3)8f =,记点(3,8)M ,坐标原点为(0,0)O ,则直线OM 的斜率为83k =. 当直线y bx =与57y x =-+平行时,无交点, 所以当5b <-或83b ≥时,该直线与函数()|31|2|3|f x x x =-+-的图象相交. 因为不等式()f x bx ≤的解集非空, 所以b 的取值范围是{5b b <-或83b ⎫≥⎬⎭.。
湖南省长沙市长郡中学、河南省郑州外国语学校、浙江省杭州第二中学2023届高三二模联考数学试题
湖南省长沙市长郡中学、河南省郑州外国语学校 、浙江省杭州第二中学2023届高三二模联考数学试题学校:___________姓名:___________班级:___________考号:___________三、填空题四、双空题15.2023年2月22日,中国厦门市一名8岁男孩用时4.305秒单手完成4层汉诺塔游戏,成为新的世界纪录保持者.汉诺塔游戏源于1883年法国数学家卢卡斯提出的汉诺塔问题,有A ,B ,C 三根柱子,在A 柱上放着由下向上逐渐变小的n 个盘子,现要求把A 柱上的盘子全部移到C 柱上,且需遵循以下的移动规则:①每次只能移动一个盘子;②任何时候都不允许大盘子放在小盘子的上面;③移动过程中盘子可以放在A ,B ,C 中任意一个柱子上.若用()H n 表示n 个盘子时最小的移动次数,则()3H =______,()H n =______.六、解答题【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.7.B【分析】由球与正六棱锥的性质建立六棱锥体积与球心与底面中心距离的函数关系计算即可求得最值.【详解】如图所示,设球半径为R,球心O到六棱锥底面中心o¢的距离为h,由题意易知正六棱锥顶点P与OO¢共线,由球的体积为36π,可得3R=,B 杆移到C 杆需要的最少次数为1次,所以()23H =;当3n =时,将第一层第二层(自上而下)金盘从、A 杆移到B 杆需要的最少次数为()23H =次,将第三层(自上而下)金盘从A 杆移到C 杆需要的最少次数为1次,再将已移动到B 杆上的金盘从B 杆移到C 杆需要的最少次数为()23H =次,所以()()32212317H H =+=´+=;则()11H =,()23H =,()37H =,猜想:()21n H n =-,*n ÎN ,证明如下:①当1n =时,()11H =成立.②假设当()*1,n k k k N =³Î时猜想成立,即()21k H k =-,即将k 个直径不同的盘子从A 杆移动到C 杆最少需要21k -次.则当1n k =+时,分三步进行:第一步,将上面k 个盘子从A 杆移动到B 杆;第二步,将第1k +个盘子从A 杆移动到C 杆;第三步,将上面k 个盘子从B 杆移动到C 杆.则最少需要()21H k +次,即()()()1121221121k k H k H k ++=+=-+=-,即1n k =+时,猜想也成立.综上,()21n H n =-.。
2024届湖南省长沙市长郡中学高三下学期二模数学试题及答案
长郡中学2024届高考适应性考试(二)数学命题人:__________审题人__________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2230,2,1xA xx x B y y x =--<==<∣∣,则A B ⋂=( )A.(),3∞-B.()0,2C.()1,2-D.()2,32.已知数列{}n a 满足111n n a a +=-,若112a =,则2023a =( )A.2B.-2C.-1D.123.已知样本数据12100,,,x x x L 的平均数和标准差均为4,则数据121001,1,,1x x x ------L 的平均数与方差分别为( )A.5,4-B.5,16-C.4,16D.4,44.蒙古包(Mongolianyurts )是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包古代称作穹庐、毡包或毡帐.已知蒙古包的造型可近似的看作一个圆柱和圆锥的组合体,已知圆锥的高为2米,圆柱的高为3米,底面圆的面积为64π平方米,则该蒙古包(含底面)的表面积为()A.(112π+平方米B.(80π+平方米C.(112π+平方米D.(80π+平方米5.儿童玩具纸风车(图1)体现了数学的对称美.取一张正方形纸折出“十”字折痕,然后把四个角向中心点翻折,再展开,把正方形纸两条对边分别向中线对折,把长方形短的一边沿折痕向外侧翻折,然后把立起来的部分向下翻折压平,另一端折法相同,把右上角的角向上翻折,左下角的角向下翻折,纸风车的主体部分就完成了(图2).则()A.OC OE =u u u r u u u rB.0OA OB ⋅>u u u r u u u rC.2OA OD OE +=u u u r u u u r u u u rD.0OA OC OD ++=u u u r u u u ru u u r r6.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为( )A.()π5π2π,2π66k k k ⎛⎤-+∈ ⎥⎝⎦Z B.()5π2π2π,2π33k k k ⎛⎤--∈ ⎥⎝⎦Z C.()4ππ2π,2π33k k k ⎛⎤--∈ ⎥⎝⎦Z D.()π2π2π,2π33k k k ⎛⎤-+∈ ⎥⎝⎦Z 7.已知1sin cos ,0π5ααα-=≤≤,则πsin 24α⎛⎫-= ⎪⎝⎭( )A. C.8.已知复数12,z z 满足112881i 1i z z z p p p p ⎛⎫+-+-+==+++ ⎪⎝⎭,(其中0,i p >是虚数单位),则12z z -的最小值为( )A.2B.6C.2-D.2+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数中最小值为2的是()A.223y x x =++ B.1sin sin y x x=+C.122x x y -=+D.1ln ln y x x=+10.若,x y 满足28()23x y xy +-=,则( )A.y x -≥B.2y x -<C.32xy >D.34xy ≥-11.在正方体1111ABCD A B C D -中,1,AB E =为11A D 的中点,F 是正方形11BB C C 内部一点(不含边界),则()A.平面1FBD ⊥平面11AC DB.平面11BB C C 内存在一条直线与直线EF 成30o 角C.若F 到BC 边距离为d ,且221EF d -=,则点F 的轨迹为抛物线的一部分D.以11AA D V 的边1AD 所在直线为旋转轴将11AA D V 旋转一周,则在旋转过程中,1A 到平面1AB C 的距离的取值范围是三、填空题:本题共3小题,每小题5分,共15分.12.已知6m x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为20,则实数m 的值为__________.13.已知定义在R 上的偶函数()f x 满足()()()1212f x f x f x x =,且当0x >时,()0f x >.若()()33f f a =',则()f x 在点11,33f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为__________.(用含a 的表达式表示)14.已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,右顶点为E ,过2F 的直线交双曲线C 的右支于,A B 两点(其中点A 在第一象限内),设,M N 分别为1212,AF F BF F V V 的内心,则当1F A AB ⊥时,1AF =__________;1ABF V 内切圆的半径为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,其中4,sin a C c A ==-.(1)求A ;(2)已知直线AM 为BAC ∠的平分线,且与BC 交于点M ,若AM =ABC V 的周长.16.(本小题满分15分)如图,已知ABCD 为等腰梯形,点E 为以BC 为直径的半圆弧上一点,平面ABCD ⊥平面,BCE M 为CE 的中点,2,4BE AB AD DC BC =====.(1)求证:DM ∥平面ABE ;(2)求平面ABE 与平面DCE 所成角的余弦值.17.(本小题满分15分)据统计,2024年元旦假期,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元,游客接待量与旅游总收入达到历史峰值.现对某一时间段冰雪大世界的部分游客做问卷调查,其中75%的游客计划只游览冰雪大世界,另外25%的游客计划既游览冰雪大世界又参观群力音乐公园大雪人.每位游客若只游览冰雪大世界,则得到1份文旅纪念品;若既游览冰雪大世界又参观群力音乐公园大雪人,则获得2份文旅纪念品.假设每位来冰雪大世界景区游览的游客与是否参观群力音乐公园大雪人是相互独立的,用频率估计概率.(1)从冰雪大世界的游客中随机抽取3人,记这3人获得文旅纪念品的总个数为X ,求X 的分布列及数学期望;(2)记n 个游客得到文旅纪念品的总个数恰为1n +个的概率为n a ,求{}n a 的前n 项和;n S (3)从冰雪大世界的游客中随机抽取100人,这些游客得到纪念品的总个数恰为n 个的概率为n b ,当n b 取最大值时,求n 的值.18.(本小题满分17分)在椭圆(双曲线)中,任意两条互相垂直的切线的交点都在同一个圆上,该圆的圆心是椭圆(双曲线)的中心,半径等于椭圆(双曲线)长半轴(实半轴)与短半轴(虚半轴)平方和(差)的算术平方根,则这个圆叫蒙日圆.已知椭圆2222:1(0)x y E a b a b+=>>的蒙日圆的面积为13π,该椭圆的上顶点和下顶点分别为12P P 、,且122PP =,设过点10,2Q ⎛⎫⎪⎝⎭的直线1l 与椭圆E 交于,A B 两点(不与12,PP 两点重合)且直线2:260l x y +-=.(1)证明:12,AP BP 的交点P 在直线2y =上;(2)求直线122,,AP BP l 围成的三角形面积的最小值.19.(本小题满分17分)帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,m n ,函数()f x 在0x =处的[],m n 阶帕德近似定义为:()0111m m nn a a x a x R x b x b x +++=+++L L ,且满足:()()()()()()()()()()00,00,00,,00m n m n f R f R f R f R ++''''='='==L L .(注:()()()()()()()()()()()()()''''454,,,,;n f x f x f x f x f x f x f x f x f x '''''⎦'''''⎡⎤====⋯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎣⎦⎦'⎣为()()1n f x -的导数)已知()()ln 1f x x =+在0x =处的[]1,1阶帕德近似为()1axR x bx=+.(1)求实数,a b 的值;(2)比较()f x 与()R x 的大小;(3)若()()()()12f x h x m f x R x ⎛⎫=-- ⎪⎝⎭在()0,∞+上存在极值,求m 的取值范围.长郡中学2024届高考适应性考试(二)数学参考答案一、选择题:本题共8小题,每小题5分,共40分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长郡中学高三数学第二次月考(文数)
一、选择题
1、等差数列{}n a 中,1,573=-=a a ,则=11a
A 、6
B 、7
C 、8
D 、9
2、已知集合{}1,0=M ,则满足条件M N M =Y 的集合N 的个数为
A 、1
B 、2
C 、3
D 、4
3、n m ,是两不同直线,α是平面,α⊥n ,则n m n m ⊥是∥的
A 、充分不必要条件
B 、必要不充分条件
C 、充分必要条件
D 、既不充分也不必要条件
4、下列函数中是偶函数,且在区间()∞+,
0上时减函数的是 A 、1+=x y B 、2
-=
x y
C 、x x
y -=1 D 、x y 2= 5、已知平面向量a 、b 满足1==b a ,若()02=⋅-b b a ,则向量a 、b 的夹角为
A 、30°
B 、45°
C 、60°
D 、120°
6、某校高二(1)班每周都会选出两位“迟到之星”,期中考试之前一周“迟到之星”人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人中产生”,小赵说:“一定没有我,肯定有小宋”,小宋说:“小马、小谭二人中有且仅有一人是迟到之星”,小谭说:“小赵说的对”。
已知这四人中有且只有两人的说法是正确的,则“迟到之星”是
A 、小赵、小谭
B 、小马、小宋
C 、小马、小谭
D 、小赵、小宋
7、函数1)(ln --=x e x f x 的图像大致是
8、某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),下图为选取的15名志愿者身高和臂展的折线图,及身高与臂展所对应的散点图,并求得其回归方程为75.3016.1^-=x y ,以下结论中不正确的为
A B C D
A 、15名志愿者身高的极差小于臂展的极差
B 、15名志愿者的身高和臂展成正相关关系
C 、可估计身高为190厘米的人臂展大约为189.65厘米
D 、身高相差10厘米的两人臂展都相差11.6厘米
9、已知数列{}n a 的前n 项和为6)(3--=n S n n λ,若数列{}n a 单调递减,则λ的取值范围为
A 、()2,∞-
B 、()3,∞-
C 、()4,∞-
D 、()5,∞-
10、由不等式组⎪⎩
⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式组⎩⎨⎧-≥+≤+21y x y x 确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为
A 、
81 B 、41 C 、43 D 、8
7 11、已知函数21)(--=x x x f 与x x g πsin 1)(-=,则函数)()()(x g x f x F -=在区间[]6,2-上所有零点的和为
A 、4
B 、8
C 、12
D 、16
12、设函数)0,(2ln )(2>∈+-=n R m nx mx x x f ,若对于任意的0>x 都有)1()(f x f ≤,则
A 、m n 8ln <
B 、m n 8ln ≤
C 、m n 8ln >
D 、m n 8ln ≥
二、填空题
13、已知集合{}92<<=x x B ,{}12+<<=a x a x C ,若B C ⊆,则实数a 的取值范围为
14、已知)0,0(122>>=+y x y
x ,则y x +的最小值为 15、已知函数x e
x mx x f 22)(2-+=,[]e m ,1∈,[]2,1∈x ,min max )()()(x f x f m g -=,则关于m 的不等式24)(e
m g ≥的解集为
16、已知在ABC ∆中,角C B A 、、的对边分别为c b a 、、,其满足)cos cos 3(cos )3(A B c C b a -=-,点F 在边AC 上,且FC AF 2=,则BF AB 的取值范围是
三、解答题
17、已知函数2
cos
32cos )2sin()(2x x x x f +-=π (Ⅰ)求)(x f 的最小正周期
(Ⅱ)求)(x f 在区间[]0,π-上的最大值和最小值
18、已知某中学联盟举行了一次“盟校质量调研考试”活动,为了了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为100分,得分取正整数,抽取学生的分数均在[]100,50之内)座位样本(样本容量为n )进行统计,按照[)60,50、[)70,60、[)80,70、[)90,80、[]100,90的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[)60,50、[]100,90的数据)
(Ⅰ)求样本容量n 和频率分布直方图中y x ,的值;
(Ⅱ)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“省级学科基础知识竞赛”,求所抽取的2名学生中恰有一人得分在[]100,90内的概率。
19、记n S 为等差数列{}n a 的前n 项和,已知241642==S S ,
(Ⅰ)求数列{}n a 的通项公式n a ;
(Ⅱ)求数列{}n a 的前n 项和n T 。
20、在如图所示的平面直角坐标系中,已知点)0,1(A 和点)0,1(-B ,1=OC ,且x AOC =∠,其中O 为坐标原点
(Ⅰ)若π4
3=x ,设点D 为线段OA 上的动点,求OD OC +的最小值; (Ⅱ)若⎥⎦⎤⎢⎣⎡∈2,
0πx ,向量C B m =,)cos 2sin ,cos 1(x x x n --=,求n m ⋅的最小值及对应的x 值。
21、如图,在ABC ∆中,3π=B ,32=BC ,点D 在边AB 上,AC AD =,AC DE ⊥,E 为垂足。
(Ⅰ)若BCD ∆的面积为233,求CD 的长; (Ⅱ)若223=
DE ,求角A 的大小。
22、已知函数x x
p px x f ln 2)(--=。
(Ⅰ)若函数)(x f 在其定义域内为增函数,求正实数p 的取值范围; (Ⅱ)设函数x e x g 2)(=,若在[]e ,1上至少存在一点0x ,使得)()(00x g x f >成立,求实数p 的取值范围。