平行四边形新数学试卷(打印)
华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)
新华师大版八年级下册数学平行四边形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 在四边形ABCD 中,CD AB //,再添加下列一个条件,四边形ABCD 不一定是平行四边形的是 【 】 (A )CD AB = (B )BC AD = (C )BC AD // (D )C A ∠=∠2. 如图所示,在□ABCD 中,︒=∠︒=∠115,25A DBC ,则=∠BDC 【 】 (A )︒25 (B )︒30 (C )︒40 (D )︒65第 2 题图ADBC第 3 题图EBACD3. 如图所示,在△ABC 中,BC AB A ⊥︒=∠,40,点D 在AC 边上,以CB 、CD 为边作□BCDE ,则E ∠的度数为 【 】 (A )︒40 (B )︒50 (C )︒60 (D )︒704. 如图所示,EF 过□ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若□ABCD 的周长是30,3=OE ,则四边形ABFE 的周长是 【 】 (A )18 (B )21 (C )24 (D )27第 4 题图F ODBCAE第 5题图5. 如图,在□ABCD 中,AB BE ⊥交对角线AC 于点E ,若︒=∠201,则2∠的度数为 【 】 (A )︒120 (B )︒100 (C )︒110 (D )︒906. 如图所示,□ABCD 的周长周长为24,AC 、BD 相交于点O ,BD OE ⊥交AD 于点E ,则△ABE 的周长为 【 】 (A )8 (B )10 (C )12 (D )16第 6 题图EODBCA第 7 题图FECABD7. 如图所示,在□ABCD 中,E 、F 是对角线BD 上不同的两点,若添加下列条件,不能得出四边形AECF 一定是平行四边形的为 【 】 (A )DF BE = (B )CE AF // (C )DCF BAE ∠=∠ (D )CF AE =8. 如图,平行四边形OABC 的顶点A 、C 的坐标分别为()0,5,()3,2,则顶点B 的坐标为 【 】 (A )()3,7 (B )()7,3 (C )()7,4 (D )()4,7yx第 8 题图BCAO第 9 题图9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 15 题图EF CABDP10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA第 11 题图D二、填空题(每小题3分,共15分)11. 如图,在□ABCD 中,AB CE ⊥,若︒=∠65D ,则=∠BCE _________.12. 已知□ABCD 的周长为10,对角线AC 、BD 交于点O ,△AOD 的周长比△AOB 的周长多1,则AB 的长为_________.13. 如图所示,四边形AEDF 是平行四边形,△CED 和△DFB 的周长分别为5和10,则△ABC 的周长为_________.第 13 题图F DABCE第 14 题图ADEBC14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点 F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠; ③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD中,CDAB//,__________.求证:___________________________________.请补全已知和求证部分,并写出证明过程.DB CA17.(8分)已知:如图所示,在□ABCD中,点E是BC边的中点,连结DE并延长交AB边的延长线于点F.求证:BFAB .BC EA FD18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA19.(9分)如图所示,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.EDBFAC20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA21.(10分)如图所示,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ _________,=BP _________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ; (3)当=t _________时,PQ PD =;(4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP新华师大版八年级下册数学摸底试卷平行四边形单元测试卷 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. ︒25 12. 2 13. 15 14. 2515. ①②③④ 部分题目答案提示9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 9 题图解析 本题考查平行四边形的性质和尺规作图的原理,注意角平分线+平行线模型的识别.由尺规作图可知:OF 平分AOB ∠根据角平分线+平行线模型可知:AG OA = ∵()2,1-A∴()52122=+-=OA ∴5=AG ∵x AC //轴 ∴2==A G y y∵()51==--=-AG x x x G A G∴51=+G x ∴15-=G x∴点G 的坐标为()2,15-∴选择答案【 D 】.10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA解析 本题主要考查平行四边形的性质以及判定.对于①DE BF =,连结AC ,交BD 于点O ,如图1所示.图 1∵四边形ABCD 为平行四边形 ∴OD OB OC OA ==, ∵DE BF =∴OE OD OF OB +=+ ∴OE OF =∵OF OE OC OA ==, ∴四边形AECF 是平行四边形.对于②AF AE =,不能确定四边形AECF 是平行四边形;对于③CF AE =,不能确定四边形AECF 是平行四边形;对于④CFD AEB ∠=∠,如图2所示.图 2∵CFD AEB ∠=∠ ∴21∠=∠∴CF AE //∵四边形ABCD 为平行四边形 ∴CD AB CD AB =,// ∴43∠=∠在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CD AB CFD AEB 43 ∴△ABE ≌△CDF (AAS ) ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形. 对于⑤BD CF BD AE ⊥⊥,,如图3所示.图 3∵BD CF BD AE ⊥⊥, ∴CF AE //(在同一平面内,垂直于同一条直线的两条直线互相平行) 易证:△ABD ≌△CDB ∴CDB ABD S S ∆∆=∴CF BD AE BD ⋅=⋅2121 ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形.(或易证:△ABE ≌△CDF ,∴CF AE =) 综上所述,能使四边形AECF 为平行四边形的条件有:①④⑤,共3个. ∴选择答案【 B 】.14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.第 14 题图ADEBC解析 本题主要考查平行四边形的性质,注意角平分线+平行线模型的识别. 根据角平分线+平行线模型不难确定:△ABE 和△DCE 都是等腰三角形 ∴DC DE AB AE ==, ∵四边形ABCD 为平行四边形 ∴AD BC CD AB CD AB ==,//, ∴︒=∠+∠=180,BCD ABC DE AE ∴AB AE AD BC 22=== ∵BE 平分ABC ∠,CE 平分BCD ∠ ∴22,12∠=∠∠=∠BCD ABC ∴︒=∠+∠1802212 ∴︒=∠+∠9021 ∴︒=∠90BEC在Rt △BCE 中,由勾股定理得:222CE BE BC +=∴53422=+=BC ∴2521==BC AB . 15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠;③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.第 15 题图EF CABDP解析 本题主要考查平行四边形的性质.图 1对于①,∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠(如图1所示) ∵EC BC = ∴21∠=∠ ∴32∠=∠ ∴BE 平分CBF ∠; 故结论①正确; 对于②,如图1所示. ∵EC BC =,BE CF ⊥ ∴CF 平分DCB ∠(等腰三角形“三线合一”) 故结论②正确; 对于③,如图2所示.图 2由结论②可知: CF 平分DCB ∠ ∴21∠=∠∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠ ∴32∠=∠ ∴BC BF =. 故结论③正确;对于④,∵BC BF =,CF BE ⊥∴直线BE 垂直平分CF ∴PC PF = 故结论④正确.综上所述,正确结论的序号是①②③④. 三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD 中,CD AB //,__________.求证:________________________________. 请补全已知和求证部分,并写出证明过程.CD AB =…………………………………………1分四边形ABCD 为平行四边形…………………………………………2分 证明:连结AC ∵CD AB // ∴21∠=∠在△ABC 和△CDA 中∵⎪⎩⎪⎨⎧=∠=∠=CA AC CD AB 21 ∴△ABC ≌△CDA (SAS ) ∴43∠=∠ ∴BC AD //…………………………………………6分 ∵CD AB //,BC AD // ∴四边形ABCD 为平行四边形…………………………………………9分 点评 要证明平行四边形的判定定理,必须按照平行四边形的定义进行,即证明四边形的两组对边分别平行.17.(8分)已知:如图所示,在□ABCD 中,点E 是BC 边的中点,连结DE 并延长交AB 边的延长线于点F . 求证:BF AB =.BC EAFD证明:∵点E 是BC 边的中点 ∴CE BE =∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF // ∴1∠=∠F在△BEF 和△CED 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CE BE F 321 ∴△BEF ≌△CED (AAS ) ∴CD BF =…………………………………………6分 ∵CD BF CD AB ==, ∴BF AB =…………………………………………8分 18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA(1)证明:∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF //∴1∠=∠F∵AB BF = ∴CD BF =在△DCE 和△FBE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BF CD FEB DEC F 1 ∴△DCE ≌△FBE (AAS );…………………………………………5分 (2)解:由(1)可知:△DCE ≌△FBE ∴3==BE CE ∴62==CE BC…………………………………………7分 ∵四边形ABCD 是平行四边形 ∴6==BC AD .…………………………………………9分 19.(9分)如图,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵FC BE = ∴CE FC CE BE +=+ ∴FE BC =…………………………………………1分EDBFAC在△ABC 和△DFE 中∵⎪⎩⎪⎨⎧===FE BC DE AC DFAB ∴△ABC ≌△DFE (SSS );…………………………………………4分(2)由(1)可知:△ABC ≌△DFE ∴21∠=∠ ∴DF AB //…………………………………………6分 ∵DF AB =∴DF AB =// ∴四边形ABDF 是平行四边形.…………………………………………9分 20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA证明:∵BC AD CD AB //,// ∴四边形ABCD 是平行四边形…………………………………………3分 ∴OD OB OC OA ==,…………………………………………5分 ∵E 、F 分别是OB 、OD 的中点 ∴OD OF OB OE 21,21==∴OF OE =…………………………………………6分 ∵OF OE OC OA ==, ∴四边形AFCE 是平行四边形.…………………………………………9分 21.(10分)如图,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.证明:∵EC BF = ∴CF EC CF BF -=- ∴EF BC =…………………………………………1分在Rt △ABC 和Rt △DEF 中∵⎩⎨⎧==EF BC DF AC∴Rt △ABC ≌Rt △DEF (HL )…………………………………………5分 ∴DFE ACB ∠=∠ ∴21∠=∠ ∴DF AC //…………………………………………7分 ∵DF AC //,DF AC = ∴四边形ACDF 是平行四边形.…………………………………………10分 22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//…………………………………………2分 ∴BE DF //∵E 、F 分别是AB 、CD 的中点 ∴AB BE CD DF 21,21==∴BE DF =∵BE DF //,BE DF = ∴四边形BEDF 是平行四边形 ∴BF DE //;…………………………………………5分(2)解:四边形MENF 是平行四边形 …………………………………………6分 理由如下:由(1)可知:BF DE // ∴,//NF ME ABF ∠=∠1 ∵CD AB //∴ABF ∠=∠2,43∠=∠ ∴21∠=∠∵E 、F 分别是AB 、CD 的中点 ∴CD CF AB AE 21,21==∴CF AE =在△AME 和△CNF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠4321CF AE ∴△AME ≌△CNF (ASA )∴NF ME =∵,//NF ME NF ME = ∴四边形MENF 是平行四边形.…………………………………………10分 23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ ________,=BP ________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ;(3)当=t _________时,PQ PD =; (4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP解:(1)t ,t 2,0≤t ≤16;…………………………………………3分 (2)由题意可知:t AQ AD DQ -=-=16∴()966121621+-=⋅-=t t S ; …………………………………………5分(3)316;…………………………………………7分 提示: 当PQ PD =时,作AD PE ⊥,如图1所示.P由等腰三角形“三线合一”的性质可知:DE QE =易知:四边形ABPE 是矩形(即长方形) ∴t BP AE 2==∴t t t AQ AE QE =-=-=2 t AE AD DE 216-=-= ∵DE QE = ∴t t 216-=解之得:316=t∴当316=t 时,PQ PD =.(4)分为两种情况:图 2P QDABC①当点P 在BC 边上时,四边形PCDQ 是平行四边形,则有DQ PC = ∴t t -=-16221解之得:5=t ;(如图2所示)…………………………………………9分 ②当点P 在BC 边的延长线上时,四边形CPDQ 是平行四边形,则有DQ PC = ∴t t -=-16212解之得:337=t .(如图3所示) 图 3PQDABC综上所述,当5=t 或337=t 时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形.…………………………………………11分学生整理用图。
人教版八年上册数学第18章平行四边形试卷含答案
人教版八年上册数学第18章平行四边形试卷含答案一、单选题1.如图,四边形中,顺次连接四边形各边中点,得到四边形,再顺次连接四边形各边中点,得到四边形...如此进行下去,得到四边形则下列结论正确的个数有()①四边形是矩形;②四边形是菱形;③四边形的周长为;④四边形的面积是.A.个B.个C.个D.个2.如图,在△ABC中,D是BC上一点,BM⊥AD,M,N分别是AD,AC中点,且MN=1,BC=6,则AB的值为()A.5B.4C.3D.23.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个4.如图,矩形中,对角线,交于点.若,,则的长为()A .4B.C.3D.55.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB 长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形6.下列说法正确的是()A.平行四边形的对角线互相垂直B.对角线互相平分的四边形是平行四边形C.线段垂直平分线上的点到线段的距离相等D.同角(或等角)的余角互补7.如图所示,矩形ABCD中,AE平分交BC于E,,则下面的结论:①是等边三角形;②;③;④,其中正确结论有()A.1个B.2个C.3个D.4个8.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处若的周长为18,的周长为6,四边形纸片ABCD的周长为A.20B.24C.32D.489.在□ABCD中,∠A:∠B=7:2,则∠C等于()A.40°B.80°C.120°D.140°10.下列命题中正确的是( )A.对角线相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线相等的平行四边形是菱形D.对角线相等的菱形是正方形二、填空题11.如图,矩形ABCD中,AB=7cm,BC=3cm,P、Q两点分别从A、B两点同时出发,沿矩形ABCD的边逆时针运动,速度均为1cm/s,当点P到达B点时两点同时停止运动,若PQ长度为5cm时,运动时间为________s.12.在平行四边形中,,,则的取值范围是___________.13.如图是跷跷板的示意图,立柱OC与地面垂直,以O为横板AB的中点,AB绕点O上下转动,横板AB的B端最大高度h是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB="2" m,OC="0.5" m,通过计算得到此时的h1,再将横板AB 换成横板A′B′,O为横板A′B′的中点,且A′B′=3m,此时B′点的最大高度为h2,由此得到h1与h2的大小关系是:h1h2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而(填“不变”或“改变”).。
2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (133)
浙教版初中数学试卷八年级数学下册《平行四边形》测试卷学校:__________一、选择题1.(2分)下列交通标志中既是中心对称图形,又是轴对称图形的是()2.(2分)如图,在□ABCD中,对角线AC、BD交于点O,则图中全等三角形的对数有()A.2 B.4 C.6 D.83.(2分)如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.2倍B.3倍C.4倍D.无法确定4.(2分)三角形三边长分别为21n+(n为自然数),这样的三角形是()n-,2n,21A.锐角三角形 B.直角三角形 C.钝角三角形 D.直角三角形或锐角三角形5.(2分)已知平行四边形的一条边长为l4,下列各组数中能作为它的两条对角线长的是()A.10与16 B.10与17 C.20与22 D.10与186.(2分)下列多边形中不能够镶嵌平面的是()A.矩形B.正三角形C.正五边形D.正方形二、填空题7.(3分)如图,在□ABCD中,CM⊥AD于M,CN⊥AB于N,若∠B=50°,则∠MCN=_____.△的周长为.8.(3分)如图,□ABCD的周长为20,对角线AC的长为5,则ABC9.(3分)四边形的内角和等于_______,外角和等于_______.10.(3分)已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则这个平行四边形的周长为.11.(3分)在□ABCD中,AB=2,BC=3,∠B、∠C的平分线分别交AD于点E、F,则EF的长是_______.12.(3分)如果平行四边形的周长为180cm,相邻两边的长度比为5∶4,那么它的较长边为 cm.13.(3分)定理“到一条线段两端点距离相等的点,在这条线段的垂直平分线上”的逆定理是.14.(3分)如图,Rt△ABC中,∠BAC=90°,E,D,F分别是三边中点,则AD EF(填“=”或“>”或“<”).15.(3分)如图所示,在四边形ABCD中.对角线AC,BD互相平分且交于点0,MN经过点O,若AB=8 cm,AD=6 cm,ON=4 cm,则四边形BCMN的周长是 cm.16.(3分)平行四边形的一边长为6 cm,其长度恰是周长的2,则此平行四边形的另一边长9为.17.(3分)如图所示,图形①与图形成轴对称,图形①与图形成中心对称(填写所对应的序号).18.(3分)正五边形每个内角是,正六边形每个内角是,正n边形每个内角是.评卷人得分三、解答题19.(6分)观察下图中的图形,并阅读图形下面的相关文字:AB C D E F123通过分析上面的材料,十边形钓对角线有多少条?n 边形的对角线有多少条?20.(6分)如图,已知:在□ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,求DF 的长.21.(6分)如图所示,在平面直角坐标系中,A(-3,4),D(0,5),点B 与点A 关于x 轴对称,点C 与点A 关于原点对称.求四边形ABCD 的面积.22.(6分)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别是B0,0D 的中点,且四边形AECF 是平行四边形,试判断四边形ABCD 是不是平行四边形。
人教版八年级数学下册单元测试《第18章平行四边形》(a卷)(解析版)
初中数学试卷新人教版八年级下册《第18章平行四边形》单元测试(A卷)一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于度,外角和等于度.2.正方形的面积为4,则它的边长为,一条对角线长为.3.一个多边形的内角和等于它的外角和的3倍,它是边形.4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为cm.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.7.平行四边形ABCD,加一个条件,它就是菱形.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为cm.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为cm.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=,EF分梯形所得的两个梯形的面积比S1:S2为.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?新人教版八年级下册《第18章平行四边形》单元测试(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于360度,外角和等于360度.【考点】多边形内角与外角.【专题】计算题.【分析】n边形的内角和是(n﹣2)•180度,因而代入公式就可以求出四边形的内角和;任何凸多边形的外角和都是360度.【解答】解:四边形的内角和=(4﹣2)•180=360度,四边形的外角和等于360度.【点评】本题主要考查了多边形的内角和公式与外角和定理,是需要熟记的内容.2.正方形的面积为4,则它的边长为2,一条对角线长为2.【考点】正方形的性质.【分析】根据正方形的面积公式可得到正方形的边长,根据正方形的对角线的求法可得对角线的长.【解答】解:设正方形的边长为x,则对角线长为=x;由正方形的面积为4,即x2=4;解可得x=2,故对角线长为2;故正方形的边长为2,对角线长为2.故答案为2,2.【点评】本题考查正方形的面积公式以及正方形的性质,此题是基础题,比较简单.3.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.如果四边形ABCD满足四边形ABCD是菱形或正方形条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).【考点】正方形的性质;菱形的性质.【专题】开放型.【分析】符合对角线互相垂直的四边形有:菱形、正方形,选择一个即可.【解答】解:根据四边形的性质可得到对角线互相垂直的有菱形和正方形,从而答案为:四边形ABCD是菱形或正方形.【点评】此题主要考查菱形和正方形的对角线的性质.5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为2cm.【考点】正方形的性质.【专题】计算题.【分析】先求出长方形的面积,因为长方形的面积和正方形的面积相等,再根据正方形的面积公式即可求得其边长.【解答】解:边长分别为4cm和5cm的矩形的面积是20cm2,所以正方形的面积是20cm2,则这个正方形的边长为=2(cm).故答案为2.【点评】本题主要考查了正方形的面积计算公式,即边长乘边长.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是20cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半即可求得其面积.【解答】解:由已知得,菱形面积=×5×8=20cm2.故答案为20.【点评】本题主要考查了菱形的面积的计算公式.7.平行四边形ABCD,加一个条件一组邻边相等或对角线互相垂直,它就是菱形.【考点】菱形的判定.【专题】开放型.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.所以,可添加:一组邻边相等或对角线互相垂直.【解答】解:因为一组邻边相等的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.可补充条件:一组邻边相等或对角线互相垂直.【点评】本题考查菱形的判定.8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为24+4 cm.【考点】等腰梯形的性质;勾股定理.【分析】过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【解答】解:过A,D作下底BC的垂线,则BE=CF=(14﹣10)=2cm,在直角△ABE中根据勾股定理得到:AB=CD==2,所以等腰梯形的周长=10+14+2×2=24+4cm.故答案为:24+4cm.【点评】等腰梯形的问题可以通过作高线转化为直角三角形的问题来解决.9.已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为5cm.【考点】菱形的性质.【专题】计算题.【分析】设另一条对角线长为x,然后根据菱形的面积计算公式列方程求解即可.【解答】解:设另一条对角线长为xcm,则×12x=30,解之得x=5.故答案为5.【点评】主要考查菱形的面积公式:两条对角线的积的一半.10.如图,▱ABCD中,AE⊥BC于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为.【考点】平行四边形的性质.【专题】几何图形问题.【分析】平行四边形的面积=底×高,根据已知,代入数据计算即可.【解答】解:连接AC,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),=S△CDA,∴S△ABC即BC•AE=CD•AF,∵CD=AB=4,∴AF=.故答案为:.【点评】“等面积法”是数学中的重要解题方法.在三角形和四边形中,以不同的边为底其高也不相同,但面积是定值,从而可以得到不同底的高的关系.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,E、F分别为AB、DC的中点,则EF=6,EF分梯形所得的两个梯形的面积比S1:S2为5:7.【考点】梯形中位线定理;梯形.【分析】要求EF的长,只需根据梯形的中位线定理求解;根据平行线等分线段定理,知两个梯形的高相等,只需根据梯形的面积公式,即可求得两个梯形的面积比.【解答】解:∵AD=4,BC=8,E、F分别为AB、DC的中点,∴EF=(4+8)=6,则S1=(4+6)=h,S2=(6+8)=.则S1:S2=5:7.【点评】此题主要考查梯形的中位线定理和梯形的面积公式.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形②(请填图形下面的代号,答案格式如:“①,②,③,④,⑤”).【考点】翻折变换(折叠问题).【专题】压轴题;操作型.【分析】通过动手操作易得出答案.【解答】解:对于①剪开后能拼出平行四边形和梯形两种,对于②剪开后能拼出三种图形,对于③剪开后能拼出三角形和平行四边形两种,对于④剪开后能拼出平行四边形,对于⑤剪开后能拼出平行四边形和梯形两种,故符合条件的图形为②.【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析,难度不大.13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个正方形边长为1,则第n个正方形的面积是)n﹣1.【考点】正方形的性质;三角形中位线定理.【专题】压轴题;规律型.【分析】根据正方形的性质及三角形中位线的定理可分别求得第二个,第三个正方形的面积从而不难发现规律,根据规律即可求得第n个正方形的面积.【解答】解:根据三角形中位线定理得,第二个正方形的边长为=,面积为,第三个正方形的面积为=()2,以此类推,第n个正方形的面积为.【点评】根据中位线定理和正方形的性质计算出正方形的面积,找出规律,即可解答.二、填空题(共4小题,每题3分,共12分)15.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°【考点】平行四边形的性质.【专题】常规题型.【分析】根据平行四边形的性质和角平分线的性质求解.【解答】解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选D.【点评】本题考查了平行四边形的性质,并利用了两直线平行,同旁内角互补和角的平分线的性质.16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形【考点】中心对称图形;轴对称图形.【专题】方案型.【分析】根据轴对称图形与中心对称图形的概念和等腰三角形、正三角形、等腰梯形、菱形的性质求解.【解答】解:等腰三角形、正三角形、等腰梯形都只是轴对称图形;菱形既是轴对称图形,也是中心对称图形.故选:D.【点评】解题时要注意中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条【考点】多边形内角与外角;多边形的对角线.【分析】先求出多边形的边数,再求从这个多边形的一个顶点出发的对角线的条数即可.【解答】解:∵多边形的每一个内角都等于140°,∴每个外角是180°﹣140°=40°,∴这个多边形的边数是360°÷40°=9,∴从这个多边形的一个顶点出发的对角线的条数是6条.故选:A.【点评】本题考查多边形的外角和及对角线的知识点,找出它们之间的关系是本题解题关键.18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线,虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4【考点】矩形的性质;全等三角形的判定.【分析】共有四对,分别为△ABO≌△C′DO,△ABD≌△CDB,△ABD≌△C′DB,△CDB ≌△C′DB.【解答】解:∵△BDC′是将矩形ABCD沿对角线BD折叠得到的∴C′D=CD,∠C=∠C′,BD=BD∴△CDB≌△C′DB同理可证其它三对三角形全等.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共60分)19.如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.【考点】平行四边形的性质.【分析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.【解答】解:在△DBC中,∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°﹣∠ADB=90°﹣70°=20°.【点评】此题主要考查了平行四边形的基本性质,以及等腰三角形的性质,难易程度适中.20.已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.【考点】平行四边形的判定;三角形中位线定理.【专题】证明题.【分析】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题中给了两条中位线,利用中位线的性质,可利用一组对边平行且相等来证明.【解答】解:在△ABC中,∵BE、CD为中线∴AD=BD,AE=CE,∴DE∥BC且DE=BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=BC.∴DE∥FG,DE=FG.∴四边形DFGE为平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21.在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少?【考点】平行四边形的性质.【专题】分类讨论.【分析】此题注意要分情况讨论:根据角平分线的定义以及平行线的性质,可以发现一个等腰三角形,即较短的边是2cm或3cm,又较长的边是2+3=5cm,所以平行四边形的周长是2(2+5)=14或2(3+5)=16cm.【解答】解:如图所示:∵在平行四边形ABCD中,AB=CD,AD=BC,AD∥BC,∴∠AEB=∠CBE.又∠ABE=∠CBE∴∠ABE=∠AEB∴AB=AE.(1)当AE=2时,则平行四边形的周长=2(2+5)=14.(2)当AE=3时,则平行四边形的周长=2(3+5)=16.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.22.已知:如图,▱ABCD中,延长AB到E,延长CD到F,使BE=DF.求证:AC与EF互相平分.【考点】平行四边形的判定与性质.【专题】证明题.【分析】此题要证明AC与EF互相平分,只需证明以AC,EF为对角线的四边形是平行四边形就可.根据已知的平行四边形,只需证明AE=CF.根据已知平行四边形的对边相等,即AB=CD,再加上已知BE=DF,就可证明AE=CF.根据一组对边平行且相等的四边形是平行四边形就可.【解答】解:连接AF,CE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵BE=DF∴AB+BE=CD+DF即AE=CF∴四边形AECF是平行四边形.∴AC与EF互相平分.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.23.如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.【考点】正方形的性质.【分析】一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,有101块黑色瓷砖,由正方形的特殊性质知正方形知每边有(101+1)÷2=51块瓷砖,那么可求出瓷砖的总数.【解答】解:根据题意得正方形每边有(101+1)÷2=51块瓷砖,所以总数为:51×51=2601(块).【点评】解答本题要充分利用正方形的特殊性质.对角线上的瓷砖数等于每边的瓷砖数.24.顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.【考点】等腰梯形的性质;三角形中位线定理;菱形的判定.【专题】综合题.【分析】由题意写出已知,画出图形,写出求证.由等腰梯形可得AC=BD,再由三角形中位线定理可得出小四边形四边的关系,即可知它是什么四边形.【解答】解:是菱形理由是:连接AC、BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=AC,GH=AC,EH=BD,GF=BD∵等腰梯形ABCD中AD∥BC,AB=CD,∴AC=BD∴EF=GH=EH=GF∴四边形EFGH菱形.【点评】本题考查了等腰梯形的性质和三角形中位线的性质.25.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)在什么条件下,四边形AECF是正方形?【考点】正方形的判定;等腰三角形的判定与性质;矩形的判定.【专题】探究型.【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【解答】解:(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点评】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.26.如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=BC.根据上面的结论:(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.【考点】等腰梯形的性质;菱形的判定与性质;矩形的判定与性质;等腰梯形的判定.【专题】开放型.【分析】设四边形DBCE的中点分别为OPMN,根据已知条件及平行四边形的性质可得到是一个平行四边形;根据各四边的性质进行分析即可.【解答】解:(1)设四边形DBCE的中点分别为OPMN,则PM=ON,且PM∥ON⇒顺次连接任意四边形各边中点得到平行四边形;(2)平行四边形,矩形,菱形,根据各个四边形的性质:当四边形为菱形时,连接菱形各边中点所得出的为矩形;当四边形为矩形时,连接各边中点所得出的为菱形;当四边形为等腰梯形时,连接各边中点所得为菱形.【点评】本题考查的是各个四边形的性质以及等腰梯形的性质的运用.27.如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【考点】矩形的判定;全等三角形的判定与性质;等边三角形的性质;平行四边形的判定.【分析】(1)四边形ADEF是平行四边形,可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形,理由如下:∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC与△DBE中,,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC满足角A=60°时,四边形ADEF不存在.【点评】此题主要考查了用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.。
2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (26)
浙教版初中数学试卷八年级数学下册《平行四边形》测试卷学校:__________一、选择题1.(2分)下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正方形C.正三角形D.线段AB2.(2分)一个多边形内角和是1080o,则这个多边形是()A.六边形B.七边形C.八边形D.九边形3.(2分)如图,在△ABC中,D,E,F分别是AB,BC,AC上的点,且DE∥AC,EF∥AB,DF∥BC,则图中平行四边形共有()A.1个B.2个C.3个D.4个4.(2分)下列说法正确的是()A.一组邻角互补的四边形是平行四边形B.两组邻边相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形5.(2分)下列条件中,能判定四边形为平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补6.(2分)下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正三角形C.正方形D.线段AB二、填空题7.(3分)如果点M(m,-2)和点N(1,n)关于原点对称,那么m=_______,n=______.8.(3分)如图,四边形的四条边AB、BC、CD和DA,它们的长分别是2、 5 .5、4,其中∠B=90°,那么四边形ABCD的面积为 .9.(3分)如图,已知点E在面积为4的平行四边形ABCD的边上运动,若ABE△的面积为1,则点E的准确位置是.10.(3分)设将一张正方形纸片沿图中虚线剪开后,能拼成右边四个图形,则其中是中心对称图形的是 (填序号).11.(3分)当行边形的边数增加l边时,其内角和增加.12.(3分)点A(5,2)关于直角坐标系原点对称的点的坐标是,关于y轴对称的点的坐标是,关于x轴对称的点的坐标是.13.(3分)平行四边形绕对角线的交点旋转后能与原图形重合.14.(3分)如图所示,AD∥BC,△ABC的面积为25cm2,则△BDC的面积为.15.(3分)如图所示,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DAE= .16.(3分)在□ABCD中,∠A的外角与∠B互余,则∠D的度数为.17.(3分)如图所示,已知在□ABCD中,∠DBC=30°,∠ABD=45°,那么∠BDA= .∠BCD= .18.(3分)如图所示,在□ABCD中,DB=DC,∠C=70°,AE⊥BD于点E,则∠A B CD E F DAE= .19.(3分)在□ABCD 中.AC 与BD 相交于点0,AB=3 cm,BC=4 cm ,AC=6 cm ,BD=8 cm ,则△AOB 的周长是 ,△80C 的周长是 .20.(3分)从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.21.(3分)如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接达到A ,B 的点C ,•找到AC ,BC 的中点D ,E ,并且测出DE 的长为15m ,则A ,B 两点间的距离为_____m . 评卷人得分 三、解答题22.(6分)写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题,•这个逆命题是真命题吗?请证明你的判断.23.(6分)如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE =CF.请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等.(1)连结: ;(2)猜想: = ;(3)证明:24.(6分)如图,△ABC中,A(-2,3),B(-3,1),C(-1,2).(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△与△成轴对称,对称轴是;△与△成中心对称,对称中心的坐标是.25.(6分)求证:三角形的三个内角的平分线交于一点.26.(6分)写出下列命题的逆命题,并判断真假:(1)如果一个三角形是直角三角形,那么它的两个锐角互余;(2)在角的内部到一个角的两边距离相等的点在这个角的平分线上;(3)等腰三角形的两个底角相等;(4)正多边形的各边相等.27.(6分)如图①所示,已知AE是△ABC的高,F是AE上的任意一点,G是E点关于F 的对称点,过点G作BC的平行线与AB交于点H,与AC交于点I,连结IF并延长交BC 于点J,连结HF并延长交BC于点K.(1)请你在图②中再画出一个满足条件的四边形HJKI(点F的位置与图①不同);(2)请你判断四边形HJKl是怎样的四边形?并对你得到的结论予以证明(图②供思考用).28.(6分)在□ABCD中,AE,AF分别是BC,CD边上的高,AF与BC交于点G,AE=2 cm,AF=5 cm,∠EAF=30°,求□ABCD各内角的度数和AB,AD的长.29.(6分)如图所示.在四边形ABCD中,AC⊥BD于点O.求证:2222+=+AB CD AD BC30.(6分)仔细观察下面的六幅图案,研究它们分别是用哪两种正多边形镶嵌的,并指出同一顶点处有几个正多边形.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.C3.C4.C5.C6.A评卷人得分二、填空题7.-1,28.6+ 59.AD的中点或CB的中点10.②11.180°12.(-52,(-5,2,(5213.180°14.25 cm215.40°16.45°17.30°,l05°18.20°19.10 cm,1l cm20.()() 22a b a b a b -=+-21.30评卷人得分三、解答题22.逆命题:一边上的中线等于这边的一半的三角形是直角三角形,是真命题.证明如下:如图,已知△ABC中,CD是AB边上的中线,CD=12 AB.求证:△ABC是直角三角形.证明:∵CD是AB边上的中线,CD=12 AB,•∴CD=AD=BD,∴∠1=∠A,∠2=∠B,∵∠1+∠2+∠A+∠B=180°,∴∠1+∠2=90°,•即∠ACB=90°,∴△ABC是直角三角形23.提示:连结DF或BF,则DF=BE或BF=DE,证明△ABE≌△CDF或△ADE≌△CBF.24.解:图略(4)△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).25.略26.(1)若一个三角形的两锐角互余,则这个三角形是直角三角形.是真命题;(2)角平分线上的点到角两边的距离相等.是真命题;(3)有两个角相等的三角形是等腰三角形.是真命题;(4)各边都相等的多边形是正多边形.是假命题27.(1)作图与①类似;②四边形HJKI为平行四边形,证略28.30°,150°,30°,l50°,AB=4 cm, AD=10cm29.证明222AB AO OB=+,222CD OC OD=+,222BC BO OC=+,222AD AO OD=+,则2222AB CD BC AD+=+30.图①:l个正方形,2个正八边形图②和图③:3个正三角形,2个正方形图④:4个正三角形,l个正六边形图⑤:2个正三角形,2个正六边形图⑥:l个正三角形,2个正十二边形。
新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)
新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)特殊平行四边形》试卷一、填空题1、如图,将△ABC绕AC的中点O按顺时针旋转180°得到△CDA,添加一个条件使四边形ABCD为矩形.条件:AB=CD2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.四边形EFGH的面积为24.3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________.DQ+PQ的最小值为√10.二、选择题4、矩形具有而菱形不具有的性质是() A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等答案:D5、如图,菱形ABCD的两条对角线相交于点O,若AC =6,BD=4,则菱形ABCD的周长是()。
A.24B.16C.413D.213答案:B6、如图,将△XXX沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是() A.AB =XXX.∠B=60°D.∠ACB=60°答案:C7、如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABDC与S四边形ECDF的大小关系是() A.S四边形ABDC=S四边形ECDFB.S四边形ABDC<S四边形ECDFC.S四边形ABDC=S四边形ECDF+1D.S四边形ABDC=S四边形ECDF+2答案:A8、如图,菱形ABCD中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF的周长为() A.14B.15C.16D.17答案:C9、如图,把矩形ABCD沿EF翻折,点B恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是() A.12B.24C.123D.163答案:B三、XXX10、如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F。
2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (74)
浙教版初中数学试卷八年级数学下册《平行四边形》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正方形C.正三角形D.线段AB2.(2分)如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP 的中点.•当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定3.(2分)用两块全等的有一个角是30°的直角三角板,能拼成不同的平行四边形有()A.2个B.3个C.4个D.无数个4.(2分)□ABCD的四个内角度数的比∠A:∠B:∠C:∠D可以是()A.2:3:3:2 B.2:3:2:3 C.1:2:3:4 D.2:2:1:15.(2分)如图,在□ABCD中,∠B=100°,延长AD至点F,延长CD至点E,连结EF,则∠E+∠F等于()A.100°B.80°C.50°D.40°6.(2分)下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1 B.2 C.3 D.47.(2分)用两个全等的三角形拼成四边形,可拼成平行四边形的个数是()A.2个B.3个C.4个D.5个8.(2分)下列性质平行四边形具有而一般四边形不具有的是()A.灵活性 B.内角和等于360° C.对角相等 D.有两条对角线9.(2分)如图所示,在口ABCD中,EF∥BC,GH∥AB,EF,GH相交于点0,则图中平行四边形共有()A.7个B.8个C.9个D.l0个10.(2分)从n(n>3)边形的一个顶点出发作对角线,把这个多边形分成三角形的个数为()A.n+1 B.n C.n-1 D.n-211.(2分)在四边形中,直角最多可以有()A.1个B.2个C.3个D.4个12.(2分)成中心对称的图形的对称中心是()A.一条线段的中点B.连结图形上任意两点的线段中点C.连结两对称点的线段的中点D.以上答案都不对评卷人得分二、填空题13.(3分)如图,四边形ABCD的对角线AC,BD交于点O,EF过点O,若OA=OC,OB=OD,则图中全等的三角形有_ _ _对.14.(3分)如图,在ABC△中,M N,分别是AB AC,的中点,且120A B∠+∠=o,则______ANM∠=o.15.(3分)如图,在平面直角坐标系中,O(0,0),A(0,3),B(4,4),C(1,4),•则四边形OABC是.16.(3分)按要求写出一个图形的名称.(1)是轴对称但不是中心对称的图形;(2)是中心对称但不是轴对称的图形;(3)既是轴对称又是中心对称的图形.17.(3分)从边长为a的大正方形纸板中挖去一个边长为b的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式.OEFB CM NA18.(3分)如图,为测量一个池塘的宽AB,在池塘一侧的平地上选一点C,再分别找出线段AC,BC的中点D,E.现量得DE=18m,则池塘的宽AB= m.19.(3分)如图所示,古埃及人用带结的绳子可以拉出直角来,是根据.20.(3分)命题“关于x的一元二次方程20-=,则这个方程有ax bx cb ac++=(a≠0),若240两个相等的实数根.”的逆命题是:,这个命题是命题.(填“真”或“假”) 21.(3分)如图所示,AD是△ABC的中线,延长AD到点E,使DE=AD,连结EB,EC,则四边形ABEC是平行四边形.这是根据.22.(3分)一个多边形的每一个内角都等于l40°,则它是边形.23.(3分)如图所示,∠A+∠B+∠C+∠D十∠E+∠F+∠G的度数为.24.(3分)已知四边形的三个内角的度数如图所示,则图中∠α= .评卷人得分三、解答题25.(6分)如图,在四边形ABCD 中,AD∥BC,BE⊥AC,DF⊥AC,E,F分别为垂足,且∠CDF=∠ABE,试说明四边形BEDF是平行四边形.26.(6分)如图,在□ABCD 中,E、F是 AC 上的两点.且AE=CF .求证:ED∥BF .27.(6分)已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O,求证:O是BD的中点.28.(6分)如图所示,把一个等腰直角三角形ABC沿斜边上的高BD剪下,与剩下部分能拼成一个平行四边形BCED(见示意图①).(1)想一想:判断四边形BCED是平行四边形的依据是.(2)做一做:按上述方法,请你拼一个与图①位置或形状不同的平行四边形,并在图②中画出示意图.29.(6分)如图所示,已知平行四边形ABCD中,E是CD边的中点,连结BE并延长与AD的延长线交于点F.求证:BC=DF.30.(6分)如图,□ABCD中,已知BC=AB=2 cm,O是对角线AC,BD的交点,则△AOB的周长比△BOC的周长短多少?【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.C3.B5.B6.B7.B8.C9.C10.D11.D12.C二、填空题13.614.60°15.平行四边形16.等腰三角形,平行四边形,正方形17.a 2-b 2=(a +b )(a -b )18.36m19.勾股定理的逆定理20.若关于x 的一元二次方程20ax bx c ++=(0a ≠)有两个相等的实数根,则240b ac -=,真21.对角线互相平分的四边形是平行四边形22.九23.540°24.91°三、解答题25.方法不唯一,如:先证四边形ABCD 为□,再证 //DF BE26.提示:由△ADE ≌△CBF ,得∠AED =∠CFB ,则∠DEF =∠BFE ,∴DE ∥BF .27.提示:△DOF ≌△BOE .28.(1)两组对边分别相等的四边形是平行四边形;(2)略29.证△DEF ≌△CEB(AAS)即可。
四年级上册数学平行四边形和梯形试卷
第五单元平行四边形和梯形(同步练习)人教版四年级上册数学一、选择题1.王伯伯想要用一道长为40米的篱笆围花坛,有下图所示4种方案,哪几种方案能用40米的篱笆围成功(不考虑衔接处材料的损耗)?()A.①②④B.①②③C.②③④2.梯形的底和腰()。
A.可能垂直B.不可能垂直C.一定垂直3.下列说法中正确的是()。
A.周角是一条射线B.两个锐角一定能拼成一个钝角C.伸缩门应用了平行四边形易变形的特性D.有一组对边平行的四边形是梯形4.在下图所示的平行四边形中,AB边上的高是线段()。
A.AE B.CF C.BD5.如下图,在两条平行线之间有一个平行四边形和一个长方形。
比较它们的周长,下面的说法正确的是()。
A.平行四边形周长更长B.长方形周长更长C.一样长二、填空题6.在同一平面内如果两条直线都与一条直线平行,则这两条直线互相()。
7.请你把四边形、平行四边形、梯形、长方形、正方形的关系用下图表示出来。
8.如图中,平行四边形CD边上的高是(),AD边上的高是()。
9.图中,从A点到直线l的线段中,线段()的长度最短。
10.两个数的积是三位小数,“四舍五入”后约是3.65,积最大是(),积最小是()。
三、判断题11.一组对边平行,另一组对边不平行的四边形是梯形。
()12.平行四边形有无数条高,梯形也有无数条高。
()13.用一条线把一个平行四边形任意分割成两个梯形,这两个梯形中高总是相等。
() 14.两条直线相交,如果其中一个角是直角,那么其他三个角都是直角。
() 15.等腰梯形有两条高,直角梯形有一条高。
()四、解答题16.王阿姨在A处发现了一只受伤的小鸟,要先把它送到B处的救助站进行治疗,然后再送回森林,请你给王阿姨设计一条最短的路。
并说明你这样设计的理由。
17.画出一个长方形,使宽是长的一半,再求出周长.18.小兔子和小乌龟在同一渡口A处摆渡,同时用相同的速度向对岸驶去,小兔子的船在B 码头靠岸,小乌龟的船向C码头驶去.你认为哪个先到岸?为什么?19.等腰梯形的周长为25厘米,上、下底分别长3厘米和6厘米,它的一条腰长多少厘米?参考答案:1.A2.A3.C4.B5.A6.平行7.略8.AF CE9.AD10. 3.654 3.64511.√12.√13.√14.√15.×16.略17.周长是:(4+2)×2=12(厘米),18.从直线外一点向已知直线画垂直线段和斜线,垂线段最短,所以小兔子先到岸,因为点到直线的垂直线段最短19.8厘米。
新人教版 八年级数学 十八章平行四边形 单元检测试卷及答案
第十八章平行四边形单元综合检测一、选择题(每小题4分,共28分)1.已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是( )2.如图,已知菱形ABCD的对角线AC,BD的长分别是6cm,8cm,AE⊥BC于点E,则AE的长是( )A.5错误!未找到引用源。
cmB.2错误!未找到引用源。
cmC.错误!未找到引用源。
cmD.错误!未找到引用源。
cm3.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为( )A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶24.(2013·邵阳中考)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连接BE交CD于点O,连接AO,下列结论不正确的是( )A.△AOB≌△BOCB.△BOC≌△EODC.△AOD≌△EODD.△AOD≌△BOC5.如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,则四边形EFGH为( )A.平行四边形B.矩形C.菱形D.正方形6.(2013·威海中考)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF7.如图,△ABC中,AB=AC,点D,E分别是边AB,AC的中点,点G,F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为( )A.3错误!未找到引用源。
cmB.4cmC.2错误!未找到引用源。
cmD.2错误!未找到引用源。
cm二、填空题(每小题5分,共25分)8.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为.9.(2013·厦门中考)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.10.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.11.(2013·牡丹江中考)如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.12.(2013·钦州中考)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、解答题(共47分)13.(10分)(2013·大连中考)如图,在平行四边形ABCD中,点E,F分别在AD,BC 上,且AE=CF.求证:BE=DF.14.(12分)(2013·晋江中考)如图,BD是菱形ABCD的对角线,点E,F分别在边CD,DA上,且CE=AF.求证:BE=BF.15.(12分)(2013·铁岭中考)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O 为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.16.(13分)(2013·济宁中考)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.答案解析1.【解析】选C.A项,根据两直线平行内错角相等可得到,故正确;B项,根据对顶角相等可得到,故正确;C项,根据两直线平行内错角相等可得到∠1=∠ACB,∠2为一外角,所以不相等,故不正确;D项,根据平行四边形对角相等可得到,故正确.2.【解析】选D.由于菱形ABCD的对角线AC,BD的长分别是6cm,8cm,所以菱形边长为错误!未找到引用源。
知识点详解人教版八年级数学下册第十八章-平行四边形专题测试试卷(含答案解析)
人教版八年级数学下册第十八章-平行四边形专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF 的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3)A.1个B.2个C.3个D.4个2、在ABCD中,添加以下哪个条件能判断其为菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD3、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.24、如图,把矩形纸片ABCD沿对角线折叠,若重叠部分为EBD∆,那么下列说法错误的是()A.EBD∆是等腰三角形B.EBA∆全等∆和EDCC.折叠后得到的图形是轴对称图形D.折叠后ABE∠相等∠和CBD5、如图,在正方形有ABCD中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH,那么BH的值为()AEA.1 B C D.26、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A.46.5cm B.22.5cm C.23.25cm D.以上都不对7、在菱形ABCD中,两条对角线AC=10,BD=24,则此菱形的边长为()A.14 B.25 C.26 D.138、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A 出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以v cm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为()A .2B .4C .4或65 D .2或1259、如图,矩形ABCD 中,AB =3,AD =4,将矩形ABCD 折叠后,A 点的对应点A '落在CD 边上,EF 为折痕,A A '和EF 交于G 点,当AG +BG 取最小值时,此时EF 的值为( )A .154B .C .D .510、如图,在△ABC 中,AC =BC =8,∠BCA =60°,直线AD ⊥BC 于点D ,E 是AD 上的一个动点,连接EC ,将线段EC 绕点C 按逆时针方向旋转60°得到FC ,连接DF ,则在点E 的运动过程中,DF 的最小值是( )A .1B .1.5C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE翻折至△AFE,连接CF,则CF 的长为___.2、在直角墙角FOE中有张硬纸片正方形ABCD靠墙边滑动,如图所示,AD=2,A点沿墙往下滑动到O点的过程中,正方形的中心点M到O的最小值是______.3、如图,O为坐标原点,△ABO的两个顶点A(6,0),B(6,6),点D在边AB上,点C在边OA上,且BD=AC=1,点P为边OB上的动点,则PC+PD的最小值为 _____.4、如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l 折叠,使点D落到AB边上的点D处,折痕交CD边于点E.若点P是直线l上的一个动点,则PD +PB 的最小值_______.5、如图,将n个边长都为1的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为_____.三、解答题(5小题,每小题10分,共计50分)1、在△ABC中,AB=AC=x,BC=12,点D,E分别为BC,AC的中点,线段BE的垂直平分线交边BC于点F,(1)当x=10时,求线段AD的长.(2)x取何值时,点F与点D重合.(3)当DF=1时,求x2的值.2、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC ,BD ,把正方形分成四个与等腰三角形ADE 全等的三角形,所以 14AED S S =△正方形.(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S 1和S 2,若6AB =,求S 1和S 2的值.3、已知如图,在ABCD 中,点E 是AD 边上一点,连接,,,BE CE BE CE BE CE =⊥,点F 是EC 上一动点,连接BF .(1)如图1,当BF AB ⊥时,连接DF ,延长,BE CD 交于点K ,求证:FD DK =;(2)如图2,以BF 为直角边作等腰,90Rt FBG FBG ∠=︒△,连接GE ,若DE CD ==F 在运动过程中,求BEG 周长的最小值.4、如图, ABCD的对角线AC、BD相交于点O,BD=12cm ,AC=6cm ,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O以2cm /s的速度向点D运动.(1)若点E、F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时, AECF是菱形;(3)求(2)中菱形AECF的面积.5、在平面直角坐标系xOy中,点A(x,﹣m)在第四象限,A,B两点关于x轴对称,x=n(n为常数),点C在x轴正半轴上,(1)如图1,连接AB,直接写出AB的长为;(2)延长AC至D,使CD=AC,连接BD.①如图2,若OA=AC,求线段OC与线段BD的关系;②如图3,若OC=AC,连接OD.点P为线段OD上一点,且∠PBD=45°,求点P的横坐标.---------参考答案-----------一、单选题1、C【解析】【分析】根据SAS 证△ABI ≌△ADC 即可得证①正确,过点B 作BM ⊥IA ,交IA 的延长线于点M ,根据边的关系得出S △ABI =12S 1,即可得出②正确,过点C 作CN ⊥DA 交DA 的延长线于点N ,证S 1=S 3即可得证③正确,利用勾股定理可得出S 1+S 2=S 3+S 4,即能判断④不正确.【详解】解:①∵四边形ACHI 和四边形ABED 都是正方形,∴AI =AC ,AB =AD ,∠IAC =∠BAD =90°,∴∠IAC +∠CAB =∠BAD +∠CAB ,即∠IAB =∠CAD ,在△ABI 和△ADC 中,AI AC IAB CAD AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABI≌△ADC(SAS),∴BI=CD,故①正确;②过点B作BM⊥IA,交IA的延长线于点M,∴∠BMA=90°,∵四边形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,∴BM=AC,∵S△ABI=12AI•BM=12AI•AC=12AC2=12S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=12S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=12AD•CN=12AD•AK=12S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正确;④在Rt△ACB 中,BC 2+AC 2=AB 2,∴S 3+S 4=S 1+S 2, ∴1234+=+S S S S ,故④错误;综上,共有3个正确的结论,故选:C .【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.2、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解.【详解】A 、∵AB ⊥BC ,∴∠ABC =90°,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形;故选项A 不符合题意;B 、C 选项,同A 选项一样,均为邻边垂直,ABCD 是矩形;故选项B 、C 不符合题意;D 、∵四边形ABCD 是平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形;故选项D 符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键.3、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.4、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△CDE;此时可以判断选项A、B、D是成立的,问题即可解决.【详解】解:由题意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四边形ABCD为矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵BE DE AB CD=⎧⎨=⎩,∴△ABE≌△CDE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,∴不能证明D是正确的,故说法错误的是D,故选:D.【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答.5、B【解析】【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵DF DC DG DG=⎧⎨=⎩,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG =45°,∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵1DM BE BEHDE EH =⎧⎪∠=∠⎨⎪=⎩,∴△DME ≌△EBH (SAS ),∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM =,∴BH ,即BHAE故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.6、C【解析】【分析】如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线,则14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==,即可得到△DEF 的周长==12cm DE DF EF ++,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线, ∴14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==, ∴△DEF 的周长==12cm DE DF EF ++,同理可得:△GHI 的周长==6cm HI HG GI ++,∴第三次作中位线得到的三角形周长为3cm ,∴第四次作中位线得到的三角形周长为1.5cm∴第三次作中位线得到的三角形周长为0.75cm∴这五个新三角形的周长之和为1263 1.50.75=23.25cm ++++,故选C .【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.7、D【解析】【分析】由菱形的性质和勾股定理即可求得AB的长.【详解】解:∵四边形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=12BD=12,OA=OC=12AC=5,在Rt△ABO中,AB,故选:D.【点睛】本题考查了菱形的性质、勾股定理等知识,熟练掌握菱形的性质,由勾股定理求出AB=13是解题的关键.8、D【解析】【分析】根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】解:当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP时,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=125.故选:D.【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.9、A【解析】【分析】过点G 作GM AD ⊥于M ,由翻折的性质知点G 为AA '的中点,则GM 为ADA '∆的中位线,可知G 在GM 上运动,当AG BG +取最小值时,此时A '与C 重合,利用勾股定理和相似求出EG 的长即可解决问题.【详解】解:过点G 作GM AD ⊥于M ,将矩形ABCD 折叠后,A 点的对应点A '落在CD 边上,∴点G 为AA '的中点,GM ∴为ADA '∆的中位线,A '在CD 上运动,G ∴在GM 上运动,∴当AG BG +取最小值时,此时A '与C 重合,5AA ',52AG ∴=, AGE ADC ∠=∠,GAE DAC ∠=∠,AGE ADC ∴∆∆∽, ∴EG CD AG AD =,∴3542EG =,158EG ∴=, 在BFG ∆和DEG ∆中,FBG EDG BG DG BGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()BFG DEG ASA ∴∆≅∆,EG GF ∴=,15152284EF EG ∴==⨯=, 故选:A .【点睛】本题主要考查了矩形的性质,翻折的性质,全等三角形的判定与性质,勾股定理等知识,解题的关键是证明G 在GM 上运动.10、C【解析】【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD =CG 以及∠FCD =∠ECG ,由旋转的性质可得出EC =FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF =GE ,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =4,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG ,在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ∴△FCD ≌△ECG (SAS ),∴DF =GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG =DF =12CD =14BC =2.故选:C .【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF =GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.二、填空题1、3.6【解析】【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【详解】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE5,∴BH=3412 55⨯=,则BF=245,∵点E为BC的中点,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE= EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF 3.6=.故答案为:3.6.【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.2、2【解析】【分析】OG GM,根据直角三角形的性质求出OG和MG的长,然后根据两点之间线段取AD的中点为G,连接,最短即可求解.【详解】OG GM,解:取AD的中点为G,连接,ABCD 为正方形,,AM MD AM MD ∴⊥=,2AD =,G 为中点,1MG =∴,又AOD 为直角三角形,112OG AD ∴==, G ∴的轨迹是以O 为圆心的圆弧,OM ∴最小值为当,,O G M 三点共线时,即2OM OG GM =+=,故答案为:2.【点睛】本题考查了正方形的性质,直角三角形斜边的中线等于斜边的一半,以及两点之间线段最短等知识,正确作出辅助线是解答本题的关键.3、6【解析】【分析】过点D作DE⊥AB交y轴于点E,交BO于点P,得矩形ACPD,正方形OCPE,此时PC+PD的值最小.【详解】解:∵A(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如图,过点D作DE⊥AB交y轴于点E,交BO于点P,∴∠PDA=∠DAC=∠PCA=90°,∴四边形ACPD是矩形,∴AC=DP,PC=AD,同理可得四边形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四边形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此时PC+PD的值最小,为6.故答案为:6.【点睛】本题考查了矩形的判定与性质,正方形的判定以及垂线段最短问题.4【解析】【分析】不管P点在l上哪个位置,PD始终等于PD',故求PD'+PB可以转化成求PD+PB,显然当D、P、D'共线时PD+ PB最短.【详解】过点D作DM⊥AB交BA的延长线于点M,∵四边形ABCD是平行四边形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折变换可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四边形ADED′是菱形,∴点D与点D′关于直线l对称,连接BD交直线l于点P,此时PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB【点睛】本题考查平行四边形性质和菱形性质,掌握这些是本题解题关键.5、1 4 n【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n -1)个阴影部分的和.【详解】 解:由题意可得一个阴影部分面积等于正方形面积的14,即是14,n 个这样的正方形重叠部分(阴影部分)的面积和为:()11144n n -⨯-=. 故答案为:14n -. 【点睛】本题考查了正方形的性质,解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.三、解答题1、(1)8;(2)12;(3)72或216【分析】(1)根据等腰三角形的性质以及勾股定理即可解决问题.(2)如图2中,当点F 与D 重合时,连接DE .求出此时x 的值即可判断.(3)分两种情形分别求解即可解决问题.【详解】解:(1)如图1中,∵AB =AC ,BD =CD ,∴AD⊥BC,在Rt△ADB中,∵AB=10,BD=CD=6,∴AD8.(2)如图2中,当点F与D重合时,连接DE.∵OF垂直平分线段BE,∴BD=DE=6,∵∠ADC=90°,AE=EC,∴AC=2DE=12,当x=12时,点F与点D重合.(3)①当点F在点D左侧时,作EG⊥BC于G,连接EF,DE.∵DE=EC,EG⊥BC∴DG=GC=3,∵BD=6,DF=1,∴BF=5,∵OF垂直平分线段EB,∴EF=FB=5,在Rt△EFG中,∵EF=5,FG=4,∴EG3,在Rt△DEG中,DE∵AC=2DE,∴AC=∴x2=AC2=72.②当点F在点D右侧时,作EG⊥BC于G,连接EF,DE.易知BF=EF=7,FG=2,EG=∴DE∴AC=2DE=,∴x2=AC2=216.【点睛】本题属于三角形综合题,考查了等腰三角形的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.2、(1)ADC ABC ≌△△;AHK CIJ △≌△;AEG CFG △≌△;(2)证明ADC ABC ≌△△;证明见解析;(3)19S =,28S =【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG ,由材料二可得,ABC 被分成4个面积相等的等腰直角三角形,即可得出1S ;连接HJ ,KI ,过点H 作HM ⊥AD 于点M ,过点I 作IN ⊥CD 于点N ,则ACD 被分为9个面积相等的等腰直角三角形,即可得出2S .【详解】解:(1)ADC ABC ≌△△;AHK CIJ △≌△;AEG CFG △≌△(2)证明ADC ABC ≌△△;由题意得,在正方形ABCD 中,∵AB AD =,90ABC ADC ∠=∠=︒,在Rt ABC 和Rt ADC 中AC AC AB AD=⎧⎨=⎩ (HL)Rt ABC Rt ADC ∴△≌△;证明:AHK CIJ △≌△;由题意得,在正方形HIJK 中,HK IJ =,90AHK CIJ ∠=∠=︒,∵AC 为正方形ABCD 的对角线,∴45DAC DCA ∠=∠=︒,在Rt AHK 和Rt CIJ 中DAC DCA AHK CIJ HK IJ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴Rt AHK Rt CIJ ≅;证明:AEG CFG △≌△由题意得,在正方形EBFG 中,EG FG =,90AEG GFC ∠=∠=︒,∵AC 为正方形ABCD 的对角线,∴45EAG FCG ∠=∠=︒,在Rt AEG 和Rt CFG 中EAG FCG AEG GFC EG FG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴Rt AEG Rt CFG ≅;(3)如图,连接BG ,由材料二可得,ABC 被分成4个面积相等的等腰直角三角形, 166182ABC ADCS S ==⨯⨯=. ∴111892S =⨯=连接HJ ,KI ,过点H 作HM ⊥AD 于点M ,过点I 作IN ⊥CD 于点N ,则ACD 被分为9个面积相等的等腰直角三角形,∴241889S =⨯=.∴19S =,28S =.【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.3、(1)证明见解析;(2)3【分析】(1)通过证明△CEK ≌△BEF 及△KED ≌△FED 即可证明FD DK =;(2)延长CE 到点P ,使EP =CE ,先证明点G 在过点P 且与CE 垂直的直线PN 上运动,再作点E 关于点P 的对称点Q ,连接BQ 交PN 于点G ,此时△BEG 的周长最小,求出此时GE +GB +BE 的值即可.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB CD ∥,∴∠K =∠ABE ,∵BF ⊥AB ,,BE CE ⊥∴∠ABF =90°,90,BEF CEK∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵AD BC∥,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∠EBC=∠ECB,∴∠KED=∠FED,∴ED=ED,∴△KED≌△FED(SAS),∴DK=DF,(2)如图,作BN⊥BE,GN⊥BN于点N,延长NG交射线CE于点P,则∠EBN=∠FBG=90°,∴∠NBG=∠EBF=90°﹣∠GBE,∵∠N=∠BEF=90°,BG=BF,∴△BNG≌△BEF(AAS),∴BN=BE;∵∠EBN=∠N=∠BEP=90°,∴四边形BEPN是正方形,∴PE=BE=CE,∴当点F在CE上运动时,点G在PN上运动;延长EP到点Q,使PQ=PE,连接BQ交PN于点G,∵PN垂直平分EQ,∴点Q与点E关于直线PN对称,∵两点之间,线段最短,∴此时GE+GB=GQ+GB=BQ最小,∵BE为定值,∴此时GE+GB+BE最小,即△BEG的周长最小;作DH⊥CE于点H,则∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=2,∴DH=EH=1;∴CH2222DH,512∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ=∴GE+GB+BE=3,∴△BEG周长的最小值为3.【点睛】本题重点考查平行四边形的性质、正方形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质、勾股定理、以及运用轴对称的性质求线段和的最小值问题的求解等知识与方法,深入探究与挖掘题中的隐含条件并且正确地作出辅助线是解题的关键,此题综合性强,难度大,属于考试压轴题.4、(1)t=2s;(2)AB=(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;(2)若是菱形,则AC垂直于BD,即有222+=,故AB可求;AO BO AB(3)根据四边形AECF是菱形,求得BO AC OE OF,,根据平行四边形的性质得到BO=OD,求得⊥=BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴62=,=,EO t OF t-∴62t t-=,∴2t s=,∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则AC BD⊥,222AO BO AB∴+=,BA==∴当AB为时,平行四边形AECF是菱形;(3)由(1)(2)可知当t=2s,AB=AECF是菱形,∴EO=6−t=4,∴EF=8,∴菱形AECF的面积=116824 22AC EF⋅=⨯⨯=.【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.5、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被开方数是非负数,求出m=3,判断出A,B两点坐标,可得结论;(2)①结论:OC=BD,OC∥BD.连接AB交x轴于点T.利用等腰三角形的三线合一的性质得出OC=2CT,利用三角形中位线定理得出CT∥BD,BD=2CT,由此即可得;②连接AB交OC于点T,过点P作PH⊥OC于H.证明△OTB≌△PHO(AAS),推出BT=OH=3,即可得出结论.【详解】解:(1)由题意,30 30mm-≥⎧⎨-≥⎩,∴m=3,∴x=n,∴A(n,﹣3),∵A,B关于x轴对称,∴B(n,3),∴AB=3﹣(﹣3)=6,故答案为:6;(2)①结论:OC=BD,OC∥BD.理由:如图,连接AB交x轴于点T.∵A,B关于x轴对称,∴AB⊥OC,AT=TB,∵AO=AC,∴OT=CT(等腰三角形的三线合一),∴OC=2CT,∵AC=CD,AT=TB,∴CT∥BD,BD=2CT,∴OC=BD,OC∥BD;②如图,连接AB交OC于点T,过点P作PH OC⊥于点H,B n,(,3)∴=,BT3∵AC=OC=CD,∴∠COA=∠OAC,∠COD=∠CDO,∴2∠OAC+2∠CDO=180°,∴∠OAC+∠CDO=90°,∴∠AOD=90°,∵A,B关于x轴对称,∴OT⊥AB,OA=OB,∴∠OBT=∠OAT,∵∠COD+∠AOC=90°,∠AOC+∠OAT=90°,∴∠OAT=∠COD,∴∠OBT =∠COD ,即∠OBT =∠POH ,∵BD ∥OC ,∴∠PDB =∠POH =∠OBT ,∠ABD =90°,∵∠PBD =45°,∴∠ABP =45°,∵∠OBP =∠OBT +∠ABP =∠OBT +45°,∠OPB =∠PBD +∠PDB =45°+∠PDB ,∴∠OBP =∠OPB ,∴OB =PO ,在OTB 和PHO △中,90OBT POH OTB PHO OB PO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△OTB ≌△PHO (AAS ),∴BT =OH =3,故点P 的横坐标为3.【点睛】本题考查了坐标与轴对称变化、三角形中位线定理、等腰三角形的三线合一等知识点,较难的是题(2)②,通过作辅助线,构造全等三角形是解题关键.。
人教版八年级数学下册单元测试《第18章平行四边形》(b卷)(解析版)
初中数学试卷新人教版八年级下册《第18章平行四边形》单元测试卷(B卷)一、填空题(共14小题,每题2分,共28分)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件,就可得BE=DF.2.将一矩形纸条,按如图所示折叠,则∠1=度.3.如图,矩形ABCD中,MN∥AD,PQ∥AB,则S1与S2的大小关系是.4.已知平行四边形ABCD的面积为4,O为两条对角线的交点,那么△AOB的面积是.5.菱形的一条对角线长为6cm,面积是6cm2,则菱形的另一条对角线长为cm.6.如果梯形的面积为216cm2,且两底长的比为4:5,高为16cm,那么两底长分别为.7.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为.8.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.9.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于度.10.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片张,B类卡片张,C类卡片张.11.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为.12.如图所示,正方形ABCD的周长为16cm,顺次连接正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于cm,四边形EFGH的面积等于cm2.13.如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,连接AE交PQ于点M,求PM:MQ的值.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有个.二、选择题(共4小题,每题3分,共12分)15.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确16.在菱形ABCD中,AC与BD相交于点O,则下列说法不正确的是()A.AO⊥BO B.∠ABD=∠CBD C.AO=BO D.AD=CD17.已知等腰梯形的两底之差等于腰长,则腰与下底的夹角为()A.15°B.30°C.45°D.60°18.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关三、解答题(共60分)19.我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.20.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.21.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E.求证:四边形CDC′E是菱形.22.如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.23.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.24.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.25.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.26.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.27.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.28.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.新人教版八年级下册《第18章平行四边形》单元测试卷(B卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件AE=CF 或BE∥DF,就可得BE=DF.【考点】平行四边形的判定与性质.【专题】开放型.【分析】要使BE=DF,需使四边形EBFD为平行四边形,已有ED∥BF,再加AE=CF,或BE∥DF都可使其为平行四边形.【解答】解:∵BE=DF,DE∥BF∴四边形EBFD为平行四边形故答案为:AE=CF,BE∥DF(即为要增加的条件,任选一个).【点评】主要考查平行四边形的判定:一组对边平行且相等的四边形是平行四边形、两组对边分别平行的四边形是平行四边形.2.将一矩形纸条,按如图所示折叠,则∠1=52度.【考点】平行线的性质;翻折变换(折叠问题).【专题】计算题.【分析】根据平行线的性质,折叠变换的性质及邻补角的定义可直接解答.【解答】解:∵该纸条是折叠的,∴∠1的同位角的补角=2×64°=128°;∵矩形的上下对边是平行的,∴∠1=∠1的同位角=180°﹣128°=52°.【点评】本题主要考查平行线的性质:两直线平行,同位角相等;邻补角的定义;折叠变换的性质.3.如图,矩形ABCD中,MN∥AD,PQ∥AB,则S1与S2的大小关系是S1=S2.【考点】矩形的性质.【分析】设AM=y,MK=x,故S1=xy,KN=a,KQ=b,故S2=ab,由勾股定理推得:S2=ab=xy,从而得到S1=S2.【解答】解:设AM=y,MK=x,故S1=xyKN=a,KQ=b,故S2=ab.BD2=AD2+AB2=(x+a)2+(y+b)2DK=,BK=∴(+)2=(x+a)2+(y+b)2化简可得(ab﹣xy)2=0,ab﹣xy=0,故ab=xy.∴S1=S2.【点评】本题考查的是矩形的性质,但需要需注意的是要把等量关系转化求解.本题难度中上.4.已知平行四边形ABCD的面积为4,O为两条对角线的交点,那么△AOB的面积是1.【考点】平行四边形的性质.【分析】根据平行四边形的对角线互相平分,可推出三角形的中线;三角形的中线把三角形分成面积相等的两个三角形.【解答】解:根据平行四边形的对角线性质可知,AO为△ABD的中线,=S△AOB,所以,S△AOD=S△BOC=S△COD,同理可得,S△AOB=S平行四边形ABCD=1.所以,S△AOB【点评】平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形,并且平行四边形被对角线分成的四个小三角形的面积相等.5.菱形的一条对角线长为6cm,面积是6cm2,则菱形的另一条对角线长为2cm.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两条对角线的积的一半,即可求得.【解答】解:设菱形的另一条对角线长为xcm,则×6×x=6cm2,∴x=2cm.故答案为:2.【点评】此题主要考查菱形的性质,属于基础题,注意掌握菱形的面积等于两条对角线的积的一半.6.如果梯形的面积为216cm2,且两底长的比为4:5,高为16cm,那么两底长分别为12cm,15cm.【考点】梯形.【分析】设梯形两底分别为4x,5x,利用梯形面积公式求出x的值,即可得两底的长.【解答】解:设梯形的两底分别是4x,5x∴梯形的面积=(4x+5x)×16=216,得x=3∴梯形的两底分别是12,15.【点评】当知道两条线段的比的时候,注意用设未知数方法,根据梯形的面积公式列方程求解.7.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为96.【考点】菱形的性质.【专题】计算题;压轴题.【分析】根据菱形的性质利用勾股定理求得OB的长,从而得到BD的长,再根据菱形的面积公式即可求得其面积.【解答】解:连接DB,于AC交与O点∵在菱形ABCD中,AB=10,AC=16∴OB===6∴BD=2×6=12∴菱形ABCD的面积=×两条对角线的乘积=×16×12=96.故答案为96.【点评】此题考查学生对菱形的性质及勾股定理的理解及运用.8.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.9.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于30度.【考点】平行四边形的性质.【专题】计算题;压轴题.【分析】要使其面积为矩形面积的一半,平行四边形ABCD的高必须是矩形宽的一半,根据直角三角形中30°的角对的直角边等于斜边的一半可知,这个平行四边形的最小内角等于30度.【解答】解:∵平行四边形的面积为矩形的一半且同底BC,∴平行四边形ABCD的高AE是矩形宽AB的一半.在直角三角形ABE中,AE=AB,∴∠ADC=30°.故答案为:30.【点评】主要考查了平行四边形的面积公式和基本性质.平行四边形的面积等于底乘高.10.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片2张,B类卡片1张,C类卡片3张.【考点】多项式乘多项式.【专题】计算题.【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【解答】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,则可知需要A类卡片2张,B类卡片1张,C类卡片3张.故答案为:2;1;3.【点评】此题考查的内容是整式的运算与几何的综合题,方法较新颖.注意对此类问题的深入理解.11.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为3.【考点】翻折变换(折叠问题).【专题】几何图形问题.【分析】根据翻折变换的特点可知.【解答】解:根据翻折变换的特点可知:DE=GE∵∠CFE=60°,∴∠GAE=30°,∴AE=2GE=2DE=2,∴AD=3,∴BC=3.故答案为:3.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.12.如图所示,正方形ABCD的周长为16cm,顺次连接正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于8cm,四边形EFGH的面积等于8cm2.【考点】正方形的性质;三角形中位线定理.【分析】根据已知可求得ABCD的边长及对角线的长,根据中位线的性质可得到EFGH 的边长,从而可求得其周长及面积.【解答】解:正方形ABCD的周长为16cm,则它的边长为4,对角线是4,顺次连接正方形ABCD各边的中点,得到四边形EFGH,所以利用中线性质可得四边形EFGH的边长为2,所以四边形EFGH的周长等于8.由正方形的定义可知四边形EFGH是正方形,所以面积等于8.故答案为8,8.【点评】此题主要利用正方形的周长公式和面积公式进行计算,中位线性质是本题的关键.13.如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,连接AE交PQ于点M,求PM:MQ的值.【考点】翻折变换(折叠问题).【分析】由于四边形ABCD是正方形,那么∠D=90°,利用勾股定理可求AE,而线段AE 关于PQ对称,于是AE⊥PQ,可证△AMP∽△ADE,利用比例线段可求PM,再利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE=13,继而得到比值.【解答】解:作PN⊥BC交BC于N点,∵四边形ABCD是正方形,∴∠D=90°,又∵AD=12,DE=5,∴AE==13,∵线段AE关于PQ对称,∴AE⊥PQ,∴∠AMP=∠ADE=90°,AM=AE=,又∵∠PAM=∠EAD,∴△AMP∽△ADE,∴PM:DE=AM:AD,∴PM==.∵PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQN,则∠PQN=∠APQ=∠AED,∠D=∠PNQ,PN=AD∴△PQN≌△ADE,∴PQ=AE=13,∴PM:MQ=【点评】所求线段应进行平移,构造相应的全等三角形求解.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有40个.【考点】坐标与图形性质;正方形的性质.【专题】规律型.【分析】可以发现第n个正方形的整数点有4n个点,故第10个有40个整数点.【解答】解:第一个正方形有4×1=4个整数点;第2个正方形有4×2=8个整数点;第3个正方形有4×3=12个整数点;…∴第10个正方形有4×10=40个整数点.故答案为:40.【点评】此题考查点的坐标规律、正方形各边相等的性质,解决本题的关键是观察分析,得到规律,这是中考的常见题型.二、选择题(共4小题,每题3分,共12分)15.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确【考点】平行四边形的性质;三角形三边关系.【分析】因为平行四边形的对角线互相平分,根据三角形三边之间的关系,可先求得另一对角线的一半的取值为大于7而小于13,则它的另一条对角线α的取值范围为14<α<26.【解答】解:如图,已知平行四边形中,AB=10,AC=6,求BD的取值范围,即a的取值范围.∵平行四边形ABCD∴a=2OB,AC=2OA=6∴OB=α,OA=3∴在△AOB中:AB﹣OA<OB<AB+OA即:14<α<26故选B.【点评】此题主要考查平行四边形的性质和三角形三边之间的关系.16.在菱形ABCD中,AC与BD相交于点O,则下列说法不正确的是()A.AO⊥BO B.∠ABD=∠CBD C.AO=BO D.AD=CD【考点】菱形的性质.【分析】根据菱形的对角线垂直、平分且平分每一组对角的性质对各个选项进行验证.【解答】解:A、正确,菱形的对角线互相垂直平分;B、正确,一条对角线平分一组对角;C、不正确,菱形的对角线不相等;D、正确,菱形的四边均相等;故选C.【点评】此题主要考查菱形的基本性质:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.17.已知等腰梯形的两底之差等于腰长,则腰与下底的夹角为()A.15°B.30°C.45°D.60°【考点】等腰梯形的性质.【分析】过点D作DE∥BC,可知△ADE是等边三角形,从而得到∠C=60°.【解答】解:如图,过点D作DE∥BC,交AB于点E.∴DE=CB=AD,∵AD=AE,∴△ADE是等边三角形,所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.18.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关【考点】三角形中位线定理.【专题】压轴题.【分析】因为AR的长度不变,根据中位线定理可知,线段EF的长不变.【解答】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR,且等于AR的一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选C.【点评】主要考查中位线定理.在解决与中位线定理有关的动点问题时,只要中位线所对应的底边不变,则中位线的长度也不变.三、解答题(共60分)19.我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.【考点】矩形的判定;菱形的判定;正方形的判定;梯形.【专题】阅读型.【分析】根据图中图形各四边形的不同的定义和性质进行解答即可.【解答】解:③﹣﹣相邻两边垂直;④﹣﹣相邻两边相等;⑤﹣﹣相邻两边相等;⑥﹣﹣相邻两边垂直;⑦﹣﹣两腰相等;⑧﹣﹣一条腰垂直于底边.【点评】本题考查菱形、矩形、正方形和梯形等的判定区别.20.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题;压轴题.【分析】要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB.【解答】证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE.又ABCD是平行四边形,∴AD=CB,AD∥BC.∴∠DAF=∠BCE.在△ADF与△CBE中,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E.求证:四边形CDC′E是菱形.【考点】菱形的判定.【专题】证明题.【分析】根据题意可知△CDE≌△C′DE,则CD=C′D,CE=C′E,要证四边形CDC′E为菱形,证明CD=CE即可.【解答】证明:根据题意可知△CDE≌△C′DE,则CD=C′D,∠C′DE=∠CDE,CE=C′E,∵AD∥BC,∴∠C′DE=∠CED,∴∠CDE=∠CED,∴CD=CE,∴CD=C′D=C′E=CE,∴四边形CDC′E为菱形.【点评】本题利用了:1、全等三角形的性质;2、两直线平行,内错角相等;3、等边对等角;4、菱形的判定.22.如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.【考点】平行四边形的判定;全等三角形的判定.【专题】证明题;压轴题;探究型.【分析】(1)利用CF∥BE和D是BC边的中点可以得到全等条件证明△BDE≌△CDF;(2)根据(1)的结论和平行四边形的判定容易证明四边形BECF是平行四边形.【解答】(1)证明:∵CF∥BE,∴∠FCD=∠EBD.∵D是BC的中点,∴CD=BD.∵∠FDC=∠EDB,∴△CDF≌△BDE(ASA).(2)解:四边形BECF是平行四边形.理由:∵△CDF≌△BDE,∴DF=DE,DC=DB.∴四边形BECF是平行四边形.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定,要求对这些知识很熟练.23.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.【考点】菱形的判定;平行四边形的性质;正方形的判定.【专题】证明题.【分析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得△AOE≌△COE,∴∠AOE=∠COE=90°,∴BE⊥AC,∴四边形ABCD是菱形;(2)根据有一个角是90°的菱形是正方形.由题意易得∠ADO=∠DAE+∠DEA=15°+30°=45°,∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴四边形ABCD是正方形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC(三线合一),即AC⊥BD,∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO平分∠AEC(三线合一),∴∠AED=∠AEC=×60°=30°,又∵∠AED=2∠EAD∴∠EAD=15°,∴∠ADO=∠DAE+∠DEA=15°+30°=45°(三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴平行四边形ABCD是正方形.【点评】此题主要考查菱形和正方形的判定,要灵活应用判定定理及等腰三角形的性质、外角的性质定理.24.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.【考点】矩形的性质;全等三角形的判定与性质.【专题】探究型.【分析】由全等三角形的判定定理直接可证△ADE≌△FCD,即证AD=CF.【解答】解:(1)AD=CF.(2)证明:∵四边形ABCD是矩形,∴CD∥AE,AB=CD,∴∠AED=∠FDC,∵DE=AB,∴DE=AB=CD.(3分)又∵CF⊥DE,∴∠CFD=∠A=90°.(4分)∴△ADE≌△FCD(AAS).∴AD=CF.(6分)【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.【考点】正方形的判定;三角形中位线定理;平行四边形的判定.【专题】证明题.【分析】通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.【解答】证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.【点评】主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.26.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.【考点】全等三角形的判定;菱形的判定.【专题】几何综合题.【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA判定△ABE≌△AD′F;(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【解答】(1)证明:由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE和△AD′F中∵∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.【点评】此题考查了全等三角形的判定及菱形的判定方法,做题时要求学生对常用的知识点牢固掌握.27.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.【考点】全等三角形的判定与性质;正方形的性质.【专题】几何综合题.【分析】可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,∴AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;再利用互余关系可以证明AE⊥CG.【解答】(1)证明:如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∵∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG(SAS).∴AE=CG.(2)猜想:AE⊥CG.证明:如图,设AE与CG交点为M,AD与CG交点为N.∵△ADE≌△CDG,∴∠DAE=∠DCG.又∵∠ANM=∠CND,∴△AMN∽△CDN.∴∠AMN=∠ADC=90°.∴AE⊥CG.【点评】本题可围绕结论寻找全等三角形,根据正方形的性质找全等的条件,运用全等三角形的性质判定线段相等,垂直关系.28.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【考点】矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.【专题】证明题;开放型.【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.——————————唐玲制作仅供学习交流——————————唐玲。
【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷
人教版数学八年级下册第18章平行四边形培优单元卷一.选择题(共10小题)1.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边2.已知?ABCD的周长是22,△ABC的周长是17,则AC的长为()A.5 B.6 C.7 D.83.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD 是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD4.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.125.用两块完全相同的直角三角形拼下列图形:①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.一定能拼成的图形是( )A.①②⑤B.①③⑤C.③⑤⑥D.①③④6.若菱形的两条对角线分别长8、6,则菱形的面积为()A.48 B.24 C.14 D.127.在直角坐标系中,正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),则另一条对角线的端点坐标为()A.(3,0),(-1,2) B.(1,1),(-1,2)C.(1,1),(3,0) D.(2,0),(0,2)8.如图,矩形ABCD的周长是28,点O是线段AC的中点,点P是AD的中点,△AOD的周长与△COD的周长差是2(且AD>CD),则△AOP的周长为()A.12 B.14 C.16 D.189.下列说法中正确的是()A.两条对角线互相垂直的四边形是菱形B.两条对角线互相平分的四边形是平行四边形C.两条对角线相等的四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.D.二.填空题(共6小题)11.如图,在?ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为.12.如图,在平行四边形ABCD中,E是BC边上的一点,且AB=AE,若AE平分∠DAB,∠EAC=27°,则∠ACD= .13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD=20,则平行四边形ABCD的面积为.14.如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E 和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒1个单位长度的速度移动,移动到第2019秒时,点P的坐标为.16.如图,矩形ABCD的周长为36,点O为对角线BD的中点,点E是线段BA延长线上的一点,且满足AE=5,3AB连接OA,OE,若∠AOD=120°,则线段OE的长为.三.解答题(共7小题)17.已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD于点F.求证:OE=OF.18.如图,分别延长?ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.19.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10.(1)求证:四边形ABCD是平行四边形.(2)求四边形ABCD的面积.20.如图,矩形ABCD的对角线AC的中点为O,过点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=6,BC=8,请直接写出EF的长为.21.已知E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.22.如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.23.如图1,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,求S△PAC;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,求菱形EFGH的周长.答案:1-5 CBCDB6-10 BAABD11. 40°12. 87°13.4814.415.16.717. 证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEO=∠CFO=90°,在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF.18. 证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形19. (1)证明:∵∠DBC=90°,BE=3,BC=4,∴又∵AE=AC-CE,且AC=10∴AE=10-5=5∴AE=EC,又∵DE=EB,∴四边形ABCD是平行四边形.(2)解:S平行四边形ABCD=BC·BD=4×6=24.20. 证明:(1)∵四边形ABCD是矩形∴AD∥BC∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形(2)∵四边形AECF是菱形∴AE=EC,AO=CO,EO=FO∵AB2+BE2=AE2,∴36+(8-CE)2=CE2,∴CE=∵AB=6,BC=8,∴AC==10∴AO=CO=5∵EO==∴EF=2EO=21. (1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF(SAS).(2)∵四边形AECF是菱形,∴EA=EC,∴∠EAC=∠ECA,∵∠BAC=90°,∴∠BAE+∠EAC=90°,∠B+∠ECA=90°,∴∠B=∠EAB,∴EA=EB,∴BE=CE=5.22. (1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=3,∵AD=10,AB=DC,∴AB=(10-3)=.23.解:(1)∵▱ABCD中,EF∥BC,HG∥AB,∴S△ABD=S△BCD,S△PBE=S△PBG,S△PDH=S△PDF,∴S▱AEPH=S▱PGCF,S▱ABGH=S▱EBCF,S▱AEFD=S▱HGCD,故答案为:▱AEPH和▱PGCF或▱ABGH和▱EBCF或▱AEFD和▱HGCD;(2)易得S△ABC=S△ADC,S△PAE=S△PAG,S△PCH=S△PCF,∵S▱BHPE=3,S▱PFDG=5,∴S△PAC=S△PAG+S△PCF+S▱PFDG-S△ACD=S△PAG+S△PCF+S▱PFDG-S▱ABCD=S△PAG+S△PCF+S▱PFDG-(2S△PAG+2S△PCF+S▱BHPE+S▱PFDG)=S▱PFDG-(S▱BHPE+S▱PFDG)=1;(3)∵①②③④四个平行四边形面积的和为14,∴S△ABE+S△BCF+S△CDG+S△ADH=7,∵四边形ABCD的面积为11,∴S菱形EFGH=11+7=18,∵菱形EFGH的一个内角为30°,∴设菱形EFGH的边长为x,则高为x,∴x•x=18,解得x=6,∴菱形EFGH的周长为24.人教版八年级数学下册第十八章平行四边形单元测试题(含答案)一、选择题。
八下数学《平行四边形》培优试卷-(A4含答案)
《平行四边形》竞赛试题总分120分,时间120分钟一、填空题(共9小题,每小题3分,满分27分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_________.2.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_________.(填一个即可)3.如图,已知矩形ABCD,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=____.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是_________;(2)当△ABC满足条件_________时,四边形ADEF为菱形;(3)当△ABC满足条件_________时,四边形ADEF不存在.1题2题3题4题5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为________.6.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有_________对四边形面积相等;它们是_________.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为_________.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为_________度.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.6题7题8题9题二、选择题(共9小题,每小题3分,满分27分)10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60°B.65°C.70°D.75°10题11题12题13题11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.13.如图,平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.28415题16题16.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20m C.22m D.24m17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.A D>BC B.A D<BCC.A D=BC D.A D与BC的大小关系不能确定18.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形"这一结论的情况有()A.4种B.9种C.13种D.15种三、解答题(共10小题,满分66分)19.如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD 交于G,求证:GF∥AC.20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.23.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M 为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.24.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.26.阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.28.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC 的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.参考答案与试题解析一、填空题(共9小题,每小题4分,满分36分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.考点:矩形的性质;等腰三角形的性质。
1人教版八下数学18.1《平行四边形》试卷(含答案)
…○………………○……………………订…学校:___________级:___________考号:…○………………○……………………订…绝密★启用前试卷试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,已知90ODA =∠°,20AC =,12BD =,点E 、F 分别是线段OD 、OA 的中点,则EF 的长为( )A .4B .6C .8D .102.我们知道,勾股定理反映了直角三角形三条边的关系: a 2+b 2=c 2, 而a 2, b 2, c 2又可以看成是以a ,b , c 为边长的正方形的面积.如图,在Rt △ABC 中,∠ACB=90°,BC=a , AC=b ,O 为AB 的中点.分别以AC ,BC 为边向△ABC 外作正方形ACFG ,BCED ,连结OF , EF , OE ,则△OEF 的面积为( )A .222a b +B .224a b +C .2()2a b +D .2()4a b +3.根据如图所示的三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )A .3nB .3n (n+1)C .6nD .6n (n+1)试卷第2页,总11页…外……………装………………订…○………※※不※※要※※在订※※线※※内※※※…内……………装………………订…○………4.顺次连接平面上,,,A B C D 四点得到一个四边形,从①//AD BC ,②AB CD =,③A C ∠=∠,④B D ∠=∠四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”,这一结论的情况共有( ) A .2种B .3种C .4种D .5种5.如图,平行四边形ABCD 的对角线交于点O ,且AB=6,△OCD 的周长为16,则AC 与BD 的和是( )A .22B .20C .16D .106.如图,在▱ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E .则线段CE 的长度为( )A .2B .3C .1D .47.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关8.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .149.在△ABC 中,AB=3,BC=4,AC=2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是( )…○………………○…………○………………………○……学校:_____________班级:_______…○………………○…………○………………………○……A .5B .7C .9D .1110.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③11.若四边形的两条对角线相等且互相垂直,则顺次连接该四边形各边中点所得的四边形是( ) A .平行四边形B .矩形C .菱形D .正方形12.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BC B .OA =OC ,OB =OD C .AD =BC ,AB ∥CDD .AB =CD ,AD =BC13.如图,在△ABC 中,∠ABC=90°,AB=8,BC=6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .1014.如图,将一张平行四边形纸片撕开并向两边水平拉伸,若拉开的距离为l cm ,AB =2cm ,∠B =60°,则拉开部分的面积(即阴影面积)是( )试卷第4页,总11页…装…………○…订………………线……不※※要※※在※※装※※※内※※答※※题…装…………○…订………………线……A.1cm2B2C2D.2 15.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=6,OE=3,那么四边形EFCD的周长是()A.16 B.13 C.11 D.1016.如图,O是矩形ABCD的对称中心,M是AD的中点.若BC=8,OB=5,则OM的长为()A.4 B.3 C.2 D.117.如图,平行四边形ABCD的周长是26,对角线AC与BD 交于O,AC⊥AB,E是BC的中点,△AOD的周长比△AOB的周长多3,则AE 的长度为()A.3 B.4 C.5 D.818.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等19.在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD 是平行四边形的是()A.AB=DC,AD=BC B.AD∥BC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OD=OB20.如图,在ΔABC中,AB=30,BC=24,CA=27,AE=EF=FB,EG∥FD∥BC,…………○……装……○…………订……线…………○…学_______姓名:____班级:___________考号…………○……装……○…………订……线…………○…FM ∥EN ∥AC ,则图中阴影部分的三个三角形的周长之和为( )A .70B .75C .81D .80第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题21.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50m ,则AB 的长是_______m .22.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.23.如图,在▱ABCD 中,DB =AB ,AE ⊥BD ,垂足为点E ,若∠EAB =40°,则∠C =_____°.24.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .试卷第6页,总11页…○…………外……………装………○…………订…………○…………○……※※请※※不※※要※※装※※订※※线※※内※※答※※题※※…○…………内……………装………○…………订…………○…………○……25.我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1cosα的值叫做这个平行四边形的变形度.如图,矩形ABCD 的面积为5,如果变形后的平行四边形A 1B 1C 1D 1的面积为3,那么这个平行四边形的变形度为___.26.如图,▱ABCD 中,E 、F 分别为BC 、AD 边上的点,要使BF =DE ,需添加一个条件: .27.如图,△ABC 中,AB =6,AC =4,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为_____.28.在平行四边形ABCD 中,点P 是BC 边上任意一点,连结P A ,PD ,若平行四边形ABCD 的面积为12.8,则△P AD 的面积为_____.29.如图,在四边形ABCD 中, ∠ADC +∠BCD =220°, E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点,则∠EPF=________ .30.在平行四边形ABCD 中,∠A =132°,在AD 上取一点E ,使DE =DC ,则∠ECB…………○……装……………………○…………………○…学校:____姓名:__________号:___________…………○……装……………………○…………………○…的度数是_____.31.如图,在四边形ABDC 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,并且E 、F 、G 、H 四点不共线.当AC =6,BD =8时,四边形EFGH 的周长是_____.32.如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2:按上述方法不断操作下去…,经过第2019次操作后得到的折痕D 2018E 2018,到BC 的距离记为h 2019:若h 1=1,则h 2019的值为(____)33.如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,△ABC 的面积为6cm 2,则△BDE 的面积为_____.34.三角形的各边分别为8cm 、10cm 和12cm ,连结各边中点所成三角形的周长=_____ 35.已知ABCD Y 中一条对角线分A ∠为35°和45°,则B ∠=________度.36.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.试卷第8页,总11页…○…………外……………装…………○…………○……………○……※※不※※要※※在※※装※※订※题※※…○…………内……………装…………○…………○……………○……37.在△ABC 中,∠C =90∘,AC =3,BC =4,点D,E,F 分别是边AB,AC,BC 的中点,则△DEF 的周长是__________.38.如图,在平行四边形ABCD 中,BC=8cm ,AB=6cm ,BE 平分∠ABC 交AD 边于点E ,则线段DE 的长度为_____.39.已知平行四边形ABCD 中,∠B =5∠A ,则∠D =__________.40.如图,四边形ABCD 中,AD ∥BC ,AD=8cm ,BC=12cm ,M 是BC 上一点,且BM=9cm ,点E 从点A 出发以1cm/s 的速度向点D 运动,点F 从点C 出发,以3cm /s 的速度向点B 运动,当其中一点到达终点,另一点也随之停止,设运动时间为t ,则当以A 、M 、E 、F 为顶点的四边形是平行四边形时,t=__________.三、解答题41.如图,平行四边形ABCD 中,AB BE =,F 是AB 上一点,FB CE =,连接DF ,点G 是FD 的中点,且满足AFG ∆是等腰直角三角形,连接,,GC GE BG .(1)若3AF =,求AD 的长;…外…………○…………订…………○……线……学校:___________考号:___________…内…………○…………订…………○……线……(2)求证:GD =.42.已知E 、F 分别是平行四边形ABCD 中BD 上的点,且BE =DF ,试说明,四边形AECF 是平行四边形。
八年级数学下册人教版第十八章平行四边形试卷(含答案)
八年级数学第十八章试卷班级_______________ 姓名___________分数___________一、选择题:(每小题3分,共30分)1、在□ABCD 中,∠A :∠B:∠C:∠D 的值可以是( ) A 、1:2:3:4 B 、1:2:2:1 C 、2:2:1:1 D 、2:1:2:12、菱形和矩形一定都具有的性质是( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角线互相平分且相等3、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cm B 。
6cm 和8cm C.8cm 和10cm D.10cm 和12cm4、四边形ABCD 的对角线AC 、BD 交于点O,能判定它是正方形的是( )A 、AO =OC ,OB =OD B 、AO =BO =CO =DO ,AC ⊥BD C 、AO =OC ,OB =OD,AC ⊥BD D 、AO =OC =OB =OD 5、给出下列四个命题⑴一组对边平行的四边形是平行四边形⑵一条对角线平分一个内角的平行四边形是菱形 ⑶两条对角线互相垂直的矩形是正方形⑷顺次连接四边形四边中点所得的四边形是平行四边形。
其中正确命题的个数为( )A 、1个B 、2个C 、3个D 、4个6、下列矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是( )A BC D7、如图,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( ) A 。
平行四边形 B 、矩形 C 、菱形 D. 正方形8、如图,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A 。
1对 B.2对 C.3对 D 。
4对9、如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A 。
S 1 〉 S 2 B.S 1 = S 2C 。
开学模拟考04 第十八章《平行四边形》(试题解析)-2020-2021学年八年级数学寒假学习精编讲义
2020-2021学年人教版七年级数学下册单元检测卷开学模拟考04第18章《平行四边形》试卷满分:100分 考试时间:120分一.选择题(共9小题,满分18分,每小题2分)1.(2分)(2020秋•长春期末)ABC ∆中,7AB =,6BC =,5AC =,点D 、E 、F 分别是三边的中点,则DEF ∆的周长为( )A .4.5B .9C .10D .12 【解答】解:点D 、E 、F 分别是三边的中点,DE ∴、EF 、DF 为ABC ∆的中位线, 1177222DE AB ∴==⨯=,1155222DF AC ==⨯=,116322EF BC ==⨯=, DEF ∴∆的周长753922=++=, 故选:B .2.(2分)(2020秋•金塔县期末)矩形具有而一般平行四边形不具有的性质是( )A .对角线互相平分B .对角相等C .对边相等D .对角线相等 【解答】解:A 、矩形、平行四边形的对角线都是互相平分的.,故本选项不符合; B 、矩形、平行四边形的对角都是相等的,故本选项不符合;C 、矩形、平行四边形的对边都是相等的,故本选项不符合;D 、矩形的对角线相等,平行四边形的对角线不一定相等,故本选项符合; 故选:D .3.(2分)(2020秋•沈北新区校级期末)如图,在平行四边形ABCD 中,//EF BC ,//GH AB ,EF 、GH 的交点P 在BD 上,则图中面积相等的平行四边形有( )A .3对B .2对C .1对D .0对【解答】解:四边形ABCD 是平行四边形,ABD CBD S S ∆∆∴=. BP 是平行四边形BEPH 的对角线,BEP BHP S S ∆∆∴=, PD 是平行四边形GPFD 的对角线,GPD FPD S S ∆∆∴=.ABD BEP GPD BCD BHP PFD S S S S S S ∆∆∆∆∆∆∴--=--,即AEPG HCFP SS =, ABHG BCFE S S ∴=,同理AEFD HCDG S S =.即:ABHG BCFE S S =,AGPE HCFP S S =,AEFD HCDG S S =.故选:A .4.(2分)(2020秋•齐河县期末)如图,在正方形ABCD 中,4AB =,E 是BC 上的一点且3CE =,连接DE ,动点M 从点A 以每秒2个单位长度的速度沿AB BC CD DA ---向终点A 运动,设点M 的运动时间为t 秒,当ABM ∆和DCE ∆全等时,t 的值是( )A .3.5B .5.5C .6.5D .3.5或6.5【解答】解:如图,当点M 在BC 上时,ABM ∆'和DCE ∆全等,BM CE ∴=,由题意得:243BM t '=-=,所以 3.5t=(秒);当点M在AD上时,ABM∆''和CDE∆全等,AM CE∴''=,由题意得:1623AM t''=-=,解得 6.5t=(秒).所以,当t的值为3.5秒或6.5秒时.ABM∆和DCE∆全等.故选:D.5.(2分)(2020秋•新华区校级月考)如图所示,在ABC∆中,90ACB∠=︒,D是AB的中点,DE BC⊥,E为垂足,12AC AB=,图中为60︒的角有()A.2个B.3个C.4个D.5个【解答】解:在Rt ABC∆中,90ACB∠=︒,12AC AB=,30B∴∠=︒.D是AB的中点,BD CD∴=.30DCB B∴∠=∠=︒.又DE BC⊥于E,60BDE CDE∴∠=∠=︒.903060ACD∴∠=︒-︒=︒.ACD∴∆为等边三角形.60ADC DAC ACD CDE BDE ∴∠=∠=∠=∠=∠=︒.故选:D .6.(2分)(2020秋•朝阳区校级月考)在ABCD 中,AF 平分BAD ∠交CD 于点F ,DE 平分ADC ∠交AB 于点E ,则下列说法中不正确的是( )A .AD DF =B .AF DE ⊥C .AE DF =D .AE DE = 【解答】解:四边形ABCD 是平行四边形,//AB CD ∴,CDE AED ∴∠=∠,AFD FAB ∠=∠,180ADC DAB ∠+∠=︒, AF 平分BAD ∠,DE 平分ADC ∠, 12DAF FAB DAB ∴∠=∠=∠,12ADE CDE ADC ∠=∠=∠, DAF AFD ∴∠=∠,ADE AED ∠=∠,AD DF ∴=,AE AD =,AE DF ∴=,故A 、C 选项正确,不符合题意;111()90222DAF ADE DAB ADC DAB ADC ∴∠+∠=∠+∠=∠+∠=︒, AF DE ∴⊥,故B 选项正确,不符合题意;故选:D .7.(2分)(2020春•江岸区校级月考)如图,在等边ABC ∆中,8BC cm =,射线//AG BC ,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,点F 从点B 出发沿射线BC 以3/cm s 的速度运动.设运动时间为()t s ,当(t = )s 时,以A 、C 、E 、F 为顶点的四边形是平行四边形.A .1或2B .2C .2或3D .2或4【解答】解:当点F 在C 的左侧时,根据题意得:AE t =cm ,3BF t =cm ,则(83)CF BC BF t cm =-=-,//AG BC ,∴当AE CF =时,四边形AECF 是平行四边形,即83t t =-,解得:2t =;当点F 在C 的右侧时,根据题意得:AE t =cm ,3BF t =cm ,则(38)CF BF BC t cm =-=-,//AG BC ,∴当AE CF =时,四边形AEFC 是平行四边形,即38t t =-,解得:4t =;综上可得:当2t =或4s 时,以A 、C 、E 、F 为顶点四边形是平行四边形, 故选:D .8.(2分)(2020春•雅安期末)如图,在ABCD 中,2AB AD =,F 是CD 的中点,作BE AD ⊥于点E ,连接EF 、BF ,下列结论①CBF ABF ∠=∠;②FE FB =;③2EFB DEBC S S ∆=四边形;④3BFE DEF ∠=∠.其中正确的个数是( )A .1B .2C .3D .4【解答】解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH . 2AB AD =,2CD AD ∴=, F 是CD 的中点,DF FC ∴=,CF CB ∴=,CFB CBF ∴∠=∠,//CD AB ,CFB ABF ∴∠=∠,CBF ABF ∴∠=∠,故①正确,//DE CG ,D FCG ∴∠=∠,DF FC =,DFE CFG ∠=∠,()DFE FCG AAS ∴∆≅∆,FE FG ∴=,BE AD ⊥,90AEB ∴∠=︒,//AD BC ,90AEB EBG ∴∠=∠=︒,BF EF FG ∴==,故②正确,DFE CFG S S ∆∆=,2EBG BEF DEBC S S S ∆∆∴==四边形,故③正确,AH HB =,DF CF =,AB CD =,CF BH ∴=,//CF BH ,∴四边形BCFH 是平行四边形,CF BC =,∴四边形BCFH 是菱形,BFC BFH ∴∠=∠,FE FB =,//FH AD ,BE AD ⊥,FH BE ∴⊥,BFH EFH DEF ∴∠=∠=∠,3EFC DEF ∴∠=∠,故④错误,故选:C .9.(2分)(2011•江岸区校级模拟)如图:在44⨯的正方形(每个小正方形的边长均为1)网格中,以A 为顶点,其他三个顶点都在格点(网格的交点)上,且面积为2的平行四边形共有( )个.A .10B .12C .14D .27 【解答】解:以AB 为一边,另两顶点在MG 上的有四边形ABMI 、ABQO 、ABIG 、共3个, 以AF 为一边,另两顶点在MG 上的有四边形AFGI 、AFOQ 、AFIM 共3个, 以AC 为一边,另两顶点在PH 上的有四边形ACPZ 、ACZN 、ACNV 、ACVH ,共4个, 以AE 为一边,另两顶点在PH 上的有四边形EAPZ 、EAZN 、EANV 、EAVH ,共4个, 以AI 为一边,另两顶点在YF 上的有四边形AIHG 、AILH 、AIYL ,共3个, 以AI 为一边,另两顶点在XB 上的有四边形AIPM 、AITP 、AIXT ,共3个, 以AN 为一边,另两顶点在ER '上的有四边形ANKO ,ANRV '共2个, 以AN 为一边,另两顶点在RC 上的有四边形ANSQ 、ANRZ ,共2个, 以及正方形AONQ ,还有平行四边形AOYK 和AQXS ,共334433221227+++++++++=个,故选:D .二.填空题(共9小题,满分18分,每小题2分)10.(2分)(2021•普陀区一模)如图,在Rt ABC ∆中,90ACB ∠=︒,点D 、E 分别在边BC 、AB 上,CD BD =,12CE AB =,AD 与CE 交于点F ,如果6AB =,那么CF 的长等于 2 .【解答】解:连接DE ,在Rt ABC ∆中,90ACB ∠=︒,12CE AB =, AE BE ∴=,CD BD =,DE ∴是Rt ABC ∆的中位线,12DE AC ∴=,//DE AC , ACF DEF ∴∆∆∽, ∴12EF DE CF AC ==, 6AB =,132CE AB ∴==, 223CF CE ∴==, 故答案为:2.11.(2分)(2020秋•雁江区期末)如图,在ABC ∆中,90ACB ∠=︒,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使13CD BD =,连接DM 、DN 、MN .若4AB =,则DN = 2 .【解答】解:连接CM ,90ACB ∠=︒,M 是AB 的中点,122CM AB ∴==, M 、N 分别是AB 、AC 的中点,12MN BC ∴=,//MN BC ,12CD BD =, MN CD ∴=,又//MN BC ,∴四边形NDCM 是平行四边形,2DN CM ∴==,故答案为:2.12.(2分)(2020秋•思明区校级期末)如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为D ,E 是AC 的中点.若3DE =,则AB 的长为 6 .【解答】解:在ABC ∆中,AD BC ⊥,垂足为D , ADC ∴∆是直角三角形;E 是AC 的中点.12DE AC ∴=(直角三角形的斜边上的中线是斜边的一半), 又3DE =,AB AC =,6AB ∴=,故答案为:6.13.(2分)(2020秋•宝鸡期末)如图,菱形ABCD 的边长为10,对角线BD 的长为16,点E ,F 分别是边AD ,CD 的中点,连接EF 并延长与BC 的延长线相交于点G ,则EG 的长为 12 .【解答】解:连接AC ,交BD 于点O ,如图所示: 菱形ABCD 的边长为10,//AD BC ∴,10AB BC CD DA ====, 点E 、F 分别是边AD ,CD 的中点, EF ∴是ACD ∆的中位线,//EF AC ∴, AC 、BD 是菱形的对角线,16BD =, AC BD ∴⊥,8OB OD ==,OA OC =, 又//AD BC ,//EF AC ,∴四边形CAEG 是平行四边形,AC EG ∴=,在Rt AOB ∆中,10AB =,8OB =, 221086OA OC ∴==-=,212AC OA ∴==,12EG AC ∴==;故答案为:12.14.(2分)(2020秋•瓜州县期末)如图,在矩形ABCD 中,8AB =,6BC =,点P 为边AB 上任意一点,过点P 作PE AC ⊥,PF BD ⊥,垂足分别为E 、F ,则PE PF += 245 .【解答】解:连接OP ,如图:四边形ABCD 是矩形,90ABC ∴∠=︒,OA OC =,OB OD =,AC BD =,OA OB ∴=,22228610AC AB BC =+=+=,48ABCD S AB BC ∴=⋅=矩形,1124AOB ABCD S S ∆==矩形,5OA OB ==, 1111()5()122222AOB AOP BOP S S S OA PE OB PF OA PE PF PE PF ∆∆∆∴=+=+=+=⨯⨯+=, 245PE PF ∴+=; 故答案为:245.15.(2分)(2020秋•石家庄期中)在长方形ABCD 中,6AB CD cm ==,10BC cm =,点P 从点B 出发,以2/cm 秒的速度沿BC 向点C 运动,与此同时点Q 从点C 出发,以/acm 秒的速度沿CD 向点D 运动,当点P 到达C 点或点Q 到达D 点时,P 、Q 运动停止,当a = 2或4 时,ABP ∆与PQC ∆全等.【解答】解:四边形ABCD 是长方形,90B C ∴∠=∠=︒,有两种情况:①当BP CQ =,6AB PC cm ==时,ABP PCQ ∆≅∆,此时1064()BP CQ cm ==-=,点P 运动的速度是2/cm s ,∴运动的时间是422=(秒), 即24a =,解得:2a =;②当BP PC =,6AB CQ cm ==时,ABP PQC ∆≅∆,此时163()2BP PC cm ==⨯=, 点P 运动的速度是2/cm s ,∴运动的时间是32秒, 即362a =, 解得:4a =;故答案为:2或4.16.(2分)(2020春•永州期末)如图,在平行四边形ABCD 中,2AD AB =,CE AB ⊥于点E ,点F 、G 分别是AD 、BC 的中点,连接CF 、EF 、FG ,下列四种说法:①CE FG ⊥;②四边形ABGF 是菱形;③2BC EG =;④DFC EFG ∠=∠.正确的有 ①②③④ .(填序号)【解答】解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,点F 、G 分别是AD 、BC 的中点,12AF AD ∴=,12BG BC =, AF BG ∴=,//AF BG ,∴四边形ABGF 是平行四边形,//AB FG ∴,CE AB ⊥,CE FG ∴⊥;故①正确;2AD AB =,2AD AF =,AB AF ∴=,∴四边形ABGF 是菱形,故②正确;CE AB ⊥,90BEC ∴∠=︒,点G 是BC 的中点,2BC EG ∴=,故③正确;延长EF ,交CD 延长线于M ,四边形ABCD 是平行四边形,//AB CD ∴,A MDF ∴∠=∠, F 为AD 中点,AF FD ∴=,在AEF ∆和DFM ∆中,A FDMAF DFAFE DFM∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEF DMF ASA ∴∆≅∆,FE MF ∴=,AEF M ∠=∠,CE AB ⊥,90AEC ∴∠=︒,90AEC ECD ∴∠=∠=︒,FM EF =,FC EF FM ∴==,12CF EM ∴=,90ECM ∴∠=︒,45FCD M FCE FEC ∴∠=∠=∠=∠=︒,四边形ABCD 是平行四边形,AB CD ∴=,//AD BC ,AF DF =,2AD AB =,DF DC ∴=,DCF DFC ∴∠=∠,12DF AF AD ==,12CD AB AD ==, ∴四边形CDFG 是菱形,//FG CD ∴,DCF CFG ∴∠=∠,FG CE ⊥,EFG CFG ∴∠=∠,EFG DFC ∴∠=∠,故④正确,故答案为:①②③④.17.(2分)(2020秋•宝安区校级月考)如图,以ABC ∆的边AB 、AC 为边往外作正方形ABEF 与正方形ACGD ,连接BD 、CF 、DF ,若2AB =,4AC =,则22BC DF +的值为 40 .【解答】解:如图所示,连接BF ,CD ,四边形ABEF ,四边形ACGD 都是正方形,AB AF ∴=,AC AD =,90BAF CAD ∠=∠=︒,BAD FAC ∴∠=∠,()BAD FAC SAS ∴∆≅∆,ACF ADB ∴∠=∠,又AHC OHD ∠=∠,90CAH DOH ∴∠=∠=︒,CF BD ∴⊥,222BC OB OC ∴=+,222DF OD OF =+,222BF OB OF =+,222DC OD OC =+, 222222BC DF OD OF OB OC ∴+=+++,222222BF DC OD OF OB OC +=+++,即2222BC DF BF DC +=+,又ABF ∆和ACD ∆都是等腰直角三角形,且2AB =,4AC =,2283240BF DC ∴+=+=,2240BC DF ∴+=,故答案为:40.18.(2分)(2020春•武昌区期末)如图,在Rt CDE ∆中,90DCE ∠=︒,分别以CD ,DE 为边在Rt CDE ∆外部作正方形ABCD 和正方形DEFG ,若6ADG S ∆=,6ABCD S =正方形,则DEFG S =正方形 10 .【解答】解:如图所示,过G 作GH AD ⊥,交AD 的延长线于H ,则90H ∠=︒, 又90DCE ∠=︒,H DCE ∴∠=∠,四边形ABCD 和四边形DEFG 是正方形,90ADC CDH EDG ∴∠=∠=∠=︒,DG DE =,GDH EDC ∴∠=∠,()DGH DEC AAS ∴∆≅∆,GH CE ∴=,6ABCD S =正方形,6CD ∴=, 6ADG S ∆=,∴162AD GH ⨯=, 又AD CD =, ∴162CD CE ⨯=,即1662CE ⨯⨯=, 2CE ∴=,Rt CDE ∴∆中,226410DE CD CE =+=+=,210DEFG S DE ∴==正方形,故答案为:10.三.解答题(共10小题,满分64分)19.(4分)(2020•西宁)如图,E 是正方形ABCD 对角线BD 上一点,连接AE ,CE ,并延长CE 交AD 于点F .(1)求证:ABE CBE ∆≅∆;(2)若140AEC ∠=︒,求DFE ∠的度数.【解答】(1)证明:四边形ABCD 是正方形,AB CB ∴=,90ABC ADC ∠=∠=︒,190452ABE CBE ADB ∠=∠=∠=⨯︒=︒, 在ABE ∆和CBE ∆中,()AB CB ABE CBE BE BE ⎧=⎪∠=∠⎨⎪=⎩公共边,()ABE CBE SAS ∴∆≅∆;(2)ABE CBE ∆≅∆,AEB CEB ∴∠=∠,又140AEC ∠=︒,70CEB ∴∠=︒,180DEC CEB ∠+∠=︒,180110DEC CEB ∴∠=︒-∠=︒,DFE ADB DEC ∠+∠=∠,1104565DFE DEC ADB ∴∠=∠-∠=︒-︒=︒.20.(4分)(2020•黄埔区模拟)如图,正方形ABCD ,点E ,F 分别在AD ,CD 上,且DE CF =,AF 与BE 相交于点G .(1)求证:BE AF =;(2)若4AB =,1DE =,求AF 的长.【解答】解:(1)四边形ABCD 是正方形,90BAE ADF ∴∠=∠=︒,AB AD CD ==,DE CF =,AE DF ∴=,在BAE ∆和ADF ∆中,AB AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩,()BAE ADF SAS ∴∆≅∆,BE AF ∴=;(2)解:4AB =,四边形ABCD 是正方形,4AD ∴=,1DE =,3AE ∴=, 2222435BE AB AE ∴=+=+=,BAE ADF ∆≅∆,5BE AF ∴==.21.(5分)(2020春•越秀区校级期中)如图,在正方形ABCD 中,点E 是BC 上的一点,点F 是CD 延长线上的一点,且BE DF =,连结AE 、AF 、EF .求证:ABE ADF ∆≅∆.【解答】证明:四边形ABCD 是正方形,AB AD ∴=,90B ADC ∠=∠=︒,90ADF ∴∠=︒,B ADF ∴∠=∠,在ABE ∆和ADF ∆中,AB AD B ADF BE DF =⎧⎪∠=∠⎨⎪=⎩,()ABE ADF SAS ∴∆≅∆.22.(6分)(2020秋•永年区期中)(1)如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,求证:EF BE FD =+;(2)如图2,四边形ABCD 中,90BAD ∠≠︒,AB AD =,180B D ∠+∠=︒,点E 、F 分别在边BC 、CD 上,则当EAF ∠与BAD ∠满足什么关系时,仍有EF BE FD =+,说明理由.【解答】证明:(1)如图1:把ABE ∆绕点A 逆时针旋转90︒至ADG ∆,则ADG ABE ∆≅∆,AG AE ∴=,DAG BAE ∠=∠,DG BE =,又45EAF ∠=︒,即45DAF BEA EAF ∠+∠=∠=︒, GAF FAE ∴∠=∠,在GAF ∆和EAF ∆中,AG AE GAF FAE AF AF =⎧⎪∠=∠⎨⎪=⎩,()GAF EAF SAS ∴∆≅∆.GF EF ∴=.又DG BE =,GF BE DF ∴=+,BE DF EF ∴+=;(2)当2BAD EAF ∠=∠时,仍有EF BE FD =+, 理由如下:如图2,延长CB 至M ,使BM DF =,连接AM ,180ABC D ∠+∠=︒,180ABC ABM ∠+∠=︒,D ABM ∴∠=∠,在ABM ∆和ADF ∆中,AB AD ABM D BM DF =⎧⎪∠=∠⎨⎪=⎩,()ABM ADF SAS ∴∆≅∆AF AM ∴=,DAF BAM ∠=∠,2BAD EAF ∠=∠,DAF BAE EAF ∴∠+∠=∠,EAB BAM EAM EAF ∴∠+∠=∠=∠,在FAE ∆和MAE ∆中,AE AE FAE MAE AF AM =⎧⎪∠=∠⎨⎪=⎩,()FAE MAE SAS ∴∆≅∆,EF EM BE BM BE DF ∴==+=+,即EF BE DF =+.23.(6分)(2020春•荔湾区期末)如图,矩形ABCD 的对角线交于点O ,点E 是矩形外的一点,其中//AE BD ,//BE AC .求证:四边形AEBO 是菱形.【解答】证明://AE BD ,//BE AC ,∴四边形AEBO 是平行四边形,四边形ABCD 是矩形,AC BD ∴=,OA OB ∴=,∴四边形AEBO 是菱形.24.(7分)(2020秋•舞钢市期末)如图,矩形ABCD 中,EF 垂直平分对角线BD ,垂足为O ,点E 和F 分别在边AD ,BC 上,连接BE ,DF .(1)求证:四边形BFDE 是菱形;(2)若AE OF =,求BDC ∠的度数.【解答】(1)证明:EF 垂直平分对角线BD , 90DOE BOF ∴∠=∠=︒,OB OD =,四边形ABCD 是矩形,//AD BC ∴,DEO BFO ∴∠=∠,在DEO ∆和BFO ∆中,DOE BOF DEO BFO OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DEO BFO AAS ∴∆≅∆,DE BF ∴=, EF 垂直平分对角线BD ,DE BE ∴=,BF DF =,DE BE BF DF ∴===,∴四边形BFDE 是菱形;(2)解:四边形ABCD 是矩形,AB CD ∴=,90A C ∠=∠=︒,90BOF ∠=︒,90A BOF ∴∠=∠=︒,在Rt BAE ∆和Rt BOF ∆中,BE BF AE OF =⎧⎨=⎩, Rt BAE Rt BOF(HL)∴∆≅∆,AB OB ∴=,AB CD =,OB OD =, 12CD BD ∴=, 90C ∠=︒,30CBD ∴∠=︒,18060BDC C CBD ∴∠=︒-∠-∠=︒.25.(6分)(2020秋•松江区期末)如图,已知四边形ABCD 中,90ABC ADC ∠=∠=︒,点E 是AC 中点,点F 是BD 中点.(1)求证:EF BD ⊥;(2)过点D 作DH AC ⊥于H 点,如果BD 平分HDE ∠,求证:BA BC =.【解答】(1)证明:90ABC ADC ∠=∠=︒,点E 是AC 中点, 12DE AC ∴=,12BE AC =, DE BE ∴=,点F 是BD 中点,EF BD ∴⊥;(2)证明:设AC,BD交于点O,⊥,⊥,EF BDDH AC∴∠=∠=︒,DHO EFO90∠=∠,DOH BOE∴∠=∠,HDF OEF=,DE BE∴∠=∠,EDO EBO∠,BD平分HDE∴∠=∠,HDF BDE∴∠=∠,OEF OBE∠+∠=︒,90OEF EOF∴∠+∠=︒,EOF EBO90∴∠=︒,90BEO∴⊥,BE AC∴=.BA BC26.(8分)(2020秋•沈北新区期末)如图,ABC∆中,AC BC⊥于点D,四边形DBCE是平=,CD AB行四边形.求证:四边形ADCE是矩形.【解答】证明:AC BC=,CD AB⊥,=.∴∠=︒,AD BD90ADC在DBCE中,//=,EC BD,EC BD//EC AD ∴,EC AD =.∴四边形ADCE 是平行四边形.又90ADC ∠=︒,∴四边形ADCE 是矩形.27.(9分)(2020秋•金塔县期末)在Rt ABC ∆中,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点,过点A 作//AF BC 交BE 的延长线于点F .(1)求证:AEF DEB ∆≅∆;(2)证明四边形ADCF 是菱形.【解答】证明:(1)//AF BC , AFE DBE ∴∠=∠, E 是AD 的中点,AD 是BC 边上的中线, AE DE ∴=,BD CD =,在AFE ∆和DBE ∆中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆;(2)由(1)知,AFE DBE ∆≅∆,则AF DB =. DB DC =,AF CD ∴=.//AF BC ,∴四边形ADCF 是平行四边形,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点, 12AD DC BC ∴==, ∴四边形ADCF 是菱形.28.(9分)(2019秋•莱西市期末)如图,在ABC ∆中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)试判断四边形ADCF 的形状,并证明;(2)若AB AC ⊥,试判断四边形ADCF 的形状,并证明.【解答】(1)解:四边形CDAF 是平行四边形,理由如下: E 是AD 的中点,AE ED ∴=,//AF BC ,AFE DBE ∴∠=∠,FAE BDE ∠=∠, 在AFE ∆和DBE ∆中,AFE DBE FAE BDE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆,AF BD ∴=, AD 是BC 边中线,CD BD ∴=,AF CD ∴=,∴四边形CDAF 是平行四边形;(2)四边形ADCF 是菱形,AC AB ⊥,AD 是斜边BC 的中线, 12AD BC DC ∴==, 四边形ADCF 是平行四边形,∴平行四边形ADCF 是菱形.。
04平行四边形(基础题)-【人教版期末真题精选】广西2022-2023八年级数学下学期期末复习专练
04平行四边形(基础题) -【人教版期末真题精选】广西2022-2023八年级数学下学期期末复习专练一、单选题1.(2022春·广西贺州·八年级统考期末)不能判定一个四边形是平行四边形的条件是( ).A.两组对边分别平行B.一组对边平行,另一组对边相等C.一组对边平行且相等D.两组对边分别相等2.(2022春·广西桂林·八年级统考期末)下面的性质中,平行四边形不一定具有的是().A.对角互补B.邻角互补C.对角相等D.对边相等. 3.(2022春·广西南宁·八年级统考期末)如图,将□ABCD中,AB=3,BC=4,则□ABCD 的周长( )A.6B.7C.12D.14 4.(2022秋·广西河池·八年级统考期末)如图,四边形ABCD的对角线AC、BD相交于点O,且互相平分,则图中全等三角形的对数是()A.1B.2C.3D.45.(2022春·广西贺州·八年级统考期末)如图在□ABCD中,已知AC=5cm,若△ACD 的周长为16cm,则□ABCD的周长为( )A .22cmB .23cmC .24cmD .25cm6.(2022春·广西河池·八年级统考期末)如图在四边形ABCD 中,E ,F 分别是AB ,CD 的中点,G ,H 分别是对角线BD ,AC 的中点,若5HF =,则EG 的长为( )A .10B .2.5C .5D .3.57.(2022春·广西贺州·八年级统考期末)如图,平行四边形ABCD 的周长为80,BOC V 的周长比AOB V 的周长多20,则BC 长为( )A .15B .20C .25D .30二、填空题8.(2022春·广西贵港·八年级统考期末)在ABC V 中,D 、E 分别为AB 和AC 中点,若6BC =,则DE 的长为___________.9.(2022春·广西桂林·八年级统考期末)点D 、E 、F 分别是ABC V 三边的中点,若DEF V 的周长是16.则ABC V 的周长是______.10.(2022春·广西贺州·八年级统考期末)如图,若ABCD Y 的周长为72cm ,过点D 分别作,AB BC 边上的高,DE DF ,且8cm,10cm DE DF ==,则ABCD Y 的面积为___________.11.(2022春·广西桂林·八年级统考期末)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC BC ,,分别取AC BC ,的中点D ,E ,测得30m DE =,则AB 的长是___________m .12.(2022春·广西贺州·八年级统考期末)如图,点D ,E ,F 分别为ABC V 三边的中点.若ABC V 的周长为10,则DEF V 的周长为______.三、解答题13.(2022春·广西桂林·八年级统考期末)已知四边形,,ABCD CD AC AB AC ⊥⊥,垂足分别为C 、A ,AD BC =.(1)求证:Rt ACD Rt CAB △≌△.(2)求证:四边形ABCD 是平行四边形.14.(2022春·广西崇左·八年级统考期末)已知:如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AE CF =,DF BE =,DF BE ∥.(1)求证:AFD CEB △≌△.(2)求证:四边形ABCD 是平行四边形.15.(2022春·广西河池·八年级统考期末)如图,在四边形ABCD 中,AD BC ∥,AC BD ⊥,垂足为O ,过点D 作BD 的垂线交BC 的延长线于点E .(1)求证:四边形ACED 是平行四边形.(2)若4AC =, 1.5AD =,34BD DE =,求BC 的长.18.(2022·广西百色·九年级统考期末)且BC DE =.(1)求证:ABC FDE △≌△;(2)连接AE ,CF ,求证:四边形参考答案:1.B【分析】根据平行四边形的判定定理,即可求解.【详解】∵①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.∴ A 、D 、C 均符合是平行四边形的条件,B 则不能判定是平行四边形.故选B .2.A【详解】根据平行四边形性质可知:B. C. D 均是平行四边形的性质,只有A 不是.故选A.点睛:本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.3.D【分析】利用平行四边形的性质求解即可【详解】解:∵四边形ABCD 是平行四边形,∴CD =AB =3,AD =BC =4,∴平行四边形ABCD 的周长=3+3+4+4=14,故选:D .【点睛】本题考查了平行四边形的性质,熟知平行四边形的对边相等是解答此题的关键.4.D【分析】根据OA =OC ,OD =OB 推出四边形ABCD 是平行四边形,根据全等三角形的判定定理SAS ,SSS ,推出即可.【详解】解:共4对,△ABD ≌△CDB ,△ACD ≌△CAB ,△AOD ≌△COB ,△AOB ≌△COD ,理由是:∵OA =OC ,OD =OB∴四边形ABCD 是平行四边形∴AB =CD ,AD =BC在△ABD 和△CDB 中AB CD AD BC BD BD =⎧⎪=⎨⎪=⎩,17.证明见解析【分析】先根据平行四边形的性质可得,OA OC ADBC =P ,再根据平行线的性质可得,OAE OCF OEA OFC ∠=∠∠=∠,然后利用AAS 定理证出AOE COF ≅V V ,最后根据全等三角形的性质即可得证.【详解】证明:Q 四边形ABCD 是平行四边形,,OA OC AD BC ∴=P ,,∴∠=∠∠=∠OAE OCF OEA OFC ,在AOE △和COF V 中,OAE OCF OEA OFC OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOE COF AAS ∴≅V V ,OE OF ∴=.【点睛】本题考查了平行四边形的性质、三角形全等的判定与性质、平行线的性质,熟练掌握平行四边形的性质是解题关键.18.(1)见解析(2)见解析【分析】(1)由AD BF =得到AD DB DB BF +=+,即AB FD =,由BC DE ∥得到12∠=∠,即可证明ABC FDE △≌△;(2)连接AE ,CF ,由(1)知ABC FDE △≌△,可得34∠∠=,AC EF =,则AC EF P ,即可证得结论.【详解】(1)证明:如图所示:∵AD BF =,∴AD DB DB BF +=+.∴AB FD =.∵BC DE ∥,∴12∠=∠.在ABC V 和FDE V 中,∵12AB FD BC DE =⎧⎪∠=∠⎨⎪=⎩,∴ABC FDE △≌△()SAS .(2)连接AE ,CF ,由(1)知ABC FDE △≌△,∴34∠∠=,AC EF =.∴AC EF P .∴四边形AEFC 是平行四边形.【点睛】此题考查了全等三角形的判定和性质、平行四边形的判定等知识,证明ABC FDE △≌△是解题的关键.。
2022-2023学年八年级数学人教版下学期平行四边形-试卷
2022-2023学年八年级数学人教版(下) 平行四边形 学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,满分40分)(时间:120分钟 试卷:150分)1. 下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有( )A.1个B.2个C.3个D.4个2. 下列命题错误..的是( ) A.对角线互相垂直平分的四边形是菱形; B.平行四边形的对角线互相平分C.矩形的对角线相等;D.对角线相等的四边形是矩形3. 下列语句正确的是( )A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形4. 有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是菱形;③两条对角线互相垂直的四边形是正方形;④两条对角线相等且互相垂直的四边形是正方形.A.4B.3C.2D.15. 平面图形的密铺是指在一定范围的平面内,这些图形间( )A.没有空隙,可以重叠B.既有空隙,又可重叠C.可有空隙,但无重叠D.既无空隙,也不重叠6. 把两块形状大小完全相同的含有45o 角的三角板的一边拼在一起,则所得到的图形不可能有( )A.正方形B.等边三角形C.等腰直角三角形D.平行四边形(非矩形、菱形、正方形)7. 如图,在△ABC 中,∠ACB=90°,AC=8,AB=10,DE 垂直平分AC 交AB 于点E,则DE 的长为( )A.6B.5C.4D.38. 如图,已知菱形ABCD 的对角线AC,BD 的长分别是6cm,8cm,AE ⊥BC 于点E,则AE 的长是( ) 一 二 三 四 总分得分A.53cmB.25cmC.548cm D.524cm 9. 如图,△ABC 中,AB=4,AC=3,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F,交AB 于G,连接EF,则线段EF 的长为( )A. B.1 C. D.710. 如图所示,四边形OABC 为正方形,边长为6,点A,C 分别在x 轴,y 轴的正半轴上,点D 在OA 上,且D 的坐标为,P 是OB 上的一动点,试求PD+PA 和的最小值是( )A.210B.10C.4D.6二、填空题(本大共8小题,每小题5分,满分40分)11. 正方形的面积为4,则它的边长为 ,一条对角线长为 .12. 在▱ABCD 中,BC =2AB,若E 为BC 的中点,则∠AED =______.13. 如图,在菱形ABCD 中,对角线AC,BD 相交于点O,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是 .(只填一个条件即可)14. 已知平行四边形ABCD 的面积为4,O 为两对角线的交点,则△AOB 的面积是 .15. 菱形的一条对角线长为6cm,面积为6cm 2,则菱形另一条对角线长为_____cm.16. 在菱形ABCD 中,∠A=30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE,则∠EBC 的度数为 .17. 已知:如图,正方形ABCD 中,对角线AC 和BD 相交于点O.E,F 分别是边AD,DC 上的点,若AE=4 cm,CF=3 cm,且OE ⊥OF,则EF 的长为____cm.18. 如图,已知▱OABC 的顶点A.C 分别在直线x=1和x=4上,O 是坐标原点,则对角线OB 长的最小值为 .三、解答题(本大题共6道小题,每小题6-12分)19. (6分)如图,在四边形ABCD 中,AB ∥CD,∠B=∠D,AB=3,BC=6,求四边形ABCD 的周长.20. (6分)矩形的长和宽如图所示,当矩形周长为12时,求a的值.21. (8分)如图,在矩形ABCD中,以点B为圆心、BC长为半径画弧,交AD边于点E,连接BE,过C点作CF⊥BE,垂足为F.猜想线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,并加以证明.结论:BF=______.证明:22. (10分)如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF,CE,求证:AF=CE.23. (12分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相垂直平分.24. (12分)如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.。
小学数学平行四边形题
小学数学平行四边形题数学试卷一、选择题(每题2分,共10分)1. 以下哪个图形是平行四边形?A. 正方形B. 矩形C. 梯形D. 长方形2. 在平行四边形ABCD中,若AB = 6 cm,BC = 4 cm,BD = 8 cm,则AC的长度是多少?A. 2 cmB. 4 cmC. 6 cmD. 8 cm3. 平行四边形的对角线相等吗?A. 相等B. 不相等4. 如果四边形的两组对边分别平行且相等,则它是什么形状?A. 正方形B. 矩形C. 梯形D. 平行四边形5. 平行四边形ABCD中,若AB = 8 cm,BC = 10 cm,那么四边形的周长是多少?A. 16 cmB. 26 cmC. 36 cmD. 46 cm二、填空题(每题2分,共10分)1. 平行四边形的对角线相等,每条对角线长度是________。
2. 平行四边形的邻边相等,每组邻边的长度分别是4 cm和________。
3. 平行四边形ABCD中,若对角线AC的长度是8 cm,对角线BD 的长度是12 cm,那么四边形的周长是________。
4. 平行四边形的周长等于________。
5. 如果四边形的两组对边分别平行且相等,则它是一个________。
三、解答题(每题10分,共30分)1. 一块矩形草坪的长为12米,宽为8米。
现在要在草坪四周铺设一圈平行四边形形状的石板,每块石板的边长为1米。
问需要多少块石板?2. 平行四边形ABCD中,边长AB = 5 cm,高AH = 3 cm。
求平行四边形的面积。
3. 平行四边形ABCD中,长度为6 cm的对角线AC和长度为8 cm 的对角线BD相交于点O。
求点O到AB的距离。
总分:50分注意事项:1. 请将答案写在答题纸上。
2. 解答题请写出详细的解题过程。
3. 所有题目都要求解答正确才能得分,解答错误不得分。
4. 时间为60分钟,加油哦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形新数学试卷一、选择题(共32小题;共160分)1. 下列性质中,平行四边形不一定具备的是 A. 邻角互补B. 对角互补C. 对边相等D. 对角线互相平分2. 在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是 A. 1:2:3:4B. 1:2:2:1C. 1:2:1:2D. 1:1:2:23. 平行四边形的一边等于14 cm,它的对角线可能的取值是 A. 8 cm和16 cmB. 10 cm和16 cmC. 12 cm和16 cmD. 20 cm和22 cm4. 如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB的长为 A. 20B. 15C. 10D. 55. 如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,平行四边形ABCD的周长为40.则平行四边形ABCD的面积为 A. 24B. 36C. 40D. 486. 如图,平行四边形ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为 A. 8.3B. 9.6C. 12.6D. 13.67. 如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为 A. 3B. 6C. 12D. 248. 如图,在平行四边形ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于 A. 2B. 3C. 4D. 69. 如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为 A. 8B. 10C. 12D. 1410. 如图所示,线段a,b,c的端点分别在直线l1,l2上,则下列说法中正确的是A. 若l1∥l2,则a=bB. 若l1∥l2,则a=cC. 若a∥b,则a=bD. 若l1∥l2,且a∥b,则a=b11. 将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有 A. 1种B. 2种C. 4种D. 无数种12. 如图,M是平行四边形ABCD的边AD上任意一点,若△CMB的面积为S,△CDM的面积为S1,△ABM的面积为S2,则下列有关S,S1,S2的大小关系的叙述中正确的是 A. S>S1+S2B. S=S1+S2C. S<S1+S2D. S与S1+S2的大小关系无法确定13. 四边形中,有两条边相等,另两边也相等,则这个四边形 A. 一定是平行四边形B. 一定不是平行四边形C. 可以是平行四边形,也可以不是平行四边形D. 上述答案都不对14. 具有下列条件的四边形中,不一定是平行四边形的是 A. 两组对边分别平行B. 对角线互相平分C. 一组对边平行且相等D. 一组对边平行,另一组对边相等15. 在四边形ABCD中,AC交BD于点O,且AB∥CD,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“AO=OC”,那么四边形ABCD一定是平行四边形.④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是 A. ①②B. ①③④C. ②③D. ②③④16. 四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有 A. 6种 B. 5种C. 4种D. 3种17. 不能判定四边形ABCD为平行四边形的条件是 A. AB∥CD,AD=BCB. AB∥CD,∠A=∠CC. AD∥BC,AD=BCD. ∠A=∠C,∠B=∠D18. 下列条件能判定四边形ABCD是平行四边形的是 A. ∠A=∠B,∠C=∠DB. AB=AD,BC=CDC. AB∥CD,AD=BCD. AB=CD,AD=BC19. 如图,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形,则应增加的条件是 A. AB=CDB. ∠BAD=∠DCBC. AC=BDD. ∠ABC+∠BAD=180∘20. 在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD是平行四边形,给出以下4种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是 A. ①②B. ①③④C. ②③D. ②③④21. 在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有 A. 6种B. 5种C. 4种D. 3种22. 如图,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;⑤∠A=∠B这五个条件中任选两个,能使四边形ABCD为平行四边形的选法有 A. 3种B. 4种C. 5种D. 6种23. 如图,在平行四边形ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE;⑥AF=CE这些结论中正确的个数是 A. 3B. 4C. 5D. 624. 如图,平行四边形纸片ABCD的面积为120,AD=20,AB=18.沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD,CB重合)形成图形戊,如图所示,则图形戊的两对角线长度和为 A. 24B. 25C. 26D. 2925. 如图,一个四边形花坛ABCD被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有 A. S1=S4B. S1+S4=S2+S3C. S1S4=S2S3D. 都不对26. 如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90∘,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为 A. 6B. 12C. 20D. 2427. 国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是 A. 红花,绿花种植面积一定相等B. 紫花,橙花种植面积一定相等C. 红花,蓝花种植面积一定相等D. 蓝花,黄花种植面积一定相等28. 如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位长度/秒的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位长度/秒的速度沿BA→AD向终点D运动.在运动期间,当四边形PQBC为平行四边形时,运动时间为 A. 3 sB. 4 sC. 5 sD. 6 s29. A,B,C是平面内不在同一条直线上的三点,D是平面内任意一点,若A,B,C,D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有 A. 1个B. 2个C. 3个D. 4个30. 将两个边长分别为2,3,4的全等三角形拼成四边形,可以拼得不同形状的平行四边形的个数是 A. 1个B. 2个C. 3个D. 6个31. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为 A. 4S1B. 4S2C. 4S2+S3D. 3S1+4S332. 如图,将平行四边形ABCD折叠,使顶点D落在AB边上的点E处,折痕为AF,下列说法中不正确的是 A. EF∥BCB. EF=AEC. BE=CFD. AF=BC33. 如图,在平行四边形ABCD中,AE平分∠BAD交边BC于点E,若AD=8,EC=2,则平行四边形ABCD的周长为.34. 在平行四边形ABCD中,AB:BC=1:2,周长为18 cm,则AB=cm,AD=cm.,则BC=.35. 如果四边形ABCD是平行四边形,且AB=6,AB的长是平行四边形周长的31636. 平行四边形ABCD的两条对角线相交于点O,已知AB=8 cm,BC=6 cm,△AOB的周长是18 cm,那么△AOD的周长是.37. 平行四边形ABCD的周长为20 cm,对角线AC,BD相交于点O,若△BOC的周长比△AOB的周长多2 cm,则CD=cm.38. 如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是.39. 已知,如图,直线l1∥l2,平行四边形ABCD的面积为8,点E是直线l1上任意一点,连接BE,CE,则△EBC的面积是.40. 如图,在平行四边形ABCD中,点E为AB边上一点,将△AED沿直线DE翻折,点A落在点P处,且DP⊥BC,则∠EDP=∘.41. 四边形的四边长依次为a,b,c,d,且满足a2+b2+c2+d2=2ac+bd,则此四边形一定是.42. 在平行四边形ABCD中,P为对角线BD上任意一点,连接PA,PC,得到△PAB,△PBC,△PCD,△PDA,设它们的面积分别是S1,S2,S3,S4,给出如下结论:①S1=S2②S1+S2=S3③S1+S3=S2+S4④S1⋅S3= S2⋅S4其中正确结论的序号是.(在横线上填上你认为所有正确答案的序号)43. 如图,平行四边形ABCD中,点E,F分别在AD,AB上,依次连接EB,EC,FC,FD,图中阴影部分的面积分别为S1,S2,S3,S4,已知S1=2,S2=12,S3=3,则S4的值是.44. 如图,在平行四边形ABCO中,点C在x轴上,点A的坐标为2,2,平行四边形ABCO的面积为8,则点B的坐标为.45. 如图,在周长为32的平行四边形ABCD中,AC,BD交于点O,OE⊥BD交AD于点E,则△ABE的周长为.46. 如图,在平行四边形ABCD中,点E在BC边上,且AE⊥BC于点E,ED平分∠CDA,若BE:EC=1:2,则∠BCD的度数为.47. 用平行四边形纸条沿对边AB,CD的中点E,F所在的直线折成V字形图案,已知图中∠1=68∘,∠2的度数为.48. 如图,在平行四边形ABCD中,AB=3,BC=5,以点B为圆心,以任意长为半径作弧,分别交BA、BC于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延点P、Q,再分别以P、Q为圆心,以大于12长交AD于点E,则DE的长为.49. 如图,在平行四边形ABCD中,AB=2,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.50. 在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.51. 如图,在Rt△ABC中,∠B=90∘,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是 .52. 平行四边形的周长为18 cm,两邻边之差为1 cm,求它的各边长.53. 如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45∘,且AE+AF=22,求平行四边形ABCD的周长.54. 如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,若∠A=55∘,求∠EDF的度数.55. 如图,在平行四边形ABCD中,∠BCD的平分线CE交边AD于点E,∠ABC的平分线BG交CE于点F,交AD于G.求证:AE=DG.56. 如图,在平行四边形ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.57. 如图,延长平行四边形ABCD的边AD到点F,使DF=DC,延长CB到点E,使BE=BA,分别连接AE,CF.求证:AE=CF.58. 如图,在平行四边形ABCD中,E,F分别为AD,BC上的点,且BF=DE,连接AF,CE,BE,DF,AF与BE相交于M点,DF与CE相交于N点.求证:四边FMEN为平行四边形.59. 如图所示,平行四边形ABCD的对角线AC,BD相交于点O,E,F是直线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.60. 如图,在平行四边形ABCD中,AE⊥ED,CF⊥BF,垂足分别为E,F,H,G分别是AB,CD的中点,GH交AC于点O.求证:GH与EF互相平分.61. 如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连接CF.求证:四边形ADCF是平行四边形.62. 如图,在平行四边形ABCD中,E为AD中点,CE,BA的延长线交于点F.(1)求证:AB=AF;(2)若BC=2AB,∠FBC=70∘,求∠EBC的度数.63. 如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判AF与CE是否相等,并说明理由.64. 在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F在AC上且AE=CF,证明:DE=BF.65. 如图1,已知DE⊥AC,BF⊥AC,垂足分别是E,F,AE=CF,DC∥AB.(1)证明:DE=BF;(2)连接DF,BE,如图2,猜想DF与BE的关系?并证明你的猜想的正确性.66. 如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=110∘,求∠ABE的度数.67. 如图,在平行四边形ABCD中,过其对角线的交点O引一直线交BC于点E,交AD于点F,若AB=3 cm,BC=4 cm,OE=1 cm,试求四边形CDFE的周长.68. 如图,平行四边形ABCD的对角线AC,BD交于点O,点E,F在AC上,点G,H在BD上,AF=CE,BH=DG.求证:GF∥HE.69. 如图,平行四边形ABCD的周长是103+62,BC=53,AE⊥BC于点E,AF⊥CD交DC的延长线于点F,AE=3,求∠D的度数.70. 如图,在平行四边形ABCD中,点E,F分别为AB,CD的中点,AF与DE相交于点G,BF与CE相交于点H,连接EF,GH.试问:EF与GH是否互相平分?为什么?71. 如图,在四边形ABCD中,OE=OF,OA=OC,且AB=DC.试问:AD与BC有怎样的关系?为什么?72. 如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH,求证:四边形EFGH是平行四边形.73. 如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30∘,MN=1,求四边形ADCN的面积.74. 如图,在平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说明.75. 如图,在平行四边形ABCD中,∠DAB=60∘,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60∘”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.76. 如图,四边形ABCD是平行四边形,E,F是对角线AC上的两点,连接BE,ED,DF,FB,若∠ADF=∠CBE=90∘.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=30∘,∠BEC=45∘,请判断AB与CE有什么数量关系,并说明理由.77. 如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.78. 如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)如果∠A=60∘,AB=2AD=4,求BD的长.答案第一部分1. B2. C3. D4. D5. D6. B7. C8. C 【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2,∴AE+AF=4.9. B10. D11. D【解析】因为平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分平行四边形的面积,则这样的折纸方法共有无数种.12. B13. C14. D15. C【解析】②能通过平行线的性质和判定证明AD∥BC;③能通过两个三角形全等证明AB=CD,从而证明四边形ABCD是平行四边形;而①和④不能.16. C17. A18. D19. B20. C21. C22. D 【解析】五个条件共有10种组合,逐一判定即可.当然,也可以分别由边的关系来判别有4种,即①②、①③、②④、③④;由边、角关系判别有2种,即①⑤、③⑤;其他组合还有4种,分为两类:一类是①④、②③,这类四边形的一组对边平行,另一组对边相等,有可能是等腰梯形;另一类是②⑤、④⑤,这类四边形的一组对角相等,一组对边相等,不一定能组成平行四边形.23. C 【解析】因为四边形ABCD是平行四边形,所以∠BAE=∠DCF,AB=CD(故③不正确),因为AE=CF,所以△ABE≌△CDF,所以BE=DF(故①正确),同理:DE=BF,所以四边形EBFD为平行四边形(故④正确),所以BE∥DF(故②正确),因为AB=CD,AD=BC,AC=AC,所以△ABC≌△CDA,所以两三角形AC边上的高的相等,因为△ABE,△ADE分别是△ABC与△CDA中的小三角形,且AE=AE,所以S△ADE=S△ABE(故⑤正确),因为AE=CF,所以AF=CE(故⑥正确),所以正确的有:①②④⑤⑥共5个.24. C25. C【解析】为了寻找这四个平行四边形面积之间的关系,我们可以分别设DE=a,EC=b,平行四边形CDMN中MN 边上的高为m,平行四边形ABNM中AB边上的高为n,则S1=am,S2=an,S3=bm,S4=bn,从而发现S1S4=S2S3.26. D 【解析】因为∠CBD=90∘,所以△BEC是直角三角形;即CE= BC2+BE2=5.因为AC=10,所以E为AC的中点.因为BE=ED=3,所以四边形ABCD是平行四边形,且△DBC是直角三角形.所以S△DBC=12⋅DB⋅BC=12×6×4=12.又S△DBC=S△ABD=12,所以S四边形ABCD=S△DBC+S△ABD=12+12=24.27. C28. A29. C 【解析】如图,在一个平面内,不在同一条直线上的三点与D点恰能构成一个平行四边形,符合这样条件的点D有3个.30. C31. A 【解析】设等腰直角三角形的直角边为a,正方形边长为c .则S2=12a+c a−c=12a2−12c2 .∴S2=S1−1S3 .2∴S3=2S1−2S2 .∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1−2S2=4S1.32. D第二部分33. 2834. 3,635. 1036. 16 cm37. 438. 平行四边形39. 440. 4541. 平行四边形【解析】∵a2+b2+c2+d2=2ac+bd可转化为a−c2+b−d2=0.∴a=c且b=d.∴此四边形为平行四边形.42. ①③④43. 744. 6,245. 1646. 120∘47. 44∘48. 249. 450. 2【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC−BE=5−3=2.51. 4第三部分52. 根据题意,设两邻边长分别为x cm和x+1cm,则有2x+2x+1=18.解方程得x=4,x+1=5,故平行四边形的各边长分别为4 cm,5 cm,4 cm和5 cm.53. ∵∠EAF=45∘,∴∠C=360∘−∠AEC−∠AFC−∠EAF=135∘,∴∠B=∠D=180∘−∠C=45∘,则AE=BE,AF=DF.设AE=x,则AF=22−x,在Rt△ABE中根据勾股定理,得AB=2x,同理可得AD=2−x .则平行四边形ABCD的周长为2AB+AD=22x+222−x =8.54. 在平行四边形ABCD中,AD∥BC,又因为DF⊥BC,所以∠ADF=∠DFC=90∘,因为DE⊥AB,所以∠AED=90∘,所以∠ADE+∠A=90∘,而∠ADE+∠EDF=90∘,所以∠EDF=∠A=55∘.55. 在平行四边形ABCD中,AB=CD,AD∥BC,∴∠CBG=∠AGB,∠CED=∠BCE.又∵CE,BG分别是∠BCD和∠ABC的角平分线.∴∠ABG=∠CBG=∠AGB,∠CED=∠BCE=∠DCE.∴AG=AB=CD=DE.∴AG−EG=DE−EG.∴AE=DG.56. ∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.又∵AE∥CF,∴四边形AECF是平行四边形.∴AF=CE.57. 因为四边形ABCD是平行四边形,所以AD∥BC,AD=BC,AB=DC.所以AF∥EC.又因为DF=DC,BE=BA,所以DF=BE.所以AD+DF=BC+BE,即AF=EC.因为AF∥EC,AF=EC,所以四边形AECF是平行四边形.58. ∵四边形ABCD是平行四边形,∴AD∥BC.又∵DE=BF,∴四边形BFDE为平行四边形.∴BE∥DF.同理可证AF∥CE.∴四边形FMEN为平行四边形.59. 在平行四边形ABCD中,BO=DO,AO=CO.∵AE=CF,∴EO=FO.∴四边形BFDE是平行四边形.60. 连接EH,HF,FG,GE,在平行四边形ABCD中,∵AB∥CD且AB=CD,∴∠ACD=∠BAC,又∵G,H分别是AD,BC的中点,AE⊥ED,CF⊥BF,∴EG=12DC=12AB=HF,∠GEC=∠ACD=∠BAC=∠AFH,∴EG∥FH,∴四边形EHFG是平行四边形,故GH与EF互相平分.61. ∵AF∥BC,∴∠AFE=∠EBD.在△AEF和△DEB中,∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,∴△AEF≌△DEB AAS.∴AF=BD.∴AF=DC.又∵AF∥BC,∴四边形ADCF为平行四边形.62. (1)因为四边形ABCD是平行四边形,所以AB=CD,DC∥AB.所以∠ECD=∠EFA.因为DE=AE,∠DEC=∠AEF,所以△DEC≌△AEF.所以DC=AF.(2)因为BC=2AB,AB=AF,所以BC=BF.所以△FBC为等腰三角形.再由△DEC≌△AEF,得EC=EF.所以∠EBC=∠EBF=12∠CBF=12×70∘=35∘.63. AF=CE.理由如下:方法一:∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,∠ADC=∠ABC.又∵∠ADF=12∠ADC,∠CBE=12∠ABC,∴∠ADF=∠CBE.∴△ADF≌△CBE.∴AF=CE.【解析】方法二:∵BE平分∠ABC,∴∠ABE=∠CBE.∵AB∥CD,∴∠CEB=∠ABE.∴∠CEB=∠CBE.∴CE=CB.同理,AD=AF.∵AD=BC,∴AF=CE.64. 如图,连接BE,DF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA−AE=OC−CF,∴OE=OF,∴四边形BEDF是平行四边形,∴DE=BF.65. (1)∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠DEC=90∘,∵DC∥AB,∴∠DCE=∠BAF,在△AFB和△CED中,∠BAF=∠DCE,AF=CE,∠AFB=∠DEC,∴△AFB≌△CED,∴DE=BF.(2)DF=BE,DF∥BE,证明如下:∵DE⊥AC,BF⊥AC,∴DE∥BF,∵DE=BF,∴四边形DEBF是平行四边形,∴DF=BE,DF∥BE.66. (1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180∘,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,∠DCE=∠F,∠DEC=∠AEF,DE=AE,∴△DEC≌△AEF AAS.∴DC=AF.∴AB=AF.(2)由(1)可知BF=2AB,EF=EC,∵∠BCD=110∘,∴∠FBC=180∘−110∘=70∘,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=12∠FBC=12×70∘=35∘.67. 在平行四边形ABCD中,CD=AB=3 cm,AO=CO,AD∥BC,AD=BC,∴∠DAC=∠ACB,在△AOF和△COE中,∠DAC=∠ACB,AO=CO,∠AOF=∠COE,∴△AOF≌△COE,∴AF=EC,OF=OE,∴EC+FD=AF+FD=AD=BC=4 cm,=EC+FD+CD+EF∴C四边形CDFE=4+3+2=9cm.68. ∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AF=CE,∴AE=CF,∴OE=OF.同理OG=OH.∴四边形EGFH是平行四边形.∴GF∥HE.69. ∵四边形ABCD是平行四边形,∴AB=CD,BC=AD.∵BC=53,平行四边形ABCD的周长是103+62,103+62−53−53=32.∴AB=CD=12又∵AE⊥BC于点E,AE=3,∴BE2=AB2−AE2=32.即BE=3,∴AE=BE.∴△ABE是等腰直角三角形.∴∠D=∠B=45∘.70. EF与GH互相平分.证明如下在平行四边形ABCD中,AB∥CD,AB=CD,∵点E,F分别为AB,CD的中点,∴AE∥FC,AE=FC,∴四边形AECF是平行四边形,∴AF∥EC,即GF∥EH,同理可证GE∥FH,∴四边形EHFG是平行四边形,∴EF与GH互相平分.71. AD平行且等于BC.如图,连接AE,CF.因为OE=OF,OA=OC,所以四边形AFCE是平行四边形,所以EC∥AF,即DC∥AB.又因为AB=DC,所以四边形ABCD是平行四边形,所以AD∥BC且AD=BC.72. 在平行四边形ABCD中,∠A=∠C,AD=BC.∵BF=DH,∴AH=CF.又∵AE=CG,∴△AEH≌△CGF SAS,∴EH=GF.同理得GH=EF,∴四边形EFGH是平行四边形.73. (1)∵CN∥AB,∴∠1=∠2.在△AMD和△CMN中,∠1=∠2,MA=MC,∠AMD=∠CMN 对顶角相等,∴△AMD≌△CMN(ASA),∴AD=CN.又AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN.(2)∵AC⊥DN,∠CAN=30∘,MN=1,∴AN=2MN=2,∴AM= AN2−MN2=3,∴S△AMN=12AM⋅MN=12×3×1=32.∵四边形ADCN是平行四边形,∴S四边形ADCN=4S△AMN=23.74. (1)∵在平行四边形ABCD中,AD∥BC,∴∠DAB+∠ABC=180∘.∵AE、BF分别平分∠DAB和∠ABC,∴∠DAB=2∠BAE,∠ABC=2∠ABF.∴2∠BAE+2∠ABF=180∘.即∠BAE+∠ABF=90∘.∴∠AMB=90∘.∴AE⊥BF.(2)DF=CE,∵在平行四边形ABCD中,CD∥AB,∴∠DEA=∠EAB.又AE平分∠DAB,∴∠DAE=∠EAB,∴∠DEA=∠DAE.∴DE=AD.同理可得,CF=BC.又∵AD=BC,∴DE=CF,∴DE−EF=CF−EF.即DF=CE.75. (1)在平行四边形ABCD中,AB=CD,AD=BC且AB∥CD,AD∥BC,∴∠ADE=∠DAB=∠CBF=60∘.∵AE=AD,CF=CB,∴△ADE,△BCF都是等边三角形.∴DE=AE=AD=BC=CF=BF.∵点E,F分别在CD,AB的延长线上,∴CD+DE=AB+BF,即CE=AF.又AE=CF,∴四边形AFCE是平行四边形.(2)若去掉已知条件的“∠DAB=60∘”,上述的结论仍然成立.证明如下:在平行四边形ABCD中,AB=CD,AD=BC且AB∥CD,AD∥BC.∵AE=AD,CF=CB,∴AE=CF,且∠ADE=∠AED,∠CBF=∠CFB.∵AB∥CD,AD∥BC,∴∠AED=∠ADE=∠DAB=∠CBF=∠CFB.∴△ADE≌△CBF.∴DE=BF.∵点E,F分别在CD,AB的延长线上,∴CD+DE=AB+BF,即CE=AF.又AE=CF,∴四边形AFCE是平行四边形.76. (1)略.(2)略.77. ∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,AD=BC,∠ADE=∠CBF,BF=DE,∴△AED≌△CFB SAS,∴AE=CF.78. (1)∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD.∵点E,F分别是AB,CD的中点,∴AE=12AB,DF=12CD,∴AE=DF,∴四边形AEFD是平行四边形.(2)过点D作DH⊥AB于点H.∵AB=2AD=4,∴AD=2.在Rt△AHD中,∵∠AHD=90∘,∠A=60∘,AD=2,∴AH=AD⋅cos60∘=1,DH=AD⋅sin60∘=3.∴BH=AB−AH=3.在Rt△DHB中,∵∠DHB=90∘,DH=3,BH=3,∴DB= DH2+BH2=3+9=23.。