构件通用截面的几何与力学特性弯矩剪力公式定理
钢结构计算公式
钢结构计算公式在建筑和工程领域,钢结构因其高强度、轻质、施工便捷等优点而被广泛应用。
要设计和建造安全可靠的钢结构,准确的计算公式是至关重要的。
接下来,让我们一起深入了解一些常见的钢结构计算公式。
首先,我们来谈谈钢结构的受力分析。
在钢结构中,最常见的受力形式包括拉力、压力、剪力和弯矩。
对于承受拉力或压力的构件,其强度计算公式为:σ = N / A ,其中σ表示应力,N 表示拉力或压力,A 表示构件的横截面积。
这个公式可以帮助我们判断构件在受力时是否会发生破坏。
当钢结构构件受到剪力时,我们需要用到剪力计算公式:τ = V /A ,其中τ表示剪应力,V 表示剪力,A 表示受剪面积。
通过这个公式,可以评估构件在剪力作用下的安全性。
弯矩是钢结构中另一个重要的受力形式。
对于受弯构件,我们通常使用抗弯强度计算公式:σ = M / W ,其中 M 表示弯矩,W 表示截面抵抗矩。
这个公式可以帮助我们确定构件在弯曲时的承载能力。
接下来,让我们看看钢结构的稳定性计算。
钢结构的稳定性对于结构的安全至关重要。
对于受压构件,我们需要考虑其稳定性,常用的欧拉公式为:Pcr =π²E I /(μL)² ,其中 Pcr 表示临界压力,E 表示弹性模量,I 表示截面惯性矩,μ表示长度系数,L 表示构件的计算长度。
在钢结构的连接设计中,也有一系列的计算公式。
例如,对于螺栓连接,我们需要计算螺栓所承受的剪力和拉力,以确定所需螺栓的数量和规格。
螺栓的抗剪承载力计算公式为:Nv =nvπd²fvb / 4 ,其中nv 表示受剪面数量,d 表示螺栓直径,fvb 表示螺栓的抗剪强度。
对于焊接连接,焊缝的强度计算也是必不可少的。
例如,对接焊缝的抗拉强度计算公式为:σ = N /lwδ ,其中 lw 表示焊缝长度,δ 表示焊缝厚度。
钢结构的变形计算也是设计中需要考虑的重要因素。
例如,梁的挠度计算公式为:f = 5ql⁴/(384EI) ,其中 q 表示均布荷载,l 表示梁的跨度。
各种梁的弯矩计算公式
各种梁的弯矩计算公式在工程力学中,梁是一种常见的结构元件,其主要承受弯曲力。
根据梁的材料和截面形状的不同,可以使用不同的弯矩计算公式。
下面将介绍几种常见梁的弯矩计算公式。
1.矩形截面梁的弯矩计算公式:对于矩形截面梁,弯矩的计算公式如下:M=((b*h^2)/6)*y其中,M为弯矩,b为截面宽度,h为截面高度,y为截面高度的一半。
2.圆形截面梁的弯矩计算公式:对于圆形截面梁,弯矩的计算公式如下:M=(π*d^3)/32其中,M为弯矩,π为圆周率,d为截面直径。
3.I形截面梁的弯矩计算公式:对于I形截面梁,弯矩的计算公式如下:M=(σ*S)其中,M为弯矩,σ为截面上的应力,S为截面形心到应力轴距离,也称为截面模数。
4.T形截面梁的弯矩计算公式:对于T形截面梁,弯矩的计算公式如下:M=(σ*S1)±(τ*S2)其中,M为弯矩,σ为法向应力,S1为截面形心到应力轴距离,τ为剪应力,S2为剪应力的杆件。
±代表正负号根据不同情况变化。
5.等腰梯形截面梁的弯矩计算公式:对于等腰梯形截面梁,弯矩的计算公式如下:M=(σ*S1)-(τ*S2)其中,M为弯矩,σ为法向应力,S1为截面形心到应力轴距离,τ为剪应力,S2为剪应力的杆件。
6.等边三角形截面梁的弯矩计算公式:对于等边三角形截面梁,弯矩的计算公式如下:M=(σ*S1)-(τ*S2)其中,M为弯矩,σ为法向应力,S1为截面形心到应力轴距离,τ为剪应力,S2为剪应力的杆件。
这些是几种常见梁的弯矩计算公式,其中矩形截面、圆形截面、I形截面、T形截面、等腰梯形截面和等边三角形截面的弯矩计算公式广泛应用于工程设计和结构分析中。
对于其他截面形状的梁,也可以根据具体情况进行弯矩的计算和分析。
截面几何性质(材料力学)
§-4 惯性矩和惯性积的转轴公式 截面的主惯性轴和主惯性矩
1.惯性矩和惯性积的转轴公式
y
bh3 Iz 12
C z
bh3 Iz' 12
h
b
y
注意: 1. 两个座标系的原点 必须重合; 2. 两轴惯性矩之和为常量
z
O
I y1 I
z1
I y I I p z
I z1 I y1
4)解法四 y1 I z I z1
I z0 I z0 1 I z0 2 I z0 3 I z0 4
A3 y
d 4
64
2 I y 2 I z0 3 I z0 3
d4
64 Iy
2
A2 z0
d
4
128
I z I z1 I z0 3 OC
d
2
d4 Iy 128 18
1) 极惯性矩、惯性矩和惯性积均与所取的坐标系有关, 2) 惯性积可正可负 3) 单位m4 或 mm4
y dA
4. 惯性半径
Iy iy A
Iz iz A
y
(单位m 或 mm)
O
z z
例
试计算图示矩形截面对于其对称轴x和y的惯性矩。
y dy
解: 取平行于x轴的狭长条, 则 dA=b dy
h
1 2
I zc I yc
2
4 I 2c zc 321104 mm4 y
I yc 0 I min
I zc I yc 2
1 2
I zc I yc
2
4 I 2c zc 57.4 104 mm 4 y
弯矩剪力计算公式
1表1 简单载荷下基本梁的剪力图与弯矩图梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lq asF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征某一段梁上的外力情况 剪力图的特征弯矩图的特征无载荷水平直线斜直线或集中力 F突变 F 转折或或集中力偶eM 无变化 突变e M均布载荷q斜直线抛物线 或零点极值表3 各种约束类型对应的边界条件约束类型 位移边界条件力边界条件(约束端无集中载荷)固定端0=w ,0=θ —简支端0=w0=M 自由端—0=M ,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰∙=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
常用截面几何性质计算公式JX
常用截面几何性质计算公式JX1.矩形截面:矩形截面是一种常见的结构截面形式。
假设矩形截面宽度为b,高度为h,则其面积可以通过以下公式计算:A=b*h质心位置可以通过以下公式计算:x=b/2y=h/2惯性矩可以通过以下公式计算:Ix=(b*h^3)/12Iy=(h*b^3)/12截面模数可以通过以下公式计算:Wx=(b*h^2)/6Wy=(h*b^2)/62.圆形截面:圆形截面是另一种常见的结构截面形式。
假设圆形截面的半径为r,则其面积可以通过以下公式计算:A=π*r^2质心位置在圆心上,即x=0,y=0。
惯性矩可以通过以下公式计算:Ix=(π*r^4)/4Iy=(π*r^4)/4截面模数可以通过以下公式计算:Wx=(π*r^3)/4Wy=(π*r^3)/43.等边三角形截面:等边三角形截面是一个等边三角形形状的结构截面。
假设等边三角形截面的边长为a,则其面积可以通过以下公式计算:A = (sqrt(3) * a^2) / 4质心位置可以通过以下公式计算:x=a/2y = (sqrt(3) * a) / 6惯性矩可以通过以下公式计算:Ix = (a^4 * sqrt(3)) / 48Iy=(a^4)/48截面模数可以通过以下公式计算:Wx = (a^3 * sqrt(3)) / 12Wy=(a^3)/12以上是常见的几种截面几何性质的计算公式,通过这些公式可以方便地计算结构截面的重要性质,为结构设计和分析提供参考。
在实际应用中,还需要根据具体的截面形状和尺寸选择相应的公式进行计算。
材料力学公式大全
材料力学公式大全一、轴向拉伸与压缩。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。
3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。
4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。
1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。
- τ = Gγ,其中G为材料的切变模量,γ为切应变。
三、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。
3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。
- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。
- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。
- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。
五、弯曲应力。
1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。
材料力学公式汇总
材料力学公式汇总一、轴向拉压。
1. 轴力计算。
- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。
- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。
- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。
- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。
1. 扭矩计算。
- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。
1. 剪力和弯矩计算。
- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。
- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。
1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。
剪力方程和弯矩方程
剪力方程和弯矩方程
剪力方程和弯矩方程是结构工程中用于描述杆件(梁或桁架等)内部受力分布的重要方程。
这些方程通常用于分析和设计结构,以确保其在承受外部荷载时的稳定性和安全性。
剪力方程(Shear Force Equation):
剪力是指垂直于杆件轴线的内力,它的方向可能是沿着杆件的纵轴。
剪力方程描述了沿杆件长度的剪力分布。
在梁的自由体图上,剪力方程可以表示为:
[ V(x) = -\frac{dM(x)}{dx} + C_1 ]
其中:
* ( V(x) ) 是距离( x ) 处的剪力;
* ( M(x) ) 是距离( x ) 处的弯矩;
* ( C_1 ) 是积分常数,代表剪力图的初值。
弯矩方程(Bending Moment Equation):
弯矩是指垂直于杆件轴线的内力,使得结构产生弯曲形状。
弯矩方程描述了沿杆件长度的弯矩分布。
在梁的自由体图上,弯矩方程可以表示为:
[ M(x) = -\int V(x) ,dx + C_2 ]
其中:
* ( M(x) ) 是距离( x ) 处的弯矩;
* ( V(x) ) 是距离( x ) 处的剪力;
* ( C_2 ) 是积分常数,代表弯矩图的初值。
这两个方程通常结合着使用,通过它们可以分析梁在不同位置的受力情况。
在设计和分析中,工程师通常会应用这些方程,考虑梁的几何形状、材料特性和外部荷载,以确定梁在不同截面的受力状态。
剪力等于截面一侧的代数和
剪力等于截面一侧的代数和
在结构工程中,剪力是指物体受到的沿截面平面方向的内部力。
它是切割物体时所需的力,可以用来衡量物体材料的抗剪能力。
剪力的大小可以通过计算截面一侧的代数和来确定。
剪力的计算方法是将截面平面划分为无限小的小面积,然后计算每个小面积的剪力大小,并将其代数和求和。
这样可以得到整个截面的剪力大小。
举个例子来说明。
假设我们有一个矩形的截面,宽度为w,高度为h。
我们将截面平面划分为无限多个宽度为Δx的小面积。
每个小面积的剪力大小可以表示为τ = F/A,其中F是小面积上的剪力,A是小面积的面积。
为了计算整个截面的剪力大小,我们需要计算所有小面积的剪力大小并求和。
根据剪力的定义,可以得到截面的剪力大小为V = ∫τ dA,其中τ是小面积上的剪力大小,dA是小面积的面积元素。
具体计算方法可以根据截面的形状和剪力分布的特点来确定。
对于简单的截面形状,可以使用几何关系和静力平衡方程来计算剪力大小。
对于复杂的截面形状,可能需要使用数值计算或有限元分析等方法来求解。
剪力等于截面一侧的代数和是计算剪力大小的重要方法。
通过将截
面平面划分为无限小的小面积,并计算每个小面积的剪力大小,可以得到整个截面的剪力大小。
这种方法广泛应用于结构工程中,可用于评估结构的抗剪能力,并指导设计和分析工作。
截面图形的几何性质-材料力学
yC
Sz A
558000 9000
62
Sz Sz1 Sz2 120 40 20 140 30110 558000
A A1 A2 120 40 140 30 9000
120
I
CI
C
CII
II
y 30
参考轴
z 40
yC
zC 140
注意
① 由两块组成组合图形,其复合图形形心一定位于两个子图的形心连线上。 ② 组合图形形心计算公式也适用于负面积情况, 但要记住面积为负号。
z
I
C1 C
s
C2
II
b
y1 h
y
y2
t
典型例题
例3 已知组合截面尺寸t=20mm,h=140mm,b=100mm。试求截面图
形对形心轴 y 的惯性矩。
t
解: 由平行移轴定理
矩形1对y轴的惯性矩:
I (1) y
I y1
b12 A1
矩形2对y轴的惯性矩:
I (2) y
I y2
b22 A2
整个截面的惯性矩:
Iz
y 2 dA
A
h y2bdy 0
b
y3 3
/
h 0
bh3 3
y
h b
dy y
z
典型例题
例2 试求图示截面对形心轴zC轴的惯性矩。
IzC
y 2 dA
A
h
2 h
y2bdy
2
b
y3 3
h
/
2
h
2
bh3
12
I yC
z 2dA
A
y
yC
hb3 =
土木力学剪力弯矩的计算
土木力学剪力弯矩的计算土木力学是土木工程中最基础的学科,主要研究物体受力和变形的规律。
剪力和弯矩则是土木力学中最常见的两种受力形式。
在土木工程设计和结构分析中,计算剪力和弯矩是非常重要的步骤。
本文将介绍土木力学中剪力和弯矩的定义、计算方法以及计算实例。
剪力是指垂直于物体截面的力,作用于物体上产生垂直于截面的剪应力。
剪力的计算可以通过力的平衡条件来推导。
在平衡状态下,剪力的沿用法与剪力的矩(或叫做剪矩)的和为零。
当物体受到的力不平衡时,剪力就会产生。
弯矩是指垂直于物体截面的力矩,也叫做转矩。
在平衡状态下,弯矩的和为零。
弯矩的计算可以通过力的平衡条件和力矩的平衡条件来推导。
当物体受到的力和力矩不平衡时,弯矩就会产生。
弯矩的大小可以通过力的大小和作用位置的距离来计算。
在计算剪力和弯矩时,需要明确物体的几何形状和受力情况。
常见的受力形式有集中力、均布力和均布载荷。
对于集中力的作用,可以通过力的矩平衡条件来计算剪力和弯矩。
对于均布力和均布载荷的作用,可以通过力的分割和积分来计算剪力和弯矩。
下面以一个简单的悬臂梁为例,介绍剪力和弯矩的计算方法。
考虑一个悬臂梁,长度为L,受到一个集中力F作用于悬臂梁的一端。
首先,计算剪力。
根据力的平衡条件,剪力的沿用法与剪力的矩的和为零。
由于悬臂梁的一端受到集中力F的作用,所以剪力V的大小等于F。
然后,计算弯矩。
由于力F作用于悬臂梁的一端,所以弯矩M的大小等于力F乘以作用位置L。
在实际工程中,常常需要计算不同位置处的剪力和弯矩。
对于悬臂梁来说,离起点越远,剪力和弯矩的大小就越大。
可以通过数学表达式和图表来表示不同位置处的剪力和弯矩。
除了集中力作用于悬臂梁的情况外,对于均布力和均布载荷的作用,可以通过力的分割和积分来计算剪力和弯矩。
具体的计算方法可以参考相关的土木力学课程和教材。
总之,剪力和弯矩是土木工程中非常重要的力学参数,计算剪力和弯矩可以帮助工程师设计和分析各种结构。
在实际工程中,需要根据具体情况选择适当的计算方法,并结合力的平衡条件和力矩的平衡条件来推导和计算剪力和弯矩。
材料力学常用基本公式
1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M z tmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n 2w r34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAx x N EAL N EA NL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dxx T GI L T GI TL πφ0180⋅=Φ=p GI T L (m /ο)3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EIML B3=θ,EIML A6=θ EIPL A B 162==θθEIqL A B 243==θθEIML f c 162=EIPL f c 483=EIqL f c 3844=(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)PAB MAB A BqL LLLL=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i 三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+= yx xyσστα--=22tg 03、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论(1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤ []bb n σσ=(2)[]σσσσ≤-=313r ()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []s sn σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy (2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE= ②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆 s λλ≤ “cr σ”=s σ 或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= (圆截面 4d i z=,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆ 冲击系数 st d 211∆++=hK (自由落体冲击) st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh 123hb 323max d y I W z z π== ()43132απ-D62bh 62hb2、惯性矩平移轴公式A a I I 2zc z +=。
材料力学弯矩公式
材料力学弯矩公式在材料力学中,弯矩是一个非常重要的概念,它在工程结构设计和力学分析中起着至关重要的作用。
弯矩是描述材料在受到弯曲作用时的变形和应力分布的重要参数,对于工程结构的稳定性和安全性具有重要意义。
本文将介绍材料力学中弯矩的基本概念和计算公式。
首先,我们来了解一下什么是弯矩。
在力学中,弯矩是指在材料受到弯曲作用时,横截面上各点所受的力矩之和。
当外力作用在材料横截面上时,会引起材料产生弯曲变形,同时在材料内部产生应力分布。
而这种应力分布就是由弯矩引起的。
弯矩的大小取决于外力的大小和作用位置,以及材料的截面形状和材料的性质。
接下来,我们将介绍弯矩的计算公式。
在弹性力学中,弯矩的计算公式可以用来描述在不同条件下材料的弯曲变形和应力分布。
对于简单的弯曲情况,弯矩的计算公式可以通过梁的基本原理来推导得到。
对于梁的弯曲变形,可以利用梁的受力分析和几何关系来得到弯矩的计算公式。
在工程实际中,可以根据具体的受力情况和梁的几何形状来选择合适的弯矩计算公式。
在工程实际中,常用的弯矩计算公式包括简支梁的弯矩公式、悬臂梁的弯矩公式、梁的转角和挠度计算公式等。
这些公式可以用来描述不同条件下梁的弯曲变形和应力分布,对于工程结构的设计和分析具有重要的指导意义。
除了简单的弯曲情况外,对于复杂的受力情况和梁的几何形状,可以利用弯矩的叠加原理来进行计算。
叠加原理是指当梁同时受到多个力的作用时,可以将这些力的作用效果分开计算,然后再将它们的效果叠加起来得到最终的结果。
利用叠加原理,可以将复杂的受力情况简化为若干个简单的受力情况,然后再利用简单的弯矩计算公式来进行计算,这样可以大大简化计算的复杂度。
总之,弯矩是材料力学中一个非常重要的概念,它可以描述材料在受到弯曲作用时的变形和应力分布。
弯矩的计算公式可以用来描述不同条件下梁的弯曲变形和应力分布,对于工程结构的设计和分析具有重要的指导意义。
在工程实际中,我们可以根据具体的受力情况和梁的几何形状来选择合适的弯矩计算公式,从而进行准确的计算和分析。
受弯构件双筋截面计算基本公式
受弯构件双筋截面计算基本公式受弯构件双筋截面计算基本公式包括弯矩公式和受拉区混凝土、受压区混凝土及双筋钢筋的应力计算公式。
1.弯矩公式:
受弯构件的弯矩(M)可以使用以下公式计算:
M = f * A * d
其中,f为截面受拉钢筋的应力,A为截面钢筋的面积之和,d为截面深度到受拉钢筋中线的距离。
2.受拉区混凝土应力计算公式:
受拉区混凝土的应力(σ)可以使用以下公式计算:
σ = (M / A) * (d1 - x1) / (b * h)
其中,M为弯矩,A为截面面积,d1为受拉区混凝土纵向受拉钢筋到截面受拉边缘距离,x1为截面受拉边缘到纵向受拉钢筋中心线的距离,b为截面宽度,h为截面高度。
3.受压区混凝土应力计算公式:
受压区混凝土的应力(σ)可以使用以下公式计算:
σ = (M / A) * (d2 - x2) / (b * h)
其中,M为弯矩,A为截面面积,d2为受压区混凝土纵向受压钢筋到截面受压边缘距离,x2为截面受压边缘到纵向受压钢筋中心线的距离,b为截面宽度,h为截面高度。
4.双筋钢筋应力计算公式:
双筋钢筋的应力(σ)可以使用以下公式计算:
σ = M / (As1 * (d - d1) + As2 * (d2 - d))
其中,M为弯矩,As1为受拉区钢筋面积,d为截面深度,d1为受
拉区钢筋到截面边缘距离,As2为受压区钢筋面积,d2为受压区钢筋
到截面边缘距离。
另外,受弯构件的设计还需要满足一系列的设计准则和规范,以
确保其安全性和可靠性。
常见的设计准则包括《混凝土结构设计规范》(GB 50010-2010)和《建筑抗震设计规范》(GB 50011-2010)等。
惯性矩截面系数弯矩图计算公式汇总
惯性矩、截面系数、弯矩图计算公式汇总附录1 截面图形的几何性质提要:不同受力形式下杆件的应力和变形,不仅取决于外力的大小以及杆件的尺寸,而且与杆件截面的几何性质有关。
当研究杆件的应力、变形,以及研究失效问题时,都要涉及到与截面形状和尺寸有关的几何量。
这些几何量包括:形心、静矩、惯性矩、惯性半径、极惯性矩、惯性积、主轴等,统称为“平面图形的几何性质”。
研究上述这些几何性质时,完全不考虑研究对象的物理和力学因素,作为纯几何问题加以处理。
平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。
附1.1 截面的静矩与形心任意平面几何图形如图1.1所示。
在其上取面积微元dA,该微元在yOz坐标系中的SSy=?zdA,Sz=?ydA坐标为z、y。
设静矩为,则有:AA图1.1 静矩的概念 (附1.1)静矩的量纲为长度的3次方。
由于均质薄板的重心与平面图形的形心有相同的坐标zC和yC。
则A?zC=?z?dA=Sy A———————————————————————————————————————————————由此可得薄板重心的坐标zC为zC=?AzdAA=SyA 同理有yC=Sz A?260? 材料力学所以形心坐标或zC=SyA,yC=SzA(附1.2)Sy=AzC,Sz=AyC由式(附1-2)得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即yC=0,Sz=0;zC=0,则Sy=0;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第i块分图形的面积为Ai,形心坐标为 yCi,zCi ,则其静矩和形心坐标分别为———————————————————————————————————————————————Sz=?AiyCi,Sy=?AizCii=1i=1nniCi(附1.3)SyC=z=A?Ayii=1nCi?Ai=1n,zC=SyA=?Azi=1nn(附1.4) ———————————————————————————————————————————————i?Ai=1i【例附1.1】求图1.2所示半圆形的Sy,Sz及形心位置。
【完整版】材料力学基本概念和公式定理
第一章 绪论第一节 材料力学的任务1、组成机械与构造的各组成部分,统称为构件。
2、保证构件正常或平安工作的根本要求:a)强度,即抵抗破坏的才能;b)刚度,即抵抗变形的才能;c)稳定性,即保持原有平衡状态的才能。
3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的根本理论与计算方法。
第二节 材料力学的根本假设1、连续性假设:材料无空隙地充满整个构件。
2、均匀性假设:构件内每一处的力学性能都一样3、各向同性假设:构件某一处材料沿各个方向的力学性能一样。
木材是各向异性材料。
第三节 内力1、内力:构件内部各部分之间因受力后变形而引起的互相作用力。
2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。
3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到别离体;③对别离体建立平衡方程,求得内力。
4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M第四节 应力1、一点的应力: 一点处内力的集〔中程〕度。
全应力0limA Fp A∆→∆=∆;正应力σ;切应力τ;p =2、应力单位:Pa 〔1Pa=1N/m 2,1MPa=1×106 Pa ,1GPa=1×109 Pa 〕第五节 变形与应变1、变形:构件尺寸与形状的变化称为变形。
除特别声明的以外,材料力学所研究的对象均为变形体。
2、弹性变形:外力解除后能消失的变形成为弹性变形。
3、塑性变形:外力解除后不能消失的变形,称为塑性变形或剩余变形。
4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。
对构件进展受力分析时可忽略其变形。
5、线应变:ll ∆=ε。
线应变是无量纲量,在同一点不同方向线应变一般不同。
6、切应变:tan γγ≈。
切应变为无量纲量,切应变单位为rad 。
第六节 杆件变形的根本形式1、材料力学的研究对象:等截面直杆。