备战高考数学大二轮复习 专题五 立体几何 专题能力训练15 立体几何中的向量方法 理

合集下载

高考数学(理)二轮专题练习【专题5】(3)立体几何中的向量方法(含答案)

高考数学(理)二轮专题练习【专题5】(3)立体几何中的向量方法(含答案)

第 3 讲立体几何中的向量方法考情解读 1.以多面体 (特别是棱柱、棱锥或其组合体)为载体,考察空间中平行与垂直的证明,常出此刻解答题的第(1)问中,考察空间想象能力,推理论证能力及计算能力,属低中档问题.2.以多面体 ( 特别是棱柱、棱锥或其组合体)为载体,考察空间角 (主假如线面角和二面角)的计算,是高考的必考内容,属中档题.3.以已知结论追求成立的条件(或能否存在问题)的探究性问题,考察逻辑推理能力、空间想象能力以及探究能力,是近几年高考命题的新亮点,属中高档问题.1.直线与平面、平面与平面的平行与垂直的向量方法设直线 l 的方向向量为a=(a1,b1,c1).平面α、β的法向量分别为μ= (a2,b2, c2),v=(a3,b3, c3)( 以下同样 ).(1) 线面平行l∥ α? a⊥ μ? a·μ= 0? a1a2+ b1b2+ c1c2= 0.(2) 线面垂直l⊥ α? a∥ μ? a= kμ? a1= ka2,b1=kb2, c1= kc2.(3)面面平行α∥ β? μ∥v? μ=λv? a2=λa, b =λb,c =λc32323.(4)面面垂直α⊥ β? μ⊥v? μ·v= 0? a2a3+b2b3+ c2c3= 0.2.直线与直线、直线与平面、平面与平面的夹角计算设直线 l ,m 的方向向量分别为a=( a1, b1,c1),b=(a2,b2, c2).平面α、β的法向量分别为μ= (a3, b3, c3),v= (a4, b4, c4)(以下同样 ).(1)线线夹角π设 l, m 的夹角为θ(0≤θ≤2),则|a·b|=|a1a2+ b1b2+ c1c2|cos θ=a12+ b12+ c12 a22+ b22+ c22.|a ||b|(2)线面夹角π设直线 l 与平面α的夹角为θ(0≤θ≤2),则 sin θ=||aa·μ||μ||= |cos〈a,μ〉 |.(3) 面面夹角设半平面 α、 β的夹角为 θ(0 ≤θ≤π),则 |cos θ|= ||μ·μ||v v ||= |cos 〈 μ,v 〉 |.提示 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中剖析.3.求空间距离直线到平面的距离,两平行平面的距离均可转变为点到平面的距离,点P 到平面 α的距离: d→=|PM ·n |(此中 n 为 α的法向量, M 为 α内任一点 ).|n |热门一 利用向量证明平行与垂直例 1 如图,在直三棱柱 ADE — BCF 中,面 ABFE 和面 ABCD 都是正方形且相互垂直, M 为 AB 的中点, O 为 DF 的中点.运用向量方法证明:(1) OM ∥平面 BCF ;(2) 平面 MDF ⊥平面 EFCD .思想启示从 A 点出发的三条直线AB 、 AD , AE 两两垂直,可成立空间直角坐标系.证明方法一由题意,得AB , AD , AE 两两垂直,以A 为原点成立如图所示的空间直角坐标系.设正方形边长为 1,则 A(0,0,0), B(1, 0,0),C(1,1,0) , D(0,1,0) ,F(1,0,1) , M 1,0, 0,O 1,1, 12 2 22 .→1 ,- 1 → 1,0,0),(1) OM = 0,- 2 2 , BA = (-→ → → →∴ OM ·BA = 0, ∴ OM ⊥BA.∵ 棱柱 ADE — BCF 是直三棱柱,∴ ⊥ 平面 , ∴ →是平面 的一个法向量,AB BCF BA BCF且 OM? 平面 BCF ,∴OM ∥平面 BCF .(2) 设平面 MDF 与平面 EFCD 的一个法向量分别为n 1= (x 1, y 1,z 1), n 2 = (x 2, y 2, z 2).→ → 1,- 1,0 → ,∵ DF = (1,- 1,1), DM = 2, DC = (1,0,0)→ →由 n 1·DF = n 1·DM = 0,x 1- y 1+ z 1= 0,1y 1= 2x 1,得 1解得1x 1- y 1= 0,1=-1,22xz1 1令 x 1= 1,则 n 1= 1, 2,-2 .同理可得 n 2= (0,1,1) .∵ n 1·n 2= 0, ∴平面 MDF ⊥ 平面 EFCD .方法二→→→ →1 → →1 →(1) OM = OF + FB + BM = DF - BF + 2BA21 → →→1 → 1 →1→ 1 →= (DB + BF)- BF + 2 BA =-2 BD - BF + BA222=- 1 → →1→ 1 →2 (BC + BA)-BF + BA221 → 1 →=- 2BC - 2BF.∴ 向量 → 与向量 →,→共面,OMBF BC 又 OM? 平面 BCF ,∴OM ∥平面 BCF .(2) 由题意知, BF ,BC , BA 两两垂直,→ → → → → ∵CD =BA ,FC =BC -BF ,→ →1 → 1 →→∴OM ·CD = -2 BC - BF·BA = 0,2→ →1 → 1 →→ →OM ·FC =- BC - BF·(BC - BF)22=- 1BC →2+ 1BF → 2= 0.2 2∴ OM ⊥ CD , OM ⊥ FC ,又 CD ∩FC = C ,∴OM ⊥平面 EFCD .又 OM? 平面 MDF ,∴ 平面 MDF ⊥ 平面 EFCD .思想升华(1) 要证明线面平行,只需证明向量→OM 与平面 BCF 的法向量垂直;另一个思路则是依据共面向量定理证明向量 → → →OM 与 BF , BC 共面. (2) 要证明面面垂直,只需证明这两个平面 的法向量相互垂直; 也可依据面面垂直的判断定理证明直线 OM 垂直于平面 EFCD ,即证 OM垂直于平面 EFCD 内的两条订交直线, 从而转变为证明向量→ →OM 与向量 FC 、→ CD 垂直.如图,在四棱锥 P - ABCD 中, PA ⊥平面 ABCD ,底面 ABCD是菱形, PA = AB =2,∠ BAD = 60°, E 是 PA 的中点.(1) 求证:直线 PC ∥平面 BDE ;(2) 求证: BD⊥ PC;证明设 AC∩BD= O.因为∠ BAD = 60°, AB =2,底面 ABCD 为菱形,所以BO= 1, AO= CO=3, AC⊥BD .如图,以O 为坐标原点,以OB,OC所在直线分别为x 轴, y 轴,过点 O 且平行于PA 的直线为z 轴,成立空间直角坐标系O- xyz,则 P(0,- 3,2),A(0,- 3,0),B(1,0,0) ,C(0, 3,0),D(- 1,0,0) ,E(0,-3,1).(1) 设平面→→,由BDE 的法向量为n1= (x1, y1, z1),因为 BE= (- 1,-3,1), BD = (- 2,0,0)→- 2x1= 0,n1·BD=0,→得- x1- 3y1+ z1= 0,n1·BE=0,令 z1= 3,得 y1= 1,所以n1= (0,1, 3).→→3=0,又 PC= (0,23,- 2),所以 PC·n1= 0+ 2 3- 2→即 PC⊥n1,又 PC?平面 BDE,所以 PC∥平面 BDE .→→(2) 因为 PC= (0,2 3,- 2), BD =( -2,0,0),→ →= 0.所以 PC·BD故 BD⊥PC.热门二利用向量求空间角例 2如图,五面体中,四边形ABCD是矩形,AB∥EF,AD⊥平面ABEF ,且 AD = 1, AB= 1EF= 22, AF= BE= 2, P、Q 2分别为AE、 BD的中点.(1)求证: PQ∥平面 BCE;(2)求二面角 A- DF - E 的余弦值.思想启示 (1) 易知 PQ 为△ ACE 的中位线; (2)依据 AD⊥平面 ABEF (1)证明连结 AC,∵四边形 ABCD 是矩形,且 Q 为 BD 的中点,建立空间直角坐标系.∴Q 为 AC 的中点,又在△AEC 中, P 为 AE 的中点,∴ PQ∥ EC,∵EC? 面 BCE, PQ? 面 BCE,∴ PQ∥平面 BCE.(2)解如图,取 EF 的中点 M ,则 AF ⊥AM ,以 A 为坐标原点,以则 A(0,0,0) ,D (0,0,1) , M(2,0,0) ,F(0,2,0) .→→→,- 1).可得 AM= (2,0,0), MF = (-2,2,0), DF = (0,2→n·MF=0设平面 DEF 的法向量为n= (x, y, z),则.→n·DF=0- 2x+ 2y= 0x- y= 0.故,即2y-z=02y- z= 0令 x= 1,则 y= 1,z=2,故 n=(1,1,2)是平面DEF的一个法向量.→∵ AM ⊥面 ADF ,∴AM为平面 ADF 的一个法向量.→→2×1+ 0×1+0×26 n·AM∴ cos〈n,AM 〉=→ =6×2=6 .|n| ·|AM |由图可知所求二面角为锐角,∴二面角 A-DF - E 的余弦值为66.思想升华(1)运用空间向量坐标运算求空间角的一般步骤:① 成立合适的空间直角坐标系;② 求出有关点的坐标;③ 写出向量坐标;④ 联合公式进行论证、计算;⑤ 转变为几何结论.(2) 求空间角注意:① 两条异面直线所成的角α不必定是直线的方向向量的夹角β,即cosα=|cos β|.②两平面的法向量的夹角不必定是所求的二面角,有可能为两法向量夹角的补角.③ 直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.(2013 ·山东 )如下图,在三棱锥P- ABQ 中,PB⊥平面 ABQ,BA= BP =BQ,D ,C,E,F 分别是 AQ,BQ,AP ,BP 的中点, AQ=2BD,PD 与 EQ 交于点 G, PC 与 FQ 交于点 H,连结 GH.(1)求证: AB∥ GH ;(2)求二面角 D - GH -E 的余弦值.(1) 证明因为D,C,E,F分别是AQ, BQ,AP,BP的中点,所以EF∥ AB, DC ∥ AB.所以EF∥DC.又EF ?平面PCD ,DC ?平面PCD ,所以EF∥平面PCD .又EF?平面EFQ ,平面EFQ ∩平面PCD= GH ,所以EF∥GH.又EF ∥ AB,所以AB∥GH .(2) 解方法一在△ABQ中,AQ=2BD ,AD =DQ,所以∠ABQ= 90°,即 AB⊥ BQ.因为 PB⊥平面 ABQ ,所以 AB⊥ PB.又 BP∩BQ=B,所以 AB⊥平面 PBQ.由 (1)知 AB∥ GH ,所以 GH⊥平面 PBQ.又 FH ? 平面 PBQ ,所以 GH ⊥FH .同理可得GH⊥ HC ,所以∠FHC 为二面角D- GH-E 的平面角.设 BA= BQ= BP= 2,连结 FC ,在 Rt△ FBC 中,由勾股定理得FC=2,在 Rt△ PBC 中,由勾股定理得PC= 5.又 H 为△ PBQ 的重心,所以 HC =1PC=5.同理 FH =5.3335+5-2在△ FHC 中,由余弦定理得cos∠ FHC =9952×9=-4.即二面角 D - GH- E 的余弦值为-4.55方法二在△ ABQ 中, AQ= 2BD, AD = DQ ,所以∠ ABQ =90°又 PB⊥平面 ABQ ,所以 BA ,BQ, BP 两两垂直.以 B 为坐标原点,分别以 BA, BQ, BP 所在直线为 x 轴, y 轴, z 轴,成立如下图的空间直角坐标系.设 BA= BQ= BP= 2,则 E(1,0,1),F(0,0,1),Q(0,2,0) ,D(1,1,0) ,C(0,1,0) ,P(0,0,2) .→→→→.所以 EQ= (- 1,2,- 1), FQ =(0,2,- 1), DP = (- 1,- 1, 2),CP=(0,- 1,2)设平面 EFQ 的一个法向量为m=(x1,y1,z1),→→由 m·EQ=0, m·FQ=0,-x1+ 2y1-z1= 0,得取 y1=1,得m= (0,1,2) .2y1- z1= 0,设平面 PDC 的一个法向量为n=(x2,y2,z2),→→由 n·DP=0,n·CP= 0,得- x2- y2+ 2z2= 0,- y2+ 2z2=0,取 z2= 1,得n=(0,2,1).所以 cos〈m,n〉=m·n4= . |m||n|5因为二面角 D- GH- E 为钝角,所以二面角D- GH - E 的余弦值为-4 5 .热门三利用空间向量求解探究性问题例 3 如图,在直三棱柱 ABC- A1B1C1中,AB= BC= 2AA1,∠ABC = 90°,D 是 BC 的中点.(1)求证: A1B∥平面 ADC 1;(2)求二面角 C1- AD - C 的余弦值;(3) 试问线段 A1B1上能否存在点E,使 AE 与 DC1成 60°角?若存在,确立 E 点地点;若不存在,说明原因.(1)证明连结 A1C,交 AC1于点 O,连结 OD.由 ABC-A1B1C1是直三棱柱,得四边形ACC1A1为矩形, O 为 A1C 的中点.又 D为 BC的中点,所以 OD 为△ A1BC 的中位线,所以 A1B∥ OD .因为 OD? 平面 ADC1, A1B? 平面 ADC 1,所以 A1B∥平面 ADC 1.(2)解由 ABC-A1B1C1是直三棱柱,且∠ABC= 90°,得 BA , BC,BB 1两两垂直.以 BC, BA, BB1所在直线分别为x, y, z 轴,成立如下图的空间直角坐标系B- xyz.设 BA= 2,则 B(0,0,0) , C(2,0,0) , A(0,2,0), C1(2,0,1) , D(1,0,0) ,→→.所以 AD = (1,- 2,0), AC1= (2,- 2,1)设平面 ADC 1的法向量为n=(x,y,z),则有→n·AD=0,→n·AC1=0.x- 2y= 0,所以取 y=1,得n=(2,1,- 2).2x- 2y+ z= 0.易知平面ADC 的一个法向量为v=(0,0,1).n·v2所以 cos〈n,v〉=|n|·|v|=-3.因为二面角C1-AD -C 是锐二面角,2所以二面角C1-AD -C 的余弦值为3.(3)解假定存在知足条件的点 E.因为点 E 在线段 A1B1上, A1(0,2,1) , B1(0,0,1) ,故可设 E(0,λ, 1),此中 0≤λ≤2.→→.所以 AE= (0,λ- 2,1), DC 1= (1,0,1)因为 AE 与 DC 1成 60°角,→ →→ →1〉 |= |AE ·DC 1|所以 |cos 〈 AE , DC 1= ,→ → 1 2|AE| |DC · |即1= 1,解得 λ=1 或 λ= 3(舍去 ).λ-2+1· 2 2所以当点 E 为线段 A 1B 1 的中点时, AE 与 DC 1 成 60°角. 思想升华空间向量最合适于解决这种立体几何中的探究性问题,它无需进行复杂的作图、论证、推理,只需经过坐标运算进行判断.解题时,把要成立的结论看作条件,据此列方程或方程组,把 “能否存在 ”问题转变为 “点的坐标能否有解,能否有规定范围内的解 ”等,所认为使问题的解决更简单、有效,应擅长运用这一方法.如图,在三棱锥 P — ABC 中, AC = BC = 2,∠ ACB = 90°, AP =BP = AB ,PC ⊥ AC ,点 D 为 BC 的中点.(1) 求二面角 A — PD — B 的余弦值;1(2) 在直线 AB 上能否存在点 M ,使得 PM 与平面 PAD 所成角的正弦值为 6, 若存在,求出点 M 的地点;若不存在,说明原因.解 (1)∵ AC = BC ,PA = PB , PC = PC , ∴△ PCA ≌△ PCB ,∴∠ PCA =∠ PCB ,∵ PC ⊥ AC , ∴PC ⊥CB ,又 AC ∩CB =C ,∴ PC ⊥ 平面 ACB ,且 PC ,CA ,CB 两两垂直,故以 C 为坐标原点, 分别以 CB ,CA ,CP 所在直线为 x ,y ,z 轴成立空间直角坐标系, 则 C(0,0,0),→ (1,- →,- 2),A(0,2,0) ,D(1,0,0) , P(0,0,2) , ∴ AD = 2,0), PD = (1,0 设平面 PAD 的一个法向量为n = (x , y ,z),→n ·AD = 0∴, ∴ 取 n = (2,1,1) ,→n ·PD = 0→,平面 PDB 的一个法向量为 CA =(0,2,0)→ 6 ∴ cos 〈 n ,CA 〉= 6 ,设二面角 A —PD —B 的平面角为 θ,且 θ为钝角,6 6∴ cos θ=- 6 , ∴ 二面角 A — PD — B 的余弦值为- 6.(2) 方法一 存在, M 是 AB 的中点或 A 是 MB 的中点.→设 M(x,2- x,0) (x ∈ R ), ∴ PM =( x,2-x ,- 2),→|x|1 ,∴ |cos 〈 PM , n 〉 |=x 2 + - x=2+4· 6 6解得 x =1 或 x =- 2, ∴ M(1,1,0) 或 M(- 2,4,0) ,∴ 在直线 AB 上存在点 M ,且当 M 是 AB 的中点或 A 是 MB 的中点时,使得 PM 与平面 PAD 所成角的正弦值为1 6.方法二 存在, M 是 AB 的中点或 A 是 MB 的中点.→ →设 AM = λAB ,→则 AM = λ(2,- 2,0)= (2λ,- 2λ,0) ( λ∈R ),→ → →∴ PM =PA +AM = (2λ, 2-2λ,- 2),→ |2λ|1∴ |cos 〈 PM , n 〉 |= 2 - 2λ 2+4· 6 = . λ + 6解得 λ= 1或 λ=- 1.2∴M 是 AB 的中点或 A 是 MB 的中点.∴ 在直线 AB 上存在点 M ,且当 M 是 AB 的中点或 A 是 MB 的中点时,使得 PM 与平面 PAD所成角的正弦值为16.空间向量在办理空间问题时拥有很大的优胜性, 能把 “非运算 ”问题 “运算 ”化,即经过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各种角、距离以向量的方式表达出来,把立体几何问题转变为空间向量的运算问题.应用的中心是充足认识形体特点,从而成立空间直角坐标系,经过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的正确性.提示三点: (1)直线的方向向量和平面的法向量所成角的余弦值的绝对值是线面角的正弦值,而不是余弦值.(2) 求二面角除利用法向量外,还能够依据二面角的平面角的定义和空间随意两个向量都是共面向量的知识,我们只假如在二面角的两个半平面内分别作和二面角的棱垂直的向量,而且两个向量的方向均指向棱或许都从棱指向外,那么这两个向量所成的角的大小就是二面角的大小.如下图.→ →→→(3) 关于空间随意一点 O 和不共线的三点 A ,B , C ,且有 OP = xOA + yOB + zOC(x , y , z ∈ R ),四点 P , A ,B , C 共面的充要条件是x + y + z = 1.空间一点 P 位于平面 MAB 内 ? 存在有序实数对 →→→x , y ,使 MP = xMA + yMB ,或对空间任必定点 O ,有序实数对 → →→ →x , y ,使 OP = OM + xMA + yMB .真题感悟(2014 ·京北 )如图,正方形 AMDE 的边长为 2, B , C 分别为 AM , MD 的中点,在五棱锥 P - ABCDE 中, F 为棱 PE 的中点,平面 ABF 与棱 PD , PC 分别交于点 G , H.(1) 求证: AB ∥ FG ;(2) 若 PA ⊥底面 ABCDE ,且 PA = AE ,求直线 BC 与平面 ABF 所成角的大小,并求线段 PH 的长.(1) 证明 在正方形 AMDE 中,因为 B 是 AM 的中点, 所以 AB ∥ DE.又因为 AB ? 平面 PDE , DE? 平面 PDE , 所以 AB ∥ 平面 PDE .因为 AB? 平面 ABF ,且平面 ABF ∩平面 PDE = FG , 所以 AB ∥ FG.(2) 解 因为 PA ⊥ 底面 ABCDE , 所以 PA ⊥ AB , PA ⊥ AE.如图成立空间直角坐标系Axyz ,→.则 A(0,0,0) ,B(1,0,0) , C(2,1,0) , P(0,0,2) ,F(0,1,1) , BC = (1,1,0) 设平面 ABF 的一个法向量为n = (x , y , z),则→x = 0,n ·AB = 0,→即y + z = 0.n ·AF = 0,令 z= 1,则 y=- 1,所以n=(0 ,-1,1).设直线 BC 与平面 ABF 所成角为α,→→1 n·BC则 sin α= |cos〈n, BC〉 |=→= .2|n||BC|所以直线 BC 与平面 ABF 所成角的大小为π,6设点 H 的坐标为 (u, v, w).→→λ<1),因为点 H 在棱 PC 上,所以可设 PH=λPC(0<即 (u, v, w- 2)=λ(2,1,- 2),所以 u=2λ, v=λ, w=2- 2λ.因为 n 是平面ABF的一个法向量,所以→n·AH=0,即 (0,- 1,1) ·(2λ,λ, 2- 2λ)=0,解得λ=2,所以点H 的坐标为 (4,2,2).3333所以 PH=42+22+-42= 2.333押题精练如下图,已知正方形 ABCD 和矩形 ACEF 所在的平面相互垂直,AB=2, AF= 1.(1)求直线 DF 与平面 ACEF 所成角的正弦值;→→(2)在线段 AC 上找一点 P,使 PF 与 DA 所成的角为 60°,试确立点 P的地点.解 (1)以 C 为坐标原点,分别以 CD , CB,CE 所在直线为 x 轴, y 轴,z 轴,成立如下图的空间直角坐标系,则E(0,0,1) ,D (2, 0,0), B(0,2, 0), A(2, 2, 0),F( 2,2, 1),连结 BD ,则 AC⊥ BD .因为平→面 ABCD ⊥平面 ACEF ,且平面 ABCD ∩平面 ACEF =AC,所以 DB 是平面 ACEF 的一个法向量.→→→→→ →3 DF ·DB又 DB= (-2, 2, 0), DF = (0,2,1),所以 cos〈DF ,DB〉=→ →= 3.|DF | ×|DB |故直线 DF 与平面 ACEF 所成角的正弦值为33.→2-a,→= (0,2,0).(2) 设 P(a, a,0)(0≤a≤ 2),则 PF= (2- a,1), DA→→22- a1因为〈 PF ,DA〉= 60°,所以 cos 60 °== .2×2- a2+ 12解得 a =2或 a =322, 2, 0)为 AC 的中点.22 (舍去 ),故存在知足条件的点P( 22(介绍时间: 60 分钟 )一、选择题1.已知平面 ABC ,点 M 是空间随意一点,点→ 3 → 1 → 1 → M 知足条件 OM = OA +OB +OC ,则直线488AM( )A .与平面 ABC 平行B .是平面 ABC 的斜线 C .是平面 ABC 的垂线D .在平面 ABC 内 答案D分析由已知得 M 、A 、 B 、 C 四点共面.所以 AM 在平面 ABC 内,选 D.2.在棱长为 1 的正方体 ABCD - A 1B 1C 1D 1 中, M 是 BC 的中点, P ,Q 是正方体内部或面上的→ →两个动点,则 AM ·PQ 的最大值是 ()1A. 2 B . 135 C.2 D. 4答案 C分析以 A 为坐标原点,分别以AD ,AB ,AA 1 所在直线为 x 轴, y 轴, z轴成立如下图的空间直角坐标系,则A(0,0,0) ,M (1,1,0),2→1 , 1,0).所以 AM =(2- 1≤x ≤1, →-1≤y ≤1, 设 PQ = (x , y , z),由题意可知-1≤z ≤1. → → 11因为 AM ·PQ = ·x +1·y + 0·z = x + y ,22又- 1≤x ≤1,- 1≤y ≤1,所以- 1 1 1≤ x ≤ .2 2 2 所以-3 1 3≤ x + y ≤ .2 2 2→ →3故 AM ·PQ 的最大值为.23.在棱长为 1 的正方体 ABCD - A 1B 1C 1D 1 中, M ,N 分别为 A 1B 1,BB 1 的中点,那么直线 AM 与 CN 所成角的余弦值为 ()310A. 2B. 1032 C.5D. 5答案D分析 以 D 点为坐标原点,分别以DA , DC ,DD 1 所在直线为 x 轴, y1 轴,z 轴成立如下图的空间直角坐标系,则 A(1,0,0) ,M(1,,1),C(0,1,0) ,21N(1,1,2).→1 →1 ).所以 AM = (0,, 1), CN =(1,0,22 → →1 1 1 ,故 AM ·CN = 0×1+×0+ 1×=22 2→ 21 225|AM |=0 +2+ 1 = 2 ,→ 221 2= 5|CN|=1+0+22 ,→ →1→→22AM ·CN=所以 cos 〈AM , CN 〉== .→ → 5 5 5|AM||CN|2 ×24.已知正三棱柱 ABC - A 1B 1C 1 的侧棱长与底面边长相等,则AB 1 与侧面 ACC 1A 1 所成角的正弦等于 ()6 10 A. 4B. 4 2 3C. 2D. 2答案 A分析如下图成立空间直角坐标系, 设正三棱柱的棱长为2,O(0,0,0) ,B( 3,0,0),A(0,- 1,0),B 1(→ →=(- 3,0,0)为侧3,0,2),则 AB 1= ( 3,1,2),则 BO→ →|AB 1·BO|6面 ACC 1A 1 的法向量,由sin θ= →→= 4 .|AB 1||BO|5.在正方体 ABCD — A 1B 1C 1 D 1 中,点 E 为 BB 1 的中点,则平面 A 1ED 与平面 ABCD 所成的锐二面角的余弦值为 ()1 2 3 2 A. 2 B. 3 C. 3 D. 2答案 B分析以 A 为原点成立如下图的空间直角坐标系A - xyz ,设棱长为 1,1则 A 1(0,0,1) ,E 1, 0,2 , D(0,1,0) ,→ = (0,1,- 1)→1, 0,- 1 , ∴ A 1,A 1 =DE2设平面 A 1ED 的一个法向量为n 1= (1, y , z),y - z = 0,y = 2,则 1∴1-2z = 0,z = 2.∴ n 1= (1,2,2) .∵ 平面 ABCD 的一个法向量为n 2=(0,0,1) ,22∴ cos 〈 n 1, n 2〉= 3×1=3.即所成的锐二面角的余弦值为23.6.如图,三棱锥 A -BCD 的棱长全相等, E 为 AD 的中点,则直线 CE 与 BD 所成角的余弦值为 ()33 A. 6B. 2 33 1C. 6D. 2答案 A分析设 AB = 1,→ → → → → →则 CE ·BD = (AE -AC ) ·(AD - AB)1→21→→ →→ →→= 2AD - 2AD ·AB - AC ·AD +AC ·AB1 1 -°cos 60 +°cos 60 1 = - cos 60 =° .2 24→ →1→ →4 3CE ·BD=∴ cos 〈 CE , BD 〉=→ → =6.选A.3|CE||BD |2二、填空题7.在向来角坐标系中已知 A(- 1,6), B(3,- 8),现沿 x 轴将坐标平面折成 60°的二面角,则折叠后 A 、 B 两点间的距离为 ________.答案 2 17分析如图为折叠后的图形,此中作 AC ⊥ CD , BD ⊥ CD ,则 AC = 6,BD = 8, CD =4,两异面直线 AC 、 BD 所成的角为 60°,→ → → →故由 AB = AC + CD +DB ,→ 2 → → → 2得 |AB| = |AC +CD + DB| = 68,→ 17. ∴ |AB|= 28.正方体 ABCD - A 1B 1C 1 D 1 的棱长为 1,E 、F 分别为 BB 1、CD 的中点, 则点 F 到平面 A 1D 1E 的距离为 ______________ .3 5 答案10分析以 A 为坐标原点, AB 、AD 、 AA 1 所在直线分别为x 轴、 y 轴、 z 轴建立空间直角坐标系,如下图,11则 A 1(0,0,1) ,E(1,0, 2), F(2,1,0), D 1(0,1,1) .→1→∴ A 1E = (1,0,- 2),A 1D 1= (0,1,0) . 设平面 A 1D 1E 的一个法向量为n = (x ,y , z),→=0, 1则 n ·A 1E即 x - 2z = 0,→y = 0.n ·A 1D 1= 0,令 z = 2,则 x = 1.∴ n = (1,0,2) .又→=1,,- ,A 1F(1 1)2∴ 点 F 到平面 A 1D 1E 的距离为→ |1- 2||A 1F ·n |= 2= 3 5d =|n |510.9.已知正方形 ABCD 的边长为 4, CG ⊥平面 ABCD , CG = 2, E , F 分别是 AB ,AD 的中点, 则点 C 到平面 GEF 的距离为 ________.答案 6 1111分析 成立如下图的空间直角坐标系 C -xyz ,则 G(0,0,2) , E(2,4,0) ,F(4,2,0) .→→→.所以 GF = (4,2,- 2), GE= (2,4,- 2), CG= (0,0,2)设平面 GEF 的法向量为n=(x,y,z),→GF·n= 0,由→GE·n= 0,得平面 GEF 的一个法向量为n=(1,1,3),所以点 C 到平面 GEF 的距离→|n·CG| 6 11d==.|n|11→→→ 2→ 2→ →→10.已知 ABCD -A1B1C1D1为正方体,① (A1A+A1D 1+ A1B1)= 3A1B1;②A1C·(A1B1- A1A) =0;→→→ → →③向量 AD 1与向量 A1B的夹角是 60°;④正方体ABCD - A1B1C1D1的体积为 |AB·AA1·AD|.此中正确命题的序号是 ________.答案①②分析→→→ 2→ 2→2→设正方体的棱长为 1,①中 (A1A+ A1D 1+ A1B1)= A1C = 3(A1B1) = 3,故①正确;②中 A1B1→→→- A1A= AB1,因为 AB1⊥ A1C,故② 正确;③中 A1B 与 AD1两异面直线所成的角为60°,但 AD 1→→ → →与 A1B的夹角为120°,故③不正确;④中|AB ·AA1·AD |= 0.故④也不正确.三、解答题11.如图,在底面是矩形的四棱锥P—ABCD 中, PA⊥底面 ABCD ,E, F 分别是 PC, PD 的中点, PA= AB=1, BC= 2.(1)求证: EF∥平面 PAB;(2)求证:平面 PAD⊥平面 PDC .证明 (1) 以 A 为原点, AB 所在直线为 x 轴,AD 所在直线为 y 轴,AP 所在直线为 z 轴,成立如下图的空间直角坐标系,则 A(0,0,0) ,B(1,0,0) , C(1,2,0) , D(0,2,0) , P(0,0,1) ,∵ E,F 分别是 PC, PD 的中点,∴E 1,1,1,F 0,1,1,222→1, 0,0→→→→→EF=-,PB= (1,0,- 1),PD= (0,2,- 1),AP= (0,0,1),AD = (0,2,0),DC= (1,0,0),2→= (1,0,0) .AB→1→→→∵EF=-2AB,∴EF∥AB ,即 EF∥AB,又 AB? 平面 PAB, EF?平面 PAB,∴ EF ∥ 平面 PAB.→→= (0,0,1) (1,0,0)· = 0,(2) ∵AP ·DC→ →AD ·DC = (0,2,0) (1,0,0)· =0,→ → → →∴ AP ⊥ DC , AD ⊥DC ,即 AP ⊥ DC , AD ⊥DC .又 AP ∩AD =A , ∴ DC ⊥ 平面 PAD.∵ DC? 平面 PDC ,∴平面 PAD ⊥平面 PDC .12. (2014 ·标全国Ⅱ课 )如图,四棱锥 P - ABCD 中,底面 ABCD 为矩形,PA ⊥平面 ABCD ,E 为 PD 的中点.(1) 证明: PB ∥平面 AEC ;(2) 设二面角 D - AE -C 为 60°,AP =1, AD = 3,求三棱锥 E - ACD 的体积.(1)证明连结 BD 交 AC 于点 O ,连结 EO.因为 ABCD 为矩形,所以 O 为 BD 的中点.又 E 为 PD 的中点,所以EO ∥PB .因为 EO? 平面 AEC ,PB?平面 AEC ,所以 PB ∥ 平面 AEC .(2) 解 因为 PA ⊥ 平面 ABCD , ABCD 为矩形,所以 AB , AD , AP 两两垂直.如图,以→ 的方向为→ A 为坐标原点, AB x 轴的正方向, |AP|为单位长,建立空间直角坐标系 A - xyz ,则 D(0,3, 0), E(0,3 1→3 1 ). 2, ),AE = (0,,22 2设 B(m,0,0)( m>0) ,则 C(m ,设 n 1= (x , y , z)为平面 ACE→ n 1·AC =0,则→n 1·AE = 0,→3, 0), AC = (m , 3, 0).的法向量,mx + 3y = 0,即3 12 y + 2z = 0,3可取 n 1=( ,- 1, 3).又 n2=(1,0,0)为平面DAE的法向量,1由题设 |cos〈n1,n2〉 |=,即32=1,3+ 4m23解得 m=2.因为 E 为 PD 的中点,1所以三棱锥E- ACD 的高为,1131=3三棱锥 E- ACD 的体积 V=× × 3× ×.3222813.如图,在三棱柱ABC - A1B1C1中,侧面AA 1C1C⊥底面 ABC, AA1=A1C= AC= 2, AB= BC, AB⊥BC, O 为 AC 的中点.(1)证明: A1O⊥平面 ABC;(2)求直线 A1C 与平面 A1AB 所成角的正弦值;(3)在 BC1上能否存在一点E,使得 OE∥平面 A1AB?若存在,确立点 E 的地点;若不存在,请说明原因.(1)证明∵ AA1= A1C= AC= 2,且 O 为 AC 的中点,∴A1O⊥ AC.又侧面 AA 1C1C⊥底面 ABC,交线为AC, A1O? 平面 AA 1C1C,∴A1O⊥平面 ABC.(2)解连结 OB ,如图,以 O 为原点,分别以 OB、OC、OA1所在直线为 x、y、z 轴,成立空间直角坐标系,则由题意可知 B(1,0,0) ,C(0,1,0) ,A1(0,0, 3), A(0,- 1,0).→,- 3),设平面A1AB 的法向量为→∴ A1C= (0,1n=(x,y,z),则 n·AA1→→,→n=(3,-3,3),= n·AB=0,而AA1=(0,13), AB= (1,1,0) ,可求得一个法向量→→621|n·A1 C|==,∴ |cos〈 A1 C,n〉 |=→2× 217|n| |A·1C|故直线 A1C 与平面 A1AB 所成角的正弦值为21. 7(3)解存在点 E,且 E 为线段 BC 1的中点.连结 B1C 交 BC1于点 M,连结AB1、 OM,则 M 为 B1C 的中点,从而 OM 是△ CAB1的一条中位线, OM ∥ AB1,又 AB1? 平面 A1AB,OM ?平面 A1AB,∴OM ∥平面 A1 AB,故 BC1的中点 M 即为所求的 E 点.。

最新年高考数学二轮复习 专题能力训练15 立体几何中的向量方法 理(考试必备)

最新年高考数学二轮复习 专题能力训练15 立体几何中的向量方法 理(考试必备)

专题能力训练15 立体几何中的向量方法一、能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.(2018北京,理16)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.5.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.二、思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB∥平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.专题能力训练15立体几何中的向量方法一、能力突破训练1.解依题意,OF⊥平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明:依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以,进而有H,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC,∴AC⊥BE,∴AC⊥平面BEF.(2)解由(1)知AC⊥EF,AC⊥BE,EF∥CC1.∵CC1⊥平面ABC,∴EF⊥平面ABC.∵BE⊂平面ABC,∴EF⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).=(2,0,1),=(1,2,0).设平面BCD的法向量为n=(a,b,c),则令a=2,则b=-1,c=-4,∴平面BCD的法向量n=(2,-1,-4).又平面CDC1的法向量为=(0,2,0),∴cos<n,>==-由图可得二面角B-CD-C1为钝角,∴二面角B-CD-C1的余弦值为-(3)证明平面BCD的法向量为n=(2,-1,-4),∵G(0,2,1),F(0,0,2),=(0,-2,1),∴n=-2,∴n与不垂直,∴FG与平面BCD不平行且不在平面BCD内,∴FG与平面BCD相交.3.解 (1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>=因此所求的角为60°.4.解以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=(a,0,1),(1)证明:=-0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n,n,得取x=1,得平面B1AE的一个法向量n=要使DP∥平面B1AE,只要n,有-az0=0,解得z0=又DP⊄平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=5.(1)证明设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos<n,p>=由题知二面角B-PD-A为锐角,所以它的大小为(3)解由题意知M,C(2,4,0),设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|=所以直线MC与平面BDP所成角的正弦值为6.(1)证明因为AB是直径,所以BC⊥AC.因为CD⊥平面ABC,所以CD⊥BC.因为CD∩AC=C,所以BC⊥平面ACD.因为CD∥BE,CD=BE,所以四边形BCDE是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB×tan∠EAB=4=1.由(1)知V C-ADE=V E-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则取n1=(1,0,2).设平面ABE的法向量为n2=(x,y,z),则取n2=(1,1,0),所以cos<n1,n2>=可以判断<n1,n2>与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-二、思维提升训练7.解如题图甲所示,因为BO是梯形ABCD的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OP⊥OC.而OB⊥OP,OB⊥OD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)证明:设E(x,0,1-x),其中0≤x≤1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)·(-1)=0,解得x=2,这与0≤x≤1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),,所以n=0,n=0,即令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos <,n>|=所以PD与平面CDE所成角的正弦值为8.解∵平面PAD⊥平面ABCD,且∠PAD=90°,∴PA⊥平面ABCD,而四边形ABCD是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又不共线,共面.∵PB⊄平面EFG,∴PB∥平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=,||==2,∴cos<>=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离d=,即(2-m)2=,∴m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ的距离为。

数学高三立体几何与空间向量专题复习检测(含答案)

数学高三立体几何与空间向量专题复习检测(含答案)

数学高三立体几何与空间向量专题复习检测(含答案)平面几何是3维欧氏空间的几何的传统称号,下面是平面几何与空间向量专题温习检测,请考生练习。

一、选择题1.(2021武汉调研)一个几何体的三视图如下图,那么该几何体的直观图可以是()解析 A、B、C与仰望图不符.答案 D2.将长方体截去一个四棱锥,失掉的几何体如下图,那么该几何体的侧(左)视图为()解析抓住其一条对角线被遮住应为虚线,可知正确答案在C,D中,又结合直观图知,D正确.答案 D3.(2021安徽卷)一个多面体的三视图如下图,那么该多面体的外表积为()A.21+3B.18+3C.21D.18解析由三视图知,该多面体是由正方体割去两个角所成的图形,如下图,那么S=S正方体-2S三棱锥侧+2S三棱锥底=24-231211+234(2)2=21+3.答案 A4.S,A,B,C是球O外表上的点,SA平面ABCD,ABBC,SA=AB=1,BC=2,那么球O的外表积等于()A.4B.3C.2解析如下图,由ABBC知,AC为过A,B,C,D四点小圆直径,所以ADDC.又SA平面ABCD,设SB1C1D1-ABCD为SA,AB,BC为棱长结构的长方体,得体对角线长为12+12+22=2R,所以R=1,球O的外表积S=4.故选A.答案 A5.(2021湖南卷)一块石材表示的几何体的三视图如下图.将该石材切削、打磨,加工成球,那么能失掉的最大球的半径等于()A.1B.2C.3D.4解析由三视图可得原石材为如下图的直三棱柱A1B1C1-ABC,且AB=8,BC=6,BB1=12.假定要失掉半径最大的球,那么此球与平面A1B1BA,BCC1B1,ACC1A1相切,故此时球的半径与△ABC内切圆的半径相等,故半径r=6+8-102=2.应选B.答案 B6.点A,B,C,D均在同一球面上,其中△ABC是正三角形,AD平面ABC,AD=2AB=6,那么该球的体积为()A.323B.48C.643D.163解析如下图,O1为三角形ABC的外心,过O做OEAD,OO1面ABC,AO1=33AB=3.∵OD=O A,E为DA的中点.∵AD面ABC,AD∥OO1,EO=AO1=3.DO=DE2+OE2=23.R=DO= 23.V=43(23)3=323.答案 A二、填空题7.某四棱锥的三视图如下图,该四棱锥的体积是________. 解析由三视图可知,四棱锥的高为2,底面为直角梯形ABCD.其中DC=2,AB=3,BC=3,所以四棱锥的体积为132+3322=533. 答案 5338.如图,在三棱柱A1B1C1-ABC中,D,E,F区分是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC 的体积为V2,那么V1V2=________.解析设三棱柱A1B1C1-ABC的高为h,底面三角形ABC的面积为S,那么V1=1314S12h=124Sh=124V2,即V1V2=124. 答案 1249.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,那么四面体ABCD的外接球的外表积为________.解析结构一个长方体,使得它的三条面对角线区分为4、5、6,设长方体的三条边区分为x,y,z,那么x2+y2+z2=772,而长方体的外接球就是四面体的外接球,所以S=4R2=772. 答案 772三、解答题10.以下三个图中,左边是一个正方体截去一个角后所得多面体的直观图.左边两个是其正(主)视图和侧(左)视图. (1)请在正(主)视图的下方,依照画三视图的要求画出该多面体的仰望图(不要求表达作图进程).(2)求该多面体的体积(尺寸如图).解 (1)作出仰望图如下图.(2)依题意,该多面体是由一个正方体(ABCD-A1B1C1D1)截去一个三棱锥(E-A1B1D1)失掉的,所以截去的三棱锥体积VE-A1B1D1=13S△A1B1D1A1E=1312221=23,正方体体积V正方体AC1=23=8,所以所求多面体的体积V=8-23=223.11.(2021安徽卷)如图,四棱柱ABCD-A1B1C1D1中,A1A底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过 A1,C,D三点的平面记为,BB1与的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面所分红上下两局部的体积之比.解 (1)证明:由于BQ∥AA1,BC∥AD,BCBQ=B,ADAA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以BQBB1=BQAA1=BCAD=12,即Q为BB1的中点.(2)如图,衔接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面所分红上下两局部的体积区分为V上和V下,BC=a,那么AD=2a.VQ-A1AD=13122ahd=13ahd,VQ-ABCD=13a+2a2d12h=14ahd,所以V下=VQ-A1AD+VQ-ABCD=712ahd,又V四棱柱A1B1C1D1-ABCD=32ahd,所以V上=V四棱柱A1B1C1D1-ABCD-V下=32ahd-712ahd=1112ahd.故V上V下=117.B级才干提高组1.(2021北京卷)在空间直角坐标系Oxyz中,A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).假定S1,S2,S3区分是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,那么()A.S1=S2=S3B.S2=S1且S2S3C.S3=S1且S3 S2D.S3=S2且S3S1解析作出三棱锥在三个坐标平面上的正投影,计算三角形的面积.如下图,△ABC为三棱锥在坐标平面xOy上的正投影,所以S1=1222=2.三棱锥在坐标平面yOz上的正投影与△DE F(E,F 区分为OA,BC的中点)全等,所以S2=1222=2.三棱锥在坐标平面xOz上的正投影与△DGH(G,H区分为AB,OC 的中点)全等,所以S3=1222=2.所以S2=S3且S1S3.应选D. 答案 D2.(2021山东卷)三棱锥P-ABC中,D,E区分为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,那么V1V2=________.解析由于VP-ABE=VC-ABE,所以VP-ABE=12VP-ABC,又因VD-ABE=12VP-ABE,所以VD-ABE=14VP-ABC,V1V2=14.答案 143.(理)(2021课标全国卷Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60,AP=1,AD=3,求三棱锥E-ACD的体积.解 (1)衔接BD交AC于点O,衔接EO.由于ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO平面AEC,PB平面AEC,所以PB∥平面AEC.(2)由于PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,|PA|为单位长,树立空间直角坐标系A-xyz.那么D(0,3,0),E0,32,12, AE=0,32,12.设B(m,0,0)(m0),那么C(m,3,0),AC=(m,3,0),设n1=(x,y,z)为平面ACE的法向量,那么n1AC=0,n1AE=0,即mx+3y=0,32y+12z=0,可取n1=3m,-1,3.又n2=(1,0,0)为平面DAE的法向量,由题设|cos〈n1,n2〉|=12,即 33+4m2=12,解得m=32.由于E为PD的中点,所以三棱锥E-ACD的高为12.三棱锥E-ACD的体积V=131233212=38.3.(文)如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF 的位置(点A与P重合),使得PEB=30.(1)求证:EF(2)试问:当点E在何处时,四棱锥P-EFCB的正面PEB的面积最大?并求此时四棱锥P-EFCB的体积.解 (1)证明:∵AB=BC,BCAB,又∵EF∥BC,EFAB,即EFBE,EFPE.又BEPE=E,EF平面PBE,EFPB.(2)设BE=x,PE=y,那么x+y=4.S△PEB=12BEPEsinPEB=14xy14x+y22=1.当且仅当x=y=2时,S△PEB的面积最大.此时,BE=PE=2.由(1)知EF平面PBE,平面PBE平面EFCB,在平面PBE中,作POBE于O,那么PO平面EFCB.即PO为四棱锥P-EFCB的高.又PO=PEsin30=212=1.S梯形EFCB =12(2+4)2=6.VP-BCFE=1361=2.平面几何与空间向量专题温习检测及答案的全部内容就是这些,查字典数学网预祝考生可以取得更好的效果。

备战2019高考数学大二轮复习专题五立体几何5.3立体几何中的向量方法课件理

备战2019高考数学大二轮复习专题五立体几何5.3立体几何中的向量方法课件理

=0,������1 ������ ·������������ =0+2-2=0, 即B1D⊥EG,B1D⊥EF, 又EG∩EF=E,因此B1D⊥平面EGF. 结合(1)可知平面EGF∥平面ABD.
求解立体几何问 题是高考的必考 内容,每套试卷必 有立体几何解答 选择 (2015 全国Ⅰ,理 18) 题,一般设 2 至 3 题 (2016 全国Ⅰ,理 18) 问,2 问的较多,前 解答 (2016 全国Ⅲ,理 19) 一问较简单,最后 题 (2017 全国Ⅱ,理 19) 一问难度较大,而 (2018 全国Ⅰ,理 18) 选用向量法可以 (2018 全国Ⅲ,理 19) 降低解题难度,但 增加了计算量.
5.3
立体几何中的向量方法
-2-
试题统计
题型
命题规律
(2014 全国Ⅰ,理 19) (2014 全国Ⅱ,理 11) (2014 全国Ⅱ,理 18) (2015 全国Ⅱ,理 19) (2016 全国Ⅱ,理 19) (2017 全国Ⅰ,理 18) (2017 全国Ⅲ,理 19) (2018 全国Ⅱ,理 20)
������· ������������1 = 0, ������· ������������ = 0,
-6命题热点一 命题热点二 命题热点三
题后反思用向量方法证明空间线面位置关系的方法:设直线l1,l2 的方向向量分别为a,b,平面α,β的法向量分别为e1,e2,A,B,C分别为平 面α内的相异且不共线的三点(其中l1与l2不重合,α与β不重合),则 (1)l1∥l2⇔a∥b⇔存在实数λ,使b=λa(a≠0);l1⊥l2⇔a⊥b⇔a· b=0. (2)l1⊥α⇔a∥e1⇔存在实数λ,使e1=λa(a≠0);l1∥α⇔a· e1=0⇔存在 非零实数λ1,λ2,使a=λ1 ������������+λ2�����Байду номын сангаас������ . (3)α∥β⇔e1∥e2⇔存在实数λ,使 e2=λe1(e1≠0);α⊥β⇔e1⊥e2⇔e1· e2=0.

高考数学二轮复习空间向量与立体几何专题训练(含解析)

高考数学二轮复习空间向量与立体几何专题训练(含解析)

高考数学二轮复习空间向量与立体几何专题训练(含解析)A 级——基础稳固组一、选择题→ →1.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则 sin 〈CM,D1N〉的值为()14A. 9B.9 522C. 5D.93分析→→设正方体的棱长为2,以D为原点成立如下图空间坐标系,则CM=(2,-2,1)1,,D N=(2,2-1) ,→ →1∴ cos 〈CM,D1N〉=-9,→ → 4 5∴ sin 〈CM,D1N〉=9 .答案B2.如图, 三棱锥 A - BCD 的棱长全相等, E 为 AD 的中点, 则直线 CE 与 BD 所成角的余弦值为 ()33A.B.62331C.D.62→→→→→→ 1→ 2 1→→→→→→1 1 分析设 AB = 1,则 CE · BD = ( AE - A C ) ·(AD - AB ) = 2AD - 2AD · AB -AC · AD + AC · AB = 2-21cos60°- cos60°+ cos60°= 4.→ →1→ → 4 3CE · BD∴ cos 〈CE , BD 〉= → → =3 = 6.应选 A.||| |CE BD2答案A3.如图,点 P 是单位正方体 ABCD - A B CD→ →中异于 A 的一个极点,则 AP · AB 的值为 ()1 1 1 1A . 0B . 1C .0或 1D .随意实数分析 →7 个向量: →→→→→→→ → → →AP 可为以下 AB , AC , AD ,AA 1, AB 1,AC 1, AD 1,此中一个与 AB 重合, AP · AB =| → | 2= 1;→,→1,→ 1与→垂直,这时 → · → = 0; → ,→1与→的夹角为45°,这时→·→= 2AB AD AD AA AB AP ABAC AB ABAP AB×1×cos π = 1,最后 →1· →= 3×1×cos ∠1= 3× 1 = 1,应选 C.4 ACABBAC3答案 C4.(201 3·山东卷 ) 已知三棱柱- 1 11的侧棱与底面垂直,体积为 9,底面是边长为3的正ABC ABC4三角形.若 P 为底面 A 1B 1C 1 的中心,则 PA 与平面 ABC 所成角的大小为 ()5ππ A. 12B. 3πD.πC.64分析如下图,设△ABC1 3 3ABC 的中心为 O , S= 2× 3× 3×sin60 °= 4 .3 39∴ VABC - A 1B 1C 1 =S ABC ×OP =4 × OP = 4,∴ OP = 3.32又 OA = 2 × 3× 3=1,OP ∴ tan ∠ OAP == 3,OAπ又 0<∠ OAP < 2 ,π∴∠ OAP = 3 .5.在正方体 ABCD - A 1B 1C 1D 1 中,点 E 为 BB 1 的中点,则平面 A 1ED 与平面 ABCD 所成的锐二面角的余弦值为 ()1 2 A. 2B. 332C. 3D. 2分析以 A 为坐标原点成立空间直角坐标系,如图.设棱长为 1,则 1(0,0,1) ,E 1, 0, 1, (0,1,0) ,A2 D→→1, 0,-1,112所以 AD =(0,1 ,- 1),AE =设平面 1 的一个法向量为 1=(1 , y , ) ,A EDn zy - z =0,y =2,则1所以 n = (1,2,2) .所以1- 2z = 0, z =2,1由于平面 ABCD 的一个法向量为 n = (0,0,1) ,2所以 |cos 〈n 1, n 2〉 | =223×1 = .3即平面 A ED 与平面 ABCD 所成的锐二面角的余弦值为23. 应选 B.1答案 B6. P 是二面角 α-AB - β 棱上的一点,分别在 α, β 平面上引射线PM ,PN ,假如∠ BPM =∠=45°,∠=60°,那么二面角 - -的大小为 ()A.60° B .70°C.80° D .90°分析不如设 PM= a, PN= b,作 ME⊥ AB于点 E, NF⊥AB于点 F,如图.由于∠ EPM=∠ FPN=45°,所以 PE=22a, PF=22b,→ →→ →→→所以 EM· FN=( PM-PE)·(PN- PF)→ → →→ →→→ →= PM· PN-PM· PF- PE· PN+ PE·PF2222=ab cos60°- a×2 b cos45°-2 ab cos45°+2 a×2 b abab ab ab=2-2-2+2=0.→→所以 EM⊥ FN,所以二面角α-AB-β 的大小为90°.答案D二、填空题7.已知a= (2 ,-1,1),b=(-1,4,-2),c=(11,5,λ).若向量 a,b,c 共面,则λ=________.分析由向量,,c 共面可得c=xa+(x,∈R) ,a b yb y11= 2x-y,x=7,故有 5=-x+ 4y,解得 y=3,λ =x-2y,λ=1.答案18.已知空间不共面四点,,,,→·→=→·→=→·→=0,且 |→| =|→|=|→|,→O A B COAOBOAOCOBOC OA OB OC AM →= MB,则 OM与平面 ABC所成角的正切值是________.分析由题意可知, OA , OB , OC 两两垂直,如图,成立空间直角坐标系O - xyz ,设 OA = OB = OC = 1,1 1则 A (1,0,0) , B (0,1,0) , C (0,0,1) , M 2 ,2, 0 ,→→ → 1 1故 AB = ( - 1,1,0) ,AC = ( - 1,0,1) , OM = 2,2,0 .设平面 ABC 的法向量为 n = ( x ,y , z ) ,→- x +y = 0,n ⊥AB ,则由得→ - x +z = 0,n ⊥AC ,令 x = 1,得平面 ABC 的一个法向量为 n = (1,1,1) .→1= 6故 cos 〈n , OM 〉=,2 33× 2→6 2 3sin 〈 n ,OM 〉=1-3 = 3 ,→→2sin 〈n , OM 〉tan 〈 n ,OM 〉= cos 〈 , →〉=2.nOM答案229.已知点 E , F 分别在正方体 ABCD - A 1B 1C 1D 1 的棱 BB 1, CC 1 上,且 B 1E = 2EB , CF = 2FC 1,则平面与平面所成的二面角的正切值为________.AEFABC分析如图,成立空间直角坐标系.设= 1,由已知条件得(1,0,0),E1, 1,1,F0, 1,2,DA A33→1AE=0, 1,3,→2AF=-1,1,3,设平面 AEF的法向量为n=( x,y, z),平面 AEF与平面→n· AE=0,由→n· AF=0,ABC所成的二面角为θ,1y+3z=0,得2-x+ y+3z=0.令 y=1,得 z=-3, x=-1,则 n=(-1,1,-3),平面 ABC的法向量为 m=(0,0,-1),cos θ= cos〈n,m〉=3,tanθ=2. 113答案2 3三、解答题10.如下图,四棱锥S- ABCD的底面是正方形,SD⊥平面 ABCD, SD= AD= a,点 E 是 SD上的点,且 DE=λa(0<λ≤1).(1)求证:对随意的λ∈(0,1],都有AC⊥BE;(2)若二面角 C- AE- D的大小为60°,求λ的值.解(1) 证明:如下图,成立空间直角坐标系D -xyz ,则 A ( a, 0,0) ,B ( a ,a, 0) ,C (0 ,a, 0) ,D (0,0,0) ,E (0,0 , λa ) ,∴→=(- ,0) ,→=( - ,- ,) ,ACaa, BEaa λa→ →对随意 λ∈ (0,1]都成立,∴ AC · BE =0即对随意的 λ∈ (0,1] ,都有 AC ⊥ BE .(2) 明显n = (0,1,0) 是平面的一个法向量,ADE设平面 ACE 的法向量为 m = ( x ,y , z ) ,→→- a, 0, λa ), ∵ AC = ( - a , a, 0) , AE =(→- ax + ay =0, x - y = 0, m · AC = 0, ∴ →即+= 0,∴-= 0.· = 0, -ax λazxλzm AE令 z = 1,则 x = y =λ,∴ m =( λ, λ, 1) .∵二面角 C - AE - D 的大小为 60°,∴ cos 〈n ,m 〉=n ·mλ1== ,| n || m |1+ 2λ222 ∵ λ∈ (0,1] ,∴ λ=.211.(2014 ·北京卷 ) 如图,正方形AMDE的边长为 2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中, F为棱 PE的中点,平面 ABF与棱 PD,PC分别交于点 G, H.(1)求证: AB∥ FG;(2) 若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.解 (1) 证明:在正方形AMDE中,由于B是AM的中点,所以 AB∥ DE.又由于 AB?平面 PDE,所以 AB∥平面 PDE.由于 AB?平面 ABF,且平面 ABF∩平面 PDE= FG,所以 AB∥ FG.(2)由于 PA⊥底面 ABCDE,所以 PA⊥AB,PA⊥ AE.如图成立空间直角坐标系A- xyz,则 A(0,0,0),B(1,0,0), C(2,1,0), P(0,0,2), F(0,1,1)→., BC=(1,1,0)设平面 ABF的法向量为 n=( x,y, z),→x=0,n· AB=0,则即n ·→=0,y+ z=0. AF令 z=1,则 y=-1.所以 n=(0,-1,1).设直线 BC 与平面 ABF 所成角为 α,→1则 sin=|cos 〈,→〉 | = n ·BCα= .n BC→2| n || BC |π所以直线 BC 与平面 ABF 所成角的大小为 6 .设点 H 的坐标为 ( u ,v , w ) .→→由于点 H 在棱 PC 上,所以可设 PH = λPC (0< λ<1) ,即 ( u , v , w - 2) = λ(2,1 ,- 2) ,所以 u = 2λ , v = λ, w = 2- 2λ.由于 n 是平面 ABF 的法向量,→所以 n ·AH = 0,即 (0 ,- 1,1) ·(2 λ,λ, 2- 2λ) = 0,2解得 λ=3.所以点 H 的坐标为4 2 2, ,3 3 3 .所以 = 4 2 2 2 42+ + - =2.PH 3 3 3B 级——能力提升组1.(2014 ·江西卷 ) 如图,四棱锥 P - ABCD 中, ABCD 为矩形,平面 PAD ⊥平面 ABCD .(1) 求证: AB ⊥ PD ;(2) 若∠ BPC =90°, PB = 2,PC = 2,问 AB 为什么值时,四棱锥 P - ABCD 的体积最大?并求此时平面 PBC 与平面 DPC 夹角的余弦值.解 (1) 证明: ABCD 为矩形,故 AB ⊥ AD .又平面 PAD ⊥平面 ABCD ,平面 PAD ∩平面 ABCD = AD ,所以 AB ⊥平面 PAD ,故 AB ⊥ PD .故 PO⊥平面 ABCD, BC⊥平面 POG, BC⊥ PG,23266在 Rt △BPC中,PG=3,GC=3,BG=3,2242设 AB= m,则 OP=PG- OG=3- m,故四棱锥 P- ABCD的体积为142m2V=3·6· m·3- m=38-6m.由于-2=24-2228m-=6m-+,86m8m 6m3366P-ABCD的体积最大.此时,成立如下图的坐标系,各故当 m=,即 AB=时,四棱锥3366626266点的坐标为 O(0,0,0), B3,-3, 0, C3,3, 0,D 0,3, 0,P 0,0,3.→6266→故 PC=3,3,-3, BC=(0,6,0),→6.CD=-3,0,0设平面 BPC的法向量 n =( x, y, 1),16266→→3 x+3 y-3=0,则由 n ⊥ PC, n ⊥ BC,得116y=0,解得 x=1, y=0,n1=(1,0,1).21同理可求出平面=0,,1,DPC的法向量n2进而平面与平面夹角的余弦值为11| n·n |110cos θ12=5 .=| n1|| n2|=12·4+ 12.如图,在长方体ABCD- A1B1C1D1中, AA1= AD=1,E 为 CD的中点.(1)求证: B1E⊥ AD1;(2)在棱 AA1上能否存在一点 P,使得 DP∥平面 B1AE?若存在,求 AP的长;若不存在,说明原因;(3)若二面角 A- B1E-A1的大小为30°,求 AB的长.解 (1) 证明:以A 为原点,→,→,→x轴、y轴、z轴的正方向成立空间直角1的方向分别为AB AD AA1a1,1,0坐标系 ( 如图 ) ,设AB=a,则A(0,0,0), D(0,1,0), D(0,1,1), E2, B ( a, 0,1),→→a→→a,1,011-,1,- 11, AE=2.故 AD=(0,1,1),BE=2,AB=( a, 0,1)→→a∵ AD1· B1E=-2×0+1×1+(-1)×1=0,∴B1E⊥ AD1.(2)假定在棱 AA1上存在一点 P(0,0, z0)(0≤ z0≤1),使得 DP∥平面 B1AE.高考数学二轮复习空间向量与立体几何专题训练(含分析)→此时 DP = (0 ,- 1, z 0) .又设平面 B 1AE 的法向量 n = ( x , y , z ) .→→ax + z =0, ax由 n ⊥ AB ,n ⊥ AE ,得12+ y = 0. 取 x = 1,得平面 B 1AE 的一个法向量an = 1,- 2,- a .→a要使 DP ∥平面 B 1AE ,只需 n ⊥DP ,有 2- az 0= 0,1解得 z 0= 2. 又 DP ?平面 B 1AE ,1∴存在点P ,知足 DP ∥平面 B 1AE ,此时 AP = 2.(3) 连结 A 1D , B 1C ,由长方体 ABCD - A 1B 1C 1D 1 及 AA 1= AD = 1,得 AD 1⊥ A 1D .∵ B 1C ∥ A 1D ,∴ AD 1⊥ B 1C .又由 (1) 知 B 1E ⊥ AD 1,且 B 1C ∩ B 1E = B 1,∴ AD 1⊥平面 DCB 1A 1.→→.∴ AD 1是平面 A 1B 1E 的一个法向量,此时 AD 1= (0,1,1) → 设 AD 1与 n 所成的角为 θ ,a· →1- 2-aAD.则 cos θ= → =2| n || AD 1|21+ a+ a 24∵二面角- 1- 1 的大小为 30°,A B E A3a∴ |cos θ| =cos30°,即235a 2=2 ,21+ 4解得 a = 2,即 AB 的长为 2.。

(新课标)天津市高考数学二轮复习 专题能力训练15 立体几何中的向量方法 理

(新课标)天津市高考数学二轮复习 专题能力训练15 立体几何中的向量方法 理

专题能力训练15 立体几何中的向量方法一、能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.(2018北京,理16)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.5.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.二、思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB∥平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.专题能力训练15立体几何中的向量方法一、能力突破训练1.解依题意,OF⊥平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明:依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以,进而有H,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC,∴AC⊥BE,∴AC⊥平面BEF.(2)解由(1)知AC⊥EF,AC⊥BE,EF∥CC1.∵CC1⊥平面ABC,∴EF⊥平面ABC.∵BE⊂平面ABC,∴EF⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).=(2,0,1),=(1,2,0).设平面BCD的法向量为n=(a,b,c),则令a=2,则b=-1,c=-4,∴平面BCD的法向量n=(2,-1,-4).又平面CDC1的法向量为=(0,2,0),∴cos<n,>==-由图可得二面角B-CD-C1为钝角,∴二面角B-CD-C1的余弦值为-(3)证明平面BCD的法向量为n=(2,-1,-4),∵G(0,2,1),F(0,0,2),=(0,-2,1),∴n=-2,∴n与不垂直,∴FG与平面BCD不平行且不在平面BCD内,∴FG与平面BCD相交.3.解 (1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>=因此所求的角为60°.4.解以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=(a,0,1),(1)证明:=-0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n,n,得取x=1,得平面B1AE的一个法向量n=要使DP∥平面B1AE,只要n,有-az0=0,解得z0=又DP⊄平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=5.(1)证明设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos<n,p>=由题知二面角B-PD-A为锐角,所以它的大小为(3)解由题意知M,C(2,4,0),设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|=所以直线MC与平面BDP所成角的正弦值为6.(1)证明因为AB是直径,所以BC⊥AC.因为CD⊥平面ABC,所以CD⊥BC.因为CD∩AC=C,所以BC⊥平面ACD.因为CD∥BE,CD=BE,所以四边形BCDE是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB×tan∠EAB=4=1.由(1)知V C-ADE=V E-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则取n1=(1,0,2).设平面ABE的法向量为n2=(x,y,z),则取n2=(1,1,0),所以cos<n1,n2>=可以判断<n1,n2>与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-二、思维提升训练7.解如题图甲所示,因为BO是梯形ABCD的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OP⊥OC.而OB⊥OP,OB⊥OD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)证明:设E(x,0,1-x),其中0≤x≤1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)·(-1)=0,解得x=2,这与0≤x≤1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),,所以n=0,n=0,即令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos <,n>|=所以PD与平面CDE所成角的正弦值为8.解∵平面PAD⊥平面ABCD,且∠PAD=90°,∴PA⊥平面ABCD,而四边形ABCD是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又不共线,共面.∵PB⊄平面EFG,∴PB∥平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=,||==2,∴cos<>=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离d=,即(2-m)2=,∴m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ的距离为。

高三数学二轮复习重点

高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

高考数学二轮复习专题

高考数学二轮复习专题

高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。

此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。

2专题二:数列、推理与证明。

数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。

3专题三:三角函数、平面向量和解三角形。

平面向量和三角函数的图像与性质、恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。

平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。

4专题四:立体几何。

注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。

5专题五:解析几何。

直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。

近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。

我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。

6专题六:概率与统计、算法与复数。

要求具有较高的阅读理解和分析问题、解决问题的能力。

高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。

高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。

高考数学复习 巩固练习 立体几何中的向量方法(提高)

高考数学复习 巩固练习 立体几何中的向量方法(提高)

高考数学复习 【巩固练习】 一、选择题1.若直线l 的方向向量1(,0,1)2=a ,平面β的法向量为(1,0,2)=--b ,则( )A .//l βB .l β⊥C .l β⊂D .l 与β斜交2.若平面α的法向量为μ,直线l 的方向向量为v ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ).A .cos ||||v v μθμ⋅= B .||cos ||||v v μθμ⋅= C .sin ||||v v μθμ⋅= D .||sin ||||v v μθμ⋅=3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是( ). A .(1,-1,1) B .(1,3,32) C .(1,-3,32) D .(-1,3,32-) 4.P 是二面角AB αβ--棱上的一点,分别在α、β半平面上引射线PM 、PN ,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角的大小为( ).A .60°B .70°C .80°D .90°5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82 C .a 423 D .a 22 6.(2015春 广安校级月考)若向量(,4,5)a x =,(1,2,2)b =-,且a 与b 的夹角的余弦值为6,则x=( ) A .3 B .-3 C .―11 D .3或―117.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621 B .338 C .60210D .30210二、填空题8.若平面α的一个法向量为n=(3,3,0),直线l 的一个方向向量为b=(1,1,1),则l 与α所成角的余弦值为________.9.若分别与一个二面角的两个面平行的向量m=(-1,2,0),n=(3,0,-2),且m 、n都与二面角的棱垂直,则该二面角的余弦值为________.10.正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为AB 、CC 1的中点,则异面直线EF 与A 1C 1所成角的大小是________。

高考数学大二轮复习 专题五 立体几何 专题能力训练15 立体几何中的向量方法 理

高考数学大二轮复习 专题五 立体几何 专题能力训练15 立体几何中的向量方法 理

专题能力训练15 立体几何中的向量方法一、能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.(2018北京,理16)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.5.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.二、思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB∥平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.专题能力训练15立体几何中的向量方法一、能力突破训练1.解依题意,OF⊥平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明:依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以,进而有H,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC,∴AC⊥BE,∴AC⊥平面BEF.(2)解由(1)知AC⊥EF,AC⊥BE,EF∥CC1.∵CC1⊥平面ABC,∴EF⊥平面ABC.∵BE⊂平面ABC,∴EF⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).=(2,0,1),=(1,2,0).设平面BCD的法向量为n=(a,b,c),则令a=2,则b=-1,c=-4,∴平面BCD的法向量n=(2,-1,-4).又平面CDC1的法向量为=(0,2,0),∴cos<n,>==-由图可得二面角B-CD-C1为钝角,∴二面角B-CD-C1的余弦值为-(3)证明平面BCD的法向量为n=(2,-1,-4),∵G(0,2,1),F(0,0,2),=(0,-2,1),∴n=-2,∴n与不垂直,∴FG与平面BCD不平行且不在平面BCD内,∴FG与平面BCD相交.3.解 (1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>=因此所求的角为60°.4.解以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=(a,0,1),(1)证明:=-0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n,n,得取x=1,得平面B1AE的一个法向量n=要使DP∥平面B1AE,只要n,有-az0=0,解得z0=又DP⊄平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=5.(1)证明设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos<n,p>=由题知二面角B-PD-A为锐角,所以它的大小为(3)解由题意知M,C(2,4,0),设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|=所以直线MC与平面BDP所成角的正弦值为6.(1)证明因为AB是直径,所以BC⊥AC.因为CD⊥平面ABC,所以CD⊥BC.因为CD∩AC=C,所以BC⊥平面ACD.因为CD∥BE,CD=BE,所以四边形BCDE是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB×tan∠EAB=4=1.由(1)知V C-ADE=V E-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则取n1=(1,0,2).设平面ABE的法向量为n2=(x,y,z),则取n2=(1,1,0),所以cos<n1,n2>=可以判断<n1,n2>与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-二、思维提升训练7.解如题图甲所示,因为BO是梯形ABCD的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OP⊥OC.而OB⊥OP,OB⊥OD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)证明:设E(x,0,1-x),其中0≤x≤1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)·(-1)=0,解得x=2,这与0≤x≤1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),,所以n=0,n=0,即令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos <,n>|=所以PD与平面CDE所成角的正弦值为8.解∵平面PAD⊥平面ABCD,且∠PAD=90°,∴PA⊥平面ABCD,而四边形ABCD是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又不共线,共面.∵PB⊄平面EFG,∴PB∥平面EFG.********灿若寒星竭诚为您提供优质文档*********灿若寒星(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=,||==2,∴cos <>=因此,异面直线EG与BD 所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m ,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离d=,即(2-m)2=,∴m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ 的距离为。

【K12教育学习资料】新课标2018届高考数学二轮复习专题五立体几何专题能力训练15立体几何中的向量

【K12教育学习资料】新课标2018届高考数学二轮复习专题五立体几何专题能力训练15立体几何中的向量

专题能力训练15 立体几何中的向量方法能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.3.(2017山东,理17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由. 5.(2017北京,理16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M 在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC ∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB∥平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.参考答案专题能力训练15立体几何中的向量方法能力突破训练1.解依题意,OF⊥平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则即-不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则即-不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以-,进而有H-,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,AO⊂平面AEF,所以AO⊥平面EFCB,所以AO⊥BE.(2)解取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB,又OG⊂平面EFCB,所以OA⊥OG.如图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a), B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则即---令z=1,则x=,y=-1.于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos<n,p>==-由题知二面角F-AE-B为钝角,所以它的余弦值为-(3)解因为BE⊥平面AOC,所以BE⊥OC,即=0.因为=(a-2,(a-2),0),=(-2,(2-a),0),所以=-2(a-2)-3(a-2)2.由=0及0<a<2,解得a=3.解(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM=-=2在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.-由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>=因此所求的角为60°.4.解以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),--=(a,0,1),(1)证明=-0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n,n,得取x=1,得平面B1AE的一个法向量n=--要使DP∥平面B1AE,只要n,有-az0=0,解得z0=又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP=5.(1)证明设AC ,BD 交点为E ,连接ME.因为PD ∥平面MAC ,平面MAC ∩平面PDB=ME ,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点. 所以M 为PB 的中点.(2)解取AD 的中点O ,连接OP ,OE.因为PA=PD ,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD ,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD. 如图建立空间直角坐标系O-xyz ,则P (0,0, ),D (2,0,0),B (-2,4,0),=(4,-4,0), =(2,0,- ).设平面BDP 的法向量为n =(x ,y ,z ),则即 - - 令x=1,则y=1,z=于是n =(1,1, 平面PAD 的法向量为p =(0,1,0). 所以cos <n ,p >=由题知二面角B-PD-A 为锐角,所以它的大小为(3)解由题意知M - ,C (2,4,0), -设直线MC 与平面BDP 所成角为α, 则sin α=|cos <n , >|=所以直线MC 与平面BDP 所成角的正弦值为6.(1)证明因为AB 是直径,所以BC ⊥AC.因为CD ⊥平面ABC ,所以CD ⊥BC. 因为CD ∩AC=C ,所以BC ⊥平面ACD. 因为CD ∥BE ,CD=BE ,所以四边形BCDE 是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB×tan∠EAB=4=1.由(1)知V C-ADE=V E-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则即-取n1=(1,0,2).设平面ABE的法向量为n2=(x,y,z),则即-取n2=(1,1,0),所以cos<n1,n2>=可以判断<n1,n2>与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-思维提升训练7.解如题图甲所示,因为BO是梯形ABCD的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OP⊥OC.而OB⊥OP,OB⊥OD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)设E(x,0,1-x),其中0≤x≤1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)·(-1)=0,解得x=2,这与0≤x≤1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),-,所以n=0,n=0,即--令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos<,n>|=所以PD与平面CDE所成角的正弦值为8.解∵平面PAD⊥平面ABCD,且∠PAD=90°,∴PA⊥平面ABCD,而四边形ABCD是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又与不共线,与共面.∵PB⊄平面EFG,∴PB∥平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=-,||=-=2,∴cos<>=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则--令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离d=-,-即(2-m)2=,∴m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ的距离为。

高考数学压轴专题人教版备战高考《空间向量与立体几何》知识点训练含答案

高考数学压轴专题人教版备战高考《空间向量与立体几何》知识点训练含答案

高考数学《空间向量与立体几何》练习题一、选择题1.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ; ②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值; ④AEF ∆的面积与BEF ∆的面积相等, A .4 B .3C .2D .1【答案】B 【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确 考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质2.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】【分析】先还原几何体,再根据锥体体积公式求结果. 【详解】几何体为一个三棱锥,高为33,底为一个直角三角形,直角边分别为333,,所以体积为1127=33333=322V ⨯⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.3.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .34 B .234C .517D .317【答案】D 【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =.在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D 【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.4.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .2⎡⎣B .3⎡⎣C .322⎣D .622⎣ 【答案】D 【解析】 【分析】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t=⎧⎨=-⎩,然后用空间两点间的距离公式求解即可.【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系, 则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y .()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-.所以()2221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r当12t =时,min 62AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 所以62AP ≤≤u u ur故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.5.《九章算术》是中国古代的数学瑰宝,其第五卷商功中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”翻译成现代汉语就是:今有三面皆为等腰梯形,其他两侧面为直角三角形的五面体的隧道,前端下宽6尺,上宽一丈,深3尺,末端宽8尺,无深,长7尺(注:一丈=十尺).则该五面体的体积为( )A .66立方尺B .78立方尺C .84立方尺D .92立方尺【答案】C 【解析】 【分析】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,ADE BGH B CGHF V V V --=+,计算得到答案.【详解】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,故多面体的体积11()7332ADE BGH B CGHF V V V S AB CG HF --=+=⋅+⨯+⨯⨯直截面 111736(42)7384232=⨯⨯⨯+⨯⨯⨯⨯=, 故选:C .【点睛】本题考查了几何体体积的计算,意在考查学生的计算能力和空间想象能力.6.如图,棱长为1的正方体1111ABCD A B C D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B 2C 2D 3【答案】B 【解析】 【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA u u u u r,利用点到平面距离的向量公式即得解.【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=--u u u u r由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD I1A D ∴⊥平面11ABC D故平面11ABC D 的一个法向量为:1(1,0,1)DA =u u u u rO ∴到平面11ABC D 的距离为:1111||224||2OD DA d DA ⋅===u u u u r u u u u ru u u u r 故选:B 【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.7.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A.3B.6C.4D【答案】B 【解析】 【分析】设1AA c=u u u v v,AB a =u u u vv,AC b =u u u v v,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v,即可得所求角的余弦值. 【详解】设棱长为1,1AA c=u u u v v,AB a =u u u v v ,AC b =u u u v v由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v又1AB ===u u u v1BC ===u u u u v111111cos ,6AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u vu u u v u u u u v u u u v u u u u v即异面直线1AB 与1BC 本题正确选项:B 【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.8.在ABC ∆中,设BAC α∠=,CA 与CB 所成的角是β,绕直线AC 将AB 旋转至AB ',则在所有旋转过程中,关于AB '与BC 所成的角γ的说法正确的是( )A .当4παβ-≥时,[],γαβαβ∈-+B .当4παβ-<-时,[],γβααβ∈-+C .当4παβ+≥时,[],γαβαβ∈-+D .当4παβ+<时,,γαβαβ∈⎡-+⎤⎣⎦ 【答案】D 【解析】 【分析】首先理解异面直线所成的角的范围是0,2πγ⎛⎤∈ ⎥⎝⎦,排除选项A,B,C,对于D 可根据AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,再将异面直线所成的角,转化为相交直线所成的角,判断最大值和最小值. 【详解】因为γ是异面直线所成的角,所以0,2πγ⎛⎤∈ ⎥⎝⎦A.当4παβ-≥时,αβ+的范围有可能超过2π,比如,3,46ππαβ==,所以不正确; B.当4παβ-<-时,当3,46ππβα==,此时[],γβααβ∈-+,也不正确; C.当4παβ+≥,当3,46ππαβ==,此时[],γαβαβ∈-+,故也不正确; D. 4παβ+<时,AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,如图,过点A 作BC 的平行线AD ,且CAD β∠=,'AB 与BC 所成的角γ转化为AB '与AD 所成的角,由图象可知,当AB '是AB 时,角最大,为αβ+,当AB '在平面ABC 内时,不与AB 重合时,角最小,此时为αβ-故选:D 【点睛】本题考查异面直线所成的角,重点考查轨迹,数形结合分析问题的能力,属于中档题型,本题的关键是判断,并画出AB 绕AC 旋转,形成以AC 为轴的圆锥.9.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .2305 C .275D .475【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B 【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.10.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( )A .643π B .8316ππ+C .28πD .8216ππ+【答案】B 【解析】 【分析】结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】结合三视图,还原直观图,得到故体积22221183242231633V r h r l πππππ=⋅+⋅=⋅+⋅⋅=+,故选B . 【点睛】本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.11.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是( )A .m l ⊥,m β⊂,l α⊥B .m l ⊥,l αβ=I ,m α⊂C .//m l ,m α⊥,l β⊥D .l α⊥,//m l ,//m β【答案】D 【解析】【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断. 【详解】对于A ,m l ⊥,m β⊂,l α⊥,则//αβ或α,β相交,故A 错误; 对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,由因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确. 故选:D 【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.12.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”.题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)( )A .441斛B .431斛C .426斛D .412斛【答案】A 【解析】 【分析】由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.由体积计算公式即可得出. 【详解】解:由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.∴体积1171278127142V =⨯⨯⨯+⨯⨯=, ∴粮仓可以储存的粟米7144411.62=≈斛.故选:A .13.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( ) A .若,与所成的角相等,则B .若,,则C .若,,则D .若,,则【答案】C 【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系14.已知底面是等腰直角三角形的三棱锥P -ABC 的三视图如图所示,俯视图中的两个小三角形全等,则( )A .PA ,PB ,PC 两两垂直 B .三棱锥P -ABC 的体积为83C .||||||6PA PB PC ===D .三棱锥P -ABC 的侧面积为35【答案】C 【解析】 【分析】根据三视图,可得三棱锥P -ABC 的直观图,然后再计算可得.解:根据三视图,可得三棱锥P -ABC 的直观图如图所示,其中D 为AB 的中点,PD ⊥底面ABC . 所以三棱锥P -ABC 的体积为114222323⨯⨯⨯⨯=, 2AC BC PD ∴===,2222AB AC BC ∴=+=,||||||2DA DB DC ∴===()22||||||226,PA PB PC ∴===+=222PA PB AB +≠Q ,PA ∴、PB 不可能垂直,即,PA ,PB PC 不可能两两垂直,1222222PBAS ∆=⨯=Q ()22161252PBC PAC S S ∆∆==-=Q∴三棱锥P -ABC 的侧面积为2522故正确的为C. 故选:C. 【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.15.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4πC .512π D .2π 【答案】C 【解析】 【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x∠=≤≤+-,即可求出33cos 123QPM ∠∈⎣⎦,,进而求出结果.取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-, 在正四面体A BCD -中,易知PQ MQ =, 所以在等腰三角形PMQ 中,()2cos 0442QPM x x x∠=≤≤+-所以33cos 123QPM ∠∈⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C. 【点睛】本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.16.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A 6B 6C 3D 3【答案】A 【解析】 【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且1136222BDE S BD OE ∆==⨯⨯=g , 即α截该正方体所得截面图形的面积为6. 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.17.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为13三棱柱的高为23 A .323πB .163πC .83π D .643π【答案】A 【解析】 【分析】求得该直三棱柱的底面外接圆直径为2221(3)2r =+=,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解. 【详解】由题意可得该直三棱柱的底面外接圆直径为2221(3)21r r =+=⇒=, 根据球的性质,可得外接球的直径为22222(2)2(23)4R r h =+=+=,解得2R =,所以该三棱柱的外接球的体积为343233V R ππ==,故选A. 【点睛】本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.18.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A .152πB .12πC .112π D .212π【答案】A 【解析】 【分析】由三视图可知,该几何体为由18的球体和14的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可. 【详解】由三视图可知,该几何体为由18的球体和14的圆锥体组成, 所以所求几何体的体积为11+84V V V =球圆锥,因为31149=3=8832V ππ⨯⨯球, 221111=34344312V r h πππ⨯⨯=⨯⨯⨯=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152π. 故选:A 【点睛】本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32 D .52【答案】C 【解析】 【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可. 【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点, 俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.20.由两个14圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为( )A .π3B .π2C .πD .2π【答案】C 【解析】 【分析】根据题意可知,圆柱的底面半径为1,高为2,利用圆柱的体积公式即可求出结果。

高考数学压轴专题新备战高考《空间向量与立体几何》知识点训练附答案

高考数学压轴专题新备战高考《空间向量与立体几何》知识点训练附答案

数学《空间向量与立体几何》复习资料一、选择题1.一个几何体的三视图如图所示,则该几何体的体积为A .383+B .823+C .283D .10【答案】A【解析】【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可.【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+232832V =⨯⨯=, 故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( )A .272πB .283πC .263πD .252π 【答案】B【解析】【分析】计算出ABC ∆的外接圆半径r ,利用公式222PA R r ⎛⎫=+ ⎪⎝⎭可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积.【详解】ABC∆的外接圆半径为2332sin3ABrπ==,PA⊥Q底面ABC,所以,三棱锥P ABC-的外接球半径为222223211233PAR r⎛⎫⎛⎫=+=+=⎪⎪ ⎪⎝⎭⎝⎭,因此,三棱锥P ABC-的外接球的表面积为2221284433Rπππ⎛⎫=⨯=⎪⎪⎝⎭.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.3.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为1111711132228⎛⎫-⨯⨯+⨯⨯= ⎪⎝⎭ 故选B 点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.4.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B【解析】【分析】画出几何体的直观图,利用三视图的数据求解表面积即可.【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B .【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D【解析】【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解【详解】如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M =,16C M =,1'41C N =21122''N M M C N C =+,即1'90N MC ∠=︒ 故选D【点睛】本题考查异面直线的求法,属于基础题6.已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的是()A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β【答案】D【解析】【分析】A由线面平行的性质定理判断.B根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C根据线面垂直的定义判断.D根据线面垂直的判定定理判断.【详解】A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;故选:D.【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.7.《九章算术》卷五商功中有如下问题:今有刍甍(音meng,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )A.3 B.5 C.6 D.12【答案】B【解析】【分析】首先由三视图还原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积.【详解】由三视图换元为如图所示的几何体,该几何体分为三部分,中间一部分是直棱柱,两侧是相同的三棱锥,并且三棱锥的体积113113⨯⨯⨯=,中间棱柱的体积131232V =⨯⨯⨯= , 所以该刍甍的体积是1235⨯+=. 故选:B【点睛】本题考查组合体的体积,重点考查空间想象能力和计算能力,属于中档题型.8.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .33B .13C .5829D .38729【答案】C【解析】【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值.【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得22442AB =+=2242AC BC CD AB ⋅=== 由勾股定理得2222115229CF CC C F =+=+=2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得((22229222958cos 2922922CDF +-∠==⨯⨯. 故选:C.【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.9.如图,棱长为1的正方体1111ABCD A B C D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D .32【答案】B【解析】【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA u u u u r ,利用点到平面距离的向量公式即得解.【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=--u u u u r 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD I1A D ∴⊥平面11ABC D 故平面11ABC D 的一个法向量为:1(1,0,1)DA =u u u u r O ∴到平面11ABC D 的距离为:1111||224||2OD DA d DA ⋅===u u u u r u u u u r u u u u r 故选:B【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.10.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A 30B 230C 27D 47 【答案】B【解析】【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值.【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值 此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.11.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件.【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B.【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.12.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )A .36πB .64πC .100πD .144π 【答案】C【解析】【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解. 【详解】 解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC == 由1132322732DE ⨯⨯=,解得9DE =, 则21AE EF DE==.∴球O 的直径为10DE EF +=, 则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=. 故选C . 【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.13.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4π C .512π D .2π 【答案】C 【解析】 【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x∠=≤≤+-,即可求出33cos QPM ⎡⎤∠∈⎢⎥⎣⎦,,进而求出结果.【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-, 在正四面体A BCD -中,易知PQ MQ =, 所以在等腰三角形PMQ 中,()2cos 0442QPM x x x∠=≤≤+-所以33cos QPM ∠∈⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C. 【点睛】本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.14.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( ) A .13B 3C 22D 6 【答案】C 【解析】 【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF nEF n EF n ⋅〈〉=u u u r ru u u r r u u u r r ,即可得出答案.【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系, 又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点所以(0,0,2),(2,2,0)E F故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r.设平面ACD 的法向量为(,,)n x y z =r ,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 令1,x = 则1y z ==;所以(1,1,1)n =r1cos ,3||||332EF n EF n EF n ⋅〈〉===⨯u u u r ru u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r所以222cos 1sin 3θθ=-= 故选:C 【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.15.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为13,此三棱柱的高为23 A .323πB .163πC .83π D .643π【答案】A 【解析】 【分析】求得该直三棱柱的底面外接圆直径为2221(3)2r =+=,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解. 【详解】由题意可得该直三棱柱的底面外接圆直径为2221(3)21r r =+=⇒=, 根据球的性质,可得外接球的直径为22222(2)2(23)4R r h =+=+=,解得2R =,所以该三棱柱的外接球的体积为343233V R ππ==,故选A. 【点睛】本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16.已知直线和不同的平面,下列命题中正确的是A .//m m αβαβ⊥⎫⇒⎬⊥⎭B .m m αββα⊥⎫⇒⊥⎬⊂⎭C .//////m m ααββ⎫⇒⎬⎭ D .////m m αββα⎫⇒⎬⊂⎭【答案】D 【解析】 【分析】对各个选项逐一进行分析即可 【详解】A ,若αβ⊥,m β⊥,则有可能m α⊂,故A 错误B ,若αβ⊥,m α⊂,则m 与β不一定垂直,可能相交或平行,故B 错误C ,若//m α,//m β则推不出//αβ,面面平行需要在一个面内找出两条相交线与另一个平面平行,故C 错误D ,若//αβ,m α⊂,则有//m β,故D 正确故选D 【点睛】本题考查了线面平行与面面平行的判断和性质,在对其判定时需要运用其平行的判定定理或者性质定理,所以要对课本知识掌握牢固,从而判断结果17.已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是边OA ,CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量OA u u u v ,OB uuu v ,OC u u u v 表示向量OG u u u v是( )A .2233OG OA OB OC =++u u u v u u u v u u u v u u u vB .122233OG OA OB OC u u u v u u u v u u u v u u u v=++C.111633 OG OA OB OC =++u u u vu u u v u u u v u u u vD.112633OG OA OB OC=++u u u v u u u v u u u v u u u v【答案】C【解析】【分析】根据所给的图形和一组基底,从起点O出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论.【详解】2OG OM MG OM MN3=+=+u u u r u u u u r u uQu u r u u u u r u u u u r,()()2121111OM MO OC CN OM OC OB OC OA OB OC 3333633u u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r=+++=++-=++111OG OA OB OC633u u u r u u u r u u u r u u u r∴=++ ,故选:C.【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程.18.如图1,已知正方体ABCD-A1B1C1D1的棱长为2,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q-BMN的正视图如图2所示时,三棱锥俯视图的面积为A.2 B.1C.32D.52【答案】C【解析】【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可. 【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点, 俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.19.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,)31x -,则可得正六棱柱容器的容积为()())()3233921224V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -, 所以正六棱柱容器的容积为()()()()3233921224V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<,所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.20.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( ) A .6π B .12πC .32πD .48π【答案】B 【解析】 【分析】先作出几何图形,确定四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积. 【详解】由题得几何体原图如图所示,其中SA ⊥平面ABC,BC ⊥平面SAB,SA=AB=BC=2, 所以2,3SC =设SC 中点为O,则在直角三角形SAC 中,3, 在直角三角形SBC 中,OB=132SC = 所以3所以点O所以四面体外接球的表面积为4=12ππ.故选:B【点睛】本题主要考查四面体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理的能力.。

高考数学压轴专题新备战高考《空间向量与立体几何》知识点总复习含答案

高考数学压轴专题新备战高考《空间向量与立体几何》知识点总复习含答案

【最新】数学《空间向量与立体几何》期末复习知识要点一、选择题1.若a ,b 是不同的直线,α,β是不同的平面,则下列四个命题:①若a P α,b β∥,a b ⊥r r,则αβ⊥;②若a P α,b β∥,a b ∥,则αβ∥;③若a α⊥,b β⊥,a b ∥,则αβ∥;④若a P α,b β⊥,a b ⊥r r,则αβ∥.正确的个数为( ) A .0 B .1C .2D .3【答案】B 【解析】 【分析】对每一个选项逐一分析得解. 【详解】命题①中α与β还有可能平行或相交; 命题②中α与β还有可能相交; 命题④中α与β还有可能相交;∵a b P ,a α⊥,∴b α⊥,又b β⊥,∴αβP .故命题③正确. 故选B . 【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平和空间想象能力.2.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6623)+B .6(8823)+C .8(632)+D .6(8832)+ 【答案】A 【解析】 【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可. 【详解】由题图可知,该鲁班锁玩具可以看成是一个棱长为2+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,则该几何体的表面积为2116(248222S ⎡=⨯+-⨯+⨯⨯⎢⎣8(6=+.故选:A. 【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.3.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥β B .若α⊥β,n ∥α,则n ⊥β C .若m ∥α,m ∥β,则α∥β D .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β 【答案】D 【解析】 【分析】根据直线、平面平行垂直的关系进行判断. 【详解】由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误; 在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误; 在D 中,若m ⊥α,m ⊥β,则α∥β, ∴若n ⊥α,则n ⊥β,故D 正确. 故选:D. 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.4.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案. 【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂, 当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r成立, 反之当a b ⊥r r时,此时a 与l 不一定是垂直的,所以a l ⊥是a b ⊥r r的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.5.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163【答案】D 【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.6.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .3 B .13C .58 D .387【答案】C 【解析】 【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值. 【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得224442AB =+=,所以2242AC BC CD AB ⋅===. 由勾股定理得2222115229CF CC C F =+=+=,2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得())()22229222958cos 22922CDF +-∠==⨯⨯.故选:C. 【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.7.如图是正方体的平面展开图,则在这个正方体中: ①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60︒角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4【答案】B 【解析】 【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案. 【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确. ∴正确命题的个数是2个. 故选:B . 【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.8.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A 30B 230C 27D 47【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B 【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.9.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”.题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)( )A .441斛B .431斛C .426斛D .412斛【答案】A 【解析】 【分析】由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.由体积计算公式即可得出. 【详解】解:由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.∴体积1171278127142V =⨯⨯⨯+⨯⨯=, ∴粮仓可以储存的粟米7144411.62=≈斛.故选:A .10.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( ) A .若,与所成的角相等,则B .若,,则C .若,,则D .若,,则【答案】C 【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系11.已知正三棱柱111ABC A B C -的所有棱长都相等,D 是11A B 的中点,则AD 与平面11BCC B 所成角的正弦值为( )A 5B 25C 10D 15 【答案】D 【解析】 【分析】先找出直线AD 与平面11BCC B 所成角,然后在1B EF V 中,求出1sin EB F ∠,即可得到本题答案. 【详解】如图,取AB 中点E ,作EF BC ⊥于F ,连接11,B E B F ,则1EB F ∠即为AD 与平面11BCC B 所成角. 不妨设棱长为4,则1,2BF BE ==,13,25EF B E ∴=1315sin 1025EB F ∴∠==. 故选:D 【点睛】本题主要考查直线与平面所成角的求法,找出线面所成角是解决此类题目的关键.12.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( ) A .2παββγ+<,> B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,<【答案】C 【解析】 【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ,由最小角定理得αβ>,排除A 和B ; 由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,∴tan tan ABBNA ANγ=∠=, 而tan ABBVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠, ∴2MVA πβ+∠=,∵tan AMMVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠,∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.13.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==P ABC -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可. 【详解】在ABC V 中,23AB AC ==23BAC π∠=,可得6ACB π∠=,则ABC V 的外接圆的半径2323π2sin 2sin 6AB r ACB ===,取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心,则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.14.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与1A B 所成角的余弦值为( )A 11B 11C 211D 11【答案】B【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B,()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r , 设异面直线AE 与1A B 所成角为θ,则异面直线AE 与1A B 所成角的余弦值为:1111cos 222218AE A B AE A Bθ⋅===⋅⋅u u u r u u u r u u u r u u u r . 故选:B .【点睛】本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r ,2l 的方向向量为b r ,则异面直线12,l l 所成角的余弦值为a b a b⋅⋅r r r r .15.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .122πB .12πC .82πD .10π【答案】B 【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为22的圆,且高为2,所以其表面积为222)22212S πππ=+=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.16.在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,15AA =,垂直于1AA 的截面分别与面对角线1D A ,1B A ,1B C ,1D C 相交于四个不同的点E ,F ,G ,H ,则四棱锥1A EFGH -体积的最大值为( ).A .83B .1258C .12825D .64081【答案】D【解析】【分析】由直棱柱的特点和底面为正方形可证得四边形EFGH 为矩形,设点1A 到平面EFGH 的距离为()501t t <<,可表示出,EF FG ,根据四棱锥体积公式将所求体积表示为关于t 的函数,利用导数可求得所求的最大值.【详解】Q 四棱柱1111ABCD A B C D -为直四棱柱,1AA ∴⊥平面ABCD ,1AA ⊥平面1111D C B A ∴平面//EFGH 平面ABCD ,平面//EFGH 平面1111D C B A ,由面面平行性质得:11EF //B D //GH ,EH //AC//FG ,又11B D AC ⊥,EF FG ∴⊥,∴四边形EFGH 为矩形.设点1A 到平面EFGH 的距离为()501t t <<,1142AC B D ==Q )421EF t ∴=-,42FG t =,∴四棱锥1A EFGH -的体积()()231160532133V t t t t t =⨯⨯-=-, ()2160233V t t '∴=-,∴当20,3t ⎛⎫∈ ⎪⎝⎭时,0V '>,当2,13t ⎛⎫∈ ⎪⎝⎭时,0V '<, ∴当23t =时,max 16048640392781V ⎛⎫=⨯-= ⎪⎝⎭. 故选:D .【点睛】本题考查立体几何中的体积最值的求解问题,关键是能够将所求四棱锥的体积表示为关于某一变量的函数的形式,进而利用导数来求解函数最值,从而得到所求体积的最值.17.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A .152πB .12πC .112πD .212π 【答案】A【解析】【分析】 由三视图可知,该几何体为由18的球体和14的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可.【详解】 由三视图可知,该几何体为由18的球体和14的圆锥体组成, 所以所求几何体的体积为11+84V V V =球圆锥, 因为31149=3=8832V ππ⨯⨯球, 221111=34344312V r h πππ⨯⨯=⨯⨯⨯=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152π. 故选:A【点睛】本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.18.已知,αβ是不同的两个平面,直线a α⊂,直线b β⊂,条件:p a 与b 没有公共点,条件://q αβ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】∵a 与b 没有公共点时,a 与b 所在的平面β可能平行,也可能相交(交点不在直线b 上)∴命题p :a 与b 没有公共点⇒命题q :α∥β,为假命题又∵α∥β时,a 与b 平行或异面,即a 与b 没有公共点∴命题q :α∥β⇒命题p :a 与b 没有公共点,为真命题;故p 是q 的必要不充分条件故选B19.如图所示,在平行六面体ABCD A B C D ''''-中1AB =,2AD =,3AA '=,90BCD ∠=︒,60BAA DAA ''∠=∠=︒,则AC '的长为( )A 13B 23C 33D 43【答案】B【解析】【分析】 由向量AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r 得:()()22AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r ,展开化简,再利用向量的数量积,便可得出答案.【详解】 AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r Q ,()()()()()222222()AC AB BC CC AB BC CC AB BC AB CC BC CC '''''∴=++=+++⋅+⋅+⋅u u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r uu u r u u u u r u u u r u u u u r ()222291232(013cos6023cos60)142232AC ︒︒'∴=+++⨯+⨯+⨯=+⨯=u u u u r . 23AC '∴=u u u u r ,即AC '23故选:B.【点睛】 本题主要考查了空间向量在立体几何中的应用,掌握向量法求线段长的方法是解题关键,属于中档题目.20.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( )A .6πB .12πC .32πD .48π【答案】B【解析】【分析】先作出几何图形,确定四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积.【详解】由题得几何体原图如图所示,其中SA⊥平面ABC,BC⊥平面SAB,SA=AB=BC=2,所以2,3SC=设SC中点为O,则在直角三角形SAC中,3,在直角三角形SBC中,OB=13 2SC=所以3所以点O3所以四面体外接球的表面积为43=12ππ.故选:B【点睛】本题主要考查四面体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理的能力.。

高考数学压轴专题人教版备战高考《空间向量与立体几何》知识点总复习含答案

高考数学压轴专题人教版备战高考《空间向量与立体几何》知识点总复习含答案

数学《空间向量与立体几何》复习资料一、选择题1.一个几何体的三视图如图所示,则该几何体的体积为A.2383+B.823+C.283D.10【答案】A【解析】【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可.【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+232832V=⨯⨯⨯⨯=+,故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.2.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE -,该几何体的体积为1111711132228⎛⎫-⨯⨯+⨯⨯= ⎪⎝⎭ 故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.3.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A 7B .3C .3D .2【答案】A【解析】【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就是最小值.【详解】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值, Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o2211111111132cos 13223()72MD A D A M A D A M MA D ∴=+-∠=+-⨯⨯-⋅⨯=故选A .【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.4.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .2⎡⎣B .3⎡⎣C .322⎣D .622⎣ 【答案】D【解析】【分析】 以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t =⎧⎨=-⎩,然后用空间两点间的距离公式求解即可. 【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y .()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r 且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-. 所以()2221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 6AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 所以622AP ≤≤u u u r 故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.5.《九章算术》卷五商功中有如下问题:今有刍甍(音meng ,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )A .3B .5C .6D .12【答案】B【解析】【分析】首先由三视图还原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积.【详解】由三视图换元为如图所示的几何体,该几何体分为三部分,中间一部分是直棱柱,两侧是相同的三棱锥,并且三棱锥的体积113113⨯⨯⨯=,中间棱柱的体积131232V =⨯⨯⨯= , 所以该刍甍的体积是1235⨯+=.故选:B【点睛】本题考查组合体的体积,重点考查空间想象能力和计算能力,属于中档题型.6.如图,棱长为1的正方体1111ABCD A B C D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D 3【答案】B【解析】【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA u u u u r ,利用点到平面距离的向量公式即得解.【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=--u u u u r 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD I1A D ∴⊥平面11ABC D 故平面11ABC D 的一个法向量为:1(1,0,1)DA =u u u u r O ∴到平面11ABC D 的距离为:1111||224||2OD DA d DA ⋅===u u u u r u u u u r u u u u r 故选:B【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.7.已知圆锥的母线与底面所成的角等于60°,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( )A .4:3B .3:4C .16:9D .9:16【答案】C【解析】【分析】由圆锥的母线与底面所成的角等于60°,可知过高的截面为等边三角形,设底面直径,可以求出其表面积,根据圆锥内接于球O ,在高的截面中可以求出其半径,可求其表面积,可求比值.【详解】设圆锥底面直径为2r ,圆锥的母线与底面所成的角等于60°,则母线长为2r ,高为3r , 则圆锥的底面积为:2r π,侧面积为1222r r π⋅, 则圆锥的表面积为2212232r r r r πππ+⋅=, 该圆锥内接于球O ,则球在圆锥过高的截面中的截面为圆,即为边长为2r 的等边三角形的内切圆,则半径为32R r =,表面积为221643r R ππ=, 则球O 与圆锥的表面积之比等于2216:316:93r r ππ=, 故选:C .【点睛】本题考查圆锥的性质,以及其外接球,表面积,属于中档题.8.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 【答案】C 【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333V ππ+=⨯⨯+⨯⨯⨯=, 故选C.9.棱长为2的正方体被一个平面所截,得到几何体的三视图如图所示,则该截面的面积为( )A .92B .922C .32D .3【答案】A【解析】【分析】由已知的三视图可得:该几何体是一个正方体切去一个三棱台,其截面是一个梯形,分别求出上下底边的长和高,代入梯形面积公式可得答案. 【详解】由已知的三视图可得:该几何体是一个正方体切去一个三棱台ABC DEF -,所得的组合体,其截面是一个梯形BCFE , 22112+=22222+= 222322()2+= 故截面的面积1329(222)222S =⨯=, 故选:A .【点睛】 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.10.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .12π+B .136π+C .12π+D .1233π+ 【答案】B【解析】【分析】根据三视图知该几何体是三棱锥与14圆锥体的所得组合体,结合图中数据计算该组合体的体积即可.【详解】解:根据三视图知,该几何体是三棱锥与14圆锥体的组合体, 如图所示;则该组合体的体积为21111111212323436V ππ=⨯⨯⨯⨯+⨯⨯⨯=+; 所以对应不规则几何体的体积为136π+. 故选B .【点睛】本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.11.以下说法正确的有几个( )①四边形确定一个平面;②如果一条直线在平面外,那么这条直线与该平面没有公共点;③过直线外一点有且只有一条直线与已知直线平行;④如果两条直线垂直于同一条直线,那么这两条直线平行;A .0个B .1个C .2个D .3个【答案】B【解析】【分析】对四个说法逐一分析,由此得出正确的个数.【详解】①错误,如空间四边形确定一个三棱锥. ②错误,直线可能和平面相交. ③正确,根据公理二可判断③正确. ④错误,在空间中,垂直于同一条直线的两条直线可能相交,也可能异面,也可能平行.综上所述,正确的说法有1个,故选B.【点睛】本小题主要考查空间有关命题真假性的判断,属于基础题.12.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值;④AEF ∆的面积与BEF ∆的面积相等,A .4B .3C .2D .1 【答案】B【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质13.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥;②若//αβ,m α⊥,则m β⊥;③若//m α,//n α,则//m n ;④若m α⊥,αβ⊥,则//m β.其中真命题的序号为( )A .①和②B .②和③C .③和④D .①和④ 【答案】A【解析】【分析】逐一分析命题①②③④的正误,可得出合适的选项.【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确;对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误.故选:A.【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.14.如图,正三棱柱(底面是正三角形的直棱柱)111ABC A B C -的底面边长为a ,侧棱长为2a ,则1AC 与侧面11ABB A 所成的角是( )A .30°B .45︒C .60︒D .90︒【答案】A【解析】【分析】 以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法能求出1AC 与侧面11ABB A 所成的角.【详解】解:以C为原点,在平面ABC中,过点C作BC的垂线为x轴,CB为y轴,1CC为z 轴,建立空间直角坐标系,则3(aA,2a,0),1(0C,0,2)a,13(aA,2a,2)a,(0B,a,0),13(aAC=-u u u u r,2a-,2)a,3(aAB=-u u u r,2a,0),1(0AA=u u u r,0,2)a,设平面11ABB A的法向量(n x=r,y,)z,则13·022·20a an AB x yn AA az⎧=-+=⎪⎨⎪==⎩u u u vvu u u vv,取1x=,得(1n=r,3,0),设1AC与侧面11ABB A所成的角为θ,则111||31sin|cos,|2||||23n AC an ACn AC aθ=<>===r u u u u rr u u u u r gr u u u u rg,30θ∴=︒,1AC∴与侧面11ABB A所成的角为30°.故选:A.【点睛】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.15.已知,m l是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是()A.,,m l m lβα⊥⊂⊥B.,,m l l mαβα⊥⋂=⊂C.//,,m l m lαβ⊥⊥D.,//,//l m l mαβ⊥【答案】D【解析】【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断.【详解】对于A ,m l ⊥,m β⊂,若l β⊥,则//αβ,故A 错误;对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.故选:D【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.16.已知三棱锥P ABC -中,PA PB PC ==,APB BPC CPA ∠>>∠,PO ⊥平面ABC 于O ,设二面角P AB O --,P BC O --,P CA O --分别为,,αβγ,则( ) A .αβγ>>B .γβα>>C .βαγ>>D .不确定【答案】A【解析】【分析】 D 为AB 中点,连接,DP DO ,故PD AB ⊥,计算sin cos 2POAPB a α=∠,sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠,得到大小关系. 【详解】如图所示:设PA PB PC a ===,D 为AB 中点,连接,DP DO ,故PD AB ⊥, PO ⊥平面ABC ,故PDO ∠为二面角P AB O --的平面角.cos 2APB PD a ∠=,sin cos 2PO PO APB PD a α==∠, 同理可得: sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠, APB BPC CPA ∠>∠>∠,故sin sin sin αβγ>>,故αβγ>>. 故选:A .【点睛】本题考查了二面角,意在考查学生的计算能力和空间想象能力.17.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A .1∶2B .1∶3C .1∶5D .3∶2【答案】C【解析】【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C .【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.18.已知ABC V 的三个顶点在以O 为球心的球面上,且2cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为146,则球O 的表面积为( ) A .36πB .16πC .12πD .163π 【答案】B【解析】【分析】根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积.【详解】 由余弦定理得22229122cos 26AB AC BC AB A AB AC AB +-+-===g ,解得22AB =, 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点,11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=.2416O S OA ππ∴=⋅=球.故选:B .【点睛】本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.19.在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,15AA =,垂直于1AA 的截面分别与面对角线1D A ,1B A ,1B C ,1D C 相交于四个不同的点E ,F ,G ,H ,则四棱锥1A EFGH -体积的最大值为( ).A .83B .1258C .12825D .64081【答案】D【解析】【分析】由直棱柱的特点和底面为正方形可证得四边形EFGH 为矩形,设点1A 到平面EFGH 的距离为()501t t <<,可表示出,EF FG ,根据四棱锥体积公式将所求体积表示为关于t 的函数,利用导数可求得所求的最大值.【详解】Q 四棱柱1111ABCD A B C D -为直四棱柱,1AA ∴⊥平面ABCD ,1AA ⊥平面1111D C B A ∴平面//EFGH 平面ABCD ,平面//EFGH 平面1111D C B A ,由面面平行性质得:11EF //B D //GH ,EH //AC//FG ,又11B D AC ⊥,EF FG ∴⊥,∴四边形EFGH 为矩形.设点1A 到平面EFGH 的距离为()501t t <<,1142AC B D ==Q )421EF t ∴=-,42FG t =,∴四棱锥1A EFGH -的体积()()231160532133V t t t t t =⨯⨯-=-, ()2160233V t t '∴=-,∴当20,3t ⎛⎫∈ ⎪⎝⎭时,0V '>,当2,13t ⎛⎫∈ ⎪⎝⎭时,0V '<, ∴当23t =时,max 16048640392781V ⎛⎫=⨯-= ⎪⎝⎭. 故选:D .【点睛】本题考查立体几何中的体积最值的求解问题,关键是能够将所求四棱锥的体积表示为关于某一变量的函数的形式,进而利用导数来求解函数最值,从而得到所求体积的最值.20.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( )A .6πB .12πC .32πD .48π【答案】B【解析】【分析】先作出几何图形,确定四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积.【详解】由题得几何体原图如图所示,其中SA⊥平面ABC,BC⊥平面SAB,SA=AB=BC=2,所以2,3SC=设SC中点为O,则在直角三角形SAC中,3,在直角三角形SBC中,OB=13 2SC=所以3所以点O3所以四面体外接球的表面积为43=12ππ.故选:B【点睛】本题主要考查四面体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理的能力.。

高考数学(理)二轮专题升级训练:专题5 第3讲 立体几何中的向量方法(含答案解析)[ 高考]

高考数学(理)二轮专题升级训练:专题5 第3讲 立体几何中的向量方法(含答案解析)[ 高考]

专题升级训练立体几何中的向量方法(时间:60分钟满分:100分)一、选择题(本大题共6小题,每小题6分,共36分)1.平面α的一个法向量n=(1,-1,0),则y轴与平面α所成的角的大小为()A. B.C. D.2.在二面角α-l-β中,平面α的法向量为n,平面β的法向量为m,若<n,m>=130°,则二面角α-l-β的大小为()A.50°B.130°C.50°或130°D.可能与130°毫无关系3.直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=,M是CC1的中点,则异面直线AB1与A1M所成的角为()A.60°B.45°C.30°D.90°4.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD,PD=AD=1,设点C到平面PAB的距离为d1,点B到平面PAC的距离为d2,则有()A.1<d1<d2B.d1<d2<1C.d1<1<d2D.d2<d1<15.过正方形ABCD的顶点A,引PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是()A.30°B.45°C.60°D.90°6.如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()二、填空题(本大题共3小题,每小题6分,共18分)7.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.8.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是.9.在空间直角坐标系中有棱长为a的正方体ABCD-A1B1C1D1,点M是线段DC1上的动点,则点M 到直线AD1距离的最小值是.三、解答题(本大题共3小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤)10.(本小题满分15分)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD=AD=2.(1)求PC与平面PBD所成的角;(2)在线段PB上是否存在一点E,使得PC⊥平面ADE?并说明理由.11.(本小题满分15分)(2013·浙江,理20)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.12.(本小题满分16分)如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点.(1)证明:AD⊥平面DEF;(2)求二面角P-AD-B的余弦值.##1.B2.C解析:因为二面角的范围是[0°,180°],由法向量的夹角与二面角的大小相等或互补,可知二面角的大小可能是130°也可能是50°.3.D解析:建立坐标系如图所示,易得M,A1(0,,0),A(0,),B1(1,0,0),∴=(1,-,-),.∴·=1×0+3-=0,∴,即AB1⊥A1M.4.D解析:∵CD∥平面PAB,∴C到平面PAB的距离等于D到平面PAB的距离.过D作DE⊥PA,则DE⊥平面PAB,故d1=DE=.B与D到平面PAC的距离相等.设AC∩BD=O,则平面PDO⊥平面PAC,∴d2等于D到PO的距离,可计算得d2=,∴d2<d1<1.5.B6.A解析:以D为原点,DA,DC分别为x,y轴建系如图:设M(x,y,0),设正方形边长为a,则P,C(0,a,0),则|MC|=,|MP|=.由|MP|=|MC|得x=2y,所以点M在正方形ABCD内的轨迹为一条直线y=x,故选A.7.解析:以D为坐标原点,为x轴,为y轴,为z轴,建立空间直角坐标系,如图所示.则A(1,0,0),M,C(0,1,0),N,∴.设直线AM与CN所成的角为θ,则cosθ=|cos<>|==.8.30°解析:如图所示,以O为原点建立空间直角坐标系O-xyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(-a,0,0),P,则=(2a,0,0),=(a,a,0).设平面PAC的法向量为n,可求得n=(0,1,1),则cos<,n>=.∴<,n>=60°,∴直线BC与平面PAC所成的角为90°-60°=30°.9.a解析:以D为原点建立空间直角坐标系(如原图所示),则A(a,0,0),D1(0,0,a).设M(0,x,x)(0≤x≤a),有=(-a,x,x),=(-a,0,a),则cos<>=,则点M到直线AD1的距离d为d=||·sin<>=·=,∴当x=时,d min=a.10.解:(1)连接AC,设AC∩BD=O,连接PO.因为PD⊥平面ABCD,CO⊂平面ABCD,所以PD⊥CO.由ABCD为正方形,知CO⊥BD.又PD∩BD=D,所以CO⊥平面PBD.所以∠CPO是PC与平面PBD所成的角.在Rt△POC中,sin∠CPO=,所以∠CPO=,即PC与平面PBD所成的角为.(2)建立如图所示的空间直角坐标系D-xyz.设线段PB上存在点E,使得PC⊥平面ADE.则存在实数λ,使得=λ(0≤λ≤1).因为P(0,0,2),B(2,2,0),所以=(2,2,-2),+λ=(0,0,2)+λ(2,2,-2)=(2λ,2λ,2-2λ).由题意,显然有AD⊥平面PCD,所以PC⊥AD.要使PC⊥平面ADE,只需再有,即·=0,即0·(2λ)+2·(2λ)-2(2-2λ) =0.解得λ=∈[0,1].故在线段PB上存在一点E(E为线段PB的中点),使得PC⊥平面ADE.11.方法一:(1)证明:取BD的中点O,在线段CD上取点F,使得DF=3FC,连接OP,OF,FQ,因为AQ=3QC,所以QF∥AD,且QF=AD.因为O,P分别为BD,BM的中点,所以OP是△BDM的中位线,所以OP∥DM,且OP=DM.又点M为AD的中点,所以OP∥AD,且OP=AD.从而OP∥FQ,且OP=FQ,所以四边形OPQF为平行四边形,故PQ∥OF.又PQ⊄平面BCD,OF⊂平面BCD,所以PQ∥平面BCD.(2)解:作CG⊥BD于点G,作CH⊥BM于点H,连接CH.因为AD⊥平面BCD,CG⊂平面BCD,所以AD⊥CG,又CG⊥BD,AD∩BD=D,故CG⊥平面ABD,又BM⊂平面ABD,所以CG⊥BM.又GH⊥BM,CG∩GH=G,故BM⊥平面CGH,所以GH⊥BM,CH⊥BM.所以∠CHG为二面角C-BM-D的平面角,即∠CHG=60°.设∠BDC=θ.在Rt△BCD中,CD=BD cosθ=2cosθ,CG=CD sinθ=2cosθsinθ,BG=BC sinθ=2sin2θ.在Rt△BDM中,HG=.在Rt△CHG中,tan∠CHG=.所以tanθ=.从而θ=60°.即∠BDC=60°.方法二:(1)证明:如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系Oxyz.由题意知A(0,,2),B(0,-,0),D(0,,0).设点C的坐标为(x0,y0,0).因为=3,所以Qy0,.因为M为AD的中点,故M(0,,1).又P为BM的中点,故P,所以.又平面BCD的一个法向量为u=(0,0,1),故·u=0.又PQ⊄平面BCD,所以PQ∥平面BCD.(2)解:设m=(x,y,z)为平面BMC的一个法向量.由=(-x0,-y0,1),=(0,2,1),知取y=-1,得m=.又平面BDM的一个法向量为n=(1,0,0),于是|cos<m,n>|=,即=3.①又BC⊥CD,所以·=0,故 (-x0,--y0,0)·(-x0,-y0,0)=0,即=2.②联立①,②,解得(舍去)或所以tan∠BDC=.又∠BDC是锐角,所以∠BDC=60°.12.解法一:(1)证明:取AD中点G,连接PG,BG,BD.因PA=PD,有PG⊥AD,在△ABD中,AB=AD=1,∠DAB=60°,有△ABD为等边三角形,因此BG⊥AD,BG∩PG=G,所以AD⊥平面PBG⇒AD⊥PB,AD⊥GB.又PB∥EF,得AD⊥EF,而DE∥GB得AD⊥DE,又FE∩DE=E,所以AD⊥平面DEF.(2)∵PG⊥AD,BG⊥AD,∴∠PGB为二面角P-AD-B的平面角.在Rt△PAG中,PG2=PA2-AG2=,在Rt△ABG中,BG=AB·sin 60°=,∴cos∠PGB==-.解法二:(1)证明:取AD中点为G,因为PA=PD,所以PG⊥AD.又AB=AD,∠DAB=60°,△ABD为等边三角形,因此,BG⊥AD,从而AD⊥平面PBG.延长BG到O且使得PO⊥OB,又PO⊂平面PBG,PO⊥AD,AD∩OB=G,所以PO⊥平面ABCD.以O为坐标原点,菱形的边长为单位长度,直线OB,OP分别为x轴,z轴,平行于AD的直线为y轴,建立如图所示空间直角坐标系.设P(0,0,m),G(n,0,0),则A,D.∵||=||sin 60°=,∴B,C,E,F.由于=(0,1,0),,得·=0,·=0,AD⊥DE,AD⊥FE,DE∩FE=E,∴AD⊥平面DEF.(2)∵,∴,=2,解之,得m=1,n=.取平面ABD的法向量n1=(0,0,-1),设平面PAD的法向量n2=(a,b,c),由·n2=0,得a--c=0,由·n2=0,得a+-c=0,取n2=,∴cos<n1,n2>==-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题能力训练15 立体几何中的向量方法一、能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.(2018北京,理16)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.5.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.二、思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB∥平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.专题能力训练15立体几何中的向量方法一、能力突破训练1.解依题意,OF⊥平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明:依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以,进而有H,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC,∴AC⊥BE,∴AC⊥平面BEF.(2)解由(1)知AC⊥EF,AC⊥BE,EF∥CC1.∵CC1⊥平面ABC,∴EF⊥平面ABC.∵BE⊂平面ABC,∴EF⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).=(2,0,1),=(1,2,0).设平面BCD的法向量为n=(a,b,c),则令a=2,则b=-1,c=-4,∴平面BCD的法向量n=(2,-1,-4).又平面CDC1的法向量为=(0,2,0),∴cos<n,>==-由图可得二面角B-CD-C1为钝角,∴二面角B-CD-C1的余弦值为-(3)证明平面BCD的法向量为n=(2,-1,-4),∵G(0,2,1),F(0,0,2),=(0,-2,1),∴n=-2,∴n与不垂直,∴FG与平面BCD不平行且不在平面BCD内,∴FG与平面BCD相交.3.解 (1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>=因此所求的角为60°.4.解以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=(a,0,1),(1)证明:=-0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n,n,得取x=1,得平面B1AE的一个法向量n=要使DP∥平面B1AE,只要n,有-az0=0,解得z0=又DP⊄平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=5.(1)证明设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos<n,p>=由题知二面角B-PD-A为锐角,所以它的大小为(3)解由题意知M,C(2,4,0),设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|=所以直线MC与平面BDP所成角的正弦值为6.(1)证明因为AB是直径,所以BC⊥AC.因为CD⊥平面ABC,所以CD⊥BC.因为CD∩AC=C,所以BC⊥平面ACD.因为CD∥BE,CD=BE,所以四边形BCDE是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB×tan∠EAB=4=1.由(1)知V C-ADE=V E-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则取n1=(1,0,2).设平面ABE的法向量为n2=(x,y,z),则取n2=(1,1,0),所以cos<n1,n2>=可以判断<n1,n2>与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-二、思维提升训练7.解如题图甲所示,因为BO是梯形ABCD的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OP⊥OC.而OB⊥OP,OB⊥OD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)证明:设E(x,0,1-x),其中0≤x≤1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)·(-1)=0,解得x=2,这与0≤x≤1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),,所以n=0,n=0,即令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos <,n>|=所以PD与平面CDE所成角的正弦值为8.解∵平面PAD⊥平面ABCD,且∠PAD=90°,∴PA⊥平面ABCD,而四边形ABCD是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2, =2+2又不共线,共面.∵PB⊄平面EFG,∴PB∥平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=,||==2,∴cos<>=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离d=,即(2-m)2=,∴m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ的距离为。

相关文档
最新文档