上海复旦附中2018-2019年自招真题数学试卷(含答案)

合集下载

2018年上海中学自主招数学试卷-含答案详解

2018年上海中学自主招数学试卷-含答案详解

2018年上海中学自主招数学试卷一、选择题(本大题共4小题,共12.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知x2+ax−12能分解成两个整数系数的一次因式的积,则整数a的个数有( )A. 0B. 2C. 4D. 62. 如图,D、E分别为△ABC的底边所在直线上的两点,BD=EC,过A作直线l,作DM//BA 交l于M,作EN//CA交l于N.设△ABM面积为S1,△ACN面积为S2,则( )A. S1>S2B. S1=S2C. S1<S2D. S1与S2的大小与过点A的直线位置有关3. 设p1、p2、q1、q2为实数,则p1p2=2(q1+q2),若方程甲:x2+p1x+q1=0,乙:x2+ p2x+q2=0,则( )A. 甲必有实根,乙也必有实根B. 甲没有实根,乙也没有实根C. 甲、乙至少有一个有实根D. 甲、乙是否总有一个有实根不能确定4. 设a=121+223+325+⋯+100722013,b=123+225+327+⋯+100722015,则以下四个选项中最接近a−b的整数为( )A. 252B. 504C. 1007D. 2013二、填空题(本大题共8小题,共24.0分)5. 已知1a +1b=1a+b,则ba+ab的值等于______ .6. 有______个实数x,可以使得√120−√x为整数.7. 如图,△ABC中,AB=AC,CD=BF,BD=CE,用含∠A的式子表示∠EDF,则∠EDF=______.8. 在直角坐标系中,抛物线y=x2+mx−34m2(m>0)与x轴交于A,B两点.若A,B两点到原点的距离分别为OA,OB,且满足1OB −1OA=23,则m的值等于_______.9. 定圆A的半径为72,动圆B的半径为r,r<72且r是一个整数,动圆B保持内切于圆A且沿着圆A的圆周滚动一圈,若动圆B开始滚动时的切点与结束时的切点是同一点,则r共有______个可能的值.10. 学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有______人.11. 对于各数互不相等的正整数组(a1,a2,…a n)(n是不小于2的正整数),如果在i<j时有a i>a j,则称a i与a j是该数组的一个“逆序”,例如数组(2,4,3,1)中有逆序“2,1”、“4,3”、“4,1”、“3,1”,其逆序数为4,现若各数互不相同的正整数组(a1,a2,a3,a4,a5,a6)的逆序数为2,则(a6,a5,a4,a3,a2,a1)的逆序数为______.12. 若n为正整数,则使得关于x的不等式1121<nx+n<1019有唯一的整数解的n的最大值为______.三、解答题(本大题共2小题,共16.0分。

2019届复旦附中初升高自招数学试卷

2019届复旦附中初升高自招数学试卷

2019年复旦附中自招数学试卷(一)1. 两个非零实数a 、b 满足ab a b =-,求a b ab b a +-的值.2. 已知|211||3||8|m m m -=-+-,求m 的取值范围.3. 若关于x 的不等式020192018ax ≤+≤的整数解为1、2、3、…、2018,求a 的范围.4. 已知ABC 、A BC ''边长均为2,点D 在线段BC '上,求AD CD +的最小值.5. 已知x 、y 为实数,求2254824x y xy x +-++的最小值.6. 在ABC 中,2B C ∠=∠,AD 为A ∠的角平分线,若2AB BD BD AB-=,求tan C ∠的值.(二)1. 等腰梯形ABCD 中,13AB CD ==,6AD =,16BC =,CE ⊥AB .(1)求CE 的长;(2)求BCE 内切圆的半径.2. 定义当0x x =时,0y x =,则称00(,)x x 为不动点.(1)若5x a y x b +=+有两个不动点(6,6)、(6,6)--,求a 、b 的值; (2)若5x a y x b+=+有关于原点对称的不动点,求a 、b 满足的条件.3. 已知()S n 为n 的各位数字之和,例(2019)201912S =+++=.(1)当19502019n ≤≤时,找出所有满足[()]4S S n =的n ;(2)当n 为正整数时,找出所有满足()[()]2019n S n S S n ++=的n .(三)1. 平行四边形两条邻边为7和8,两条对角线为m 、n ,求22m n +的值.2. 已知正整数x 、y 满足2127xy x y ++=,求x y +的值.3. 斐波那契数列为{1,1,2,3,5,8,}n a =⋅⋅⋅,记数列n b 为n a 中每一项除以4的余数,问{}n b 中第2019次出现1时的序数(即第几个数).参考答案(一) 1. 222()22a b a b a b ab ab b a a b a b a b+-+-=-==--- 2. 结合绝对值意义或者图像,3m ≤或8m ≥3. 由101a <-≤,201920182019a ≤-<可得,201912018a -≤<- 4. 4AD CD AD A D AA ''+=+≥=,即最小值为45. 配方,224()(1)33x y x -+++≥,即最小值为36.求出1AB BD=,由正弦定理,sin()sin 223sin sin()22C AB ADB C BD BAD ππ-∠==∠-,结合诱导公式、三倍角公式、化切,可求得tan 12C =,由二倍角公式可求tan 1C = (二) 1.(1)锐角三角比,19213;(2)在13、12、5的三角形中求得内切圆半径2r '=,结合相 似比,213321613r r =⇒=,即所求内切圆半径为3213 2.(1)36a =,5b =;(2)0a ≥且25a ≠,5b =3.(1)找规律,()22S n =或()4S n =,符合的有1957、1966、1975、1984、1993、2002、2011;(2)先确定范围,()28S n ≤,[()]10S S n ≤,∴1981n ≥,再分析讨论,符合的有1987、1990、1993、2005、2008、2011(三)1. 由余弦定理,22226m n +=2. 127121x y x -=≥+,可得42x ≤,结合正整数的条件,分析可得,有(1,42)、(2,25)、(7,8)这些解(x 、y 可换),∴x y +的值为43、27、153. 分析可得,{}n b 周期为6,且前六项为1、1、2、3、1、0,每个周期出现3次“1”,20193673÷=,即第2019次出现1时,在第673个周期内最后一个“1”,即序数为672654037⨯+=。

2018-2019学年上海市复旦大学附属中学高二上学期期末考试数学试题 解析版

2018-2019学年上海市复旦大学附属中学高二上学期期末考试数学试题 解析版

绝密★启用前上海市复旦大学附属中学2018-2019学年高二上学期期末考试数学试题一、单选题1.方程所表示的曲线的对称性是()A.关于轴对称B.关于轴对称C.关于轴对称D.关于原点对称【答案】D【解析】【分析】将方程中的分别换为,以及将换成,比较所得方程与原方程比较,看相同与否,再将方程中的换为,比较所得方程与原方程是否相同,最后得到结果.【详解】将方程中的换为,方程变为,与原方程相同,故关于轴对称;将方程中的换为,方程变为,与原方程相同,故关于轴对称;将方程中的换为,方程变为,与原方程不同,故不关于直线对称;可知曲线既关于轴对称,又关于轴对称,从而得到其关于原点对称;故选D.【点睛】该题考查的是利用方程判断曲线的对称性,属于简单题目.2.若点是圆外一点,则直线与圆的位置关系是()A.相离B.相切C.相交且不过圆心D.相交且过圆心【答案】C【解析】【分析】由已知条件推导出,从而圆心到直线的距离,由此能判断出直线与该圆的位置关系,从而求得结果. 【详解】由题意,得,从而圆心到直线的距离为,∴选D.【点睛】该题考查的是有关判断直线与圆的位置关系的问题,涉及到的知识点有点与圆的位置关系,利用圆心到直线的距离与半径比较大小得到直线与圆的位置关系,属于简单题目. 3.已知,由所有直线组成的集合记为,则下列命题中的假命题是()A.存在一个圆与所有直线相交B.存在一个圆与所有直线不相交C.存在一个圆与所有直线相切D.M中的直线所能围成的正三角形面积都相等【答案】D【解析】【分析】首先能够确定直线是表示的圆的所有切线,所以可以将圆心定住,改变半径的大小,得到与直线相交,相离和相切,从而确定出A,B,C三项都是正确的,对于D项,已经找到两种大小不相等的正三角形,从而得到结果.【详解】根据点到L的距离为,表示圆的所有切线,符合选项A、B、C的圆依次为、、,对于选项D,存在如下图的两种大小不相等的正三角形,∴D错误,故选D.【点睛】该题考查的是有关定圆的切线系方程,利用点到直线的距离可以确定直线系L是定圆的切线系,之后对选项逐项分析,找到对应的结果,从而得到答案.4.双曲线的左右焦点分别为、,若是双曲线左支上的一个动点,则的内切圆的圆心可能是()A.B.C.D.【答案】B【解析】【分析】首先根据题意,结合切线的性质以及双曲线的定义,可以判断出其三角形的内切圆的圆心的横坐标为,并且根据题意判断出其落在渐近线的下方,从而得到正确的结果.【详解】设内切圆圆心为,内切圆与、、的切点分别为、、,则由切线长定理,知、、,∴,∴为双曲线的左顶点且轴,设所在直线与的交点为,由角平分线定理,知,由于,∴点一定位于上,因此,若内心在第二象限,则其一定位于渐近线的下方,在第三象限,则其一定位于渐近线的上方,即的坐标一定为,其中,∴选B.【点睛】该题考查的是双曲线的焦点三角形的内心的位置,涉及到的知识点有双曲线的定义,圆的切线的性质,属于中档题目.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题5.抛物线的准线方程是_______【答案】【解析】【分析】先根据抛物线的标准方程得到焦点在y轴上以及,再直接代入即可求出其准线方程.【详解】因为抛物线的标准方程为,焦点在y轴上,所以:,即,所以,所以准线方程为:,故答案是:.【点睛】该题考查的是有关抛物线的几何性质,涉及到的知识点是已知抛物线的标准方程求其准线方程,属于简单题目.6.若方程表示椭圆,则实数的取值范围是_____.【答案】【解析】【分析】根据题意,可得关于m的不等式组,解之即可得到实数m的取值范围.【详解】根据椭圆的标准方程的形式,可知方程表示椭圆的条件是:,解得,所以实数的取值范围是,故答案是:.【点睛】该题考查的是有关方程表示椭圆的条件,明确椭圆的标准方程的形式,即可得到其对应的不等式组,求解即可.7.若直线与直线平行,则与之间的距离为______ .【答案】【解析】【分析】利用直线平行可求得,代入距离公式即可得出结果.【详解】根据两直线平行,可得,解得,所以两直线的方程为:,整理得,根据平行线间的距离公式可得,两平行线间的距离,故答案是:.【点睛】该题考查的是有关两条平行线间的距离问题,涉及到的知识点有两条直线平行的条件,平行线间的距离公式,属于简单题目.8.过点作圆的切线,则切线所在直线的方程为______ .【答案】或【解析】【分析】首先考虑斜率不存在的时候直线与圆的位置关系,再考虑直线斜率存在时,设出直线的方程,利用圆心到直线的距离等于半径求得的值,综合到一起,得出切线的方程. 【详解】过点,直线斜率不存在时方程为,圆心到直线的距离为1,等于半径,所以是圆的切线;过点,切线斜率存在时,直线设为,即,圆心到直线的距离为,整理解得;切线方程为或,故答案是:或.【点睛】该题考查的是有关过圆外一点的圆的切线的方程,涉及到的知识点有直线与圆的位置关系,直线方程的点斜式,点到直线的距离公式,注意考虑斜率不存在的情况.9.若一条双曲线与有共同渐近线,且与椭圆有相同的焦点,则此双曲线的方程为______.【答案】【解析】【分析】由椭圆方程求出椭圆及双曲线的半焦距,设出与双曲线有相同渐近线的双曲线方程为,化为标准方程,结合双曲线中的隐含条件求得值,求得结果.【详解】由得,所以,得,即椭圆的半焦距为,设与双曲线有相同渐近线的双曲线方程为,因为所求双曲线的焦点在轴上,则,双曲线方程化为,根据椭圆和双曲线共焦点,所以有,解得,所以所求双曲线的方程为:,故答案是:.【点睛】该题考查的是有关共渐近线的双曲线的方程的求解问题,涉及到的知识点有已知椭圆的方程求椭圆的焦点坐标,与某双曲线共渐近线的双曲线方程的设法,注意平时对有关结论的理解.10.已知三角形的顶点、,若顶点在抛物线上移动,则三角形的重心的轨迹方程为______【答案】【解析】【分析】首先设出三角形的重心和三角形的顶点C的坐标,利用三角形的重心坐标公式,将两点坐标之间的关系建立,结合点C在曲线上,利用相关点法求得对应曲线的方程,之后利用三角形的三个顶点不共线,去掉相应的点,即可得到结果.【详解】设的重心,,则有,即,因为点C在曲线上,所以有,即,因为三角形的三个顶点不能共线,所以,所以的重心的轨迹方程为:,故答案是:.【点睛】该题考查的是有关动点的轨迹方程的求解问题,涉及到的知识点有三角形重心坐标公式,用相关点法求动点的轨迹方程,注意对不满足条件的点要去掉.11.设、分别为直线(为参数,)和曲线(为参数,)上的点,则的取值范围是______.【答案】【解析】【分析】首先将直线和曲线的参数方程化为普通方程,结合点P、Q分别为直线和圆上的动点,从而得到的最小值即为圆心到直线的距离减去半径,从而得到相应的范围.【详解】由(t为参数)可得直线的普通方程为,由(为参数)可得曲线的普通方程为,因为点P、Q分别为直线和圆上的动点,所以,可以无穷远,所以的取值范围是,故答案是:.【点睛】该题考查的是有关直线与圆上的点的距离的范围问题,涉及到的知识点有曲线的参数方程向普通方程的转化,圆上的点到直线的距离的最小值,认真审题是正确解题的关键. 12.已知直线,若是抛物线上的动点,则点到直线和它到轴的距离之和的最小值为______【答案】【解析】【分析】首先利用抛物线的定义,将抛物线上的点到y轴的距离转化为其到抛物线的焦点的距离减1,从而将其转化为求抛物线的焦点到直线的距离减1,从而求得结果. 【详解】,故答案是:.【点睛】该题考查的是有关抛物线上的点到两条定直线的距离之和的最小值问题,涉及到的知识点有抛物线的定义,利用抛物线的定义将距离转化为抛物线上的点到焦点的距离和到定直线的距离之和的最小值问题,属于简单题目.13.如果为椭圆上的动点,为椭圆上的动点,那么的最大值为______.【答案】15【解析】【分析】首先利用椭圆的参数方程,设出点M、N的坐标,之和应用向量的数量积坐标公式,结合余弦差角公式将其化简,结合余弦函数的值域求得结果.【详解】利用椭圆的参数方程:设、,则,所以最大值是:15.【点睛】该题考查的是有关向量数量积的取值范围的问题,涉及到的知识点有椭圆的参数方程,向量的数量积坐标公式,余弦的差角公式,余弦函数的值域,属于中档题目.14.若关于的方程有两个不相等的实数根,则实数的取值范围是____ .【答案】【解析】【分析】首先将关于的方程有两个不相等的实数根,转化为曲线(上半个单位圆)与的图像有两个不同的交点,画出图形,分类讨论,最后求得结果.【详解】转化为(上半个单位圆)与的图像有两个不同的交点,如图,当时,要满足条件,则,∴;类似,当时,;综上,实数的取值范围是.【点睛】该题考查的是有关根据方程解的个数求参数的取值范围的问题,涉及到的知识点有将方程的解转化Wie曲线的交点,数形结合,分类讨论求得结果.15.已知直线与椭圆交于、两点,若,则的取值范围是_____.【答案】【解析】【分析】根据直线过坐标原点,结合椭圆的对称性,可知点A、B关于原点对称,设出两个点的坐标、,利用向量的运算法则以及向量数量积坐标运算公式,求得,之后结合,求得结果,也可以应用参数方程来解决.【详解】直线过原点,结合椭圆图形的对称性可知、两点关于原点对称,方法一:设、,则,,即,∴.方法二:利用参数方程,设、,则.【点睛】该题考查的是有关一个点与椭圆上两个关于原点对称的点所构成的向量的数量积的取值范围的问题,在解题的过程中,注意两点关于原点对称这个条件非常关键,也可以应用参数方程来设点的坐标.16.在平面直角坐标系中,已知圆与曲线交于两点、(在第一象限),与轴正半轴交于点.若,点,则当和变化时,的最小值为______.【答案】7【解析】【分析】首先根据题意画出相应的图形,根据曲线,可得,对m与1的大小关系进行分类讨论,最后结合图形,得出结果.【详解】易得,从而可证,∴,点关于的对称点为,记,则,∴.【点睛】该题考查的是有关线段和的最值的问题,在解题的过程中,注意利用对称将问题转化,从而求得结果,注意对m与1的大小关系进行分类讨论.三、解答题17.已知圆的圆心在直线上,并且圆与直线和都相切.(1)求圆的方程;(2)若直线与圆有两个不同的交点、,求弦长的最小值.【答案】(1)(2)【解析】【分析】(1)根据两条直线和是平行的,从而断定圆心是与的交点,解方程组求得,由两平行线间的距离求得圆的半径,从而得到圆的方程;(2)由直线的方程可以断定直线过定点,根据垂径定理,得到最小值求得结果. 【详解】(1)圆心为与的交点,解得,圆的直径为两平行线与间的距离,可求出半径,∴圆的方程为;(2)直线过定点,由垂径定理知,当为直线的法向量时,弦心距最长,弦最短,∴.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有圆的方程的求解,直线与圆的位置关系,直线过定点,根据垂径定理求圆的最短弦长,属于中档题目.18.在平面直角坐标系中,动圆经过点并且与直线相切,设动圆圆心的轨迹为曲线.(1)如果直线过点(0,4),且和曲线只有一个公共点,求直线的方程;(2)已知不经过原点的直线与曲线相交于、两点,判断命题“如果,那么直线经过点”是真命题还是假命题,并说明理由.【答案】(1)直线的方程为、、;(2)见解析【解析】【分析】(1)根据抛物线的定义,求得曲线C的方程,之后分直线的斜率存在与不存在两种情况,根据直线与抛物线有一个公共点,得出结果;(2)根据图形的对称性,得出对应的定点在x轴上,设出直线的方程,利用韦达定理,根据向量垂直向量的数量积等于零,求得对应的结果.【详解】(1)根据题意,可知曲线C的方程为,①直线的斜率不存在,即的方程为,符合题意,②直线的斜率存在,设,与抛物线方程联立得,(ⅰ),符合题意,此时的方程为,(ⅱ),则,解得,此时的方程为,综上,符合题意的直线的方程为、、;(2)由图形的对称性,若直线过定点,则该定点必定落在轴上,设定点坐标为、、、,,则,∵,∴,即,解得或(舍),∴命题为真命题.【点睛】该题考查的是有关直线与抛物线的综合题,涉及到的知识点有根据抛物线的定义求抛物线的方程,直线与抛物线的位置关系,属于中档题目.19.轮船在海上航行时,需要借助无线电导航确认自己所在的位置,以把握航向.现有、、三个无线电发射台,其中在陆地上,在海上,在某国海岸线上,(该国这段海岸线可以近似地看作直线的一部分),如下图.已知、两点距离10千米,是的中点,海岸线与直线的夹角为.为保证安全,轮船的航路始终要满足:接收到点的信号比接收到点的信号晚秒.(注:无线电信号每秒传播千米).在某时刻,测得轮船距离点距离为4千米.(1)以点为原点,直线为轴建立平面直角坐标系(如图),求出该时刻轮船的位置;(2)根据经验,船只在距离海岸线1.5千米以内的海域航行时,有搁浅的风险.如果轮船保持目前的航路不变,那么是否有搁浅风险?【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据题意,设出点P的坐标,根据题意得出点P的轨迹是双曲线的一支,根据对应的量,从而求得点P的坐标,得到结果;(2)根据题意,找出对应的关系,从而求得结果,得到结论.【详解】(1)设轮船在点处,则由题意,得,∴为以、为焦点,实轴长为8,焦距为10的双曲线右支上的点,其方程为,又,解得;(2)海岸线所在直线的方程为,与其平行,且距离为1.5的直线的方程为,考虑与是否有交点,,∴与没有交点,即轮船保持目前的航路不变,没有搁浅风险.【点睛】该题考查的是应用所学知识解决实际问题,在解题的过程中,涉及到的知识点有应用定义得出曲线的方程,利用直线与曲线的位置关系得到相应的结果,属于中档题目. 20.已知椭圆的两个焦点分别为、,短轴的两个端点分别为、,且为等边三角形.(1)若椭圆长轴的长为4,求椭圆的方程;(2)如果在椭圆上存在不同的两点、关于直线对称,求实数的取值范围;(3)已知点,椭圆上两点、满足,求点横坐标的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据为等边三角形,可得,结合椭圆长轴的长为4,即,得,从而求得椭圆的方程;(2)根据等边三角形,得出a,b,c之间的关系,从而设出椭圆的方程,根据椭圆中中点弦所在直线的斜率所满足的条件,结合对称的条件,求得弦的中点坐标,保证点在椭圆内,得到相应的不等关系,得到结果;(3)利用向量的关系,得到点的坐标之间的关系,结合隐含条件,得到相应的范围,求得结果【详解】(1)由题意,得,,∴椭圆的方程为;(2)“点差法”设椭圆的方程为,即,设、、中点,则,得,又,解得,显然在椭圆内,∴,得,又,∴;(3)设椭圆方程,即,方法一:(常规解法)①过、的直线斜率不存在,即直线方程为时,、,由,得,②过、的直线斜率存在,设直线方程为、、,由,得,,则,由,可得,∴,综上,点横坐标的取值范围是.方法二:设,则,,又,∴,∴,∴,即点横坐标的取值范围是.【点睛】该题考查的是有关直线与椭圆的综合问题,涉及到的知识点有椭圆中a,b,c三者之间的关系,正三角形的特征,点关于直线的对称点的特征,椭圆中中点弦所在直线的斜率的条件,向量之间的关系,属于较难题目.21.已知点、为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.(1)求双曲线的两条渐近线的夹角;(2)过点的直线和双曲线的右支交于、两点,求的面积的最小值;(3)过双曲线上任意一点分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于、两点,求平行四边形的面积.【答案】(1)(2)(3)【解析】【分析】(1)首先根据双曲线的定义,结合题中所给的角的大小,求得,从而求得b的值,进而得到双曲线的渐近线方程,利用直线的方向向量所成的角,求得两条渐近线的夹角余弦值,利用反余弦求出结果;(2)设出直线的方程,与双曲线的方程联立,利用三角形的面积公式,结合函数的单调性,求得最值,得到结果;(3)根据所学的知识将四边形的面积表示出来,进而求得结果.【详解】(1)由题意,得,,∴,∴双曲线的方程为,∴,∴;(2)【注:若设点斜式,需补上斜率不存在的情况】设,、,将直线的方程代入双曲线方程,消去,得,则,得,,令,,则,其中在上单调递减,∴在上单调递增,∴当时,取得最小值,此时,的方程为;(3)设,其中方法一:设,与联立,可求出,由三阶行列式表示的三角形面积公式可得.方法二:如图,,设到和的距离为、,则,,∴【点睛】该题考查的是有关双曲线与直线的综合题,涉及到的知识点有双曲线的渐近线的夹角,双曲线中三角形的面积,四边形的面积,属于较难题目.。

复旦附中九年级中考自招数学试卷(含解析)

复旦附中九年级中考自招数学试卷(含解析)

的取值范围是______________.
【答】 a 2 .
A
D
【解析】以 AD 中点为圆心 a 为半径作圆应与 BC 有交点, 2
a 1 a 2. 2
B
C
7. 已知锐角 ABC 的三边长恰为三个连续正整数,AB BC CA ,若 BC 边上的高为 AD,
则 BD DC ______________.
17. 设 x 是实数,不大于 x 的最大整数叫做 x 的整数部分,记作x ,如1.2 1, 3 3 ,
1.3 2 ,
(1) S
1
1
10 11 12 1112 12
10 11 1112
1
,求90S ;
2016 2017 12
2016 2017 (2)解关于ຫໍສະໝຸດ x的方程:x2
A
D
B
C
7. 已知锐角 ABC 的三边长恰为三个连续正整数,AB BC CA ,若 BC 边上的高为 AD, 则 BD DC ______________. A
B
DC
8. 已知实数 m,n(其中 m n 1 )分别满足:19m2 99m 1 0 , n2 99n 19 0 ,则 mn 4m 1 ______________. n
A
D
A
D
B
B
B
E
C
B
EH
C
【答】 3 或 3 . 2
【解析】设 BE x ,过 B 作 BH BC 于 H ,
(1) BEC 90 , AEB 45 , x AB 3 ,
(2) BCE 90 , B 在 CD 上, H 与 C 重合,
由 BB AE , BB 2 x 3 , BH BB 3

上海市复旦大学附属中学2018-2019学年高二上学期期末考试数学试题 Word版含解析

上海市复旦大学附属中学2018-2019学年高二上学期期末考试数学试题 Word版含解析

抛物线【答案】轴上以及【详解】因为抛物线的标准方程为所以:,所以所以准线方程为:故答案是:若方程表示椭圆,则实数【答案】可知方程表示椭圆的条件是:,所以实数的取值范围是故答案是:若直线与直线平行,与【答案】利用直线平行可求得,解得,,整理得,故答案是:【点睛】该题考查的是有关两条平行线间的距离问题,涉及到的知识点有两条直线平行的条过点的切线,则切线所在直线的方程为【答案】或利用圆心到直线的距离等于半径求得【详解】过点,直线斜率不存在时方程为,到直线的距离为,切线斜率存在时,直线设为,到直线的距离为,整理解得;切线方程为或,故答案是:或.若一条双曲线与且与椭圆【答案】【解析】由椭圆方程求出椭圆及双曲线的半焦距,设出与双曲线,化为标准方程,结合双曲线中的隐含条件求得【详解】由得,所以,得,即椭圆的半焦距为,有相同渐近线的双曲线方程为因为所求双曲线的焦点在轴上,则双曲线方程化为根据椭圆和双曲线共焦点,所以有,解得所以所求双曲线的方程为:故答案是:【点睛】该题考查的是有关共渐近线的双曲线的方程的求解问题,涉及到的知识点有已知椭的顶点、若顶点在抛物线则三角形【答案】【解析】三角形的三个顶点不共线,去掉相应的点,即可得到结果【详解】设的重心,,即因为点C在曲线所以有,即因为三角形的三个顶点不能共线,所以的重心的轨迹方程为:,故答案是:【点睛】该题考查的是有关动点的轨迹方程的求解问题,涉及到的知识点有三角形重心坐标、分别为直线(为参数,)和曲线(为参数,)上的点,则的取值范围是______【答案】的最小值即为圆心到直线的距离减去半径,从而得到相应的范围【详解】由,(为参数)可得曲线的普通方程为因为点P、Q分别为直线和圆上的动点,,可以无穷远,的取值范围是,故答案是:已知直线,若是抛物线上的动点,则点到直线和它到【答案】从而将其转化为求抛物线的焦点到直线【详解】故答案是:.【点睛】该题考查的是有关抛物线上的点到两条定直线的距离之和的最小值问题,涉及到的如果为椭圆上的动点,为椭圆那么【详解】利用椭圆的参数方程:设若关于的方程有两个不相等的实数根,则实数【答案】首先将关于的方程(上半个单位圆)与的图像有两个不同的交点,画出图形,分类讨论,最后求得结果【详解】转化为(上半个单位圆)与当时,要满足条件,则;类似,当时,综上,实数的取值范围是.【点睛】该题考查的是有关根据方程解的个数求参数的取值范围的问题,涉及到的知识点有已知直线与椭圆交于、两点,若,则的取值范围是【答案】、,利用向量的运算法则以及向量数量积坐标运算公式,求得后结合【详解】直线过原点,结合椭圆图形的对称性可知方法一:设、,,即,∴方法二:利用参数方程,设【点睛】该题考查的是有关一个点与椭圆上两个关于原点对称的点所构成的向量的数量积的已知圆与曲线交于两点、(轴正半轴交于点.若,则当和变化时,的最小,可得从而可证,∴关于的对称点为,则,∴【点睛】该题考查的是有关线段和的最值的问题,在解题的过程中,注意利用对称将问题转方程关于轴对称关于关于轴对称将方程中的分别换为,以及将换成方程中的,比较所得方程与原方程是否相同,最后得到结果将方程中的,方程变为故关于将方程中的换为,方程变为,与原方程相同,故关于将方程中的换为,与原方程不同,故不关于直线对称;可知曲线既关于轴对称,又关于轴对称,从而得到其关于原点对称;若点是圆外一点,则直线,从而圆心到直线,由此能判断出直线【详解】由题意,得从而圆心到直线的距离为已知,由所有直线组成的集合记为首先能够确定直线是表示的圆径的大小,得到与直线相交,相离和相切,从而确定出【详解】根据点的距离为,表示圆的所有切线,符合选项A、B、C的圆依次为对于选项D,存在如下图的两种大小不相等的正三角形,∴D【点睛】该题考查的是有关定圆的切线系方程,利用点到直线的距离可以确定直线系圆的切线系,之后对选项逐项分析,找到对应的结果,从而得到答案16.双曲线的左右焦点分别为、,是双曲线左支上的一个动点,的内切圆的圆心可能是(C. D.横坐标为【详解】设内切圆圆心为,内切圆与、、的切点分别为、则由切线长定理,知、、,为双曲线的左顶点且轴,的交点为,由角平分线定理,知,∴点一定位于因此,若内心在第二象限,则其一定位于渐近线的下方,在第三象限,的坐标一定为,已知圆上,并且圆与直线和都相切.)求圆)若直线与圆有两个不同的交点,求弦()的交点,解方程组求得,由两平行线间的距离求得圆的半径,从而得到圆的)由直线的方程可以断定直线过定点,根据垂径定理,得到最小值求得结果)圆心与的交点,解得圆的直径为两平行线间的距离,可求出半径的方程为)直线过定点,由垂径定理知,为直线的法向量时,弦心距最长,弦最短,在平面直角坐标系中,动圆经过点相切,设动圆迹为曲线过点(,且和曲线只有一个公共点,求直线)已知不经过原点的直线与曲线、两点,判断命题“如果经过点)直线的方程为、、的方程为①直线的斜率不存在,即的方程为,符合题意,②直线的斜率存在,设与抛物线方程联立得(ⅰ),符合题意,此时的方程为,(ⅱ),则,解得,此时的方程为的方程为、)由图形的对称性,若直线过定点,则该定点必定落在、、、,则∵,∴,即或轮船在海上航行时,需要借助无线电导航确认自己所在的位置,以把握航向.现有、三个无线电发射台,其中在陆地上,在海上,,如下图.已知、千米,是的夹角为接收到点的信号比接收到秒.(注:无线电信号每秒传播千米).在某时刻,测得轮船距离千米.(1)以点为原点,直线为(2)根据经验,船只在距离海岸线持目前的航路不变,那么是否有搁浅风险【答案】(1)见解析;(【解析】【分析】)设轮船在点处,则由题意,得为以、的双曲线右支上的点,其方程为,又,解得;(2)海岸线所在直线的方程为,与其平行,且距离为1.5的直线的方程为,考虑与是否有交点,∴与没有交点,即轮船保持目前的航路不变,没有搁浅风险.已知椭圆的两个焦点分别为、,短轴的两个端点分别为、,且(1)若椭圆长轴的长为4,求椭圆(2)如果在椭圆上存在不同的两点、关于直线(3)已知点,椭圆上两点满足,求点(()可得,得从而求得椭圆的方程;)由题意,得,,∴椭圆的方程为的方程为,即,、中点,,又,解得,在椭圆内,∴,得,∴)设椭圆方程,即,(常规解法)、的直线斜率不存在,即直线方程为时,、,得、的直线斜率存在,设直线方程为、,得,,由,可得,,综上,点横坐标的取值范围是.方法二:设,则,又,∴,,即点横坐标的取值范围是.已知点、为双曲线的左、右焦点,过作垂直于轴的直线,在于点,且.(1)求双曲线的两条渐近线的夹角(2)过点的直线和双曲线的右支交于、两点,求的面积的最小值;(3)过双曲线上任意一点分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于、两点,求平行四边形【答案】(1))【解析】【分析】求得)由题意,得,∴,∴双曲线的方程为,∴2)【注:若设点斜式,需补上斜率不存在的情况】,、将直线的方程代入双曲线方程,消去,得,得,令,,则在上单调递减,在上单调递增,∴当时,取得最小值,此时,的方程为;)设,其中方法一:设,与联立,可求出由三阶行列式表示的三角形面积公式.方法二:如图,到和的距离为、【点睛】该题考查的是有关双曲线与直线的综合题,涉及到的知识点有双曲线的渐近线的夹角,双曲线中三角形的面积,四边形的面积,属于较难题目.。

上海复旦附中2018-2019年自招真题数学试卷(含答案)

上海复旦附中2018-2019年自招真题数学试卷(含答案)

上海复旦附中2018-2019年自招真题数学试卷(含答案)复旦附中自招题1. 已知a 、b 、c 是一个三角形的三边,则222222444222a c c b b a c b a ---++的值是() A .恒正 B .恒负 C .可正可负 D .非负解:选B222222444222a c c b b a c b a ---++2222224)(c b c b a ---=)2)(2(222222bc c b a bc c b a ---+--=])(][)([2222c b a c b a +---=))()()((c b a c b a c b a c b a --+++--+=∵a 、b 、c 是一个三角形的三边,∴0>-+c b a ,0>+-c b a ,0>++c b a ,0<--c b a ,∴0))()()((<--+++--+c b a c b a c b a c b a2. 设m ,n 是正整数,满足mn n m >+,给出以下四个结论:① m ,n 都不等于1;② m ,n 都不等于2;③ m ,n 都大于1;④m ,n 至少有一个等于1,其中正确的结论是()A .① B .② C .③D .④解:选D由mn n m >+得()()111<--n m若m ,n 均大于1,则,11,11≥-≥-n m ()()111≥--n m ,矛盾,∴m ,n 至少有一个等于1。

3. 已知关于x 的方程a x a x +=+2有一个根为1,则实数a 的值为()A .251+-B .251--C .251±- D .以上答案都不正确解:选A将1=x 代入,得12+=+a a ,两边平方,得012=++a a ,251±-=a ,当251--=a 时,1=x 不是原方程的根,舍∴251+-=a4. 已知a ,b ,c 是不完全相等的任意实数,若c b a x +-=2,cb a y 2-+=,c b a z ++-=2,则关于x ,y ,z 的值,下列说法正确的是()A .都大于0B .至少有一个大于0C .都小于0D .至多有一个大于0 解:选B0=++z y x ,若x ,y ,z 均小于0,则0<++z y x ,矛盾;故至少有一个大于0。

2018-2019学年上海市复旦附中高一(下)期末数学试卷

2018-2019学年上海市复旦附中高一(下)期末数学试卷

2018-2019学年上海市复旦附中高一(下)期末数学试卷试题数:21.满分:1501.(填空题.4分)计算limn→∞2n−33n+1=___ .2.(填空题.4分)2与8的等比中项是___ .3.(填空题.4分)函数y=arctanx.x∈(0.1)的反函数为___ .4.(填空题.4分)在等差数列{a n}中.a1=2.a3+a5=10.则a7=___ .5.(填空题.4分)用列举法表示集合{x|cos(x- π3)= 12,x∈[0,π] }=___ .6.(填空题.4分)在△ABC中.角A.B.C所对的边分别为a.b.c.若面积S= a2+b2−c22.则角C=___ .7.(填空题.5分)已知无穷等比数列{a n}的各项的和为1.则a2的取值范围为___ .8.(填空题.5分)已知函数f(x)=2sin(x4+π6).若对任意x∈R都有f(x1)≤f(x)≤f(x2)(x1.x2∈R)成立.则|x1-x2|的最小值为___ .9.(填空题.5分)若a.b是函数f(x)=x2-px+q(p>0.q>0)的两个不同的零点.且a.b.-2这三个数可适当排序后成等差数列.也可适当排序后成等比数列.则p+q的值等于___ .10.(填空题.5分)设函数f(x)=Asin(ωx+φ).A>0.ω>0.若f(x)在区间[ π6 . π2]上具有单调性.且f(π2)=f(2π3)=-f(π6).则f(x)的最小正周期为___ .11.(填空题.5分)由正整数组成的数列{a n}、{b n}中分别为递增的等差数列、等比数列.a1=b1=1.记c n=a n+b n.若存在正整数k(k≥2)满足c k-1=100.c k+1=1000.则c k=___ .12.(填空题.5分)已知无穷等比数列{a n}满足:对任意的n∈N*.sina n=1.则数列{a n}公比q的取值集合为___ .13.(单选题.5分)对于函数f(x)=2sinxcosx.下列选项中正确的是()A.f(x)在(π4 . π2)上是递增的B.f(x)的图象关于原点对称C.f(x)的最小正周期为2πD.f(x)的最大值为214.(单选题.5分)若等差数列{a n}的前10项之和大于其前21项之和.则a16的值()A.大于0B.等于0C.小于0D.不能确定15.(单选题.5分)已知数列{a n}的通项公式a n= {(−1)n,1≤n≤2019(12)n−2019,n≥2020.前n项和为S n.则关于数列{a n}、{S n}的极限.下面判断正确的是()A.数列{a n}的极限不存在、{S n}的极限存在B.数列{a n}的极限存在、{S n}的极限不存在C.数列{a n}、{S n}的极限均存在.但极限值不相等D.数列{a n}、{S n}的极限均存在.且极限值相等16.(单选题.5分)已知数列{a n}是公差不为零的等差数列.函数f(x)是定义在R上的单调递增的奇函数.数列{f(a n)}的前n项和为S n.对于命题① 若数列{a n}为递增数列.则对一切n∈N*.S n>0② 若对一切n∈N*.S n>0.则数列{a n}为递增数列③ 若存在m∈N*.使得S m=0.则存在k∈N*.使得a k=0④ 若存在k∈N*.使得a k=0.则存在m∈N*.使得S m=0其中正确命题的个数为()A.0B.1C.2D.317.(问答题.14分)已知等比数列{a n}的前n项和为S n.a1=2.a3=2a2+16.且S2020<0.(1)求{a n}的通项公式(2)是否存在正整数n.使得S n>2020成立?若存在.求出n的最小值;若不存在.请说明理由.18.(问答题.14分)已知函数f(x)=2cos2x+2 √3 sinxcosx-1.(1)求函数y=f(x)的单调递减区间;(2)在锐角△ABC中.若角C=2B.求f(A)的值域.19.(问答题.14分)已知数列{a n}满足:a1=2.na n+1=(n+1)a n+n(n+1).n∈N*.(1)求证:数列{ a nn}为等差数列.并求出数列{a n}的通项公式;(2)记b n= 2(n+1)a n (n∈N*).用数学归纳法证明:b1+b2+…+b n<1- 1(n+1)2.n∈N*.20.(问答题.16分)设函数f(x)=5sin(ωx+φ).其中ω>0.φ∈(0. π2).(1)设ω=2.若函数f(x)的图象的一条对称轴为直线x= 3π5.求φ的值;(2)若将f(x)的图象向左平移π2个单位.或者向右平移π个单位得到的图象都过坐标原点.求所有满足条件的ω和φ的值;(3)设ω=4.φ= π6.已知函数F(x)=f(x)-3在区间[0.6π]上的所有零点依次为x1.x2.x3.….x n.且x1<x2<x3<…<x n-1<x n.n∈N*.求x1+2x2+2x3+…2x n-1+2x n-1+x n的值.21.(问答题.18分)已知无穷数列{a n}、{b n}是公差分别为d1、d2的等差数列.记c n=[a n]+[b n](n∈N*).其中[x]表示不超过x的最大整数.即x-1<[x]≤x.(1)直接写出数列{a n}、{b n}的前4项.使得数列{c n}的前4项为:2.3.4.5;(2)若a n= n+13 .b n= n−13.求数列{c n}的前3n项的和S3n;(3)求证:数列{c n}为等差数列的必要非充分条件是d1+d2∈Z.2018-2019学年上海市复旦附中高一(下)期末数学试卷参考答案与试题解析试题数:21.满分:1501.(填空题.4分)计算limn→∞2n−33n+1=___ .【正确答案】:[1] 23【解析】:直接利用数列的极限的运算法则化简求解即可.【解答】:解:limn→∞2n−33n+1= limn→∞2−3n3+1n= 2−03+0= 23.故答案为:23.【点评】:本题考查数列极限的运算法则的应用.是基本知识的考查.2.(填空题.4分)2与8的等比中项是___ .【正确答案】:[1]±4【解析】:利用等比中项公式求解.【解答】:解:2与8的等比中项是:G= ±√2×8 =±4.故答案为:±4.【点评】:本题考查两个数的等比中项的求法.是基础题.解题时要认真审题.注意等比中项公式的合理运用.3.(填空题.4分)函数y=arctanx.x∈(0.1)的反函数为___ .【正确答案】:[1]y=tanx.x∈(0. π4)【解析】:由y=arctanx.得其反函数为y=tanx.求y=arctanx的值域即得其反函数的定义域.【解答】:解:由y=arctanx.得其反函数为y=tanx.∵y=arctanx.x∈(0.1).∴y=acrtanx的值域为(0,π4) .∴函数y=arctanx.x∈(0.1)的反函数为y=tanx.x∈ (0,π4).故答案为:y=tanx.x∈ (0,π4).【点评】:本题考查了正切函数的反函数.属基础题.4.(填空题.4分)在等差数列{a n}中.a1=2.a3+a5=10.则a7=___ .【正确答案】:[1]8【解析】:利用等差数列的性质结合已知求得2a4=10.再由a1.a4.a7成等差数列求得a7.【解答】:解:在等差数列{a n}中.由a3+a5=10.得2a4=10.又a1=2.∴a7=2a4-a1=10-2=8.故答案为:8.【点评】:本题考查了等差数列的通项公式.考查了等差数列的性质.是基础题.5.(填空题.4分)用列举法表示集合{x|cos(x- π3)= 12,x∈[0,π] }=___ .【正确答案】:[1]{0. 23π }【解析】:根据集合所在的范围结合cos(x- π3)= 12,x∈[0,π] }.从而得到答案.【解答】:解:集合{x|cos(x- π3)= 12,x∈[0,π] }解:cos(x- π3)= 12,x∈[0,π];x- π3 =± π3+2kπ.k∈Z;∴x=2 π3+2kπ.k∈Z;或x=2kπ.k∈Z;∴x=0或23π;故答案为:{0. 23π }.【点评】:本题考查了解集表示、集合的元素表示法.属于基础题.6.(填空题.4分)在△ABC中.角A.B.C所对的边分别为a.b.c.若面积S= a2+b2−c22.则角C=___ .【正确答案】:[1]arctan2【解析】:由余弦定理.三角形的面积公式可得12 absinC= 12.2abcosC.解得tanC=2.即可得解C的值.【解答】:解:∵S= a 2+b2−c22.∴由三角形的面积公式.余弦定理可得:12 absinC= 12•2abcosC.即 tanC=2.∴C=arctan2.故答案为:arctan2.【点评】:本题主要考查了三角形的面积公式.余弦定理在解三角形中的应用.考查了转化思想.属于基础题.7.(填空题.5分)已知无穷等比数列{a n}的各项的和为1.则a2的取值范围为___ .【正确答案】:[1](-2.0)∪(0. 14]【解析】:由题意可得:a11−q =1.q∈(-1.1).且q≠0.可得a2=q-q2=- (q−12)2+ 14.利用二次函数的单调性即可得出.【解答】:解:由题意可得:a11−q=1.q∈(-1.1).且q≠0.∴ a2q =1-q.a2=q-q2=- (q−12)2+ 14∈(-2.0)∪(0. 14].故答案为:(-2.0)∪(0. 14].【点评】:本题考查了等比数列的通项公式求和公式及其性质、方程与不等式的解法.考查了推理能力与计算能力.属于中档题.8.(填空题.5分)已知函数f(x)=2sin(x4+π6).若对任意x∈R都有f(x1)≤f(x)≤f(x2)(x1.x2∈R)成立.则|x1-x2|的最小值为___ .【正确答案】:[1]4π【解析】:由已知可知f(x1)是f(x)中最小值.f(x2)是值域中的最大值.它们分别在最高和最低点取得.它们的横坐标最少相差半个周期.由三角函数式知周期的值.结果是周期的值的一半.【解答】:解:∵对任意x∈R都有f(x1)≤f(x)≤f(x2).∴f(x1)是最小值.f(x2)是最大值;∴|x1-x2|的最小值为函数的半个周期.∵f(x)=2sin(x4+π6)的周期T=8π.∴|x1-x2|的最小值为4π.故答案为:4π.【点评】:本题考查了正弦型三角函数的图象即性质的运用.考查了数形结合思想.属基础题. 9.(填空题.5分)若a.b 是函数f (x )=x 2-px+q (p >0.q >0)的两个不同的零点.且a.b.-2这三个数可适当排序后成等差数列.也可适当排序后成等比数列.则p+q 的值等于___ . 【正确答案】:[1]9【解析】:由一元二次方程根与系数的关系得到a+b=p.ab=q.再由a.b.-2这三个数可适当排序后成等差数列.也可适当排序后成等比数列列关于a.b 的方程组.求得a.b 后得答案.【解答】:解:由题意可得:a+b=p.ab=q. ∵p >0.q >0. 可得a >0.b >0.又a.b.-2这三个数可适当排序后成等差数列.也可适当排序后成等比数列. 可得 {2b =a −2ab =4 ① 或 {2a =b −2ab =4② .解 ① 得: {a =4b =1 ;解 ② 得: {a =1b =4 .∴p=a+b=5.q=1×4=4. 则p+q=9. 故答案为:9.【点评】:本题考查了一元二次方程根与系数的关系.考查了等差数列和等比数列的性质.是基础题.10.(填空题.5分)设函数f (x )=Asin (ωx+φ).A >0.ω>0.若f (x )在区间[ π6 . π2 ]上具有单调性.且f ( π2 )=f ( 2π3 )=-f ( π6 ).则f (x )的最小正周期为___ . 【正确答案】:[1]π 【解析】:依题意.可知x=π2+2π32 = 7π12为f (x )=sin (ωx+φ)的一条对称轴.且(π6+π22.0)即( π3 .0)为f (x )=sin (ωx+φ)的一个对称中心.从而可得 14 T= 14 • 2πω = 7π12 - π3 .继而可求得f (x )的最小正周期.【解答】:解:∵f (x )=sin (ωx+φ)在区间[ π6 . π2 ]上具有单调性.ω>0. ∴ π2 - π6 ≤ 12 T= 12 • 2πω = πω .即 π3 ≤ πω . ∴0<ω≤3;又f ( π2 )=f ( 2π3 )=-f ( π6 ). ∴x=π2+2π32 = 7π12为f (x )=sin (ωx+φ)的一条对称轴.且(π6+π22.0)即( π3 .0)为f (x )=sin(ωx+φ)的一个对称中心.依题意知.x= 7π12 与( π3 .0)为同一周期里面相邻的对称轴与对称中心. ∴ 14 T= 14 • 2πω = 7π12 - π3 = π4 . 解得:ω=2∈(0.3]. ∴T= 2π2 =π. 故答案为:π.【点评】:本题考查三角函数的周期性及其求法.确定x= 7π12 与( π3 .0)为同一周期里面相邻的对称轴与对称中心是关键.也是难点.属于难题.11.(填空题.5分)由正整数组成的数列{a n }、{b n }中分别为递增的等差数列、等比数列.a 1=b 1=1.记c n =a n +b n .若存在正整数k (k≥2)满足c k-1=100.c k+1=1000.则c k =___ . 【正确答案】:[1]262【解析】:设等差数列{a n }的公差为d (d >0.d∈Z ).等比数列{b n }的公比为q (q >1.q∈Z ).c k-1.c k .c k+1为相邻三项.运用等差数列和等比数列的通项公式.讨论q=2.3.4.….9.根据条件.检验可得q=9.k=3.可得所求值.【解答】:解:设等差数列{a n }的公差为d (d >0.d∈Z ).等比数列{b n }的公比为q (q >1.q∈Z ).由a 1=b 1=1.c n =a n +b n .且c k-1=100.c k+1=1000. 可得c k-1.c k .c k+1为相邻三项. 则a n =1+(n-1)d.b n =q n-1.n∈N*. d=a k+1−a k−12. 若q=2.可得{b n }:1.2.4.8.16.32.64.128.256.512.1024.…. 考虑{b n }的前三项.d=996−992不为整数.显然不成立; 若{b n }的第2.3.4项.可得d=992−982.显然不满足{a n }的通项公式; 若{b n }的第3.4.5项;第4.5.6项;第5.6.7项;第6.7.8项;第7.8.9项;都不成立; 若q=3.可得{b n }:1.3.9.27.81.243.729.2187.…. 考虑{b n }的前三项.d=991−992.显然不满足{a n }的通项公式;若{b n}的第2.3.4项.检验显然不满足{a n}的通项公式;若{b n}的第3.4.5项;第4.5.6项;第5.6.7项;检验都不成立;若q=4.可得{b n}:1.4.16.64.256.1024.….不为整数.显然不成立;考虑{b n}的前三项.d= 994−992若{b n}的第2.3.4项.检验显然不满足{a n}的通项公式;若{b n}的第3.4.5项;检验都不成立;若q=5.可得{b n}:1.5.25.125.625.…..检验显然不满足{a n}的通项公式;考虑{b n}的前三项.d= 975−992若{b n}的第2.3.4项.检验显然不满足{a n}的通项公式;若{b n}的第3.4.5项;检验都不成立;若q=6.可得{b n}:1.6.36.216.1296.….不为整数.显然不成立;考虑{b n}的前三项.d= 964−992若{b n}的第2.3.4项.检验显然不满足{a n}的通项公式;若q=7.可得{b n}:1.7.49.343.….不为整数.显然不成立;考虑{b n}的前三项.d= 951−992若{b n}的第2.3.4项.检验显然不满足{a n}的通项公式;若q=8.可得{b n}:1.8.64.512.….不为整数.显然不成立;考虑{b n}的前三项.d= 936−992若{b n}的第2.3.4项.检验显然不满足{a n}的通项公式;若q=9.可得{b n}:1.9.81.729.….=410.检验不成立;考虑{b n}的前三项.d= 919−992=90.若{b n}的第2.3.4项.d= 271−912可得a2=91.a3=181.a4=271.可得k=3.c k=a3+b3=181+81=262.故答案为:262.【点评】:本题考查等差数列和等比数列的通项公式和性质.考查分类讨论思想和化简运算能力、推理能力.属于难题.12.(填空题.5分)已知无穷等比数列{a n}满足:对任意的n∈N*.sina n=1.则数列{a n}公比q的取值集合为___ .【正确答案】:[1]{q|q=4k+1.k∈Z}【解析】:对任意的n∈N*.sina n=1.可得a n=2kπ+ π2 = π2(4k+1).由数列{a n}是无穷等比数列.即可得出.【解答】:解:对任意的n∈N*.sina n=1.∴a n=2kπ+ π2 = π2(4k+1).∵数列{a n}是无穷等比数列.∴数列{a n}公比q的取值集合为{q|q=4k+1.k∈Z}.故答案为:{q|q=4k+1.k∈Z}.【点评】:本题考查了等比数列的定义通项公式及其性质.考查了推理能力与计算能力.属于中档题.13.(单选题.5分)对于函数f(x)=2sinxcosx.下列选项中正确的是()A.f(x)在(π4 . π2)上是递增的B.f(x)的图象关于原点对称C.f(x)的最小正周期为2πD.f(x)的最大值为2【正确答案】:B【解析】:本题考查三角函数的性质.利用二倍角公式整理.再对它的性质进行考查.本题包括单调性、奇偶性、周期性和最值.这是经常出现的一种问题.从多个方面考查三角函数的性质和恒等变换.【解答】:解:∵f(x)=2sinxcosx=sin2x.是周期为π的奇函数.对于A.f(x)在(π4 . π2)上是递减的.A错误;对于B.f(x)是周期为π的奇函数.B正确;对于C.f(x)是周期为π.错误;对于D.f(x)=sin2x的最大值为1.错误;故选:B.【点评】:在三角函数中除了诱导公式和八个基本恒等式之外.还有两角和与差公式、倍角公式、半角公式、积化和差公式、和差化化积公式.此外.还有万能公式.在一般的求值或证明三角函数的题中.只要熟练的掌握以上公式.用一般常用的方法都能解决我们的问题.14.(单选题.5分)若等差数列{a n}的前10项之和大于其前21项之和.则a16的值()A.大于0B.等于0C.小于0D.不能确定 【正确答案】:C【解析】:利用等差数列的求和公式与通项公式即可得出.【解答】:解:等差数列{a n }的前10项之和大于其前21项之和. ∴10a 1+10×92 d >21a 1+ 21×202d. 化为:a 1+15d <0.即a 16<0. 故选:C .【点评】:本题考查了等差数列的通项公式及求和公式.考查了推理能力与计算能力.属于中档题.15.(单选题.5分)已知数列{a n }的通项公式a n = {(−1)n ,1≤n ≤2019(12)n−2019,n ≥2020 .前n 项和为S n .则关于数列{a n }、{S n }的极限.下面判断正确的是( ) A.数列{a n }的极限不存在、{S n }的极限存在 B.数列{a n }的极限存在、{S n }的极限不存在 C.数列{a n }、{S n }的极限均存在.但极限值不相等 D.数列{a n }、{S n }的极限均存在.且极限值相等 【正确答案】:D【解析】:根据当n≥2020时. S n =−(12)n−2019 .当n→∞时.S n →0.当n→∞时.a n →0.即可得得到答案.【解答】:解:∵a n = {(−1)n ,1≤n ≤2019(12)n−2019,n ≥2020 .∴当n→∞时.a n →0.∵当n≥2020时. S n =−1+12(1−12n−2019)1−12= −(12)n−2019 .∴当n→∞时.S n →0.∴数列{a n }、{s n }的极限均存在.且极限值相等. 故选:D .【点评】:本题考查了数列极限的求法和等比数列的求和公式的应用.属中档题.16.(单选题.5分)已知数列{a n}是公差不为零的等差数列.函数f(x)是定义在R上的单调递增的奇函数.数列{f(a n)}的前n项和为S n.对于命题① 若数列{a n}为递增数列.则对一切n∈N*.S n>0② 若对一切n∈N*.S n>0.则数列{a n}为递增数列③ 若存在m∈N*.使得S m=0.则存在k∈N*.使得a k=0④ 若存在k∈N*.使得a k=0.则存在m∈N*.使得S m=0其中正确命题的个数为()A.0B.1C.2D.3【正确答案】:C【解析】:f(x)是单调递增的奇函数.所以f(0)=0.当x>0时.f(x)>0.当x<0时.f(x)<0.【解答】:对于① :令a1=0.则S1=f(a1)=0.故错误;对于② :假设数列{a n}为递减数列.则d<0.所以存在正整数m.使得a2m+a1=2a1+d(2m-1)<0.则∀1≤k≤m.a k+a2m-k=a1+a2m<0⇒a k<-a2m-k.所以f(a k)<f(-a2m-k)=-f(a2m-k)⇒f(a k)+f(a2m-k)<0.所以S2m= ∑m k=1(a k+a2m-k)<0.矛盾.故正确;对于③ :a1=-1.d=2.则a2=1.S2=f(-1)+f(1)=0.但是不存在正整数k.a k=0.故错误;对于④ :a k=0.所以对任意1≤i≤k-1.a i+a2k-i=0⇒a i=-a2k-i.所以f(a i)+f(a2k-i)=f(-a2k-i)+f(a2k-i)=0.所以S2k-1= ∑k i=1(f(a i)+f(a2k-i))+f(k)=0.故正确.故选:C.【点评】:对于一道选择题.可以用f(x)=x代入来简化问题.可以较容易地判断出① ③ 的错误性.17.(问答题.14分)已知等比数列{a n }的前n 项和为S n .a 1=2.a 3=2a 2+16.且S 2020<0. (1)求{a n }的通项公式(2)是否存在正整数n.使得S n >2020成立?若存在.求出n 的最小值;若不存在.请说明理由.【正确答案】:【解析】:(1)设等比数列{a n }的公比为q.由a 1=2.a 3=2a 2+16.可得2q 2=4q+16.解得q.根据S 2020<0.即可得出q .(2)假设存在正整数n.使得S n >2020成立.根据 2[1−(−2)n ]1−(−2)>2020.可得:1-(-2)n >3030.于是n 必为奇数.即可得出.【解答】:解:(1)设等比数列{a n }的公比为q.∵a 1=2.a 3=2a 2+16. ∴2q 2=4q+16. 解得q=-2.4. ∵S 2020<0.∴ 2(1−q 2020)1−q<0.则q=-2. ∴a n =2×(-2)n-1.(2)假设存在正整数n.使得S n >2020成立.则 2[1−(−2)n ]1−(−2) >2020.可得:1-(-2)n >3030.则n 必为奇数.n 的最小值为13.【点评】:本题考查了等比数列的通项公式与求和公式、不等式的解法.考查了推理能力与计算能力.属于中档题.18.(问答题.14分)已知函数f (x )=2cos 2x+2 √3 sinxcosx-1. (1)求函数y=f (x )的单调递减区间;(2)在锐角△ABC 中.若角C=2B.求f (A )的值域.【正确答案】:【解析】:(1)利用倍角公式降幂.再由辅助角公式化积.结合复合函数的单调性求函数y=f (x)的单调递减区间;(2)由已知可得A的范围.进一步得到2A+ π6的范围.则f(A)的值域可求.【解答】:解:(1)∵f(x)=2cos2x+2 √3 sinxcosx-1=cos2x+ √3 sin2x=2sin(2x+ π6).令2kπ +π2≤2x+ π6≤2kπ+ 3π2.k∈Z.解得:kπ+ π6≤x≤kπ+ 2π3.k∈Z.∴可得函数y=f(x)的单调递减区间为:[kπ+ π6 .kπ+ 2π3].k∈Z;(2)∵△ABC为锐角三角形.且C=2B.∴C=2B <π2 .则B<π4.可得B+C<3π4.则A>π4 .由A<π2.∴A∈(π4 . π2).2A+ π6∈(2π3. 7π6).∴f(A)=2sin(2A+ π6)∈(-1. √3).即f(A)的值域为(-1. √3).【点评】:本题考查三角函数的恒等变换应用.考查y=Asin(ωx+φ)型函数的图象和性质.是中档题.19.(问答题.14分)已知数列{a n}满足:a1=2.na n+1=(n+1)a n+n(n+1).n∈N*.(1)求证:数列{ a nn}为等差数列.并求出数列{a n}的通项公式;(2)记b n= 2(n+1)a n (n∈N*).用数学归纳法证明:b1+b2+…+b n<1- 1(n+1)2.n∈N*.【正确答案】:【解析】:(1)将等式两边同除以n(n+1).结合等差数列的定义和通项公式可得所求;(2)求得b n= 2(n+1)a n = 2n(n+1)2.运用数学归纳法证明.注意由n=k推得n=k+1.结合分析法证明.【解答】:解:(1)证明:a1=2.na n+1=(n+1)a n+n(n+1).可得a n+1n+1 = a nn+1.则数列{ a nn}为首项为2.公差为1的等差数列.则a nn=2+n-1=n+1.即a n=n(n+1);(2)证明:b n= 2(n+1)a n = 2n(n+1)2.当n=1时.b1= 12 .1- 14= 34.即12<34;假设n=k时.不等式b1+b2+…+b k<1- 1(k+1)2.k∈N*.当n=k+1时.b1+b2+…+b k+b k+1<1- 1(k+1)2 + 2(k+1)(k+2)2.要证1- 1(k+1)2 + 2(k+1)(k+2)2<1- 1(k+2)2.即为2(k+1)(k+2)2<1(k+1)2- 1(k+2)2.即为2(k+1)<2k+3.显然成立.即n=k+1时.不等式成立.则b1+b2+…+b n<1- 1(n+1)2.n∈N*.【点评】:本题考查等差数列的定义和通项公式.考查数学归纳法的运用.化简运算能力.属于中档题.20.(问答题.16分)设函数f(x)=5sin(ωx+φ).其中ω>0.φ∈(0. π2).(1)设ω=2.若函数f(x)的图象的一条对称轴为直线x= 3π5.求φ的值;(2)若将f(x)的图象向左平移π2个单位.或者向右平移π个单位得到的图象都过坐标原点.求所有满足条件的ω和φ的值;(3)设ω=4.φ= π6.已知函数F(x)=f(x)-3在区间[0.6π]上的所有零点依次为x1.x2.x3.….x n.且x1<x2<x3<…<x n-1<x n.n∈N*.求x1+2x2+2x3+…2x n-1+2x n-1+x n的值.【正确答案】:【解析】:(1)代入ω=2及对称轴x= 3π5.f(x)有最值.(2)利用f(x)的图象向左平移π2个单位得y=5sin[ω(x+ π2)+φ]过原点.再利用f(x)的图象向右平移π个单位得y=5sin[ω(x-π)+φ]过原点.根据题目约束条件构建方程.最后归纳总结.(3)利用F (x )=5sin (4x+ π6 )-3在区间[0.6π]上的所有零点依次为x 1.x 2.x 3.….x n . 等价于f (x )=5sin (4x+ π6)与y=3在区间[0.6π]上的所有交点的横标依次为x 1.x 2.x 3.….x n . 相邻交点横标之和为f (x )=5sin (4x+ π6)的对称轴2倍.【解答】:解:(1)若ω=2.则f (x )=5sin (2x+φ). ∵此时函数f (x )的图象的一条对称轴为直线x= 3π5 . ∴ 2×3π5+φ=π2+kπ,k ∈Z .∴ φ=−7π10+kπ,k ∈Z .∵φ∈(0. π2 ).∴当k=1时. φ=3π10 . (2)将f (x )的图象向左平移 π2 个单位得y=5sin[ω(x+ π2 )+φ]过原点. ∴0=5sin (ω×0+ω× π2 +φ).将f (x )的图象向右平移π个单位得 y=5sin[ω(x-π)+φ]过原点.∴0=5sin (ω×0-ω×π+φ).∴ {π2ω+φ=iπ−πω+φ=jπi ,j ∈Z ∵φ∈(0. π2 ).∴φ= π3 .∴ {π2ω+π3=iπ−πω+π3=jπi ,j ∈Z .∴ {ω=2i −23ω=13−j i ,j ∈Z .∵ω>0.∴ ω=6n+43,n ∈N (3)∵ω=4.φ= π6 .∴f (x )=5sin (4x+ π6 ).∵F (x )=5sin (4x+ π6 )-3在区间[0.6π]上的所有零点依次为x 1.x 2.x 3.….x n .如图.等价于f (x )=5sin (4x+ π6 )与y=3在区间[0.6π]上的所有交点的横标依次为x 1.x 2.x 3.….x n .∴x 1+2x 2+2x 3+…2x n-1+2x n-1+x n =(x 1+x 2)+(x 2+x 3)+…+(x n-1+x n-1)+(x n-1+x n ) ∵x n-1+x n 是f (x )=5sin (4x+ π6 )对应对称轴x 的2倍. 又∵f (x )=5sin (4x+ π6)=±5.∴4x+ π6=kπ+ π2.k∈Z .∴ x =kπ4+π12. ∵x∈[0.6π].∴k∈[0.23].∵当k=23时.f (x )=f (23π4+π12 )=-5.此时不符题意.∴k∈[0.22].∴(x 1+x 2)+(x 2+x 3)+…+(x n-1+x n-1)+(x n-1+x n )=2×[ π12 +( π4×1+π12 )+( π2×2+π12 )++…+( π4×22+π12 )] =2×23[π12+(π4×22+π12)]2=391π3∴x 1+2x 2+2x 3+…2x n-1+2x n-1+x n =391π3【点评】:本题考查三角函数的对称性.考查三角函数与数列的结合.属中档题.21.(问答题.18分)已知无穷数列{a n }、{b n }是公差分别为d 1、d 2的等差数列.记c n =[a n ]+[b n ](n∈N*).其中[x]表示不超过x 的最大整数.即x-1<[x]≤x .(1)直接写出数列{a n }、{b n }的前4项.使得数列{c n }的前4项为:2.3.4.5; (2)若a n =n+13 .b n = n−13.求数列{c n }的前3n 项的和S 3n ;(3)求证:数列{c n }为等差数列的必要非充分条件是d 1+d 2∈Z .【正确答案】:【解析】:(1)根据题意.列举出适合题意的等差数列{a n }、{b n }的前4项即可; (2)若a n =n+13 .b n = n−13.则[a 3k-2]=k-1.[a 3k-1]=k.[a 3k ]=k.[b 3k-2]=k-1.[b 3k-1]=k-1.[b 3k ]=k-1.其中k∈N*.将S 3n 转化为 ∑(c 3k−2+c 3k−1+c 3k )n k=1 = ∑(6k −4)nk=1 =进而转化为等差数列的前n 项和即可.(3)必要性:若数列{c n }为等差数列.设其公差为d.则d 为整数.设d 1+d 2=t.则d 2=t-d 1.根据c n -c 1=[a n ]+[b n ]-([a 1]+[b 1]=nd.结合x-1<[x]≤x .可得t- 2n <d <t+ 2n .由n→∞时可得t=d 1+d 2=d 为整数.必要性得证.充分性可以举反例来说明其不成立.【解答】:解:(1){a n }的前4项为1.2.3.4.{b n }的前4项为1.1.1.1符合题意; (2)若a n =n+13 .b n = n−13. 则[a 3k-2]=k-1.[a 3k-1]=k.[a 3k ]=k.[b 3k-2]=k-1.[b 3k-1]=k-1.[b 3k ]=k-1.其中k∈N*. 所以c 3k-2=2k-2.c 3k-1=2k-1.c 3k =2k-1.k∈N*.所以数列{c n }的前3n 项的和S 3n = ∑(c 3k−2+c 3k−1+c 3k )n k=1 = ∑(6k −4)nk=1 =(6-4)+(12-4)+……+(6n-4)=2+8+……+(6n-4)=2+(6n−4)2×n =3n 2-3n ;(3)若数列{c n }为等差数列.设其公差为d.则d=[a n+1]+[b n+1]-([a n ]+[b n ]). 因为[a n+1].[b n+1].[a n ].[b n ].均为整数. 所以d∈Z .设d 1+d 2=t.则d 2=t-d 1.因为无穷数列{a n }、{b n }是公差分别为d 1、d 2的等差数列. 所以a n =d 1n+a 1.b n =d 2n+b 1=(t-d 1)n+b 1.所以[a n ]=[d 1n+a 1].所以d 1n+a 1-1<[d 1n+a 1]≤d 1n+a 1. 又因为-a 1≤[a 1]<1-a 1. 所以d 1n-1<[a n ]-[a 1]<d 1n+1.同理d 2-1<[b n ]-[b 1]<d 2+1.即(t-d 1)n-1<[b n ]-[b 1]<(t-d 1)+1. 所以(d 1n-1)+(t-d 1)n-1<[a n ]+[b n ]-([a 1]+[b 1]<d 1n+1+(t-d 1)+1. 所以tn-2<c n -c 1<tn+2. 所以tn-2<dn <tn+2. 所以t- 2n <d <t+ 2n . 当n→+∞时. 2n →0. 所以t=d 1+d 2=d. 故t 为整数.必要性得证.反之若d 1+d 2为整数.数列{c n }不一定为等差数列. 如a n = 13n +1 .b n = 23n −1 时.d 1+d 2=1为整数. 此时c 1=1-1=0.c 2=1+1=2.c 3=2+1=3.所以2c 2≠c 1+c 3.故数列{c n }不是等差数列.所以充分性不成立. 所以数列{c n }为等差数列的必要非充分条件是d 1+d 2∈Z .【点评】:本题考查了新定义取整函数.考查了等差数列的性质.等差数列的前n项和公式.等差数列的通项公式.考查了简易逻辑.主要考查分析解决问题的能力和逻辑思维能力.属于难题.。

上海市2018-2019复旦附中高三上学期第一次月考数学试题解析点睛版(23页)

上海市2018-2019复旦附中高三上学期第一次月考数学试题解析点睛版(23页)

上海市2018-2019复旦附中高三上学期第一次月考数学试题一、选择题(本大题共4小题) 1.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 ()A. 1a ≤B. 3a ≤C. 13a ≤≤D. 3a ≥【答案】C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围.【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a <?. 综上所述,实数a 的取值范围是13a ≤≤. 故选:C.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论. 2.条件甲:函数满足()1()f x f x -=;条件乙:函数是偶函数,则甲是乙的 ( )A. 充分非必要条件B. 必要非充分条件 C 充要条件 D. 既非充分也非必要条件【答案】A 【解析】【详解】条件甲:函数()f x 满足()1()f x f x -=, 即()()f x f x -=可以得到函数是一个偶函数 条件乙:函数()f x 是偶函数,一定要满足()()f x f x =-, 但是不能保证两边同除以()f x 有意义, 所以条件甲是条件乙的充分非必要条件, 所以A 选项是正确的,故选A.3.关于函数()()4f x x x x x R =+∈的反函数,正确的是() A. 有反函数()12,02,0x fx x -≥=<B. 有反函数()12,020x f x x -≥=-<⎪⎩C. 有反函数()12,02,0x f x x -≥=<D. 无反函数 【答案】B 【解析】 【分析】将函数()y f x =表示为分段函数的形式,判断该函数为增函数,然后分0x ≥和0x <解出该函数的反函数..【详解】()224,04,0x x x f x x x x ⎧+≥=⎨-+<⎩,作出函数()y f x =的图象如下图所示:由图象可知,函数()y f x =在R 上为增函数,该函数存在反函数. 当0x ≥时,由()22424y x x x =+=+-,得2x =-;当0x <时,由()22y x 4x x 24=-+=--+,得2x =.因此, ()12,020x fx x -≥=-<⎪⎩,故选:B.【点睛】本题考查反函数解析式的求解,在判断函数的存在性时,还应考查函数的单调性,考查推理能力与计算能力,属于中等题.4.定义“正对数”:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩,现有四个命题: ①若0a >,0b >,则()ln ln ln ab a b +++=+;②若0a >,0b >,则l ln n b a b a ++=;③若0a >,0b >,则n n ln l l a a b b +++⎛⎫≥- ⎪⎝⎭;④若0a >,0b >,则()ln ln n l l 2n a b a b +++++≤++.则所有真命题的序号为 ()A. ①②③B. ①②④C. ③④D.②③④ 【答案】D 【解析】 【分析】对于①,通过举反例说明错误;对于②,由“正对数”的定义分别对a 、b 分01a <<,0b >;1a ≥,0b >两种情况进行推理;对于③④,分别从四种情况,即当01a <<,0b >时;当1a ≥,01b <<时;当01a <<,1b ≥时;当1a ≥,1b ≥时进行推理.【详解】对于①,当14a =,2b =时,满足0a >,0b >,而()1l n l n 02ab ++==, 1ln a ln b ln ln 2ln24+++++=+=,()ln ln ln ab a b +++∴≠+,命题①错误; 对于②,当01a <<,0b >时,有01b a <<,从而()ln 0b a +=,ln 00b a b +=⨯=,()ln ln b a a b ++∴=;当1a ≥,0b >时,有1b a >,从而()ln ln ln b ba ab a +==,ln ln b a b a +=,()ln ln b a b a ++∴=.∴当0a >,0b >时,()ln ln b a b a ++=,命题②正确;对于③,由“正对数”的定义知,ln 0x +≥且ln ln x x +≥.当01a <<,01b <<时,ln ln 000a b ++-=-=,而ln 0a b +⎛⎫≥ ⎪⎝⎭,则n n ln l l a a b b +++⎛⎫≥- ⎪⎝⎭;当1a ≥,01b <<时,有1a b>,ln ln ln 0ln a b a a +++-=-=,而ln ln ln ln a a a b b b +⎛⎫==- ⎪⎝⎭,ln 0b <Q ,则n n ln l l a a b b +++⎛⎫≥- ⎪⎝⎭.当01a <<,1b ≥时,有01ab<<,ln ln 0ln ln 0a b b b +++-=-=-<,而ln 0a b +⎛⎫= ⎪⎝⎭,则n n ln l l a a b b +++⎛⎫≥- ⎪⎝⎭. 当1a ≥,1b ≥时,ln ln ln ln ln a a b a b b ++-=-=,则n n ln l l aa b b +++⎛⎫≥- ⎪⎝⎭.∴当0a >,0b >时,n n ln l l a a b b +++⎛⎫≥- ⎪⎝⎭,命题③正确;对于④,由“正对数”的定义知,当12x x ≤时,有12ln ln x x ++≤.当01a <<,01b <<时,有02a b <+<,从而()ln ln 2ln 2a b +++<=,ln ln ln 200ln 2ln 2a b +++++=++=,()ln ln ln ln 2a b a b ++++∴+≤++;当1a ≥,01b <<时,有1a b +>,从而()()()ln ln ln ln 2a b a b a a a ++=+<+=,ln ln ln 2ln 0ln 2ln 2a b a a +++++=++=,()ln ln ln ln 2a b a b ++++∴+≤++; 当01a <<,1b ≥时,有1a b +>,从而()()()ln ln ln ln 2a b a b b b b ++=+<+=, ln ln ln 20ln ln 2ln 2a b b b +++++=++=,()ln ln ln ln 2a b a b ++++∴+≤++; 当1a ≥,1b ≥时,()()ln ln a b a b ++=+,()ln ln ln 2ln ln ln 2ln 2a b a b ab +++++=++=,()()()2110ab a b ab a ab b a b b a -+=-+-=-+-≥Q ,2ab a b ∴≥+,从而()ln ln n l l 2n a b a b +++++≤++,命题④正确.∴正确的命题是②③④.故选:D .【点睛】本题考查命题的真假判断与应用,考查新定义,解答的关键是对“正对数”定义的理解与应用,考查运算能力和逻辑推理能力,属于难题.二、填空题(本大题共12小题,共54.0分)5.已知全集U R =,{}2A |30x x x =-<,{}B 2x x =则A U C B ⋂=_________.【答案】(]0,2 【解析】试题分析:根据条件得到集合A ,集合B 的补集,再由集合的交集运算得到最终结果. 详解:根据条件得到{}A |03x x =<<,{}B 2x x =,{}|2U C B x x =≤, 则{}A |02U C B x x ⋂=<≤。

2019届复附浦分初升高自招数学试卷

2019届复附浦分初升高自招数学试卷

2019年复旦附中浦东分校自招数学试卷1. 已知14a a +=,求441a a +的值2. 已知280x mx ++=与2420x x m ++=有公共实根t ,求t 的值3. 求(0,0)关于直线4y x =+翻折后的坐标4.5. 如图,已知AB 为直径,25DCB ︒∠=,求ABD ∠6. 已知2234y x mx m =+-(0)m >与x 轴交于A 、B ,若1123OB OA -=,求m 的值7. 直线y kx b =+经过两点(,)A t t 、(,5)B m m ,0t >,0m >,当m t 为整数,求整数k8. 已知四位数09x yz xyz =⨯,求这个四位数9. 正方形四个顶点都有人,同时从一个顶点走向另一个顶点(随机选边,概率均为12), 求有人相遇的概率10. ()F x 是关于x 的五次多项式,(2)(1)(0)(1)0F F F F -=-===,(2)24F =,(3)360F =,求(4)F11. 已知227100x ax a ++-=无实根,则下列选项必有实根的是( )A. 22320x ax a ++-=B. 22560x ax a ++-=C. 2210210x ax a ++-=D. 22230x ax a +++=12. 直角三角形ABC 中,90C ︒∠=,sin B n =,当B ∠为最小内角时,则n 的范围( )A. 02n <≤B. 112n -<<C. 102n <≤ D. 122n <≤13. 已知2a b +=,22(1)(1)4a b b a--+=-,则ab 的值为( ) A. 1 B. 1- C. 12- D. 1214. 已知互不相等的整数数列12{,,,}n i i i ⋅⋅⋅,2n ≥,当p q <时,p q i i >,称为“逆序”,若正整数数列126{,,,}a a a ⋅⋅⋅中,“逆序”有2组,则651{,,,}a a a ⋅⋅⋅中“逆序”有( )组A. 34B. 28C. 16D. 1315. 已知[]x 为不超过x 的最大整数,解方程2[]3x x -=16. 如图已知8AO =,AB AC =,4sin 5ABC ∠=,COE ADE S S =(1)求BC 的长;(2)求经过C 、E 、B 的二次函数的解析式17. 已知AB 为直径,C 是AC 中点,DF 为切线,切点为点B(1)求证:AC CD =;(2)若2OB =,E 为OB 中点,求BH参考答案 1. 422411[()2]2194a a a a+=+--= 2. 6m =-,2t =3. (4,4)-4. 10=20-=,2x =,8y =12= 5. 联结AD ,65︒ 6. 3()()22m m y x x =+-,32m OA =,2m OB =,2m = 7. 5m t k m t -=-,设m nt =,n ∈*N ,∴514511n k n n -==+--,n 取2、3、5,k 为9、7、6 8. 由末两位相同可得,5z =,2y =或7,分析可得四位数为2025或60759. 不相遇的情况有都顺时针或都逆时针两种情况,427128-= 10. 5432()286F x x x x x x =+--+,(4)1800F =11. 25a <<,A 选项,4(1)(2)a a ∆=--在25a <<的情况下恒大于零,故选A12. 045B ︒︒<≤,02n <≤,选A 13. 代入整理出方程2210a a --=,1ab =-,选B14. 26213C -=,选D15. 结合取整函数图像,23x <<,[]2x =,∴x =16.(1)12;(2)22(36)27y x =-17.(1)等腰直角三角形,证明略;(2。

2018-2019学年上海市复旦大学附属中学高一下学期期末考试数学试题(解析版)

2018-2019学年上海市复旦大学附属中学高一下学期期末考试数学试题(解析版)

【解析】【详解】解:,是周期为的奇函数,A,在上是递减的,错误;B,是奇函数, 图象关于原点对称,正确;C,是周期为,错误;D,的最大值为1,错误;B 选项是正确的..已知数列是公差不为零的等差数列,函数是定义在上的单调递增的奇函数,数列{}n a ()f x R 的前项和为,对于命题:)}n a n n S {}a 0S >,与题设矛盾,所以递增,故112121()()...()()...()0k k k f a f a f a f a f a ++=++++++≤{}n a 正确; ,则,,令,所以,但是23n a n =-11a =-21a =()f x x =12()()0f a f a +=23n a n =-错误;因为,所以,k a =121222 (20)k k k a a a a a --+=+===,12122211,,...,k k k k a a a a a a ---+=-=-=-,12122211()(),()(),...,()()k k k k a f a f a f a f a f a ---+=-=-=-,则存在,使得2112121()()...()()...()0k k k k f a f a f a f a f a -+-=++++++=*m N ∈0m S =正确.故选:C.【解析】所求的等比中项为: .284±⨯=±.函数,的反函数为__________.arctan y x =(0,1)x ∈【答案】tan ,(0,)4y x x π=∈【解析】将函数变形为的形式,然后得到反函数,注意定义域.()x f y =【详解】,所以,则反函数为:且.arctan y x =tan x y =tan y x =(0,)4x π∈【点睛】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域..在等差数列中,,,则 .{}n a 12a =3510a a +=7a =本题考查根据三角函数值求解给定区间中变量的值,难度较易..在中,角的对边分别为,若面积,则角__________ABC ∆,,A B C ,,a b c 2222a b S c +-=C =【答案】arctan 2【解析】根据面积公式计算出的值,然后利用反三角函数求解出的值.tan C C 【详解】,所以,则,则有:2221sin 22a b c S ab C +-==222sin 2cos ab C a b c ab C =+-=tan 2C =.arctan 2【点睛】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.【答案】4π【解析】根据和的取值特点,判断出两个值都是最值,然后根据图象去确定1()f x 2()f x 12x x -【详解】对任意成立,所以取最小值,取最大值;12()()()f x f x f x ≤≤x ∈R 1()f x 2()f x 取最小值时,与必为同一周期内的最小值和最大值的对应的,则,且2x 1x 2x x 12min 2Tx x -=,故.28||πω=12min 4x x -=【点睛】任何一个函数,若有对任何定义域成立,此时必有:()f x 12()()()f x f x f x ≤≤x ∈1()min f x =.2)max=可得①或②得:;解得:.故答案为9.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.【思路点睛】解本题首先要能根据韦达定理判断出a ,b 均为正值,当他们与-2成等差数列时,共有6种可能,当为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b 与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p ,q ..设函数(是常数,).若在区间上具有单()sin()f x A x ωϕ=+,,A ωϕ0,0A ω>>()f x [,]62ππ调性,且,则的最小正周期为_________.2()()()236f f f πππ==-()f x 【答案】π由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为函数的对称性、周期性,属于中档题,若存在正整数()满足,,则__________.n na b +k 2k ≥1100k c -=11000k c +=k c =【答案】262【解析】根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.qk d 【详解】设等比数列公比为,等差数列公差为,因为,,所以qd 1100k c -=11000k c +=;又因为,分别为递增的等差数列、等比数列,所以2(2)100(*)1000k kk d q kd q --+=+={}n a {}n b q ≥;又时显然不成立,所以,则,即;12k =11100+=3k ≥31000q <9q ≤,,所以;因为,所以 ;2q ≥221002k k q -->>8k ≤(2)k d d -≥100d ≤可知:,则,;又(*)22900k k q q d --+=22900()200k k d q q -=--<22(1)700k q q -->,所以,即;取连续的有限项构成数sin 1n a =2,2n a k k Zππ=+∈(41),2n k a k Z π+=∈{}n a ,不妨令,则,且,则此时必为整数;}n 1(41),2k b k Z π+=∈2(41),2q k b k Z π+=∈2{}n b a ∈q 时,,不符合;4,k k Z =∈224(4)2(41){}2n k k b k k a π+=+=∉时,,符合,41,k k Z =+∈222(41)4(42)1{}22n k k k b a π+++==∈此时公比 ;41,q k k Z =+∈时, ,不符合;42,k k Z =+∈224(43)2(21)(41){}2n k k b k k a π++=++=∉2(43)(41)4(44)3k k k k π++++.已知数列的通项公式,前项和为,则关于数列、{}n a ()2019112n n a -⎧-⎪=⎨⎛⎫⎪ ⎪⎝⎭⎩120192020n n ≤≤≥n n S {}n a 的极限,下面判断正确的是()}.数列的极限不存在,的极限存在{}n a {}n S .数列的极限存在,的极限不存在{}n a {}n S .数列、的极限均存在,但极限值不相等{}n a {}n S .数列、的极限均存在,且极限值相等{}n a {}n S 【答案】D 【解析】分别考虑与的极限,然后作比较.{}n a {}n S 【详解】【解析】(1)根据条件求解出公比,然后写出等比数列通项;(2)先表示出,然后考虑n S 的的最小值.2020n 【详解】)因为,所以或,又,则,所以;(1222416a q q =⎧⎨=+⎩4q =2-20200S <2q =-12(2)n n a -=⋅-,则,当为偶数时有不符合;2(1(2))2(1(2))20201(2)3n n n S --==-->--(2)3029n -<-n (2)0n->为奇数,且,,所以且为奇数,故.n 11(2)2048-=-13(2)4096-=-13n ≥n min 13n =【点睛】本题考查等比数列通项及其前项和的应用,难度一般.对于公比为负数的等比数列,分析前项和所n n 满足的不等式时,注意分类讨论,因此的奇偶会影响的正负.n n S)由锐角三角形可知: ,所以,则 ,A B C π⎪++=⎩42A <<(2)(,)636A +∈,所以,,则()2sin(2)6A A π=+min 7()2sin()16f A π>=-max ()2sin 22f A π==.)(1,2]∈-【点睛】本题考查三角恒等变换以及三角函数值域问题,难度较易.根据三角形形状求解角范围的时候,要注意到隐含条件的使用.A B C π++=.已知数列满足:,,.{}n a 12a =1(1)(1)n n na n a n n +=+++*n N ∈)求证:数列为等差数列,并求出数列的通项公式;{}n a n {}n a )记(),用数学归纳法证明:,2(1)n n b n a =+*n N ∈12211(1)n b b b n +++<-+ *n N∈(1)(1)(2)(2)(2)(1)(2)(1)k k k k k k k k ++++++++⎝⎭⎝⎭ ,2222221)2(1)(2)1(1)(2)(1)(2)k k k k k k +++-+-=<++++,22212111(1)(1)(2)(2)k k k k ⎛⎫⎛⎫-+<- ⎪ ⎪++++⎝⎭⎝⎭,故时不等式成立,21211(2)k k b b b k +++++<-+ 1n k =+综上可知:.12211(1)n b b b n +++<-+ 【点睛】数学归纳法的一般步骤:(1)命题成立;(2)假设命题成立;(3)证明命题1n =n k =1n k =+成立(一定要借助假设,否则不能称之为数学归纳法).π),因为是一条对称轴,对应最值;又()5sin(2)f x x ϕ=+35x π=36()2sin()55f ππϕ=+()f x ,所以,所以,则;(2)由条件知:(0,)2πϕ∈6617()(,)5510πππϕ+∈63()52πϕπ+=310πϕ=,可得,则,又因为5sin((0))025sin((0))0πωϕωπϕ++=-+=1122,2,k k Zk k Z πωϕππωϕπ⎧+=∈⎪⎨⎪-+=∈⎩1212(2)(,)3k k k k Z πϕ+=∈,所以,则,(0,)2π3πϕ=1122,23,3k k Z k k Z ππωπππωπ⎧+=∈⎪⎪⎨⎪-+=∈⎪⎩1162,313k k Z k ω-⎧=∈⎪⎪⎨-⎪因为,故共有个;记对称轴为,据图有:242T ππ==[0,6]π12T ()f x (1,i x a i ==,,,,,1212x x a +=2322x x a +=3432x x a += (232423)x x a +=则,令,12321122322222(...)n n n x x x x x x a a a --+++++=+++ 4,62x k k Zπππ+=+∈,又因为,所以,由于与仅在前半个周期内,412k k Z ππ=+∈[0,6]x π∈[0,23]k ∈()f x 35y =有交点,所以,max 22k =.232101221139122222(...)223444123n n n x x x x x πππ--+++++=++++⋅⋅= 【点睛】本题考查三角函数图象与性质的综合运用,难度较难.对于三角函数零点个数问题,可将其转化为函数图象的交点个数问题,通过数形结合去解决问题会更方便.)将的前项列举出:;将的前项列举出:{}n a 3n (0,1,1,1,2,2,2,...,1,,)n n n -{}n b 3n ;(0,0,0,1,1,1,...,1,1,1)n n n ---;2(11)(1)(11)(1)323322n n n n n n n n ⎡+--⎤⎡+--⎤⎛⎫⎛⎫=++=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦)充分性:取,此时,将的前项列举出:,将1,33n n n na b +==-120d d +={}n a 30,1,1{n b 项列出:,此时的前项为:,显然不是等差数列,充分性不满足;必1,1,1---{}n c 31,0,0-{}n c 要性:设,,当为等差数列时,因为,所以11(1)n a a n d =+-12(1)n b b n d =+-{}n c [][]n n n c a b =+ ,又因为,所以有:Z1100[][](1)()n c a b n d d Z =++-∈,且,所以101112[](1)[(1)][(1)]b n d a n d b n d ++-=+-++-[]1x x x-<≤;10110110(1)2[][](1)(1)b n d a b n d a b n d +--<++-≤++-综上:数列为等差数列的必要非充分条件是{}n c 12d d Z+∈【点睛】本题考查数列的定义以及证明,难度困难.对于充分必要条件的证明,需要对充分性和必要性同时分析,不能取其一分析;新定义的数列问题,可通过定义先理解定义的含义,然后再分析问题.。

上海市2018-2019复旦附中高一数学上册期末试卷(含答案)

上海市2018-2019复旦附中高一数学上册期末试卷(含答案)

复旦大学附属中学2018学年第一学期高一年级数学期末考试试卷一、填空题1.函数()3x f x a -=(0a >且1a ≠)的图像经过的一个定点,这个定点的坐标是____________.2.函数y =的定义域为____________.3.研究人员发现某种物质的温度y (单位:摄氏度)随时间x (单位:分钟)的变化规律是:()12220x x y x -=⋅+≥.经过____________分钟,该物质温度为5摄氏度.4.函数()()34,1log ,1aa x a x f x x x ⎧--<=⎨≥⎩是定义在R 上的单调递增函数,则实数a 的取值范围是____________.5.函数()()1224174f x x x -=-+的单调递增区间是____________.6.函数()0.52log 1x f x x =-的零点个数为____________个7.若函数()()()22lg 111f x a x a x ⎡⎤=-+++⎣⎦的定义域为R ,则a 的取值范围是____________.8.已知函数()()()220log 01x x f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是()1f x -,则112f -⎛⎫= ⎪⎝⎭____________.9.当lg lg a b =,a b <时,则2a b +的取值范围是____________.10.函数()142xf x =-的图像关于点____________成中心对称.11.设{}()()()21,1112,121M y y xN y y x m x x m -⎧⎫⎛⎫====+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭.若N M ⊆,则实数m 的取值范围是____________.12.已知函数()241f x ax x =++,若对任意x ∈R ,()()0f f x ≥恒成立,则实数a 的取值范围是____________.二、选择题13.下列四组函数中,不是互为反函数的是()A.3y x ==和13y x-= B.23y x =和()320y xx =≥C.()20x y x =>和()2log 1y x x => D.()()lg 11y x x =->和101xy =+14.“1a >”是“函数()()1x f x a a =-⋅是单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分又非必要条件15.下列四个函数中,图像如图所示的只能是()A.lg y x x =+B.lg y x x =-+C.lg y x x =-D.lg y x x=--16.已知n m <,函数()()1221log 1123x x x n f x n x m -+--≤≤⎧⎪=⎨⎪-<≤⎩的值域是[]1,1-,有下列结论:①当0n =时,(]0,2m ∈②当12n =时,1,22m ⎛⎤∈ ⎥⎝⎦③当10,2n ⎡⎫∈⎪⎢⎣⎭时,[]1,2m ∈④当10,2n ⎡⎫∈⎪⎢⎣⎭时,(],2m n ∈其中正确结论的序号是()A.①②B.①③C.②③D.③④三、解答题17.已知幂函数()()223m m f x xm -++=∈Z 是奇函数,且()()12f f <.(1)求m 的值,并确定()f x 的解析式;(2)求()()22121log log 2,,22y f x f x x ⎡⎤=+∈⎡⎤⎣⎦⎢⎥⎣⎦的值域.18.已知函数()()2log ,f x x a a =+为常数,()g x 是定义在[]1,1-上的奇函数.(1)当2a =时,满足()1f x >的x 的取值范围;(2)当01x ≤≤时,()()g x f x =,求()g x 的反函数()1g x -.19.如图所示,为一台冷轧机的示意图,冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出.(轧钢过程中,钢带宽度不变,且不考虑损耗)一对对轧辊的减薄率=输入该对的钢带厚度—输出该对的钢带厚度输入该对的钢带厚度(1)输入钢带的厚度为20mm ,输出钢带的厚度为2mm ,若每对轧辊的减薄率不超过20%,问冷轧机至少需要安装几对轧辊?(2)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600mm ,若第k 对轧辊有缺陷,每滚动一周在钢带上压出一个疵点,在冷轧机输出的钢带上,疵点的间距为k L ,易知41600L =mm ,为了便于检修,请计算123,,L L L .20.已知函数()2a f x x x=+(其中a 为常数).(1)判断函数()2xy f =的奇偶性;(2)若不等式()12242xxxf <++在[]0,1x ∈时有解,求实数a 的取值范围;(3)设()11x g x x -=+,是否存在正数a ,使得对于区间10,2⎡⎤⎢⎥⎣⎦上的任意三个实数,,m n p ,都存在以()()(),,f g m f g n f g p ⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦为边长的三角形?若存在,试求出这样的a 的取值范围;若不存在,请说明理由.21.函数()y f x =定义域为有理数集,当0x ≠时,()1f x >,且对任意有理数,x y ,有()()()()2f x y f x y f x f y ++-=.(1)证明:()01f =;(2)比较()11,,122f f f ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭大小,并说明理由;(3)对任意的,,x y Q x y +∈<,判断()(),f x f y 的大小关系,并说明理由.参考答案一、填空题1.()1,1- 2.(],6-∞ 3.14.()1,3 5.[)4,+∞ 6.27.53a >或1a ≤-8.1-9.()3,+∞10.()2,011.()1,0-12.[)3,+∞二、选择题13.B 14.A 15.C 16.C三、解答题17.(1)0m =,()3f x x =;(2)5,114⎡⎤-⎢⎥⎣⎦18.(1)()32,0,2⎛⎫--+∞ ⎪⎝⎭ ;(2)()[][)1210,1121,0x xx g x x --⎧-∈⎪=⎨-∈-⎪⎩19.(1)11;(2)1233125,2500,2000L L L ===20.(1)1a =,偶函数;1a =-,奇函数;1a ≠±,非奇非偶函数;(2)()3,3-(3)515155,,315153⎛⎫⎛⎫--⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭21.(1)略;(2)()11122f f f ⎛⎫⎛⎫>=⎪ ⎪⎝⎭⎝⎭;(3)()()f x f y <。

2018年上海中学自主招数学试卷及答案解析

2018年上海中学自主招数学试卷及答案解析

2018年上海中学自主招数学试卷一.填空题1.已知1a +1b =1a+b ,则b a+a b 的值等于 . 2.有 个实数x ,可以使得√120−√x 为整数.3.如图,△ABC 中,AB =AC ,CD =BF ,BD =CE ,用含∠A 的式子表示∠EDF ,则∠EDF= .4.在直角坐标系中,抛物线y =x 2+mx −34m 2(m >0)与x 轴交于A ,B 两点.若A ,B两点到原点的距离分别为OA ,OB ,且满足1OB −1OA =23,则m 的值等于 . 5.定圆A 的半径为72,动圆B 的半径为r ,r <72且r 是一个整数,动圆B 保持内切于圆A且沿着圆A 的圆周滚动一圈,若动圆B 开始滚动时的切点与结束时的切点是同一点,则r 共有 个可能的值.6.学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有 人.7.对于各数互不相等的正整数组(a 1,a 2,…a n )(n 是不小于2的正整数),如果在i <j时有a i >a j ,则称a i 与a j 是该数组的一个“逆序”,例如数组(2,4,3,1)中有逆序“2,1”、“4,3”、“4,1”、“3,1”,其逆序数为4,现若各数互不相同的正整数组(a 1,a 2,a 3,a 4,a 5,a 6)的逆序数为2,则(a 6,a 5,a 4,a 3,a 2,a 1)的逆序数为 .8.若n 为正整数,则使得关于x 的不等式1121<n x+n <1019有唯一的整数解的n 的最大值为 .二、选择题(共4小题,每小题3分,满分12分)9.已知x 2+ax ﹣12能分解成两个整数系数的一次因式的积,则整数a 的个数有( )A .0B .2C .4D .6 10.如图,D 、E 分别为△ABC 的底边所在直线上的两点,BD =EC ,过A 作直线l ,作DM∥BA交l于M,作EN∥CA交l于N.设△ABM面积为S1,△ACN面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.S1与S2的大小与过点A的直线位置有关11.设p1、p2、q1、q2为实数,则p1p2=2(q1+q2),若方程甲:x2+p1x+q1=0,乙:x2+p2x+q2=0,则()A.甲必有实根,乙也必有实根B.甲没有实根,乙也没有实根C.甲、乙至少有一个有实根D.甲、乙是否总有一个有实根不能确定12.设a=121+223+325+⋯+100722013,b=123+225+327+⋯+100722015,则以下四个选项中最接近a﹣b的整数为()A.252B.504C.1007D.2013三.解答题13.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N 不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.14.是否存在m个不全相等的正数a1、a2、…、a m(m≥7),使得它们能全部被摆放在一个圆周上,每个数都等于其相邻两数的乘积?若存在,求出所有这样的m值;若不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复旦附中自招题1. 已知a 、b 、c 是一个三角形的三边,则222222444222a c c b b a c b a ---++的值是( )A .恒正B .恒负C .可正可负D .非负 解:选B222222444222a c c b b a c b a ---++2222224)(c b c b a ---=)2)(2(222222bc c b a bc c b a ---+--= ])(][)([2222c b a c b a +---=))()()((c b a c b a c b a c b a --+++--+=∵a 、b 、c 是一个三角形的三边,∴0>-+c b a ,0>+-c b a ,0>++c b a ,0<--c b a , ∴0))()()((<--+++--+c b a c b a c b a c b a2. 设m ,n 是正整数,满足mn n m >+,给出以下四个结论:① m ,n 都不等于1;② m ,n 都不等于2;③ m ,n 都大于1;④m ,n 至少有一个等于1,其中正确的结论是( ) A .① B .② C .③ D .④ 解:选D由mn n m >+得()()111<--n m若m ,n 均大于1,则,11,11≥-≥-n m ()()111≥--n m ,矛盾, ∴m ,n 至少有一个等于1。

3. 已知关于x 的方程a x a x +=+2有一个根为1,则实数a 的值为( )A .251+- B .251-- C .251±- D .以上答案都不正确 解:选A将1=x 代入,得12+=+a a ,两边平方,得012=++a a ,251±-=a , 当251--=a 时,1=x 不是原方程的根,舍 ∴251+-=a4. 已知a ,b ,c 是不完全相等的任意实数,若c b a x +-=2,c b a y 2-+=,c b a z ++-=2,则关于x ,y ,z 的值,下列说法正确的是( )A .都大于0B .至少有一个大于0C .都小于0D .至多有一个大于0 解:选B0=++z y x ,若x ,y ,z 均小于0,则0<++z y x ,矛盾; 故至少有一个大于0。

5. 已知a ,b ,c 不全为无理数,则关于三个数b a +,c b +,a c +,下列说法错误的是( )A .可能均为有理数B .可能均为无理数C .可能恰有一个为有理数D .可能恰有两个为有理数 解:选D若c b a ,,均为有理数,A 正确; 若2=a ,3=b ,0=c ,B 正确; 若2=a ,2-=b ,0=c ,C 正确;6. 关于x ,y 的方程组⎩⎨⎧=--+-+=--0)12()2(0)2)((22y x y x y x y x 的实数解有( ) A .1组 B .2组 C .3组 D .4组解:选A由①得0=-y x 或02=-y x , 由②得02=-+y x 且012=--y x ,∴只有⎩⎨⎧==11y x 一组解。

7. 为了得到函数23x y =的图像,可以将函数1632+--=x x y 的图像( )A .先关于x 轴对称,再向右平移1个单位,最后向上平移4个单位B .先关于x 轴对称,再向右平移1个单位,最后向下平移4个单位C .先关于y 轴对称,再向右平移1个单位,最后向上平移4个单位D .先关于y 轴对称,再向右平移1个单位,最后向下平移4个单位解:选A由于两个函数二次项系数为相反数,故先关于x 轴对称,得到1632-+=x x y ,即()4132-+=x y ,再向右平移1个单位,最后向上平移4个单位,得到23x y =。

8. 若关于x 的方程a b x =--2有四个实数解,则化简bba ab a b a b a b a ++--+++的结果是( )A .2-B .0C .2D .4x解:选C画出b x y --=2和a y =的函数图像, ∵有四个交点,∴ b a <<0,∴21111=++-=++--+++bb a a b a b a b a b a 方法二:∵a b x =--2,∴a b x =--2或a b x -=--2, ∴b a x +=-2或a b x -=-2, ∵原方程有四个实数解,∴0>a ,0>+b a ,0>-a b , ∴0>b ,∴原式21111=++-=9. 如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .10≤≤mB .43≥m C .143≤<m D .143≤≤m 解:选C设022=+-m x x 的两根为1x ,2x ,则⎪⎩⎪⎨⎧≥∆<->+0112121x x x x 解得143≤<m 。

10. 用同样大小的一种正多边形平铺整个平面(没有重叠),有几种正多边形可以铺满整个平面而不留缝隙?( ).A 2 种 .B 3种 .C 4种 .D 5种 解:选B关键是看正多边形的内角和,如果围绕一点拼在一起的几个正多边形的内角之和恰是一个周角,则可以铺满整个平面而不留缝隙,只有正三角形、正四边形和正六边形可以。

11. 已知对于满足:3<-b a ,4<-c b 的实数c b a ,,,均有k c b a <--2恒成立,则实数k 的最小值为 ( ).A 7 .B 8 .C 9 .D 10 解:选D7<-+-<-+-=-c b b a c b b a c a102<-+-<--c a b a c b a ,所以k 最小是1012. 设1)(234+-+-=x x x x x f ,则关于)(x f 的性质,正确的一项为 ( ).A 对任意实数x ,)(x f 总是大于0 .B 对任意实数x ,)(x f 总是小于0 .C 当0>x 时,0)(≤x f .D 以上均不对解:选A222234)1()1(1)(x x x x x x x x x f +++-=+-+-=恒大于013. 已知实数c b a ,,满足0>>b a ,且0=++c b a ,抛物线02=++=c bx ax y 在x 轴上截得线段长度为l ,则l 的取值范围为 ( ).A 10<<l .B 20<<l .C 32<<l .D 43<<l 解:选C22212212144)(aacb x x x x x x -=-+=- ∵ 0>a ,)(c a b +-=∴aca c a a acb a ac b -=-=-=-144222 ∵ )(b a c +-=∴ aba c +=-21,∴ 3221<-<x x 14. 已知实数y 、x 满足:062,033=-+=--y y y x 。

则2y yx-的值为( )。

0.A 21.B 1.C 23.D解:选D2y y x-23232633==-++=-=y yy y y yy x . 15. 已知二次函数222-+=ax x y .当自变量x 的取值范围为11≤≤-x ,y 的取值既有正值又有负值。

则实数a 的取值范围为( ).21.≥a A 21-.≤a B 21.≥a C 或21-≤a .D 以上答案都不正确解:选D显然,二次函数与x 轴有两个交点,令交点横坐标为2,1x x ,21x x <。

由韦达定理得221-=x x 若1121≤<≤-x x ,则121≤x x 与221-=x x 矛盾,∴0)1()1(<-⋅f f ,∴0221)(221(<-+--)a a , ∴21>a 或21-<a 经检验当21±=a 时,不符合题意。

16. 已知c b a 、、是互不相等的实数,三个方程02=++b ax x ①;02=++c bx x ②;02=++a cx x ③,①②有公共根p ,②③有公共根q ,③①有公共根r ,则=abc ( ).1.A 3.-B 1.-C2.D解:将pqr 带入三个方程得⎪⎪⎪⎩⎪⎪⎪⎨⎧--=--=--=c a b a r c b c a q ba b c p ,又由韦达定理得⎪⎩⎪⎨⎧===a qr c pq b pr∴1)(2==pqr abc ,选A17. 甲、乙、丙、丁四个人参加一个比赛,有两个人获奖。

在比赛结果揭晓之前,四个人做了如下猜测 甲:两名获奖者在乙、丙、丁中. 乙:我没有获奖,丙获奖了. 丙:甲、乙两个人中有且只有一个人获奖. 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,则两名获奖者为( )..A 甲 丁 .B 乙 丙 .C 乙 丁 .D 以上都不正确 解:选D显然乙、丁同对错① 当甲丙对,乙丁错时,乙丙或乙丁获奖 ② 当甲丙错,乙丁对时,无符合情况18. 如图梯形ABCD 中,CD AB ∥,对角线AC 与BD 交于点K ,点L 为BD 的中点。

已知AKB △、ALD △的面积分别为1218、,则ALC △的面积为( ).2118KLAC7.A 9.B 11.C 13.D解:由L 为BD 中点可得21==ALD ALB S S △△,∴3=ALK S △ ∴24=ABl S △,由蝴蝶定理得KAD S △=24=KBC S △∴432418====CBK ABK CLK ALK S S KC AK S S △△△△,∴4=CLK S △∴7=ALC S △,选A19. 甲用1000元人民币购买了一手股票,随即他将这手股票转卖给已,获利%10,而后乙又将这手股票反卖给甲,但乙损失了%10,最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,甲在上述股票交易中( ).A 甲刚好盈亏平衡 .B 甲盈利1元 .C 甲盈利9元 .D 甲亏本1.1元 解:选B甲第一次卖给乙赚了100%101000=⨯元,乙用1100元买入股票,乙卖给甲乙亏了110%101100=⨯元,甲用990元买入股票,甲第二次卖给乙亏了99%10990=⨯元,故甲总共盈利199100=-元。

20. 对于三个一元二次方程:()()02=-+-+c b x b a x 、()()02=-+-+a c c b x 、()()02=-+-+b a a c x (其中c b a ,,为实数),下列说法错误的是( ).A 存在实数c b a ,,,使得恰有一个方程没有实数根 .B 存在实数c b a ,,,使得恰有两个方程没有实数根 .C 存在实数c b a ,,,使得三个方程都没有实数根 .D 存在实数c b a ,,,使得三个方程都有实数根解:选C设三个方程判别式为321,,∆∆∆,则()()b a b a ---=∆421,()()a c c b ---=∆422,()()b a a c ---=∆423,()()()0222321≥-+-+-=∆+∆+∆a c c b b a故三个方程中至少有一个方程有实根。

相关文档
最新文档