关于Cn0+Cn1+Cn2+……Cnn-1+Cnn=2n的2个数学模型
2023-2024学年山西省高二下册第一次月考数学试题(含解析)
2023-2024学年山西省高二下册第一次月考数学试题一、单选题1.已知1()2P BA =∣,3()8P AB =,则()P A 等于()A .316B .1316C .34D .14【正确答案】C根据条件概率公式计算.【详解】由()()()P AB P BA P A =∣,可得()3()()4P AB P A P B A ==∣.故选:C.2.已知012233C 2C 2C 2C 2C 81n n n n n n n ++++⋅⋅⋅+=,则123C C C C nn n n n +++⋅⋅⋅+等于()A .15B .16C .7D .8【正确答案】A【分析】根据二项式定理展开式的逆运算即可求得n 的值,再由由二项式系数和即得.【详解】逆用二项式定理得()01223322221281nn n nn n n n C C C C C ++++⋅⋅⋅+=+=,即433n =,所以n =4,所以12342115n n n n n C C C C +++⋅⋅⋅+=-=.故选:A.3.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .80【正确答案】C【详解】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.4.若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中常数项是()A .180B .120C .90D .45【正确答案】A【分析】已知条件中只有第六项的二项式系数最大,n 应为偶数,可确定n 值,进而利用展开式即可求得常数项.【详解】如果n 为奇数,那么是中间两项的二项式系数最大;如果n 为偶数,那么是中间一项的二项式系数最大;只有第六项的二项式系数最大10n ∴=,1022x ⎫∴⎪⎭展开式的通项为:10521102r r r r T C x -+=⨯⨯令10502r-=,解得:2r =∴展开式中常数项是.22102180C ⨯=故选:A.5.有8位学生春游,其中小学生2名、初中生3名、高中生3名.现将他们排成一列,要求2名小学生相邻、3名初中生相邻,3名高中生中任意两名都不相邻,则不同的排法种数有()A .288种B .144种C .72种D .36种【正确答案】B【分析】利用捆绑法和插空法可求得结果.【详解】第一步,先将2名小学生看成一个人,3名初中生看成一个人,然后排成一排有22A 种不同排法;第二步,将3名高中生插在这两个整体形成的3个空档中,有33A 种不同排法;第三步,排2名小学生有22A 种不同排法,排3名初中生有33A 种不同排法.根据分步计数原理,共有23232323144A A A A =种不同排法.故选:B方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.6.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为().A .122B .112C .102D .92【正确答案】D【详解】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.二项式系数,二项式系数和.7.现有甲、乙、丙、丁、戊五位同学,分别带着A 、B 、C 、D 、E 五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A .45B .12C .47D .38【正确答案】D【分析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己的礼物,有15C 种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有224222C C A 种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由3211C C 种情况,综上:共有22111425322245C C C C C A ⎛⎫⋅+= ⎪⎝⎭种情况,而五人抽五个礼物总数为55120A =种情况,故恰有一位同学拿到自己礼物的概率为4531208=.故选:D8.设5nx⎛⎝的展开式的各项系数和为M ,二项式系数和为N ,若240M N -=,则展开式中有理项共有()A . 1项B .2项C .3项D . 4项【正确答案】C【分析】根据二项式系数和公式,结合赋值法、二项式的通项公式进行求解即可.【详解】二项式系数和为2n N =,在5nx⎛ ⎝中,令1x =,得4nM =,由()()24042240021521602164n n n n nM N n -=⇒--=⇒+-=⇒=⇒=,二项式45x⎛ ⎝的通项公式为()()34442144C 5C 51rr r r r r r r T x x ---+⎛=⋅⋅=⋅⋅-⋅ ⎝,令0,2,4r =,则344,1,22r-=-,所以展开式中有理项共有3项,故选:C9.设双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,以2F 为圆心的圆恰好与双曲线C 的两渐近线相切,且该圆恰好经过线段2OF 的中点,则双曲线C 的离心率是()AB C .3D 【正确答案】A【分析】先由焦点到渐近线的距离求出半径,再利用该圆过线段2OF 的中点得到2c b =,即可求出离心率,【详解】由题意知:渐近线方程为by x a=±,由焦点2(,0)F c ,222c a b =+,以2F 为圆心的圆恰好与双曲线C 的两渐近线相切,则圆的半径r等于圆心到切线的距离,即r b ==,又该圆过线段2OF 的中点,故2cr b ==,所以离心率为ca=故答案为.310.数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求.现某大学为提高数学系学生的数学素养,特开设了“古今数学思想”,“世界数学通史”,“几何原本”,“什么是数学”四门选修课程,要求数学系每位同学每学年至多选3门,大一到大三三学年必须将四门选修课程选完,则每位同学的不同选修方式有()A .60种B .78种C .84种D .144种【正确答案】B【分析】先分类,再每一类中用分步乘法原理即可.【详解】由题意可知三年修完四门课程,则每位同学每年所修课程数为1,1,2或0,1,3或0,2,2若是1,1,2,则先将4门学科分成三组共11243222C C C A 种不同方式.再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有112343232236C C C A A ⋅=种,若是0,1,3,则先将4门学科分成三组共1343C C 种不同方式,再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有13343324C C A ⋅=种,若是0,2,2,则先将门学科分成三组共224222C CA 种不同方式,再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有2234232218C C A A ⋅=种所以每位同学的不同选修方式有36241878++=种,故选:B.二、多选题11.若()102100121021,R x a a x a x a x x -=++++∈ ,则()A .2180a =B .10012103a a a a +++= C .100210132a a a -+++=D .31012231012222a a a a ++++=- 【正确答案】ABD【分析】根据二项式展开式的系数特点,结合通项公式,采用赋值法,一一求解各个选项,即得答案.【详解】由题意1021001210(21)x a a x a x a x -=++++ ,所以8282310C (2)(1)180T x x =-=,所以2180a =,故A 正确.令=1x -,则1021001210(21)x a a x a x a x -=++++ ,即为1021001210(21)||||||||x a a x a x a x +=++++ ,令1x =,得1001210||||||||3a a a a ++++= ,故B 正确;对于1021001210(21)x a a x a x a x -=++++ ,令1x =,得012101a a a a ++++= ,令=1x -,得:10012103a a a a -+-+= ,两式相加再除以2可得100210132a a a ++++= ,故C 错误.对于1021001210(21)x a a x a x a x -=++++ ,令0x =,得01a =,令12x =,得310120231002222a a a aa +++++= ,故31012231012222a a a a ++++=- ,故D 正确,故选:ABD12.为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是()A .()35P A =B .()310P AB =C .()12P B A =D .()12P B A =【正确答案】ABC【分析】根据古典概型概率的求法及条件概率,互斥事件概率求法,可以分别求得各选项.【详解】()131535C C P A ==,故A 正确;()11321154310C C P AB C C ==,故B 正确;()()()0351231P AB P P A B A ===,故C 正确;()121525C C P A ==,()11231154103C C C C P AB ==,()()()3310245P AB P B A P A ===,故D 错误.故选:ABC三、填空题13.已知事件A 和B 是互斥事件,()16P C =,()118P B C ⋂=,()()89P A B C ⋃=,则()P A C =______.【正确答案】59【分析】根据条件概率的定义以及运算性质,可得答案.【详解】解:由题意知,()()()()89P A B C P A C P B C ⋃=+=,()()()1118136P B C P B C P C ⋂===,则()()()()815939P A C P A B C P B C =⋃-=-=.故59.14.5555除以8,所得余数为_______.【正确答案】7【分析】由55561=-,运用二项式定理,结合整除的性质,即可求解.【详解】依题意,()()()()()()5512545555055154253541550555555555555561C 561C 561C 561C 561C 561=-=-+-+-++-+- 因为56能被8整除,所以5555除以8,所得的余数为.187-+=故7.15.已知()()()420122111x a a x a x -=+-+-()()343411a x a x +-+-,则3a =____.【正确答案】32对多项式进行变形得()44444112122122x x x ⎛⎫⎛⎫-=-=+- ⎪ ⎪⎝⎭⎝⎭,再研究441212x ⎛⎫+- ⎪⎝⎭展开式中的()31x -项,即可得答案.【详解】对多项式进行变形得()44444112122122x x x ⎛⎫⎛⎫-=-=+- ⎪ ⎪⎝⎭⎝⎭,∴44142((,0,1,,411)2r r rr T C r x -+-=⋅= ,当3r =时,4343342(3212a C -=⋅=.故答案为.32本题考查二项式定理求展开式指定项的系数,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,则他们所得的球数的不同情况有__________种.【正确答案】15【分析】依题意,首先分给甲1个球,乙2个球,丙3个球,还剩下4个球,再来分配这4个球,按照分类加法计数原理计算可得;【详解】解:有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,故首先分给甲1个球,乙2个球,丙3个球,还剩下4个球,①4个球分给一人,有3种分法;②4个球分给两个人,又有两种情况,一人3个一人1个有236A =种分法;两人都是2个有3种分法;③4个球分给3个人,只有1、1、2这种情况,有3种分法,按照分类加法计数原理可得一共有363315+++=种;故15本题考查分类加法计数原理的应用,属于基础题.四、解答题17.已知{}n a 为等差数列,前n 项和为()*N n S n ∈,{}n b 是首项为2的等比数列,公比大于0,且2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和()*N n ∈.【正确答案】(1)32n a n =-,2nn b =(2)前n 项和110(35)2n n T n +=+-⋅【分析】(1)根据等比数列的通项公式可计算得到公比q 的值,再根据等差数列的通项公式和求和公式可列出方程组,解出首项1a 和公差d 的值,即可求得{}n a 和{}n b 的通项公式;(2)先根据第(1)题的结论得到数列{}n n a b ×的通项公式,然后运用错位相减法求出前n 项和n T .【详解】(1)由题意,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则0q >.故22212q q +=,解得2q =,12b = ,则2231228b b q ==⨯=,33412216b b q ==⨯=,由题意,得11132811101111162a d a a d +-=⎧⎪⎨⨯+=⨯⎪⎩,解得113a d =⎧⎨=⎩.13(1)32n a n n ∴=+-=-;1222n n n b -=⨯=.(2)由(1)知,(32)2n n n a b n ⋅=-⋅.设其前n 项和为n T ,211221242(32)2n n n n T a b a b a b n ∴=++⋯+=⨯+⨯+⋯+-⋅,①23121242(35)2(32)2n n n T n n +=⨯+⨯+⋯+-⋅+-⋅,②①-②,得23112323232(32)2n n n T n +-=⨯+⨯+⨯+⋯+⋅--⋅21212(122)(32)2n n n -+=+⨯++⋯+--⋅1112212(32)212n n n -+-=+⨯--⋅-()153210n n +=-⋅-.()110352n n T n +∴=+-⋅.18.在平面直角坐标系xOy 中,抛物线方程为()220x py p =>,其顶点到焦点的距离为2.(1)求抛物线的方程;(2)若点()0,4P -,设直线():0l y kx t t =+≠与抛物线交于A 、B 两点,且直线PA 、PB 的斜率之和为0,证明:直线l 必过定点,并求出该定点.【正确答案】(1)28x y =;(2)详见解析;【分析】(1)根据题意求出抛物线的焦点坐标,可求得p 的值,进而可求得抛物线的方程;(2)设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,根据直线PA 、PB 的斜率之和为0求得实数t 的值,即可求得直线l 所过定点的坐标.【详解】(1)0p > ,且抛物线22x py =的顶点到焦点的距离为2,则该抛物线的焦点坐标为()0,2,22p∴=,解得4p =,因此,该抛物线的方程为28x y =;(2)设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立28y kx tx y=+⎧⎨=⎩,消去y 并整理得2880x kx t --=,由韦达定理得128x x k +=,128x x t =-.直线PA 的斜率为2111111144488x y x k x x x ++===,同理直线PB 的斜率为22248x k x =+,由题意得()1212121212124448324108888x x x x x x k k k k k x x x x t t +++⎛⎫+=++=+=+=-= ⎪-⎝⎭,上式对任意的非零实数k 都成立,则410t -=,解得4t =,所以,直线l 的方程为4y kx =+,该直线过定点()0,4.设而不求,联立方程,利用韦达定理解题是本类题目常用思路.本题中表示出()12121212121244441088x x x x x x k k k x x x x t +++⎛⎫+=++=+=-= ⎪⎝⎭是解题关键,也是计算难点.19.已知函数()2()24ln f x x ax x =-,a R ∈.(1)当0a =时,求函数()f x 的单调区间;(2)令2()()g x f x x =+,若[1,)x ∀∈+∞,函数()g x 有两个零点,求实数a 的取值范围.【正确答案】(1)函数()f x 的单调递减区间为120,e -⎛⎫ ⎪⎝⎭,单调递增区间为12e ,-⎛⎫+∞ ⎪⎝⎭(2))+∞【分析】(1)当0a =时,()22ln f x x x =,求出()f x ¢,可得函数()f x 的单调区间;(2)依题意得,()()2224ln g x x ax x x =-+,然后求导,得()()()()44ln 2424ln 1g x x a x x a x x a x =-+-+=-+',然后,分情况讨论即可求出实数a 的取值范围【详解】(1)函数()f x 的定义域为()0,+¥当0a =时,()22ln f x x x =()()4ln 222ln 1f x x x x x x =+=+'令()'0f x >得2ln 10x +>,解得12x e ->,令()'0f x <得2ln 10x +<,解得120x e -<<,所以函数()f x 的单调递减区间为120,e -⎛⎫ ⎪⎝⎭,单调递增区间为12e ,-⎛⎫+∞ ⎪⎝⎭(2)()()2224ln g x x ax x x =-+,()()()()44ln 2424ln 1g x x a x x a x x a x =-+-+=-+'由[)1,x ∈+∞得ln 10x +>①当1a ≤时,()'0g x ≥,函数()g x 在[)1,+∞上单调递增,所以()()1g x g ≥,即()1g x ≥,函数()g x 在[)1,+∞上没有零点.②当1a >时,()1,x a ∈时,()'0g x <,(),∈+∞x a 时,()'0g x >所以函数()g x 在()1,a 上单调递减,在(),+∞a 上单调递增因为()110g =>,()2240g a a =>所以函数()g x 在[)1,+∞有两个零点只需()()()2min 12ln 0g x g a a a ==-<解得a >综上所述,实数a 的取值范围为)+∞本题考查利用导数求单调性和单调区间的问题,解题的关键在于分情况讨论时注意数形结合,属于难题。
二项式定理.版块四.二项式定理的应用1证明整除或求余数.学生版
1.二项式定理⑴二项式定理()()011222...nn n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项011222...n n n n nn n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b -+=. ⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意①通项1r n r rr nT C a b -+=是()na b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.知识内容证明整除或求余数④通项公式是()n a b +这个标准形式下而言的,如()na b -的二项展开式的通项公式是()11rr n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r rr n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.⑤设1,a b x ==,则得公式:()12211......nr rn nn n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r rnC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:()na b +展开式的二项式系数是:012,,,...,nn n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大; 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大. 由于展开式各项的二项式系数顺次是 ()01211,,112n n n n n n C C C -===⋅, ()()312123n n n n C --=⋅⋅,..., ()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1knn n n n k n k C k k---+-+=⋅⋅⋅-,...,1nn C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间. 当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n nC .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1122n n nnCC-+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.二项式定理的应用1证明整除或者求余数【例1】 利用二项式定理证明:22389n n +--是64的倍数.典例分析【例2】 若*n ∈N ,证明:2332437n n +-+能被64整除.【例3】 证明:22(1(1(*)n n n +-∈N 能被12n +整除.【例4】 证明:2121(1(1(*)n n n +++∈N 能被12n +整除.【例5】 ⑴3023-除以7的余数________;⑵555515+除以8的余数是__________; ⑶20001991除以310的余数是 .【例6】100的末尾连续零的个数是()111A.7 B.5 C.3 D.2。
二项式定理的几种重要题型
题型10
近似计算问题 文档仅供参考,如有不当之处,请联系改正。
例17:计算 (1)(0.997)3旳近似值(精确到0.001) (2)(1.009)5旳近似值(精确到0.001)
总结
求二项展开式系数和,经常得用赋值法,设 二项式中旳字母为1或-1,得到一种或几种等 式,再根据成果求值
题型7 三项式转化为二项式 文档仅供参考,如有不当之处,请联系改正。
例11 求( x 1 1 )8展开式中的常数项 x
解:三项式不能用二项式定理,必须转化为二项式
( x 1 1 )8 [( x 1 ) 1]8
)2Cn4
(
偶
2
)4
所以 bn 为奇数 故选(A)
文档仅供参考,如有不当之处,请联系改正。
例3 求 x 3 x 9展开式中旳有理项
解:
Tr1
C9r
(x
1 2
)9r
(x
1 3
)r
(1)r
C9r
x
27r 6
令 27 r Z即4 3 r Z(r 0,1 9)
6
6
r 3或r 9
r 3
28
x12
y8
例15求 (1 2) 旳展开式中数值最大旳项 50
文档仅供参考,如有不当之处,请联系改正。
解:设第 r 1项是是数值最大旳项
TTrr
1 1
Tr Tr
2
C5r0 (
2)r
C r1 50
(
2 )r1
C5r0 (
2)r
C r1 50
(
2 )r1
r 102 51 2 r 101 51 2
5(x 1)
解(1):将原式变形
原式 Cn01n Cn11n1 2 Cn21n2 22 Cnn 2n
二项式定理——精选推荐
⼆项式定理定理binomial theorem⼆项式定理,⼜称⽜顿⼆项式定理,由艾萨克·⽜顿于1664-1665年提出。
公式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,i)a^(n-i)b^i+...+C(n,n)b^n式中,C(n,i)表⽰从n个元素中任取i个的组合数=n!/(n-i)!i!此定理指出:1、(a+b)^n的⼆项展开式共有n+1项,其中各项的系数Cnr(r∈{0,1,2,……,n})叫做⼆项式系数。
等号右边的多项式叫做⼆项展开式。
2、⼆项展开式的通项公式(简称通项)为C(n,r)(a)^(n-r)b^r,⽤Tr+1表⽰(其中"r+1"为⾓标),即通项为展开式的第r+1项(如下图),即n取i的组合数⽬。
因此系数亦可表⽰为杨辉三⾓或帕斯卡三⾓形⼆项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式。
(a+b)n的系数表为:1 n=01 1 n=11 2 1 n=21 3 3 1 n=31 4 6 4 1 n=41 5 10 10 5 1 n=51 6 15 20 15 6 1 n=6…………………………………………………………(左右两端为1,其他数字等于正上⽅的两个数字之和)发现历程在中国被称为「贾宪三⾓」或「杨辉三⾓」,⼀般认为是北宋数学家贾宪所⾸创。
它记载于杨辉的《详解九章算法》(1261)之中。
在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了⼀个⼆项式定理系数表,他所⽤的计算⽅法与贾宪的完全相同。
在欧洲,德国数学家阿⽪安努斯在他1527年出版的算术书的封⾯上刻有此图。
但⼀般却称之为「帕斯卡三⾓形」,因为帕斯卡在1654年也发现了这个结果。
⽆论如何,⼆项式定理的发现,在中国⽐在欧洲要早500年左右。
杨辉三⾓杨辉三⾓1665年,⽜顿把⼆项式定理推⼴到n为分数与负数的情形,给出了展开式,但并未给出进⼀步证明。
二项式定理的妙用
二项式定理的妙用苏改琴 在数学中,有许多美妙的命名和定理。
二项式定理就是其中之一。
首先,看一看我们的二项式定理:(a+b )n =)(*222110N n b C b a C b a C b a C a C n n n r r n r n n n n n n n ∈+⋯⋯++⋯⋯+++---.这个公式所表示的定理就是二项式定理。
其中右边的多项式叫做n b a )(+的二项展开式,它一共有 n+1 项,且每项的次数都是 n 次,各项的系数 r n C (r=0、1、2……、n) 叫做二项式系数,r r n n r b a Cr T -+=1 叫做二项展开式的通项公式,在这里 r+1才是项数,第一位置的 a 按降幂排列,次数由n 次降到0 次,第二个位置的 b 按升幂排列,次数由0次升到 n 次, a 、b 可以是任意实数,也可以是任意式子,能深刻理解二项式定理的结构特征,通项公式,就有许多美妙的用处。
其次,谈谈二项式定理的妙用:1)若在二项式定理中,令a=1、b=1 就能得到 n n 210C C C C n n n +⋯⋯+++ =n 2 即各二项式系数之和等于n 2,也是含n 个元素的集合的所有子集有n 2个,其中非空子集、真子集都有n 2-1个,非空真子集有n 2-2个。
2)若令 a=1、b=-1 则可得0)11(13210=-=-+⋯⋯+-+-n n n n n n n n C )(C C C C即131202-=⋯⋯++=⋯⋯++n n n n n C C C C ,也就是在n b a )(+的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和且等于12-n 。
3)在二项式定理中,若令a=1、b=x ,则得到公式n n n r r n n n n x C x C x C x C x +⋯⋯++⋯⋯+++=+2211)1( ,其有鲜明的形式特征,可快速准确地展开类似的二项式。
4)充分利用二项式的通项公式可以求出我们所要的任意一项。
专题44 二项式定理(学生版)高中数学53个题型归纳与方法技巧总结篇
专题44二项式定理【题型归纳目录】题型一:求二项展开式中的参数题型二:求二项展开式中的常数项题型三:求二项展开式中的有理项题型四:求二项展开式中的特定项系数题型五:求三项展开式中的指定项题型六:求几个二(多)项式的和(积)的展开式中条件项系数题型七:求二项式系数最值题型八:求项的系数最值题型九:求二项展开式中的二项式系数和、各项系数和题型十:求奇数项或偶数项系数和题型十一:整数和余数问题题型十二:近似计算问题题型十三:证明组合恒等式题型十四:二项式定理与数列求和题型十五:杨辉三角【考点预测】知识点1、二项式展开式的特定项、特定项的系数问题(1)二项式定理一般地,对于任意正整数n ,都有:011()()n n n r n r r n n nn n n a b C a C a b C a b C b n N --*+=+++++∈ ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r rnC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=,其中的系数rn C (r =0,1,2,…,n )叫做二项式系数,(2)二项式()n a b +的展开式的特点:①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n nC C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).(3)两个常用的二项展开式:高中数学53个题型归纳与方法技巧总结篇①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅ (*N n ∈)②122(1)1n r r nn n n x C x C x C x x +=++++++ (4)二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是rn C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项r n r rnC a b -和()n b a +的二项展开式的第r +1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是1(1)r r n r rr n T C a b-+=-(只需把b -看成b 代入二项式定理).2、二项式展开式中的最值问题(1)二项式系数的性质①每一行两端都是1,即0n n n C C =;其余每个数都等于它“肩上”两个数的和,即11m m mn n n C C C -+=+.②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即mn m nn C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122r nn nn n n n C C C C C ++++++= ,变形式1221rn n n n n n C C C C +++++=- .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n n n nn n n n C C C C C -+-++-=-= ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅= .⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T +的二项式系数2n nC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T ++的二项式系数12n nC-,12n nC+相等且最大.(2)系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来.知识点3、二项式展开式中系数和有关问题常用赋值举例:(1)设()011222nn n n r n r r n n nn n n n a b C a C a b C a b C a b C b ---+=++++++ ,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令1a b ==,可得:012n nn n nC C C =+++ ②令11a b ==,,可得:()012301nnn n n n n C C C C C =-+-+- ,即:02131n n n n n n n n C C C C C C -+++=+++ (假设n 为偶数),再结合①可得:0213112n n n n n n n n n C C C C C C --+++=+++= .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++ ,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++ .③奇数项的系数和与偶数项的系数和(i )当n 为偶数时,奇数项的系数和为024(1)(1)2f f a a a +-+++= ;偶数项的系数和为135(1)(1)2f f a a a --+++=.(可简记为:n 为偶数,奇数项的系数和用“中点公式”,奇偶交错搭配)(ii )当n 为奇数时,奇数项的系数和为024(1)(1)2f f a a a --+++= ;偶数项的系数和为135(1)(1)2f f a a a +-+++=.(可简记为:n 为奇数,偶数项的系数和用“中点公式”,奇偶交错搭配)若1210121()n n n n f x a a x a x a x a x --=+++++ ,同理可得.注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.【典例例题】题型一:求二项展开式中的参数例1.(2022·湖南·模拟预测)已知6a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为160-,则实数=a ()A .2B .-2C .8D .-8例2.(2022·全国·高三专题练习)62ax x ⎛⎫- ⎪⎝⎭展开式中的常数项为-160,则a =()A .-1B .1C .±1D .2例3.(2022·全国·高三专题练习)已知二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 项的系数为40,则=a ()A .2B .-2C .2或-2D .4例4.(2022·湖北·高三阶段练习)若(21)n x +的展开式中3x 项的系数为160,则正整数n 的值为()A .4B .5C .6D .7例5.(2022·四川·乐山市教育科学研究所三模(理))()5m x -展开式中3x 的系数为20-,则2m =()A .2B .1C .3D 【方法技巧与总结】在形如()m n N ax bx +的展开式中求t x 的系数,关键是利用通项求r ,则Nm tr m n-=-.题型二:求二项展开式中的常数项例6.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为()A .160B .120C .90D .60例7.(2022·浙江·慈溪中学高三开学考试)62x⎛⎝的展开式中的常数项为()A .60-B .60C .64D .120例8.(2022·全国·高三专题练习(理))二项式()5*nx n ⎛∈ ⎝⎭N 的展开式中含有常数项,则n 的最小值等于()A .2B .3C .4D .5例9.(2022·全国·模拟预测)二项式10的展开式中的常数项为()A .210B .-210C .252D .-252【方法技巧与总结】写出通项,令指数为零,确定r ,代入.题型三:求二项展开式中的有理项例10.(2022·全国·高三专题练习)在二项式)11x的展开式中,系数为有理数的项的个数是_____.例11.(2022·湖南·长郡中学模拟预测)已知)nx 展开式的二项式系数之和为64,则展开式中系数为有理数的项的个数是________.例12.(2022·湖南长沙·模拟预测)已知)()*,112nn N n ∈≤≤的展开式中有且仅有两项的系数为有理数,试写出符合题意的一个n 的值______.例13.(2022·全国·高三专题练习)100+的展开式中系数为有理数项的共有_______项.例14.(2022·上海·格致中学高三阶段练习)在50的展开式中有__项为有理数.【方法技巧与总结】先写出通项,再根据数的整除性确定有理项.题型四:求二项展开式中的特定项系数例15.(2022·北京海淀·一模)在4)x 的展开式中,2x 的系数为()A .1-B .1C .4-D .4例16.(2022·云南·高三阶段练习(理))在621x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .20B .20-C .15D .15-例17.(2022·全国·高三专题练习)若()2nx y -的展开式中第4项与第8项的二项式系数相等,则n =().A .9B .10C .11D .12例18.(2022·甘肃·武威第八中学高三阶段练习)在51x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数为()A .10-B .5-C .5D .10【方法技巧与总结】写出通项,确定r ,代入.题型五:求三项展开式中的指定项例19.(2022·广东·高三阶段练习)()102321x x ++的展开式中,2x 项的系数为___________.例20.(2022·广东·仲元中学高三阶段练习)25()x x y ++的展开式中,52x y 的系数为______.例21.(2022·山西大附中高三阶段练习(理))5212x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为_________.例22.(2022·广东·广州市庆丰实验学校一模)622(21)x x+-的展开式中的常数项为__________.(用数字填写正确答案)例23.(2022·全国·高三专题练习)151234()x x x x +++的展开式合并前的项数为()A .415C B .415A C .44154A A ⋅D .154例24.(2022·河北邢台·高三期末(理))411()x y x y+--的展开式的常数项为A .36B .36-C .48D .48-例25.(2022·四川绵阳·三模(理))在521x x ⎛⎫+- ⎪⎝⎭的展开式中,2x 项的系数为()A .50-B .30-C .30D .50例26.(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是()A .120B .-120C .60D .30【方法技巧与总结】三项式()()n a b c n N ++∈的展开式:()[()]n n a b c a b c ++=++()n rrr n C a b c -=+++ ()rq n r q q r nn r C C a b c ---=++++ r q n r q q r n n r C C a b c ---=++若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式:()r q p q r n n r C C a b c p q r N p q r n -∈++=,,,,其中!(r)!!!()!!()!!!!r q n n r n n n C C r n r q n r q p q r --==---叫三项式系数.题型六:求几个二(多)项式的和(积)的展开式中条件项系数例27.(2022·江苏江苏·高三阶段练习)()61y x y x ⎛⎫-+ ⎪⎝⎭的展开式中42x y 的系数为()A .6B .9-C .6-D .9例28.(2022·四川·高三开学考试(理))()632112x x x ⎛⎫+⋅- ⎪⎝⎭的展开式中的常数项为()A .240B .240-C .400D .80例29.(2022·云南师大附中高三阶段练习)6211(2)x x ⎛⎫-+ ⎪⎝⎭的展开式中3x 的系数为()A .160B .160-C .148D .148-例30.(2022·新疆克拉玛依·三模(理))已知51m x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中常数项为-40,则m =()A .3-B .3C .13D .13-例31.(2022·江苏南京·三模)(1+x )4(1+2y )a (a ∈N*)的展开式中,记xmyn 项的系数为f (m ,n ).若f (0,1)+f (1,0)=8,则a 的值为()A .0B .1C .2D .3例32.(2022·全国·高三专题练习)在5221y x x x x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的展开式中,含32x y 的项的系数是()A .10B .12C .15D .20【方法技巧与总结】分配系数法题型七:求二项式系数最值例33.(2022·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是()A .7B .8C .9D .10例34.(2022·全国·高三专题练习)7(12)x +展开式中二项式系数最大的项是()A .3280x B .4560x C .3280x 和4560x D .5672x 和4560x例35.(2022·湖南·高三阶段练习)设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为()A .5B .6C .7D .8例36.(2022·全国·高三专题练习)5a x ⎫⎪⎭的展开式中x 的系数等于其二项式系数的最大值,则a 的值为()A .2B .3C .4D .2-例37.(2022·安徽·高三阶段练习(理))在1)2nx -的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数为()A .454B .358-C .358D .7【方法技巧与总结】利用二项式系数性质中的最大值求解即可.题型八:求项的系数最值例38.(2022·全国·高三专题练习)已知(13)n x -的展开式中各项系数之和为64,则该展开式中系数最大的项为___________.例39.(2022·重庆巴蜀中学高三阶段练习)()91-x 的展开式中系数最小项为第______项.例40.(2022·全国·高三专题练习)若n 展开式中前三项的系数和为163,则展开式中系数最大的项为_______.例41.(2022·江苏·姜堰中学高三阶段练习)()2*nn N ∈展开式中只有第6项系数最大,则其常数项为______.例42.(2022·上海·高三开学考试)假如1n x x ⎛⎫- ⎪⎝⎭的二项展开式中3x 项的系数是84-,则1nx x ⎛⎫- ⎪⎝⎭二项展开式中系数最小的项是__________.【方法技巧与总结】有两种类型问题,一是找是否与二项式系数有关,如有关系,则转化为二项式系数最值问题;如无关系,则转化为解不等式组:11r r r r T T T T +-≥⎧⎨≥⎩,注意:系数比较大小.题型九:求二项展开式中的二项式系数和、各项系数和例43.(2022·全国·高三专题练习)若7270127(1)x a a x a x a x -=++++ ,则1237a a a a ++++= _________.(用数字作答)例44.(2022·广东·高三阶段练习)已知2012(2)+=++++ n n n x a a x a x a x ,若01281n a a a a ++++= ,则自然数n 等于_____.例45.(2022·广东·广州大学附属中学高三阶段练习(理))若35()(2)x y x y a +-+的展开式中各项系数的和为256,则该展开式中含字母x 且x 的次数为1的项的系数为___________.例46.(2022·全国·高三专题练习)设()20202202001220201ax a a x a x a x -=+++⋅⋅⋅+,若12320202320202020a a a a a +++⋅⋅⋅+=则非零实数a 的值为()A .2B .0C .1D .-1例47.(2022·全国·高三专题练习)已知202123202101232021(1)x a a x a x a x a x +=+++++ ,则20202019201820171023420202021a a a a a a ++++++= ()A .202120212⨯B .202020212⨯C .202120202⨯D .202020202⨯例48.(多选题)(2022·全国·高三专题练习)若()()()220222022012022111x x x a a x a x ++++++=+++ ,则()A .02022a =B .322023a C =C .20221(1)1ii i a =-=-∑D .202211(1)1i i i ia -=-=∑例49.(2022·全国·高三专题练习)设2002200012200(21)x a a x a x a x -=++++ ,求(1)展开式中各二项式系数的和;(2)12200a a a +++ 的值.例50.(2022·全国·高三专题练习)在①只有第5项的二项式系数最大;②第4项与第6项的二项式系数相等;③奇数项的二项式系数的和为128;这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知2012(21)n nn x a a x a x a x -=+++(n ∈N*),___________(1)求122222n na a a +++ 的值:(2)求12323n a a a na +++ 的值.例51.(2022·全国·高三专题练习)()()202222022012202212R x a a x a x a x x -=++++∈ .求:(1)0122022a a a a ++++ ;(2)1352021a a a a +++ ;(3)0122022a a a a ++++ ;(4)展开式中二项式系数和以及偶数项的二项式系数和;(5)求展开式二项式系数最大的项是第几项?(6)1232022232022a a a a ++++ .例52.(2022·全国·高三专题练习)已知8280128(13)x a a x a x a x-=++++ (1)求128a a a +++ ;(2)求2468a a a a +++.【方法技巧与总结】二项展开式二项式系数和:2n ;奇数项与偶数项二项式系数和相等:12n -.系数和:赋值法,二项展开式的系数表示式:2012()...n n n ax b a a x a x a x +=++++(01...n a a a ,,,是系数),令1x =得系数和:01...()n n a a a a b +++=+.题型十:求奇数项或偶数项系数和例53.(2022·浙江·模拟预测)已知多项式()4228012832-+=++++ x x a a x a x a x ,则1357a a a a +++=_______,1a =________.例54.(2022·全国·模拟预测)若()()9911x ax x +-+的展开式中,所有x 的偶数次幂项的系数和为64,则正实数a 的值为______.例55.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知2220122(2)1+)1+)...1+)nnn x a a x a x a x +=++++(((,若15246222...21n n a a a a a -+++++=-,则n =_____________.例56.(2022·湖北武汉·模拟预测)在5()(1)a x x ++展开式中,x 的所有奇数次幂项的系数之和为20,则=a _____________.例57.(2022·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为()A .1或3-B .1-C .1-或3D .3-例58.(2022·江苏南通·高三开学考试)在61⎛ ⎝的二项展开式中,奇数项的系数之和为()A .365-B .364-C .364D .365例59.(2022·全国·高三专题练习)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【方法技巧与总结】2012()...n n n ax b a a x a x a x +=++++,令1x =得系数和:01...()n n a a a a b +++=+①;令1x =-得奇数项系数和减去偶数项系数和:01230213...()(...)(...)n n a a a a a a b a a a a -+-=-=++-++②,联立①②可求得奇数项系数和与偶数项系数和.题型十一:整数和余数问题例60.(2022·全国·高三专题练习)已知3029292828130303022C 2C 2C S =+++⋅⋅⋅+,则S 除以10所得的余数是()A .2B .3C .6D .8例61.(2022·河南·南阳中学高三阶段练习(理))已知202274a +能够被15整除,则a 的一个可能取值是()A .1B .2C .0D .1-例62.(2022·陕西·西安中学一模(理))设a Z ∈,且013a ≤<,若202251a +能被13整除,则=a ()A .0B .1C .11D .12例63.(2022·全国·高三专题练习)1223310101010101010180808080(1)8080k k k C C C C -+-++-++ 除以78的余数是()A .1-B .1C .87-D .87例64.(2022·全国·高三专题练习(文))中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a ,b ,()0m m >为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020C C 2C 2=+⋅+⋅++ a 202020C 2⋅,()mod10a b ≡,则b 的值可以是()A .2022B .2021C .2020D .2019题型十二:近似计算问题例65.(2022·山西·应县一中高三开学考试(理))6(1.05)的计算结果精确到0.01的近似值是_________.例66.(2022·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.例67.(2022·全国·高三专题练习)71.95的计算结果精确到个位的近似值为A .106B .107C .108D .109题型十三:证明组合恒等式例68.(2022·江苏·高三专题练习)(1)阅读以下案例,利用此案例的想法化简0112233434343434C C C C C C C C +++.案例:考查恒等式523(1)(1)(1)x x x +=++左右两边2x 的系数.因为右边2301220312232223333(1)(1)()()x x C C x C x C x C x C x C ++=+++++,所以,右边2x 的系数为011223232323C C C C C C ++,而左边2x 的系数为25C ,所以011223232323C C C C C C ++=25C .(2)求证:22212220(1)()(1)nr n nn n n r r C n C n C --=+-=+∑.例69.(多选题)(2022·江苏·海安市曲塘中学高三期末)下列关系式成立的是()A .0n C +21n C +222n C +233n C +…+2n nn C =3nB .202nC +12n C +222n C +32n C +…+212n n C -+222n n C =3·22n-1C .1n C ·12+2n C ·22+3n C ·32+…+nn C n 2=n ·2n -1D .(0n C )2+(1n C )2+(2n C )2+…+(nn C )2=2nnC 例70.(多选题)(2022·全国·高三专题练习)设*N n ∈,下列恒等式正确的为()A .1212n n n n n C C C -+++= B .121122n n n n n C C nC n -+++=⋅ C .()2122221212n n n n n C C n C n n -+++=+ D .()31323112432n n n n n C C n C n -+++=- 题型十四:二项式定理与数列求和例71.(2022·全国·高三专题练习(理))伟大的数学家欧拉28岁时解决了困扰数学界近一世纪的“巴赛尔级数”难题.当*n ∈N 时,sin x x =222222222111149x x x x n ππππ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又根据泰勒展开式可以得到35sin 3!5!x x x x =-+++()()121121!n n x n ---+- ,根据以上两式可求得22221111123n +++++= ()A .26πB .23πC .28πD .24π例72.(2022·全国·高三专题练习)已知数列{}n a 是等比数列,11a =,公比q 是4214x x ⎛⎫+ ⎪⎝⎭的展开式的第二项(按x 的降幂排列).(1)求数列{}n a 的通项n a 与前n 项和n S ;(2)若1212C C C nn n n n n A S S S =++⋅⋅⋅+,求n A .例73.(2022·全国·高三专题练习)已知数列{}n a 满足1a a =,*1(46)410()21n n n a n a n N n ++++=∈+.(1)试判断数列2{}21n a n ++是否为等比数列?若不是,请说明理由;若是,试求出通项n a .(2)如果1a =时,数列{}n a 的前n 项和为n S .试求出n S ,并证明341111(3)10nn S S S ++⋯+< .题型十五:杨辉三角例74.(2022·山东·高三开学考试)杨辉三角是二项式系数在三角形中的一种几何排列.某校数学兴趣小组模仿杨辉三角制作了如下数表.123456…35791113…81216202428…………………该数表的第一行是数列{}n ,从第二行起每一个数都等于它肩上的两个数之和,则这个数表中第4行的第5个数为______,各行的第一个数依次构成数列1,3,8,…,则该数列的前n 项和n S =______.例75.(2022·浙江省杭州学军中学模拟预测)“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第()N ,2n n n *∈≥行的数字之和为__________,去除所有1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前28项和为_____________.例76.(2022·安徽·合肥市第五中学模拟预测(理))杨辉是我国南宋末年的一位杰出的数学家.他在《详解九章算法》一书中,画了一个由二项式()()1,2,3,na b n +=⋅⋅⋅展开式的系数构成的三角形数阵,称作“开方作法本源”,这就是著名的“杨辉三角”.在“杨辉三角”中,从第2行开始,除1以外,其他每一个数值都是它上面的两个数值之和,每一行第()*,k k n k ≤∈N 个数组成的数列称为第k 斜列.该三角形数阵前5行如图所示,则该三角形数阵前2022行第k 斜列与第1k +斜列各项之和最大时,k 的值为()A .1009B .1010C .1011D .1012例77.(多选题)(2022·全国·高三专题练习)在1261年,我国南宋数学家杨辉所著的《详解九章算法》中提出了如图所示的三角形数表,这就是著名的“杨辉三角”,它是二项式系数在三角形中的一种几何排列.从第1行开始,第n 行从左至右的数字之和记为n a ,如:{}12112,1214,,n a a a =+==++=⋯的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,…,记为n b ,{}n b 的前n 项和记为n T ,则下列说法正确的有()A .91022S =B .14n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和为1111n a +--C .5666b =D .564084T =【过关测试】一、单选题1.(2022·江苏·金陵中学高三阶段练习)()()8x y x y -+的展开式中36x y 的系数为()A .28B .28-C .56D .56-2.(2022·福建师大附中高三阶段练习)在()522x x +-的展开式中,含4x 的项的系数为()A .-120B .-40C .-30D .2003.(2022·福建泉州·模拟预测)101x ⎛⎫⎪⎝⎭的展开式中,2x 的系数等于()A .45-B .10-C .10D .454.(2022·湖南益阳·模拟预测)若()526012612(12)x x a a x a x a x +-=++++ ,x ∈R ,则2a 的值为()A .20-B .20C .40D .605.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为()A .0B .120-C .120D .160-6.(2022·北京房山·高三开学考试)若443243210(21)x a x a x a x a x a -=++++,则2a =()A .6B .24C .6-D .24-7.(2022·江苏省泰兴中学高三阶段练习)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++- ,则()A .001132n nn n b a b a b a -+-++-=- B .0101012()nn nb bb a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++ D .21201(1)4()4n n n n b b n b a a a ++++=+++ 8.(2022·河北·高三阶段练习)关于二项式()281(1)ax x x ++-,若展开式中含2x 的项的系数为21,则=a ()A .3B .2C .1D .-19.(2022·黑龙江·大庆实验中学模拟预测(理))已知()()()()727012723111x a a x a x a x -=+-+-++- ,则3a =()A .280B .35C .35-D .280-二、多选题10.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则()A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++11.(2022·浙江·高三开学考试)在二项式6⎛⎝的展开式中,正确的说法是()A .常数项是第3项B .各项的系数和是1C .偶数项的二项式系数和为32D .第4项的二项式系数最大12.(2022·江苏镇江·高三开学考试)已知函数()6260126()(12),0,1,2,3,,6i f x x a a x a x a x a i =-=+++⋅⋅⋅+∈=⋅⋅⋅R 的定义域为R .()A .01261a a a a +++⋅⋅⋅+=-B .135364a a a ++=-C .123623612a a a a +++⋅⋅⋅+=D .(5)f 被8整除余数为713.(2022·湖南师大附中高三阶段练习)已知2012(12)n n n x a a x a x a x +=++++ ,下列结论正确的是()A .0123n n a a a a +++=+ B.当5,==n x()(12),*+=+∈n x a a b N ,则a b=C .当12n =时,012,,,,n a a a a 中最大的是7a D .当12n =时,3124111223411121222222-+-++-= a a a a a a 14.(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是()A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240x C .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32三、填空题15.(2022·浙江省苍南中学高三阶段练习)()()()357222x y y z z x ---的展开式中不含z 的各项系数之和______.16.(2022·广东广东·高三阶段练习)6(23)x y z ++的展开式中,32xy z 的系数为___________.17.(2022·河北邯郸·高三开学考试)已知()52345601234561(1)x x a a x a x a x a x a x a x +-=++++++,则03a a +的值为___________.18.(2022·浙江省淳安中学高三开学考试)已知51m x x x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭的展开式中常数项为20,则m =___________.19.(2022·浙江·高三开学考试)多项式()287801781(1)(1)x x a a x a x a x +=+++++++ ,则3a =___________.20.(2022·江苏·南京市中华中学高三阶段练习)将(1+x )n (n ∈N *)的展开式中x 2的系数记为n a ,则232022111a a a +++= ________.。
高考数学讲义二项式定理.版块二.二项展开式2求展开式中的特定项.教师版
1.二项式定理⑴二项式定理()()011222...nn n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项011222...n n n n nn n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b -+=. ⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意①通项1r n r rr nT C a b -+=是()na b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()na b +这个标准形式下而言的,如()na b -的二项展开式的通项公式是()11rr n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r rr n T C a b -+=是不同的,在这知识内容求展开式中的特定项里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.⑤设1,a b x ==,则得公式:()12211......nr r n nn n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r rnC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:()na b +展开式的二项式系数是:012,,,...,nn n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大; 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.由于展开式各项的二项式系数顺次是 ()01211,,112n n n n n n C C C -===⋅, ()()312123n n n n C --=⋅⋅,..., ()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1knn n n n k n k C k k---+-+=⋅⋅⋅-,...,1nn C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间. 当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n nC .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1122n n nnCC-+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.二项展开式2求展开式中的特定项(常数项,有理项,系数最大项等.) 常数项【例1】 在()2043x +展开式中,系数为有理数的项共有 项.【考点】求展开式中的特定项 【难度】3星典例分析【题型】填空【关键字】2010年,湖北高考 【解析】略 【答案】6;【例2】 100的展开式中共有_____项是有理项.【考点】求展开式中的特定项 【难度】3星 【题型】填空 【关键字】无【解析】展开式的第r 项为50100321100100C C23r r r rrr r T --+==⋅⋅,要使第r 项为有理项,需要r 为2与3的倍数,从而6r k =,k ∈Z , 又0100r ≤≤,故01216k =L ,,,,,共有17项.【答案】17;【例3】 610(1(1++展开式中的常数项为_______(用数字作答). 【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2008年,江西高考【解析】两个二项式的通项公式分别为3416110C (06)C (010)i j ij i j T x i S x j -++==≤≤,≤≤, 3411610C C (06010)i j i j i j T S x x i j -++⋅=≤≤,≤≤,当034i j-=即43i j =时,有3种情况:0i j ==;34i j ==,;68i j ==,.因此常数项为34686106101C C C C 4246++=.【答案】4246;【例4】 ()6211x x x x ⎛⎫++- ⎪⎝⎭的展开式中的常数项为_________.【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,辽宁高考 【解析】略 【答案】5-【例5】 二项式42x +x ⎛⎫ ⎪⎝⎭的展开式中的常数项为_____________,展开式中各项系数和为 .(用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,石景山一模 【解析】通项公式4421442C 2C rrrr r rr T xx x --+⎛⎫== ⎪⎝⎭,2r =时,可得常数项2242C 24=;令1x =即可得各项系数和为4381=.【答案】24,81;【例6】 若123a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为220-,则实数a =___________.【考点】求展开式中的特定项 【难度】3星【题型】填空【关键字】2010年,崇文1模 【解析】由二项式定理4124311212CC rrr r r r r a T a x x --+⎛⎫== ⎪⎝⎭.令44033r r -=⇒=. 于是有3312C 2201a a =-⇒=-. 【答案】1-;【例7】 在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是10-,则实数a 的值为 .【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,海淀一模 【解析】由二项式定理,()()5210355C C rrr rr rr a T xa xx --⎛⎫=-=-⋅ ⎪⎝⎭. 当1031r -=时,3r =,于是x 的系数为()3335C 10a a -=-,从而1a =.【答案】1;【例8】 在621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项是______.(结果用数值表示)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,西城2模【解析】容易知道26C 15=为所求. 【答案】15;【例9】 如果1nx x ⎛⎫+ ⎪⎝⎭展开式中,第四项与第六项的系数相等,则n = ,展开式中的常数项的值等于 .【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2010年,朝阳2模【解析】由题意有35C C 8n n n =⇒=;展开式的常数项的值为48C 70=.【答案】8,70;【例10】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2007年,全国高考【解析】281(12)()x x x+-的展开式中常数项为4338812(1)42C C ⋅+⋅⋅-=-.【答案】42-;【例11】 若1()n x x+展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2007年,重庆高考【解析】由题意,2646n n =⇒=.于是通项662166r r r r r r T C x x C x ---+=⋅=当620r -=时,3r =.常数项为34620T C ==.【答案】20;【例12】 若3(2n x的展开式中含有常数项,则最小的正整数n 等于 .【考点】求展开式中的特定项 【难度】3星 【题型】填空 【关键字】无 【解析】若3(2n x的展开式中含有常数项,31(2)rn r r r n T C x -+=⋅为常数项,则7302rn -=, 即67n r =,所以n 被7整除,当76n r ==,时成立,最小的正整数n 等于7.【答案】7;【例13】 在2)n x+的二项展开式中,若常数项为60,则n 等于 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2006年,江西高考【解析】通项公式为3212C =2C n rr n rr r r r nn x x--+T =(),由已知条件有30n r -=时,2C 60r r n =.容易验证当3n =时,不满足条件;6n =时满足条件.【答案】6;【例14】 21()n x x-的展开式中,常数项为15,则n = .【考点】求展开式中的特定项【难度】3星 【题型】填空【关键字】2007年,全国高考【解析】21()n x x -的展开式中,通项公式22311C ()()(1)C r n r r r r n rr n n T x xx --+=-=-,常数项为15,则:230(1)C 15r r n n r -=-=,.所以n 可以被3整除.容易验证当3n =时,不满足条件;当6n =时,4r =,常数项446(1)C 15-=,故6n =.【答案】6;【例15】 已知231(1)()nx x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【考点】求展开式中的特定项 【难度】4星 【题型】填空【关键字】2008年,辽宁高考 【解析】31()n x x +的通项公式为4131C ()C r n r r r n rr n n T x x x--+==. 如果题目中的多项式展开后没有常数项,则:40120n r r n -≠--,,,≤≤. 所以n 被4除只能余1.当28n ≤≤时,5n =.【答案】5;【例16】 12(x -展开式中的常数项为_______(用数字作答). 【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2008年,山东高考【解析】用通项公式1212311212C ((1)C r r r r rr r r T xxx---+==-,当1203rr --=时,9r =, 常数项为912C 220-=-. 【答案】220-;【例17】 已知2(n x的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2006年,山东高考【解析】第三项的系数为2C n -,第五项的系数为4C n ,由第三项与第五项的系数之比为314-,可解得10n =,则通项210110()(rrr r T C x -+==405210()r rr i C x--,当4050r -=,解得8r =,故所求的常数项为8810()C 45i -=. 【答案】45;【例18】 已知10()n n ∈N ≤,若nxx )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无【解析】通项335121()()(1)C C rn r r r r n rr n n T x x x--+=-=-,存在常数项,则350n r -=, n 能被5整除,所以n 只有两种选择.选B .【答案】B ;【例19】 610(1(1++展开式中的常数项为_______(用数字作答). 【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2008年,江西高考【解析】两个二项式的通项公式分别为3416110C (06)C (010)i j ij i j T x i S x j -++==≤≤,≤≤, 3411610C C (06010)i j ij i j T S x x i j -++⋅=≤≤,≤≤,当034i j-=即43i j =时,有3种情况:0i j ==;34i j ==,;68i j ==,.因此常数项为34686106101C C C C 4246++=.【答案】4246;【例20】 51(2x x+的展开式中整理后的常数项为 (用数字作答). 【考点】求展开式中的特定项 【难度】4星 【题型】填空【关键字】2005年,湖北高考【解析】注意到21055512((()22(2)x x x x x x +++==,所以要求10(x +的5x 的系数,10(x 的通项公式为:101011010C C r r r rr r r T x x --+==当5r =时,可求得10(x 的5x 的系数,所以所求常数项为55105C 2=.当然也可以直接将原多项式变为10,然后用通项公式求常数项.【例21】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2007年,全国高考【解析】281(12)()x x x+-的展开式中常数项为4338812(1)42C C ⋅+⋅⋅-=-.【答案】42-;【例22】 已知312nx x ⎛⎫+ ⎪⎝⎭的展开式的常数项是第7项,则n 的值为( )A .7B .8C .9D .10【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无 【解析】略; 【答案】B ;【例23】 在2)n x+的二项展开式中,若常数项为60,则n 等于 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2006年,江西高考【解析】通项公式为3212C =2C n rr n rr r r r nn x x--+T =(),由已知条件有30n r -=时,2C 60r r n =.容易验证当3n =时,不满足条件;6n =时满足条件.【答案】6;【例24】 21()n x x-的展开式中,常数项为15,则n = .【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2007年,全国高考【解析】21()n x x -的展开式中,通项公式22311C ()()(1)C r n r r r r n rr n n T x xx--+=-=-, 常数项为15,则:230(1)C 15r r n n r -=-=,.所以n 可以被3整除.容易验证当3n =时,不满足条件;当6n =时,4r =,常数项446(1)C 15-=,故6n =.【答案】6;【例25】 12(x -展开式中的常数项为_______(用数字作答). 【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2008年,山东高考 【解析】用通项公式1212311212C ((1)C r r rr rr r r T xxx---+==-,当1203rr --=时,9r =, 常数项为912C 220-=-. 【答案】220-;【例26】 已知2(n x的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2006年,山东高考【解析】第三项的系数为2C n -,第五项的系数为4C n ,由第三项与第五项的系数之比为314-,可解得10n =,则通项210110()(rrr r T C x -+==405210()r rr i C x--,当4050r -=,解得8r =,故所求的常数项为8810()C 45i -= 【答案】45;【例27】 已知10()n n ∈N ≤,若nx x )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无【解析】通项335121()()(1)C C rn r r r r n rr n n T x x x--+=-=-,存在常数项, 则350n r -=,n 能被5整除,所以n 只有两种选择.选B .【答案】B ;【例28】 12x ⎛- ⎝展开式中的常数项为( )A .1320-B .1320C .220-D .220【考点】求展开式中的特定项 【难度】3星 【题型】选择【关键字】2008年,山东高考 【解析】41212311212C C (1)rr r r r r r T xx--+⎛==- ⎝, 412093r r -=⇒=,9912121110C (1)22032⨯⨯-=-=-⨯.【答案】C ;【例29】 求612x x ⎛⎫++ ⎪⎝⎭展开式中的常数项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】212xx ++= 12612xx ⎛⎫++= ⎪⎝⎭. 由12展开式的通项公式12611212rr r rr T x --+==C C ,可得展开式的常数项为612924=C .【例30】 6122x x ⎛⎫- ⎪⎝⎭的展开式的常数项是 (用数字作答)【考点】求展开式中的特定项【难度】3星 【题型】填空【关键字】2009年,四川高考 【解析】通项公式662621661C (2)(1)C 22rr rr r r rr T x x x ---+⎛⎫=-=- ⎪⎝⎭,令620r -=,得3r =, 故常数项为336(1)C 20-=-.【答案】-20【例31】 在2nx ⎫+⎪⎭的二项展开式中,若常数项为60,则n 等于( )A.3 B.6 C.9 D.12【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无【解析】通项公式3212C 2C rn r rn rr r r nn T x x --+⎛⎫== ⎪⎝⎭,令3023n r nr -=⇒=,且n 为3的倍数. 常数项为2332C 60215nn n==⨯,从而6n ≤,故3n =或6,验证可知6n =.【答案】B ;【例32】 1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .【考点】求展开式中的特定项 【难度】4星 【题型】填空【关键字】2007年,四川高考 【解析】8n =;44448411C C n n nn T xx x --+⎛⎫=-= ⎪⎝⎭为常数项,故80n -=.【答案】8;【例33】 若nx x ⎪⎪⎭⎫⎝⎛+31的展开式中存在常数项,则n 的值可以是( ) A .10 B .11 C .12 D .14【考点】求展开式中的特定项 【难度】3星 【题型】选择【关键字】2009年,东城区一模 【解析】通项公式3561C C rn rr n r rr n n T x --+==,由题设知存在r n ≤,使得350n r -=,即35n r =,因此n 应是5的倍数,只有A 选项符合要求,验证可知满足要求.【答案】A ;【例34】 在261(2)x x-的展开式中常数项是 ,中间项是________.【考点】求展开式中的特定项 【难度】3星 【题型】填空 【关键字】无 【解析】略【答案】360160x -,.35460160T T x ==-,.【例35】 已知231(1)()nx x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【考点】求展开式中的特定项【题型】填空【关键字】2008年,辽宁高考 【解析】31()n x x +的通项公式为4131C ()C r n r r r n rr n n T x x x--+==. 如果题目中的多项式展开后没有常数项,则:40120n r r n -≠--,,,≤≤. 所以n 被4除只能余1.当28n ≤≤时,5n =.【答案】5;【例36】 若3(2n x的展开式中含有常数项,则最小的正整数n 等于 .【考点】求展开式中的特定项 【难度】4星 【题型】填空 【关键字】无 【解析】若3(2n x的展开式中含有常数项,31(2)rn r r r n T C x -+=⋅为常数项,则7302rn -=, 即67n r =,所以n 被7整除,当76n r ==,时成立,最小的正整数n 等于7.【答案】7;【例37】 已知2nx⎛- ⎝的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( )A .1-B .1C .45-D .45【考点】求展开式中的特定项 【难度】3星 【题型】选择【解析】通项公式52221C ()(1)C rn r r n rr r r nn T x x --+⎛==- ⎝,由题设2244(1)C 310(1)C 14n nn -=⇒=-. 令52082n r r -=⇒=,故常数项为8810(1)C 45-=. 【答案】D ;【例38】 若21nx x ⎛⎫+ ⎪⎝⎭展开式中的二项式系数和为512,则n 等于________;该展开式中的常数项为_________.【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2009年朝阳区一模【解析】由题设25129nn =⇒=,通项公式291831991C ()C rrrr rr T x xx --+⎛⎫== ⎪⎝⎭, 令1830r -=,得6r =,故常数项为69C 84=. 【答案】9;84;【例39】 若921ax x ⎛⎫- ⎪⎝⎭的展开式中常数项为84,则a =_____,其展开式中二项式系数之和为_________.【考点】求展开式中的特定项 【难度】3星 【题型】填空【关键字】2009年,西城区二模 【解析】通项公式2991831991C ()(1)C rrrr r r rr T ax a xx ---+⎛⎫=-=- ⎪⎝⎭,令1830r -=,得6r =, 常数项6639(1)C 841a a -=⇒=,展开式中二项式系数之和为92512=.【答案】1512,;【例40】 若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120【考点】求展开式中的特定项 【难度】2星 【题型】选择 【关键字】无 【解析】略 【答案】B ;有理项【例41】 求二项式15的展开式中:⑴常数项;⑵有几个有理项(只需求出个数即可); ⑶有几个整式项(只需求出个数即可).【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】展开式的通项为:30515611515(1)C (1)2C rrrr rr r r r T x--+=-=-. ⑴设1r T +项为常数项,则30506r -=,得6r =,即常数项为667152C T =; ⑵设1r T +项为有理项,则3055566r r -=-为整数,∴r 为6的倍数,又∵015r ≤≤,∴r 可取0,6,12三个数, 故共有3个有理项.⑶556r -为非负整数,得0r =或6,∴有两个整式项.【例42】100的展开式中共有_______项是有理项. 【考点】求展开式中的特定项 【难度】3星 【题型】填空 【关键字】无【解析】展开式的第r 项为50100321100100C C23r r rrrr r T --+==⋅⋅,要使第r 项为有理项,需要r 为2与3的倍数,从而6r k =,k ∈Z , 又0100r ≤≤,故01216k =L ,,,,,共有17项.【答案】17;【例43】 二项式15的展开式中:⑴求常数项;⑵有几个有理项; ⑶有几个整式项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】展开式的通项为:30515611515(1)C (1)2C r rr rr r rr r T x--+=-=-.⑴1r T +项为常数项,则30506r -=,得6r =,即常数项为667152C T =;⑵设1r T +项为有理项,则3055566r r -=-为整数,∴r 为6的倍数, 又∵015r ≤≤,∴r 可取0612,,三个数.⑶556r -为非负整数,得0r =或6,∴有两个整式项.【例44】 已知在n的展开式中,前三项的系数成等差数列①求n ;②求展开式中的有理项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】①通项公式2341C C 2rn rr r n rn r nr T x--+==, 由题设2102C C C 2822nn nn +=⨯⇒=(1n =舍去).②34841C 2r rr r T x -+=,1r T +为有理项的充要条件为344r -∈Z ,所以r 是4的倍数,048r =,,.因此所有有理项为415923518256T x T x T x ===,,.【例45】 二项展开式15中,有理项的项数是( )A .3B .4C .5D .6【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无【解析】45515611515C C rrrrrr T x --+=⋅=⋅(r = 0,1,2,…,14 ), 当3915r =,,时,为有理项,选A .【答案】A ;【例46】 在(1132的展开式中任取一项,设所取项为有理项的概率为p ,则1p x dx =⎰A .1B .67 C .76 D .1113【考点】求展开式中的特定项 【难度】4星 【题型】选择【关键字】2009届高考数学二轮冲刺专题测试【解析】B ;11111111323211111C 3232C rrr rr r r r r T x x x --+-+⎛⎫⎛⎫=⋅⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭于是r 可取3,9, 则21126P ==,1711660066|77x dx x ⎰== 【答案】B ;【例47】12的展开式中,含x 的正整数次幂的项共有( ) A .4项 B .3项 C .2项 D .1项【考点】求展开式中的特定项 【难度】3星 【题型】选择 【关键字】无 【解析】略 【答案】B ;【例48】若(51a +=+a ,b 为有理数),则a b +=( ) A .45B .55C .70D .80【考点】求展开式中的特定项 【难度】3星 【题型】选择【关键字】2009年,北京高考【解析】(523451141+=++++=+【答案】C ;系数最大的项【例49】 已知(n x +的展开式中前三项的系数成等差数列.⑴求n 的值;⑵求展开式中系数最大的项.【考点】求展开式中的特定项 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】⑴由题设,得02111C C 2C 42n nn +=⨯,即2980n n -+=,解得8n =或1n =(舍去). ⑵设第1r +项的系数最大,则1881188111C C 2211C C 22rr r r r r r r ++--⎧⎪⎪⎨⎪⎪⎩≥≥,即1182(1)1129r r r r⎧⎪-+⎪⎨⎪⎪-⎩≥≥解得2r =或3r =.所以系数最大的项为7523477T x T x ==,.【例50】 20(23)x +展开式中系数最大的项是第几项?【考点】求展开式中的特定项 【难度】2星 【题型】解答 【关键字】无【解析】通项公式为20120C 2(3)rr r r T x -+=⋅⋅. 若第1r +项最大,设第1r +项的系数为1r t +,则11211r r r rt tt t +++≥,≥. 将通项公式系数代入化简得:2(1)3(21)113(20)2r r r r+--≥,≥.解出586355r ≤≤.∴12r =因此系数最大的项是第13项.【答案】13;【例51】 已知(13)n x +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.【考点】求展开式中的特定项 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】由已知有21C C C 121n n n n n n --++=,即22400n n +-=,解得15n =或16n =-(舍去) 设第第1r +项的系数最大,则111515111515C 3C 3C 3C 3r r r r r r r r ++--⎧⋅⋅⎪⎨⋅⋅⎪⎩≥≥,即133115116r r r r -+-≥,≥ 解得1112r =,所以系数最大的项为1111111215C 3T x =⋅和1212121315C 3T x =⋅.【例52】 在132nx x -⎛⎫- ⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中常数项是____.A .7-B .7C .28-D .28【考点】求展开式中的特定项 【难度】3星 【题型】选择【关键字】2009届高考数学二轮冲刺专题测试【解析】于是8n =⨯,展开式的常数项为6216378C 72x T x -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【答案】B ;【例53】 已知lg 8(2)x x x +的展开式中,二项式系数最大的项的值等于1120,求x . 【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无【解析】由题设,44lg 48C (2)()1120x x x =,即44lg 1x x +=,0x >. 故44lg 0x +=或1x =,解得x 的值为1或110. 【答案】x 的值为1或110.【例54】 求10的展开式中,系数绝对值最大的项以及系数最大的项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】展开式的通项公式为:3056110C (1)2r rrrr T x--+=-⋅⋅,系数的绝对值为10C 2rr -⋅,记为1r t +.用前后两项系数的绝对值作商得:1(1)12101011010C 2C 10!!(10)!10C 22C (1)!(9)!210!2(1)r r r r r r rr t r r r t r r r +-+++-+⋅--===⋅=⋅+⋅-⋅+. 令1012(1)r r -+≥得:83r ≤,即012r =,,时,上述不等式成立. 所以,系数的绝对值从第1项到第4项增加,以后逐项减小. 系数绝对值最大的项为第4项,5533322410C (1)215T x x -=-=-.从系数绝对值的变化情况及系数的正负交替,只要比较第3项与第5项的系数,记它们的系数分别为3t 与5t ,224431051045210105C 2C 24168t t --=⋅==⋅==,. 所以,系数最大的项为第5项,5351058T x =.【例55】 已知n展开式中的倒数第三项的系数为45,求: ⑴含3x 的项; ⑵系数最大的项.【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】⑴ 由题设知2C 45n n-=,解得10n =. 21113010341211010C ()()C r rrrr r T x x x---+==,令11303612r r -=⇒=, 因此含3x 的项为633710C 210T x x ==. ⑵ 系数最大的项为中间项,即55302551212610C 252T xx -==.【例56】 设m n +∈N ,,1m n ,≥,()(1)(1)m n f x x x =+++的展开式中,x 的系数为19.⑴求()f x 展开式中2x 的系数的最大、最小值;⑵对于使()f x 中2x 的系数取最小值时的m 、n 的值,求7x 的系数.【考点】求展开式中的特定项【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】11C C 19m n +=,即19m n +=.∴19m n =-.⑴设2x 的系数为222221919C C 1917117124mnT n n n ⎛⎫=+=-+=-+- ⎪⎝⎭.∵n +∈N ,1n ≥,∴当1n =或18n =时,max 163T =;当9n =或10时,min 81T =. ⑵对于使()f x 中2x 的系数取最小值时的m n ,的值,即98()(1)(1)f x x x =+++从而7x 的系数为77109C C 156+=.【例57】 已知:223(3)n x x +的展开式中,各项系数和比它的二项式系数和大992.⑴求展开式中二项式系数最大的项;⑵求展开式中系数最大的项.【考点】求展开式中的特定项 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】令1x =,则展开式中各项系数和为2(13)2n n +=,又展开式中二项式系数和为2n ,∴222992n n -=,5n =.⑴ ∵5n =,展开式共6项,二项式系数最大的项为第三、四两项, ∴223226335C ()(3)90T x x x ==,22232233345C ()(3)270T x x x ==, ⑵ 设展开式中第1r +项系数最大,则21045233155C ()(3)3C r rrr rr r T x x x+-+==,∴115511553C 3C 79223C 3C r r r r r r r r r --++⎧⎪⇒⎨⎪⎩≥≤≤≥,∴4r =, 即展开式中第5项系数最大,2264243355C ()(3)405T x x x ==.【例58】20(23)x +展开式中系数最大的项是第几项?【考点】求展开式中的特定项 【难度】3星 【题型】解答 【关键字】无【解析】通项公式为20120C 2(3)rr r r T x -+=⋅⋅. 若第1r +项最大,设第1r +项的系数为1r t +,则11211r r r rt tt t +++≥,≥. 将通项公式系数代入化简得:2(1)3(21)113(20)2r r r r+--≥,≥.解出586355r ≤≤.∴12r =因此系数最大的项是第13项.【答案】13;【例59】 关于二项式2005(1)x -有下列命题:①该二项展开式中非常数项的系数和是1:②该二项展开式中第六项为619992005C x; ③该二项展开式中系数最大的项是第1003项与第1004项; ④当2006x =时,2005(1)x -除以2006的余数是2005. 其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【考点】求展开式中的特定项 【难度】4星 【题型】填空 【关键字】无【解析】二项式2005(1)x -所有项的系数和为0,其常数项为1-,非常数项的系数和是1,得①正确;二项展开式的第六项为520002005C x,即得②错误; 二项展开式中系数绝对值最大的项为第1003项(系数为10022005C )与第1004项(系数为10032005C -),得系数最大的项是第1003项,即③错误; 当2006x =时,2005(1)x -除以2006的余数是20052006(1)2005+-=,即④正确.故应填①④.【答案】①④;【例60】 在2nx ⎛ ⎝的展开式,只有第5项的二项式系数最大,则展开式中常数项为 .(用数字作答)【考点】求展开式中的特定项 【难度】4星 【题型】填空 【关键字】无【解析】7;根据第5项的二项式系数最大可求出n .常数项为7。
高二数学二项式定理与性质试题答案及解析
高二数学二项式定理与性质试题答案及解析1.的展开式中的常数项为()A.﹣64B.﹣32C.32D.64【答案】B【解析】二项展开式的通项公式,当时,因此常数项为.【考点】二项展开式的应用.2.已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4B.5C.6D.7【答案】C【解析】展开式中各项系数和为x取时式子的值,所以各项系数和为,而二项式系数和为,因此,所以,答案选C.【考点】二项式定理及应用3.(+)5展开式的常数项为80,则a的值为()A.1B.2C.D.4【答案】B【解析】由二项式定理可知,常数项当即时的项,所以有,解得a=2,答案为B.【考点】二项式定理4.若n的展开式中含x的项为第6项,设(1-3x)n=a0+a1x+a2x2++anx n,则a1+a2++an的值为________.【答案】255【解析】由二项式定理可得通项公式:因含的项为第6项,故.令,令【考点】(1)二项式定理;(2)赋特殊值求二项式系数.5.若展开式中各项的二项式系数之和为32,则该展开式中含项的系数为.【答案】80.【解析】由题意得,,;则的通项公式为,令,得的系数为.【考点】二项式定理.6.若,则;【答案】2014【解析】首先令可得;然后令得,即,代入式子即可求得结果.【考点】二项式定理.7.若.则( )A.20B.19C.D.【答案】C【解析】设t=x+2,则x=t-2,则多项式等价为则为左边展开式中的系数.由,左边展开式中的系数为1+=1-21=.故选:C.【考点】二项式定理的应用.二项式定理系数的性质; 利用换元法将多项式转化思想的应用.8.被除所得的余数是_____________.【答案】1【解析】因为,所以被除所得的余数是1.【考点】二项式定理应用9.若,则的值为____.【答案】-1【解析】令,由原式可得,令,由原式可得,可得.【考点】特殊值法.10.已知在的展开式中,第5项的系数与第3项的系数之比是.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项;(3)求的值.【答案】(1)有理项为和;(2)系数绝对值最大的项为;(3).【解析】(1)先利用二项展开式的通项公式得到第5项的系数与第3项的系数,依题意得到,求解可得,进而化简该二项展开式的通项公式得到,由为整数可得出的值,进而得到所有的有理项;(2)先求出二项展开式中的系列,并设第项系数绝对值最大,列出不等式组,从中求解即可得出的值,进而可写出展开式中系数绝对值最大的项;(3)先根据二项开展式的特征将变形为,逆用二项式定理即可得结果.(1)由,解得 2分因为通项: 3分当为整数,可取0,6 4分于是有理项为和 6分(2)设第项系数绝对值最大,则(8分)注:等号不写扣(1分)解得,于是只能为7 10分所以系数绝对值最大的项为 11分(3)13分16分【考点】二项式定理及其应用.11.若6的二项展开式中x3的系数为,则a=________.【答案】2【解析】设第r+1项的系数为,则Tr+1=C6r(x2)6-r r=C6r x12-3r,令12-3r=3,得r=3,∴C63=,∴a3=8,a=2.12.设f(x)=(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1,则f(x)=________.【答案】32x5【解析】f(x)=C50(2x+1)5+C51(2x+1)4·(-1)+C52(2x+1)3·(-1)2+C53(2x+1)2·(-1)3+C54(2x+1)·(-1)4+C55(-1)5=(2x+1-1)5=32x5.13.若n的二项展开式中有且只有第五项的二项式系数最大,则Cn 0-Cn1+Cn2-…+(-1)n··Cnn=________.【答案】【解析】由已知第5项的二项式系数最大,则n=8,又Cn 0-Cn1+Cn2-…+(-1)n Cnn=n=8=.14.的展开式中含的整数次幂的项的系数之和为(用数字作答)。
(完整版)二项式定理知识点和各种题型归纳带答案
二项式定理1.二项式定理:(a b)n C n0a n C1n a n 1b L C n r a n r b r L C n n b n (n N ),2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式。
②二项式系数:展开式中各项的系数C n r (r 0,1,2, ,n) .③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项C n r a n r b r叫做二项式展开式的通项。
用T r 1 C n r a n r b r表示。
3.注意关键点:①项数:展开式中总共有(n 1) 项。
②顺序:注意正确选择a, b ,其顺序不能更改。
(a b)n与(b a)n是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是数是a与b 的系数(包括二项式系数) 。
4.常用的结论:令a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L C n n x n(n N )5.性质:①二项式系数的对称性:与首末两端“对距离” 的两个二项式系数相等,即C n0 C n n,···C n k C n k 1②二项式系数和:令a b 1, 则二项式系数的和为C n0C n1C n2L C n r L C n n2n,变形式C1n C n2 L C n r L C n n2n 1 。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令a1,b 1 ,则C n0 C n1 C n2C n3 L ( 1)n C n n (1 1)n 0 ,从而得到:C n0 C n2C n4C n2r C n1 C n3 L 2r 1Cn12n2n 1 2④奇数项的系数和与偶数项的系数和:C n,C n,C n , ,C n, ,C n .项的系令a 1,b x, (1 x)n C n0 C1n x C n2x2 L C n r x r L ( 1)n C n n x n (n N )n 2 2解:由条件知 C n n 2 45 ,即 C n 2 45 , 2n 2 n 90 0 ,解得 n9(舍去 )或n 10 ,由(a x)nC n 0a n0xC n 1a n 1xC n 2a n 22 x L n 0 n 1 C n a x a 0 a 1x 2na 2x La n x(x a)nC n 0a0nx 1C n axn1C n 2a 2 n2xLn n 0 nC n a x a n x L21 a 2x a 1x a令x 1, 则 a 0 a 1 a 2a 3Lan(a 1)n①令x 1,则a 0a1a2a3L a n (a 1)n②① ②得,a 0 a2a 4L an(a1)n (a 2 1)(奇数项的系数和 )①②得,a 1a3a 5La n(a 1)n (a21)(偶数项的系数和)n⑤二项式系数的最大项: 如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 C n 2 取得最大值。
展开式中奇数项的二项式系数之和等于偶数项的二项式系数
江苏省武进职业教育中心校 潘惠芬
复习要求:
二项式定理是成考的内容之一,要 学会用二项展开式的性质和通项公式解 决一些简单问题:
1、会用二项式定理展开二项式;
2、会用二项展开式的通项公式,求展开 式中的指定项;
3、会正确区分二项展开式中的项的系数 与二项式系数.
知识回顾
一、二项式定理:
(a b)n Cn0anb0 Cn1an1b1 Cn2an2b2 Cnranrbr Cnna0bn
课堂小结
这节课你的收获是什么?
1、知道二项式定理,用二项式定理展开 二项式;
2、用二项展开式的通项公式,求展开式 中的指定项;
3、正确区分二项展开式中的项的系数与 二项式系数.
课后拓展:
必做题: 1. 展开(x-2y)4 .
2.求 (x 2 )10 的展开式中: x
(1)第5项的系数和二项式系数; (2)展开式中的常数项; (3)求二项式系数最大的项. 选做题: 3.今天是星期五,7天后是星期几?
③展开式中的 x5项的系数;
注意:二项展开式中的项的系数与二项式系数的区别.
当堂练习
2、在 ( x 2 )6 的展开式中, x
求:①第3项的系数和二项式系数;
②展开式中的常数项.
拓展练习
(三)二项式系数性质的应用
例3(2010年成考撞击(选择题))
如果(x 1 )n 展开式中各项系数之和是512,则n ( B ).
当堂练习
1、求(x 2)4的展开式..
解: (x 2)4 [x (2)]4
C40x4 (2)0 C41x3(2)1 C42x2 (2)2 C43x1(2)3 C44x0 (2)4
x4 8x3 24x2 32x 16
2022-2023学年高二数学:二项式系数的性质
例3 证明:在(a+b)n展开式中, 奇数项的二项式系数的
和等于偶数项的二项式系数的和.
证明:在展开式
(a b)n Cn0an Cn1an1b Cn2an2b2 Cnnbn
中. 令a=1, b= -1,则得
(1 1)n
Cn0
Cn1
C
2 n
Cn3
+
(1)k
C
k n
+
+
(1)n
C
n n
分析右图,可以得到二项式系数的
以下性质: (1)对称性 与首末两端“等距离”的两个二项式系数相等,事实
上,这一性质可直接由Cnm = Cnn-m得到.
(2)增减性与最大值
因为
Cnk
n(n 1)(n 2) (n k (k 1)!
k
1)
C k1 n
nk k
1
即
Cnk C k1
n
n k 1, k
4
C40 = 1
C
1 4
=
4
C
2 4
=6
C
3 4
=
4
C44
=1
5
C
0 5
=
1
C51
=
5
C52
= 10
C53
= 10
C
4 5
=
5
C55 = 1
6
C
0 6
=
1
C61
=
6
C62
= 15 C63
=
20
C64
= 15
C
5 6
=
5
C66 = 1
通过计算、填表,你发现了什么?
二项式定理例题精讲(学生版)
二项式定理例题精讲1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共n+1项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r nC a b -叫做二项式展开式的通项。
用1r n r rr n T C a b -+=表示。
3.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即kn n k n C C -=.②二项式系数和:令1a b ==,可得二项式系数的和为0122r nn nn n n n C C C C C ++++++=L L , 变形式1221r nn nn n n C C C C +++++=-L L 。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=L , 从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=L ④二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC -,12n nC+同时取得最大值。
⑤系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。
2019-2020年全国通用2017年高考数学大二轮专题复习第二编专题整合突破专题七概率与统计第一讲计数原理二项
(2)满足 a,b∈{-1,0,1,2},且关于 x 的方程 ax2+2x+b
=0 有实数解的有序数对(a,b)的个数为( )
A.14
B.13
C.12
D.10
[解析] 方程 ax2+2x+b=0 有实数解的情况应分类讨
论.当 a=0 时,关于 x 的方程为 2x+b=0,此时有序数对
(0,-1),(0,0),(0,1),(0,2)均满足要求;当 a≠0 时,Δ=
2.[2015·天津五区县一模] 如图,用四种不同的颜色给 图中的 A,B,C,D,E,F 六个点涂色,要求每个点涂一 种颜色,且图中每条线段的两个端点涂不同颜色,则不同的 涂色方法有( )
A.288 种 C.240 种
B.264 种 D.168 种
解析 解法一:先涂 A,D,E 三个点,共有 4×3×2 =24(种)涂法,然后再按 B,C,F 的顺序涂色,分为两类:
4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),
(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-
1),(2,0).综上,满足要求的有序数对共有 4+9=13(个),
故选 B.
应用两个计数原理解题的方法 (1)在应用分类计数原理和分步计数原理时,一般先分类 再分步,每一步当中又可能用到分类计数原理. (2)对于复杂的两个原理综合使用的问题,可恰当列出示 意图或表格,使问题形象化、直观化.
人教A版数学课本优质习题总结训练——选择性必修三参考答案
人教A 版数学课本优质习题总结训练——选择性必修三参考答案:1.45项【分析】由多项式的乘法法则结合分步乘法计数原理即可得解.【详解】根据多项式的乘法法则,()()()12312312345a a a b b b c c c c c ++++++++展开后每一项均是从()()()12312312345a a a b b b c c c c c ++++++++,,中各取1项相乘得到,所以展开后的项数为335=45⨯⨯项.2.326592种【分析】分析出每天的选法数,结合分步乘法计数原理即可得解.【详解】第一天,每个人均可选,有7种选法;从第二天至第七天,选出的人只需与前一天不同即可,均有6种选法;所以符合题意的安排方法共有7666666=326592⨯⨯⨯⨯⨯⨯种.3.40【分析】对2160分解因数,转化2160的正因数()=253,,,r s tp r s t N ⨯⨯∈,结合参数的取值及分步乘法计数原理即可得解.【详解】由题意,432160=253⨯⨯,则2160的正因数()=253,,,r s tp r s t N ⨯⨯∈,因为r 可取0,1,2,3,4;s 可取0,1;t 可取0,1,2,3;所以2160有52440⨯⨯=个不同的正因数.4.288.【分析】根据分步乘法计数原理以及排列数的思想计算出不同排法的种数.【详解】第一步排音乐节目:有44A 种排法;第二步排舞蹈节目:有33A 种排法;第三步排曲艺节目:有22A 种排法;所以共有432432288A A A =种排法.5.(1)1224;(2)1440.【分析】(1)分别得到从0,2,4,6中任取3个数字和从1,3,5中任取2个数字的种数,然后全排列,再减去首位是零种数即可;(2)由比5000000大,则必须是七位数,且首位是5或6求解;【详解】(1)从0,2,4,6中任取3个数字有34C 种,从1,3,5中任取2个数字有23C 种,五个数全排列有325543C C A 种,其中首位是零的有224433C C A 种,所以一共可组成3222545443331224C C C C A A =-个没有重复数字的五位数;(2)若比5000000大,则有七位数,且首位是5或6,所以由数字0,1,2,3,4,5,6可以组成16621440C A =个没有重复数字,并且比5000000大的正整数.6.(1)60;(2)21;(3)91;(4)120【分析】(1)根据要求直接选取即可;(2)在剩下的7人中任选2人即可;(3)包含两种情况,第一种甲和乙都在内,第二种情况,甲乙选1人;(4)从所有9人中选4人,去掉只有男生和只有女生的情况.【详解】(1)如果4人中男生女生各选2人,有225460C C =种选法;(2)如果男生中的甲和女生中的乙必须在内,则在剩下的7人中任选2人,有2721C =种选法;(3)如果男生中的甲和女生中的乙至少要有1人在内,包含两种情况,第一种甲和乙都在内的选法有2721C =种,第二种情况,甲乙选1人,有132770C C =种选法,则如果男生中的甲和女生中的乙至少要有1人在内,共有217091+=种选法;(4)如果4人中必须既有男生又有女生,先从所有9人中选4人,去掉只有男生和只有女生的情况,故有444945120C C C --=种选法.7.(1)63;(2)31【分析】(1)对于去几人进行分类讨论,最后根据加法计数原理求解即可;(2)对甲和乙两位同学要么都去,要么都不去进行分类讨论,分别计算去法种数,最后相加即可.【详解】(1)一个宿舍的6名同学被邀请参加一个晚会,去1人时,有166C =种去法;去2人时,有2615C =种去法;去3人时,有3620C =种去法;去4人时,有4615C =种去法;去5人时,有566C =种去法;去6人时,有661C =种去法;根据分类计数原理得:共有12345666666663C C C C C C +++++=种去法;(2)当甲和乙两位同学都去,则至少要去2人,则有01234444444216C C C C C ++++==种去法;当甲和乙两位同学都不去,则有1234444415C C C C +++=种去法;根据分类计数原理得:共有161531+=种去法;8.180【分析】先排I ,II ,III 最后排IV ,由此求得不同着色方法数.【详解】先排I ,II ,III 共有3554360A =⨯⨯=种,IV 有133C =种不同的着色方法数有603180⨯=种.9.54【分析】根据题意,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,剩下的三人安排在其他三个名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,甲乙都没有得到冠军,而乙不是最后一名,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有336A =种情况,此时有1863=⨯种名次排列情况;②、甲不是最后一名,甲乙需要排在第二、三、四名,有236A =种情况,剩下的三人安排在其他三个名次,有336A =种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故5人的名次排列可能有54种不同情况.10.D【分析】求出展开式的通项,令x 的指数为5即可求出.【详解】()101x -的展开式通项为()101101rrr r T C x -+=⋅⋅-,令105-=r ,可得=5r ,所以展开式中含5x 的项的系数是510C -.故选:D.11.-15.【分析】在(1)(2)(3)(4)(5)x x x x x -----的展开式中含4x 的项即从5个因式中取4个x ,1个常数即可写出含4x 的项,则可得到答案.【详解】在(1)(2)(3)(4)(5)x x x x x -----的展开式中含4x 的项即从5个因式中取4个x ,1个常数,所以含4x 的项为444444543215x x x x x x -----=-.所以展开式中,含4x 的项的系数是-15.12.102412【分析】根据组合数的性质计算即可.【详解】(1)由组合数的性质可得13511101111111121024C C C C +++⋯+==;(2)由组合数的性质知,0122n n n n n n C C C C +++⋯+=,1012111112n n n n n n C C C C +++++++++=⋯+,所以0120121111112122nn n n n n n n n n n n C C C C C C C C +++++++++⋯+==+++⋯+.故答案为:1024;1213.(1)证明见解析;(2)证明见解析.【分析】(1)先写出展开式的通项公式并确定出常数项,然后将组合数改写为阶乘的形式并化简,由此完成证明;(2)先写出展开式的通项公式并确定出中间项,然后将组合数改写为阶乘的形式并化简,由此完成证明.【详解】(1)展开式的通项为()2222211rr r n rr n rnn C xC xx --⎛⎫⋅⋅-=-⋅⋅ ⎪⎝⎭,令n r =,所以常数项为()21nnn C -⋅,又()()()()()()()()2246...2135...212!1112!!!!n nn nn n n n C n n n n n ⨯⨯⨯⨯⋅⨯⨯⨯⨯--⋅=-⋅=-⋅-⋅⋅()()()()()()()2123...135...21!135...2112!!!!n nn n n n n n n n n ⨯⨯⨯⨯⋅⨯⨯⨯⨯-⋅⨯⨯⨯⨯-=-⋅=-⋅⋅⋅()()135...212!n n n ⨯⨯⨯⨯-=-⋅,所以21nx x ⎛⎫- ⎪⎝⎭的展开式中常数项是()()135...212!n n n ⨯⨯⨯⨯--⋅,故得证.;(2)展开式的通项为222221r n rn r r n rn n C x C x---⋅⋅=⋅,中间项对应的r n =,所以中间项为2nnn C x ⋅,又()()()()()2135...21246...22!2!!!!n nn nn n n n C x x x n n n n n ⨯⨯⨯⨯-⋅⨯⨯⨯⨯⋅=⋅=⋅-⋅⋅()()()()()()135...212135...135 (2)1!2!!!!nnn n n n n x x n n n n ⨯⨯⨯⨯-⋅⨯⨯⨯⨯⨯⨯⨯⨯-⋅=⋅=⋅⋅⋅()()()135...212!n n x n ⨯⨯⨯⨯-=⋅,所以()21nx +的展开式中间一项是()()()135...212!nn x n ⨯⨯⨯⨯-⋅,故得证.14.(1)证明见解析;(2)证明见解析【分析】(1)通过二项式展开可证明;(2)由1010991(1100)1-=--通过二项式展开可证明.【详解】(1)01122222(1)1(1)11n n n n n nn n n n n n n n C C n C n C n n C n C n +-=+-=+++⋯+-=++⋯+,上式中的每一项都可以被2n 整除,故(1)1n n +-能被2n 整除;(2)()10100122101010101010991110011001001001C C C C -=--=-⨯+⨯-⋯+⨯-22101010101000100100C C =-+⨯-⋯+⨯,上式中的每一项都可以被1000整除,故10991-能被1000整除.15.证明见解析.【分析】利用二项式定理直接证明.【详解】左边=112211222(1)2(1)n n n n n nn n n C C C -----⨯+⨯+⋯+-⨯+-()()()1122001210112222(1)2(1111)n n n n n n n n n n n n C C C C C ----=-+--⨯⨯⨯⨯+⨯+⋯+⨯⨯-+⨯⨯-()21n=-=1=右边.即证.16.54【分析】由任意两点连线的条数,再排除边数可得.【详解】任意两点连线的条数,再排除边数,故正十二边形的对角线的条数是21212661254C -=-=.故答案为:54.17.6【分析】根据组合数的性质及组合数的计算公式计算可得;【详解】解:因为1121n n C -+=,所以2121n C +=,即()1212n n +=,即2420n n +-=,解得6n =或7n =-(舍去)故答案为:618.192【分析】先排数学、体育,再排其余4节,利用乘法原理,即可得到结论.【详解】解:由题意,要求数学课排在上午,体育课排在下午,有11428C C =种再排其余4节,有4424A =种,根据乘法原理,共有824192´=种方法,故答案为:192.19.58【分析】从8个顶点中选4个,排除6个表面有6个四点共面情况,6个对角面有6个四点共面情况.【详解】首先从8个顶点中选4个,共有4870C =种结果,其中,有四点共面的情况,6个表面有6个四点共面情况,6个对角面有6个四点共面情况,所以以正方体的顶点为顶点的三棱锥的个数是706658--=.故答案为:58.20.(1)(1)2n n -,(2)(1)2n n -【分析】(1)由题意可知:1条直线,0个交点,2条直线,1个交点,3条直线,12+个交点,4条直线,123++条交点,从而可得到规律,进而可得答案;(2)类比(1)中的方法得出答案【详解】解:(1)因为1条直线,0个交点,2条直线,1个交点,3条直线,12+个交点,4条直线,123++个交点,5条直线,1234+++条交点,……所以n 条直线有123(1)n +++⋅⋅⋅+-个交点,即(1)2n n -个交点;(2)因为1个平面,0条交线,2个平面,1条交线,3个平面,12+条交线,4个平面,123++条交线,5个平面,1234+++条交线,……所以n 个平面有123(1)n +++⋅⋅⋅+-条交线,即(1)2n n -条交线;21.(1)226x -;(2)618C ;(3)14n =或23;(4)135;(5)30.【分析】(1)54(12)(13)x x -+的展开式中按x 的升幂排列的第3项,即展开式中含2x 的项.(2)求出其通项公式,令x 的指数为0即可求解.(3)利用二项展开式的通项公式求出通项求出各项的二项式系数,利用等差数列的定义列出方程解得.(4)先将多项式展开,转化为二项式系数的和差,利用二项展开式的通项公式求出系数即可.(5)()()5522x x yx x y ⎡⎤++=++⎣⎦,两次利用通项公式求解即可.【详解】(1)54(12)(13)x x -+的展开式中按x 的升幂排列的第3项,即展开式中含2x 的项,()()()()221221124554322326C x C x C x C x x +-+⋅-⋅⋅=-.(2)18[9x+ 展开式的通项公式为:()3181818211818939rr rrr r r r T C x C x ----+=⋅⋅=⋅⋅⋅;令31802r -=可得:12r =;故18[9x +展开式的常数项为:126126181839C C -⋅=.(3) 展开式中第9项、第10项、第11项的二项式系数分别为8n C ,9n C ,10n C ,9810!!!229!(9)!8!(8)!10!(10)!n n n n n n C C C n n n ∴=+⇒=+---⇒2119(9)(8)(9)109n n n =+---⨯;化简得90(9)(8)210(8)n n n +--=⨯-,即:2373220n n -+=,解得14n =或23.(4)2101010210(1)(1)(1)(1)(1)x x x x x x x x ++-=-+-+- ,210(1)(1)x x x ∴++-展开式中含4x 的系数为:10(1)x -的含4x 的系数加上其含3x 的系数加上其含2x 项的系数,10(1)x - 展开式的通项为110()rr r T C x +=-,令4r =,3,2分别得展开式含4x ,3x ,2x 项的系数为410C ,310C -,210C ,故210(1)(1)x x x ++-展开式中含4x 的系数为:432101010135C C C -+=,(5)()()5522x x yx x y ⎡⎤++=++⎣⎦Q 设其展开式的通项公式为2551,05,()r r r r T C x y r r N x -+⋅≤≤=+∈,令2r =,得()32x x +的的通项公式为3323603(,),m m m m mx m m N C x C x --⋅=≤≤∈,再65m -=,得1m =,()52x x y ∴++的展开式中,52x y 的系数为215310330C C ⋅=⨯=.即()52x x y ++的展开式中,52x y 的系数为30.22.见解析【分析】根据5555559(561)9+=-+,按照二项式定理展开,化简后,根据展开式的各式都含有因数8可得它能被8整除.【详解】证明:5555559(561)9+=-+0551541253254154555555555555555656(1)56(1)56(1)(1)9C C C C C =+-+-++-+-+ 551545455555656568C C =-+++ 能被8整除.所以55559+能被8整除.23.(1)22m n C C ;(2)222m n l C C C ;【分析】(1)首先分析平行四边形是由两组平行对边构成的,接着结合分步计数原理求解即可;(2)首先分析平行六面体是由3组平行对面构成的,接着结合分步计数原理求解即可;【详解】(1)由题意可知:平面内有两组平行线,一组有m 条,另一组有n 条,要构成平行四边形,需要有两组对边分别平行,故从第一组m 条平行线中任选2条,作为平行四边形的一组对边,共有2m C 种不同的取法,再从第二组n 条条平行线中任选2条,作为平行四边形的另一组对边,共有2n C 种不同的取法,则可以构成22m n C C 个平行四边形.(2)由题意可知:空间有三组平行平面,第一组有m 个,第二组有n 个,第三组有l 个,要构成平行六面体,需要有3组对面分别平行,故从第一组m 个平行平面中任选2个,作为平行六面体的一组对面,共有2m C 种不同的取法,再从第二组n 个平行平面中任选2个,作为平行六面体的第二组对面,共有2n C 种不同的取法,再从第三组l 个平行平面中任选2个,作为平行六面体的第三组对面,共有2l C 种不同的取法,则可以构成222m n l C C C 个平行六面体.24.(1)96,(2)36,(3)48,(4)72【分析】(1)先从另外4道工序中任选1道工序放在最后,再将剩余的4道工序全排列即可;(2)先从另外3道工序中任选2道工序放在最前和最后,再将剩余的3道工序全排列;(3)先排这2道工序,再将它们看做一个整体,与剩余的工序全排列;(4)先排其余的3道工序,出现4个空位,再将这2道工序插空【详解】解:(1)先从另外4道工序中任选1道工序放在最后,有14C 4=种不同的排法,再将剩余的4道工序全排列,有4424A =种不同的排法,故由分步乘法原理可得,共有42496⨯=种加工顺序;(2)先从另外3道工序中任选2道工序放在最前和最后,有236A =种不同的排法,再将剩余的3道工序全排列,有336A =种不同的排法,故由分步乘法原理可得,共有6636⨯=种加工顺序;(3)先排这2道工序,有222A =种不同的排法,再将它们看做一个整体,与剩余的工序全排列,有4424A =种不同的排法,故由分步乘法原理可得,共有22448⨯=种加工顺序;(4)先排其余的3道工序,有336A =种不同的排法,出现4个空位,再将这2道工序插空,有2412A =种不同的排法,所以由分步乘法原理可得,共有61272⨯=种加工顺序,25.2(+6+11)6n n n 【分析】求出(1)n x +展开式中含2x 的系数为2n C ,再利用二项式系数的性质求和即可.【详解】因为(1)n x +展开式的第1r +为1rr r n T C x +=.所以3(1)x +中含2x 项的系数是23C 、4(1)x +中含2x 项的系数是24C ,…,2(1)n x ++中含2x 项的系数是22C n +.所以342(1)(1)(1)n x x x +++++⋯++的展开式中含2x 项的系数为222232223333423342333(+6+11)()6n n n n n n C C CC C C CC CC ++++++=++++-=-=.所以含2x 项的系数是2(+6+11)6n n n .26.()1P BA =∣,1()2P A B =∣【分析】由事件包含关系的意义及条件概率的意义直接写结果,再用条件概率的公式验证.【详解】因为A B ⊆,且()0.3P A =,()0.6P B =,则A 发生B 一定发生,所以()1P BA =∣,0.31()0.62P A B ==∣,又因为()()0.3P AB P A ==,由条件概率公式得:()()()1()()P AB P A P B A P A P A ===∣,()()0.31()()()0.62P AB P A P A B P B P B ====∣.27.(1)0.956;(2)95239.【分析】(1)直接求解即可;(2)根据条件概率公式计算即可.【详解】(1)求这件产品是合格品的概率为()()40156140.956⨯-+⨯-=%%%%(2)设B ={取到的是合格品},A ={产品来自第i 批}()1,2i =,则()()1240,60P A P A ==%%,则()()121595,1496P B A P B A =-==-=%%%%,根据公式得:()()()()()()()111112240959540956096239P A P B A P A B P A P B A P A P B A ⨯==⨯+⨯+%%%%%%.28.0.75【分析】先求目标至少被命中1次的概率,然后根据条件概率公式即可求得.【详解】由题意可得,目标至少被命中1次的概率为()()110.610.40.8---=,又因为甲命中目标的概率为0.6,所以目标至少被命中1次,甲命中目标的概率0.60.750.8P ==.29.证明见解析.【分析】根据()()P B A P B =∣得到()()()P AB P A P B =,然后利用条件概率公式直接就可证明.【详解】因为()0P A >,()0P B >,所以()()()()P AB P BA PB P A ==∣,即()()()P AB P A P B =,所以()()()()()()()P AB P A P B P AB P A P B P B ===∣,即()()P A B P A =∣.30.(1)答案见解析(2)23【分析】(1)根据超几何概率公式,求概率,再写出分布列;(2)根据分布列计算(2)(2)(3)P X P X P X ==+=,即可求解.【详解】(1)(1)设该同学抽到能背诵的课文篇数为X ,X 的可能取值为0,1,2,3则X 的分布列为364310C C ()0,1,2,3C k k P x k k -===,用表格表示为X0123P1303101216(2)及格的概率为112(2)(2)(3)263==+==+=P X P X P X 31.(1)分布列见解析;(2)0.976【分析】(1)X 的取值分别为1,2,3,分别求出()1P X =,()2P X =,()3P X =,由此能求出李明参加考试次数X 的分布列(2)由已知条件,利用对立事件的概率计算能求出李明在一年内领到资格证书的概率.【详解】解:(1)X 的取值分别为1,2,3.()10.6P X ==,()()210.60.70.28P X ==-⨯=,()()()310.610.70.12P X ==-⨯-=所以李明参加考试次数X 的分布列为:X123P0.60.280.12(2)李明在一年内领到资格证书的概率为:()()()110.610.710.80.976P =--⨯-⨯-=32.(1)2.8;(2)10.4【分析】(1)(2)根据期望的性质计算可得;【详解】解:(1)依题意可得()10.120.330.440.150.1 2.8E X =⨯+⨯+⨯+⨯+⨯=(2)()(32)323 2.8210.4E X E X +=+=⨯+=33.()0.84D X =,(27)5X σ+=【分析】先计算出()E X ,即可计算出()D X ,即可计算(27)D X +,则可计算出(27)X σ+.【详解】由题意知:()10.220.330.440.1 2.4E X =⨯+⨯+⨯+⨯=.所以()()()()()22221 2.40.22 2.40.33 2.40.44 2.40.10.84D X =-⨯+-⨯+-⨯+-⨯=.(27)4()40.84 3.36D X D X +==⨯=,(27)X σ+=34.0【分析】先求出()E X ,即可求出()D X .【详解】因为随机变量X 满足()1P X c ==,其中c 为常数.所以()1E X c c =⨯=,所以2()()10D X c c =-⨯=.35.0.6;0.2【分析】根据概率之和为1及期望列出方程求解即可.【详解】由题意知,0.21()00.2121a b E X a b ++=⎧⎨=⨯+⨯+⨯=⎩,解得0.6,0.2a b ==即a 和b 分别为0.6,0.2.36.X 相对于μ的偏离程度小于X 相对于a 的偏离程度,X 相对于μ的偏离程度(即X 的方差)是X 相对于任意常数a 的偏离程度中最小的,从而方差能很好的反映一组数据的集中与离散程度.【分析】由方差的公式结合作差法比较大小即可.【详解】设i X 取i x 的概率为i P ,又()E X μ=,所以X 相对于μ的偏离程度为()()21ni i i x E X P =-∑,X 相对于a 的偏离程度为()21ni i i x a P =-∑,又因为11ni i P ==∑,()1ni i i E X x P ==∑,()E X a ≠,所以()()()2211nni i i i i i x E X P x a P ==---∑∑()()()221ni i ii x E X x a P =⎡⎤=---⎣⎦∑()()22122ni i ii E X x E X x a a P =⎡⎤=-+-⎣⎦∑()()()()()()12n i ii x a E X E X a E X a P =⎡⎤=-++-⎣⎦∑()()(){}12ni i i E X a E X a x P==-+-⎡⎤⎣⎦∑()()()12ni i i i E X a E X a P x P =⎡⎤=-⋅+-⎡⎤⎣⎦⎣⎦∑()()()112n ni i i i i E X a E X a P x P ==⎡⎤=-⋅+-⎡⎤⎣⎦⎢⎥⎣⎦∑∑()()()2E X a E X a E X =-⋅+-⎡⎤⎡⎤⎣⎦⎣⎦()()E X a a E X =-⋅-⎡⎤⎡⎤⎣⎦⎣⎦()20E X a =--<⎡⎤⎣⎦,()()()2211nnii i i i i x E X P x a P ==-<-∑∑,即X 相对于μ的偏离程度小于X 相对于a 的偏离程度,结论的意义:X 相对于μ的偏离程度(即X 的方差)是X 相对于任意常数a 的偏离程度中最小的,从而方差能很好的反映一组数据的集中与离散程度.37.答案见解析【分析】由题设分析得到110,2X B ⎛⎫⎪⎝⎭,进而利用二项分布求概率公式求出相应的概率,进而写出分布列.【详解】设A =“向右下落”,A =“向左下落”,则()()12P A P A ==,因为小球最后落入格子的号码X 等于事件A 发生的次数,而小球下落的过程中共碰撞小木钉10次,所以110,2X B ⎛⎫⎪⎝⎭,X 的可能取值为0,1,2,3,4,5,6,7,8,9,10,所以010010111(0)C 221024P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,9110115(1)C 22512P X ⎛⎫==⨯= ⎪⎝⎭,282101145(2)C 221024P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,373101115(3)C 22128P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭,4641011105(4)C 22512P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,555101163(5)C 22256P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,6461011105(6)C 22512P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,737101115(7)C 22128P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭,828101145(8)C 221024P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,9910115(9)C 22512P X ⎛⎫==⨯= ⎪⎝⎭,100010111(10)C 221024P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭,所以X 的分布列为:X012345678910P11024551245102415128105512632561055121512845102455121102438.均值10,方差203.【分析】由题意得随机变量X 服从二项分布,根据二项分布的均值和方差公式,即可求解.【详解】依题意试验一次成功的概率为13,且每次试验是相互独立,所以30次试验中成功次数X 服从二项分布1(30,)3X B ,11220()3010,()303333E X D X =⨯==⨯⨯=,所以在30次试验中次数X 的均值为10,方差为203.39.(1)516;(2)332.【分析】(1)质点回到原点可知质点向右移动3次,向左移动3次,根据二项分布的概率公式,即可求解;(2)质点位于4的位置可知质点向右移动5次,向左移动1次,根据二项分布的概率公式,即可求解.【详解】设质点向右移动的次数为X ,又质点每隔1s 等可能地向左或向右移动一个单位,共移动6次,且每次移动是相互独立,则1(6,2X .(1)质点回到原点,则3X =,3336115(3)(()2216P X C ==⋅=,所以质点回到原点的概率是516;(2)当质点位于4的位置时,则5X =,556113(5)()(2232P X C ==⋅=,所以质点位于4的位置的概率是332.40.(1)答案见详解;(2)答案见详解.【分析】(1)利用二项分布的概率计算公式即可求解.(2)利用独立事件的概率乘法公式即可求解.【详解】(1)由题意,X 可取0,1,2,3,()()()300000364012020125P X C ==-=,()()()21100003112020125P X C ==-=,()()()1220000312212020125P X C ==-=,()()()033000031312020125P X C ==-=,所以X 的分布列如下:X123P6412548125121251125(2)X 可取0,1,2,3,()()()2010.110.20.648P X ==-⨯-=,()()()()212110.10.110.210.10.20.306P X C ==-⨯⨯-+-⨯=,()()()122210.10.10.20.110.20.044P X C ==-⨯⨯+⨯-=,()230.10.20.002P X ==⨯=.所以X 的分布列如下:X123P0.6480.3060.0440.00241.()22x f x -=0.50.68270.84140.1587【分析】根据正态分布曲线的对称性和σ原则,即可求解.【详解】由题意,机变量(0,1)X N ,则X 的密度函数为()22x f x -=,因为()0.6827P X μσμσ-≤≤+≈,根据正态分布曲线的对称性,可得(0)0.5P X ≤=,()()1110.6827P X P X ≤=-≤≤≈,()()0.68271(0)010.50.84142P X P X P X ≤=<+≤≤≈+=,10.6827(1)0.15872P X ->=≈42.(1)0.2;(2)()0.68E X =,()0.2976D X =.【分析】(1)由概率之和为1可求得;(2)根据分布列直接计算期望和方差即可.【详解】(1)由题可得20.36121q q +-+=,解得0.2q =或 1.8q =,当 1.8q =时,12 2.60q -=-<,不符合题意,舍去,∴0.2q =;(2)由(1)可得分布列为X 012P0.360.60.04()00.3610.620.040.68E X ∴=⨯+⨯+⨯=,222()(00.68)0.36(10.68)0.6(20.68)0.040.2976D X ∴=-⨯+-⨯+-⨯=.43.19【分析】根据随机变量的数学期望公式列出方程,求解方程即可.【详解】因为随机变量X 取可能的值1,2,…,n 是等可能的,所以1(),(1,2,,)P X i i n n=== ,所以1111(1)11()12(12)22n n n E X n n n n n n n ++=⨯+⨯++⨯=+++⨯=⨯= ,所以1102n +=解得19n =.44.(1)0.267;(2)9【分析】(1)利用二项分布的概率计算公式即可求解.(2)由题意列出0010.795n ->,解不等式即可求解.【详解】(1)10门大炮同时对某一目标各射击一次,设击中目标的次数为X ,则()10,0.3X B ,故恰好击中目标3次的概率为()733100.310.30.267C ⨯⨯-≈.(2)由题意,n 门大炮同时对某一目标各射击一次,击中0次的概率为()10.30.7nn -=,则至少击中一次的概率为10.7n -,则0010.795n ->,即lg 0.7lg 0.05n <,解得lg 0.051lg 210.30108.40lg 0.7lg 710.84511n ---->=≈≈--,因为n N *∈,所以如果使目标至少被击中一次的概率超过95%,至少需要9门大炮.45.(1)0.0037;(2)0.9197【分析】(1)用X 表示10万人中遭遇意外伤害的人数,可得()5100000,10X - ,则由()()414P X P X >=-≤可求;(2)可得一年内最多只能有2人出险,求出()2P X ≤即可.【详解】(1)一份意外伤害保险费为20元,销售10万份保单可得保险费200万元,保险金额为50万元,可得出在一年内若有4人以上出险,保险公司将亏本,由题意可得10万人参保,可看作10万次独立重复实验,每人是否遭遇意外伤害相互独立,用X 表示10万人中遭遇意外伤害的人数,每人遭遇意外的概率为510-,则()5100000,10X - ,则这家保险公司亏本的概率()()414P X P X >=-≤()()()()()101234P X P X P X P X P X =-=+=+=+=+=⎡⎤⎣⎦()()010510000015999991000001000001[100.99999100.99999C C --=-⨯⨯+⨯⨯()()()234259999835999974599996100000100000100000100.99999100.99999100.99999]C C C ---+⨯⨯+⨯⨯+⨯⨯10.996340.0037=-≈;(2)这家保险公司一年内获利不少于100万元,则一年内最多只能有2人出险,则()()()()2012P X P X P X P X ≤==+=+=()()()0120510000015999992599998100000100000100000100.99999100.99999100.99999C C C ---=⨯⨯+⨯⨯+⨯⨯0.9197≈.46.111[1(1)]32nn ---⋅【分析】记n A 表示事件“经过n 次传球后,球在甲的手中”,设n 次传球后球在甲手中的概率为n p ,得到11110,n n n n n p A A A A A +++==⋅+⋅,化简整理得111,1,2,3,22n n p p n +=-+= ,即1111(323n n p p +-=--,结合等比数列的通项公式,即可求解.【详解】记n A 表示事件“经过n 次传球后,球在甲的手中”,设n 次传球后球在甲手中的概率为,1,2,3,,n p n n = ,则有11110,n n n n n p A A A A A +++==⋅+⋅,所以11111()()()n n n n n n n n n p P A A A A P A A P A A +++++=⋅+⋅=⋅+⋅1111()(|)()(|)(1)0(1)22n n n n n n n n n P A P A A P A P A A p p p ++=⋅+⋅=-⋅+⋅=-,即111,1,2,3,22n n p p n +=-+= ,所以1111()323n n p p +-=--,且11133p -=-,所以数列1{}3n p -表示以13-为首项,12-为公比的等比数列,所以1111(332n n p --=-⨯-,所以1111111([1(1)]32332n nn p --=-⨯-+=--⋅.即n 次传球后球在甲手中的概率是111[1(1)]32nn ---⋅.47.(1)减少;(2)7k =.【分析】(1)根据已知求出阳性的人数,然后从极端情形入手求出5人一组的最大化验次数,比较可得;(2)仿照(1)求出k 人一组时最大测试次数,然后由基本不等式求最小值,由k 为正整数,比较得k 的值.【详解】(1)按照此种方法,需要化验两轮,第一轮化验次数为1000020005=,携带病毒的人占5%,因此携带病毒的人有100005%500⨯=(人),第二轮最多有500组需要化验,最多化验次数为50052500⨯=,因此这种方法最多化验次数为200025004500+=,化验次数减少.(2)按(1)中方法,按k 人一组,第一轮需要化验10000k次,如果携带病毒的人只占2%,则携带病毒的人有100002%200⨯=(人),最多有200组需要化验第2轮,第二轮最多化验次数为200k ,因此最多化验次数为1000050200200()20022000k k k k +=+≥⨯k =时等号成立,由于*k N ∈,易得50507878+<+,所以7k =时,化验次数最少.48.不同意;理由见详解.【分析】根据相关关系的判断方法即可给出理由.【详解】某个地区的环境条件适合天鹅栖息繁衍,与这个地区的环境条件有很大的关系,适合天鹅栖息的地区天鹅栖息就较多,不适合天鹅栖息的地区天鹅栖息就较少,婴儿出生率与生理遗传有关,当然也受地区环境的影响,但是两者并不存在必然的相关关系,“天鹅能够带来孩子”这个结论是错误的.49.ˆ0.249314.84hd =+【分析】由已知数据先计算,d h ,再根据回归方程中系数公式计算系数得方程.【详解】解:由已知18.120.140.229.083312d +++=≈ ,18.819.224.722.091712h +++=≈ ,2222(18.118.820.119.240.224.7)1229.083322.09170.2493(18.120.140.2)1229.0833b⨯+⨯++⨯-⨯⨯=≈+++-⨯ 22.09870.249329.083314.84a=-⨯≈,所以线性回归方程为:ˆ0.249314.84h d =+.50.(1)线性函数关系(2)1【分析】(1)根据题意得到解释变量和响应变量的关系是线性函数关系;(2)由(1)知:21R =【详解】(1)因为散点图中所有的散点都落在一条斜率为非0的直线上,所以解释变量和响应变量的关系是线性函数关系.(2)由(1)知:21R =51.答案见解析【分析】列出数据扩大10倍的22⨯列联表,计算出2χ的观测值,结合独立性检验的基本思想可出结论.【详解】数据扩大10倍的22⨯列联表为:学校数学成绩合计不优秀()0Y =优秀()1Y =甲校()0X =330100430乙校()1X =38070450合计710170880假设0:H 学校与数学成绩无关,由列联表数据得()22880330703801008.365 2.706430450710170χ⨯⨯-⨯=≈>⨯⨯⨯,根据小概率值0.1α=的独立性检验,我们推断假设0H 不成立,即认为学校与数学成绩有关,又因为甲校成绩优秀和不优秀的概率分别为1000.2326430≈,3300.7674430≈,乙校成绩优秀和不优秀的概率分别为700.1556450≈,3800.8444450≈,又因为0.23260.1556>,所以,从甲校、乙校各抽取一个学生,甲校学生数学成绩优秀的概率比乙校学生优秀的概率大.所以,结论不一样,不一样的原因在于样本容量,当样本容量越大时,用样本估计总体的准确性会越高.52.C【分析】根据用一元线性回归模型2()0,()Y bx a eE e D e σ=++⎧⎨==⎩有关概念即可判断.【详解】解:用一元线性回归模型2()0,()Y bx a e E e D e σ=++⎧⎨==⎩得到经验回归模型ˆˆˆy bx a =+,根据对应的残差图,残差的均值()0E e =可能成立,但明显残差的x 轴上方的数据更分散,2()D e σ=不满足一元线性回归模型,正确的只有C.故选:C.53.C【分析】根据卡方独立性检验可得【详解】由表可知当0.05α=时, 3.841x α=,因为2.2.9743841x αχ==<,所以分类变量x 与y 相互独立,因为212.706 2.49874 3.χ<=<,所以分类变量x 与y 相互独立,这个结论犯错误的概率不超过0.1,故选:C。
关于组合数化简与证明的基本思路
造对应的二项 展 开 式,就 可 以 寻 找 到 解 决 问 题 的
基本思路.
在解决 组 合 数 求 和 的 化 简 与 证 明 问 题 时,经
常用到下面这些基本的组合数公式:
(1)Cnm
=
Cn-m n
;
(2)kCnk =nCkn--11;
(3)Cnm+1 = Cnm +Cnm-1;
(4)Cnn
+
Cn n+1
=n(Cn0-1
+
C1 n-1
+
…
+Cnn--11)=n·2n-1.
思路 3 根 据 所 求 式 子 的 特 点,联 想 (xn)′
=nxn-1.
由(1+x)n = Cn0 +Cn1x +Cn2x2 + … +Cnnxn,
两边对x 求导,得
n(1 + x)n-1 = Cn1 + 2Cn2x + … + (n-1)Cnn-1xn-2 +nCnnxn-1,
即 x2 f(x)= (1+x)m - (1+x)m+n +nx(1+
x)m+n,可知f(x)中含xm 项的系数,就是等式右边
含 xm+2
项 的 系 数 ,为
-Cm+2 m+n
+nCmm++n1,故
Cmm +2Cmm+1 +3Cmm+2 + … +nCmm+n-1
=-
Cm+2 m+n
+nCmm++n1
k=0 m
简 析 虽然 (-1)kf(k)= Cn0-Cn1+Cn2- k=0
… +(-1)mCnm 很简捷,却似“无从下手”.如果使用
上 述 第 一 个 “裂 项 ”公 式 (3),则 会 起 到 意 想 不 到 的
效果.
m
(-1)kf(k)
k=0
= Cn0 -Cn1 +Cn2 - … + (-1)mCnm
几个常用组合数公式
⑸①几个常用组合数公式C n 0 C n 1 C n2nn2nC n 0 C n 2 C n4C n 1 C n 3 C n52n 1mmmm m 1C nCm 1Cm 2Cm n Cm n 1kC n k nC n k 111 C n k 1 C n k 11 k 1 n 1②常用的证明组合等式方法例 .i. 裂项求和法 .如:12 3n 1 1 (利用 n1 11 )2! 3! 4! ( n 1)! (n 1)! n! (n 1)! n!ii. 导数法 . iii.数学归纳法 .iv. 倒序求和法 .v. 递推法(即用 C mn C m n 1C n m1 递推)如: C 33C 43 C 53C n3C n 41 .vi.构造二项式 . 如: (C n 0 ) 2(C n 1 ) 2 (C n n ) 2 C 2 n n证明:这里构造二项式 (x 1) n (1 x) n (1 x) 2n 其中 x n 的系数,左边为C n 0 C n n C n 1 C n n 1 C n 2 C n n 2C n n C n 0 (C n 0 )2 (C n 1 )2(C n n ) 2 ,而右边 C 2n n四、排列、组合综合 .1. I.排列、组合问题几大解题方法及题型:①直接法 .②排除法 .③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列. 它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某 m(m n) 个元素必相邻的排列有A n n m m 11 A m m 个 . 其中 A n n m m 11 是一个“整体排列”,而A m m 则是“局部排列”.又例如①有 n 个不同座位, A 、 B 两个不能相邻,则有排列法种数为A n 2A n 11 A 22 .②有 n 件不同商品,若其中A 、B 排在一起有 A n n11A 22.③有 n 件不同商品,若其中有二件要排在一起有A n 2 A n n 11 .注:①③区别在于①是确定的座位,有A 22 种;而③的商品地位相同,是从n 件不同商品任取的 2 个,有不确定性 .④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如: n 个元素全排列, 其中 m 个元素互不相邻,不同的排法种数为多少?A n n m m A n m m 1(插空法),当 n – m+1≥m, 即 m ≤n1时有意义.2⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元 素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置 . 即采用“先特殊后一般”的解题原则.⑥调序法: 当某些元素次序一定时, 可用此法 . 解题方法是: 先将 n 个元素进行全排列有A n n种, m(m n) 个元素的全排列有A m m 种,由于要求 m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若 n 个元素排成一列,其中m 个元素次序一定,共有A n n种排列方法 .A m m例如: n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法) ( m+1)( m+2)⋯ n = n ! / m !;解法二:(比例分配法)A n n / A m m .n n n⑦平均法:若把 kn 个不同元素平均分成k 组,每组 n 个,共有 C knC ( k 1) nC n .A k k例如:从 1,2,3,4 中任取 2 个元素将其平均分成 2 组有几种分法?有C 423 (平均分组2!就用不着管组与组之间的顺序问题了)又例如将 200 名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? ( P C 188 C 22 )C 2010 / 2!注意:分组与插空综合 . 例如: n 个元素全排列,其中某 m 个元素互不相邻且顺序不变,共有多少种排法?有 A n n m m A n m m 1 / A m m,当 n – m+1 ≥ m, 即 m ≤ n1时有意义 .2⑧隔板法:常用于解正整数解组数的问题.例如: x 1 x 2 x 3 x 412 的正整数解的组数就可建立组合模型将 12 个完全相同的球排成一列,在它们之间形成11 个空隙中任选三个插入 3 块摸板,把球分成 4 个组 . 每一种方法所得球的数目依次为 x 1 ,x 2 ,x 3 ,x 4 显然 x 1 x 2 x 3 x 4 12 ,故( x 1 ,x 2 ,x 3 ,x 4 )是方程的一组解 . 反之,方程的任何一组解 ( y 1, y 2 , y 3 ,y 4) ,对应着惟一的一种在12 个球之间插入隔板的方式 (如图x 1 x 2x 3x 4所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数 C 113 .注意:若为非负数解的x 个 数 , 即 用 a 1 , a 2 ,...a n 中 a i 等 于 x i 1 , 有 x 1 x 2 x 3 ...x n A a 1 1 a 2 1 ...a n 1 A ,进而转化为求a 的正整数解的个数为Cn 1 .An⑨定位问题:从 n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某 r 个指定位置则有A r r A n k r r.例如:从 n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上: A m n 11;不在某一位置上:A m n A m n 11或 A n m1A m 11 A m n 11(一类是不取出特殊元素 a,有A n m1,一类是取特殊元素a,有从 m-1个位置取一个位置,然后再从n-1个元素中取 m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题 .i. 从 n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某 r 个元素都包含在内。
二项式系数的性质及应用(1)
考点一: (a b)n 展开式的二项式系数 例.已知 (1 2x)7 a0 a1x a2 x2 ... a7 x7 .求: (1) a0 a1 a2 ... a7 (2) a1 a3 a5 a7 (3) a0 a2 a4 a6 (4) a0 a1 a2 ... a7
例.用二项式定理证明:99100 1能被1000整除.
跟踪训练:求9192 被100除所得的余数.
跟踪训练:求9192 被100除所得的余数.
考点四:证明恒等式
例.求证:1 3Cn1 32 Cn2 ... 3n Cnn 4n
跟踪训练:
求证: Cn1 2Cn2 3Cn3 ... nCnn n • 2n1
知识影响格局,格局决定命运! 路漫漫其修远兮,吾将上下而求索!
二项式系数的性质及应用 学习目标: 掌握二项式系数的性质并能解决简单的二项式系数有关的问题
(a b)n 展开式的二项式系数Cn0 , Cn1 , Cn2 ,..., Cnn 有如下性质:
(1) Cnm
C nm n
(2) Cnm
C m1 n
Cm n1
(3)当 r
n
2
1
时,
Cnr
C r1 n
;当
r
当堂检测:
1.若 (x 2)5 a0 a1x a2 x2 a3x3 a4 x4 a5 x5 ,则 a1 a2 a3 a4 a5 __________. 2.已知 (1 kx2 )6 ( k 是正整数)的展开式中, x8 的系数小于 120, 则 k ______.
当堂检测:
1.若 (x 2)5 a0 a1x a2 x2 a3x3 a4 x4 a5 x5 ,则 a1 a2 a3 a4 a5 __________. 2.已知 (1 kx2 )6 ( k 是正整数)的展开式中, x8 的系数小于 120, 则 k ______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德宏师范高等专科学校学报2018年第1期第27卷N ol.2018 vol.27
关干!#«+……的2个数学模型
贺志雄
(德宏师范高等专科学校数学系,云南芒市678400)
【摘要】建立一个数学问题,综合两个解法得到了结论。
【关键词】模型;求解;结论
中图分类号/013 文献标识码:A文章编号:(2018) 01-095-01
模型一:安个乘客在甲、乙两个车站下 车,共有多少种安排方法?
模型二$每个电子元件只有开关两个状态,在计算机J!个电子元件可以传递多少个信息?
现以模型一为例推导出c:+c:+c!+……c:'%+ "…=& 〇
解法1.对每个乘客可在甲站或乙站下车,即有2种下车方法,由乘法原理得到共有2!种安 排方法。
解法2.对每个乘客,如果不在甲站下车,就会在乙站下车,那么只要求出甲站下车的不同 安排总数即可。
甲站下车人数安排4!+%类情形。
第一类:全部不下车,有C:种
第二类$有1人下车,有C:种
第三类:有2人下车,有C!种
第!类:有人下车,有种
第n+1类:有n人下车,有^种
由加法原理共有C X+C&+……C: 1 +C: (种)
综合解法1~解法2有.C#+C%+C:+……C:_1+ ::
C:=2
参照模型一可以构造
:1:―12:—1 : :,
2 +C:!C:+C:+ ……C:x2+C:=* 的模型$安排:个乘客在甲乙丙三个车站下车,共有几种安排方法?
解法1.每个乘客有*种下车方法,:个乘客有*:种安排方法。
解法2.分为:+1类安排方法。
第一类$甲站无人下车,:个乘客在乙站及丙站下车,有2:种。
第二类$甲站下1人,乙丙两站下:-1人,有 C:x2:—1种。
第n类:甲站下:-1人,乙站或丙站下1人,有C:—1x2种。
第:+1类:甲站下:人,有C:种。
由加法原理,共有2:+C:x C:—1+C:+……C:—1x 2+C:种。
n 1 n-1 2 n-2 n-1 n n 总之2+C x C+C x2 +…•…C x2+C=3。
w n n n n n n u
收稿日期r2018-01-40
作者简介:贺志雄(1961〜),湖南人,德宏师范高等专科学校数学系副教授。
主要研究方向: 高等数学与h等代数研d。
95。