反比例函数k的几何意义

合集下载

26.1.2反比例函数中比例系数k的几何意义

26.1.2反比例函数中比例系数k的几何意义
1 积各是___ 2
2 5、S⊿ABC的面积=____
6、(2009年重庆市)如图所示.如果函数y=-kx(k≠0)
4 与 y x 图像交于A、B两点,过点A作AC垂直
于y轴,垂足为点C,则△BOC的面积为
2
.
S⊿AOC =∣-4 ∣= 2 S ⊿BOC =S ⊿AOC
D
2 7、四边形ABCD的面积=_____
o
A
x
想一想
y P(m,n) o A x
若将此题改为过P点 作y轴的垂线段,其结 论成立吗?
y A o P(m,n) x
S OAP
1 1 1 OA AP | m | | n | | k | 2 2 2
(3)设P(m, n)关于原点的对称点是 P (m,n), 过P作x轴的垂线 与过P作y轴的垂线交于A点, 则
y
A
O S
2
S1
B
x
A. S1>S2 B.S1<S2 C.S1=S2 D.S1与S2的大小关系 不能确定
C
D
的图象 如图所示,点M是该函数图象上一点,MN垂直 于x轴,垂足是点N,如果S△MON=2, 则k的值 为( C ) (A)2 (B)-2 (C) -4 (D) 4
y
2、 (2010山东省中考题) 反比例函数y=
y
y
B
P(m,n)
A
B
P(m,n) A
o
x
o
x
k 设P(m, n)是双曲线y (k 0)上任意一点, 有 : x (2)过P作x轴的垂线, 垂足为A, 则
SOAP 1 1 1 OA AP | m | | n | | k | 2 2 2

反比例函数中比例系数k的几何意义

反比例函数中比例系数k的几何意义

反思小结
在反比例函数 y 10 的图象上,有一系列点A1,A2, x A3…..An,An+1,若A1横坐标为2,且以后每点的 横坐标与它前一个点的横坐标的差都为2. 现分别 过点A1,A2,A3…..An,An+1作X轴与Y轴的垂线 段,构成若干个矩形如图10所示,将图中阴影部 分的面积从左到右依次记为S1、S2、S3、…Sn, 5 5 15 2 5 2 (5 _____, ) 则S1=________, S +S +S =____ S1+S2 2 1 2 3 4 2 5 10 n 2 (5 ) +S3+….+Sn=________________.( 用n的代数式表 n 1 n 1 A 示)
C
S SOAD SABD SBCD SOCD 4 1 4
达标测试
已知几何图形的面积S,求比例系数k
5、如图,已知双曲线 (k>0) 经过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k的值为( B )。
y
y
k x
A 1
所以
B 2
C 4
S OAB 4
O
y
已知几何图形的面积S,求比例系数k k y 变式、如图,已知双曲线 x ( k>0 )经
B
D
C E A
x

SOAB SOBC SOAC

S ODE 1 S OAB 1 4 k 3 2
1 k 2
相似三角形的面积比 等于相似比的平方 k 4;
k 0 k 4
k 0 k 4
4 y x
达标测试
4、如图,在平面直角坐标系中, 点O为原点,菱形OABC的对角线 OB在x轴上,顶点A在反比例函数 2 的图像上,求菱形的面积。 y B

反比例函数中k的几何意义的应用

反比例函数中k的几何意义的应用

反比例函数中k的几何意义的应用
k在反比例函数中具有重要的几何意义,以下列举一些它的应用。

1. 直线反比例函数:k反映直线斜率的倒数,即斜率m=-k。

当给定直
线k值时,由定点和k值可以求出斜率m,从而可以绘制出这条直线。

2. 圆反比例函数:k反映圆半径r的倒数,即r=1/k。

当给定圆k值时,由定点和k值可以求出圆半径,从而可以绘制出这个圆。

3. 抛物线反比例函数:k反映抛物线的开口方向,当k > 0时,抛物线
向右开口;当k < 0时,抛物线向左开口。

4. 双曲线反比例函数:k反映双曲线的开口方向,当k>0时,双曲线
开口向右;当k<0时,双曲线开口向左。

5. 其他函数反比例函数:k可以反映此类函数中曲线的凹凸,当k > 0时,曲线是凹曲线;当k < 0时,曲线是凸曲线。

总之,k在反比例函数中应用广泛,几乎所有的函数都可以用反比例函
数表示。

它的几何意义非常重要,不仅仅可以根据k值绘制出各种曲线,而且可以了解曲线的开口方向以及凹凸方向。

因此,k在反比例函
数绘制中发挥着重要的作用。

反比例函数中K的几何意义

反比例函数中K的几何意义

反比例函数中K的几何意义
在反比例函数中,K表示比例系数或常数,也被称为反比例常数。


是用来确定两个变量之间反比关系的重要参数。

反比例函数的一般形式为:y=K/x,其中K表示比例系数。

K的几何意义可以通过分析反比例函数的图像得出。

反比例函数的图
像是一个双曲线,特点是曲线趋向于两个坐标轴。

下面将详细讨论K的几
何意义。

1.K的符号对于曲线的位置以及开口方向具有重要影响。

如果K为正数,那么曲线将位于第一和第三象限,并且开口方向为右上和左下。

如果
K为负数,那么曲线将位于第二和第四象限,并且开口方向为左上和右下。

2.K的绝对值越大,曲线就越“陡峭”。

当K增大时,曲线将更加接
近于坐标轴,并且在原点附近的斜率会越来越大。

反之,当K变小时,曲
线将更加平缓,斜率将减小。

3.K决定了特定坐标点的函数值。

例如,在函数y=K/x中,当x为K 时,y的值将为1、这是因为x与y成反比关系,而K是这种关系的常数。

4.K还决定了曲线相对于坐标轴的位置。

具体而言,当K增大时,曲
线将向坐标轴移动,而当K减小时,曲线将远离坐标轴。

总之,K代表了反比例函数中的比例系数或常数,它对于函数的位置、开口方向、陡峭程度以及特定坐标点的函数值都具有重要影响。

通过对K
的分析,我们可以更好地理解和解释反比例函数的几何特征。

反比例函数k的几何意义

反比例函数k的几何意义

知识讲解1.反比例函数的概念如图所示,过双曲线)0(k≠=kxy上任一点),(yxP作x轴、y轴的垂线PM、PN,垂足为M、N,所得矩形PMON的面积S=PM∙PN=|y|∙|x|.,yxk=∴||kSkxy==,。

这就说明,过双曲线上任意一点作x轴、y轴的垂线,所得到的矩形的面积为常数|k|。

这是系数k几何意义,明确了k的几何意义,会给解题带来许多方便。

(请学生思考,图中三角形OEF的面积和系数k的关系。

)2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x的取值不能为0,应从1或-1开始对称取点.例题1函数y=1x-(x>0)的图象大致是( )例题2 函数y=kx+1与函数y=kx在同一坐标系中的大致图象是( )yOxAyO xByOxCyOxD y y y y3.反比例函数y=kx 中k 的意义注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.例题1:如图,P 、C 是函数x4y =(x>0)图像上的任意两点,过点P 作x 轴的垂线PA,垂足为A ,过点C 作x 轴的垂线CD,垂足为D ,连接OC 交PA 于点E ,设⊿POA 的面积为S1,则S1= ,梯形CEAD 的面积为S2,则S1与S2的大小关系是S1 S2, ⊿POE 的面积S3和梯形CEAD 的面积为S2的大小关系是S2 S3.例题1图 例题2图 例题3图例题2:如图所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S1,⊿BOD 的面积S2,⊿POE 的面积S3的大小: 。

例题3:如图所示,点A(x1,y1)、B(x2,y2)都在双曲线)0x (k>=xy 上,且x2-x1=4,y1-y2=2;分别过点A 、B 向x 轴、y 轴作垂线,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 。

反比例函数知识点总结,比例系数k的几何意义和七大常考模型

反比例函数知识点总结,比例系数k的几何意义和七大常考模型

反比例函数知识点总结,比例系数k的几何意义和七大常考模型一.反比例函数的概念1.概念:一般地,函数y=k/x(k是常数,k≠0)叫做反比例函数。

反比例函数的解析式也可以写成的形式。

自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数。

注意:(1)比例系数k≠0是反比例函数的定义的重要部分;(2)在反比例函数的解析式中,k,x,y均不等于0;(3)反比例函数中的两个变量一定成反比例关系,反之,则不一定成立例 1 给出的六个关系式:①x(y+1); ②y=2/(x+2); ③y=1/x²;④y=1/2x; ⑤y=x/2 ; ⑥y=-3/x.其中y是x的反比例函数的是 ( )A.①②③④⑥B.③⑤⑥C.①②④D.④⑥例2 若函数是y关于x的反比例函数,则m= .例3 关于正比例函数y=-x/3和反比例函数y=-1/3x的说法正确的是 ( )A.自变量x的指数相同B.比例系数相同C.自变量x的取值范围相同D.函数y的取值范围相同2.易错点解析漏掉k≠0这一条件解答与反比例函数有关的问题时,要注意系数k≠0是反比例函数定义中必不可少的一部分,不能漏掉这一条件.例4已知函数为反比例函数,则k= .二.反比例函数的图像和性质1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2.反比例函数的性质注意:y随x变化的情况必须指出“在每个象限内”或“在每一分支上”这一条件。

例5 关于反比例函数y=3/x的图象,下列说法正确的是 ( )A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小例6.当x<0时,下列表示函数y=-1/x的图象的是 ( ) 例7.下列反比例函数中,图象位于第二、四象限的是( )A.y=2/x B.y=0.2/x C.y=√2/x D.y=-2/5x 例8.对于反比例函数y=(k-√10)/x,在每个象限内,y随x的增大而增大,则满足条件的非负整数k有 ( )A.1个B.2个C.3个D.4个三.反比例函数解析式的确定由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

反比例函数K的几何意义

反比例函数K的几何意义
(2)A、C落在反比例函数的图象上, 设矩形平移后A坐标是(2,6-b),C坐标是(6,4-b), ∵A、C落在反比例函数的图象上, ∴k=2(6-b)=6(4-b), ∴b=3, 即矩形平移后A的坐标是(2,3), 代入反比例函数的解析式得:k=2×3=6,
【山东·全国考题回访】
1.(2014·济南中考)如图,△OAC和△BAD都是等
如图,过y轴正半轴上的任意一点P,作x轴 的平行线,分别与反比例函数y=-4/x和 y=2/x交于点A和点B,若点C是x轴上任意一 点,连接AC、BC,则△ABC的面积为
点B,D在反比例函数y=b/x(b<0)的图象上,
AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,
AB与CD的距离为5,则a-b的值是
则S△OBC=
1·(-x)·22y=6.解得k=xy=-6. 2
答案:-6
如图,直线l⊥x轴于点P,且与反比例函数 y1=k1/x(x>0)及y2=k2/x(x>0)的图像分别交于点A, B,连接OA,OB,已知△OAB的面积为3,则k1-k2 的值等于( )
如图△P1OA1,△P2A1A2是等腰直角三角形,点P1, P2在函数y=4/x(x>0)的图象上,斜边OA1,A1A2 都在x轴上,则点A2的坐标是______.
答案:6
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同 时落在反比例函数的图象上,猜想是哪两个点, 并求矩形的平移距离和反比例函数的解析式.
(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4, 点A的坐标为(2,6). ∴AB=CD=2,AD=BC=4, ∴B(2,4),C(6,4),D(6,6);
腰直角三角形,∠ACO=∠ADB=90°,反比例函数 y= k 在第一象限的图象经过点B,若OA2-AB2=12, 则kx的值为_______.

中考数学 考点5 反比例函数中K值的几何意义(解析版)

中考数学     考点5 反比例函数中K值的几何意义(解析版)

1.k的几何意义如图,过双曲线上任一点P作x轴、y轴的垂线PM、PN,所得矩形PMON的面积S=|xy|= |k|.由此就建立起了几何图形的面积与k的关系。

2.与k相关的面积问题的基本图形理解并记住这几个基本图形中阴影部分的面积与|k|的关系会对我们解决与反比例函数的面积有关的问题带来非常大的帮助。

反比例函数中与k相关的面积的问题,其本质是过双曲线上的点向坐标轴作垂线,建立起双曲线上的点与图形面积之间的关系。

当图形中的线段有倍分的关系时,通常设未知数,结合中点坐标公式或相似三角形的性质来示解。

例1.在反比例函数4yx的图像中,阴影部分的面积不等于4的是 ( )A B C DyxOyxOyxOyxO【答案】B例2.如图, Rt AOB V 的一条直角边OB 在x 轴上,双曲线(0)ky k x=>经过斜边OA 中点C ,与另一直角边交于点D ,若9OCD S =V ,则k 的值为__________.【答案】12例 3.如图,在平面直角坐标系中, Rt ABO ∆的顶点O 与原点重合,顶点B 在x 轴上, 90ABO ∠=︒,OA 与反比例函数()0ky k x=≠的图像交于点D ,且2OD AD =,过点D 作x 轴的垂线交x 轴于点C .若ABCD S 四边形=10,则k 的值为___________【答案】-161.如图所示,直线l 与双曲线ky x =(k >0)交于A ,B 两点,点P 在线段AB 上,试比较△AOC 的面积1S ,△BOD 的面积2S ,△POE 的面积3S 的大小关系。

答案】1S =2S =3S【解析】由基本图形可知,1S =12|k |,2S =12|k |,3S =12|k |, 所以1S =2S =3S 学科@网2.如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在反比例函数y=kx(x >0)的图象上.若点B 的坐标为(﹣2,﹣2),则k=_____.【答案】43.如图,反比例函数()0ky x x=>的图像交Rt OAB ∆的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上,若OAC ∆的面积为5,:1:2AD OD =,则k 的值为【答案】4【解析】过点D 作x 轴的垂线,垂足为点E ,设点A (3m ,3n ),1.如图所示,在平面直角坐标系中,矩形ABCD的BC边落在y轴上,其它部分均在第一象限,双曲线y=k x过点A,延长对角线CA交x轴于点E,以AD、AE为边作平行四边形AEFD,若平行四边形AEFD的面积为4,则k值为()A. 2B. 4C. 8D. 12【答案】B【解析】延长CD,EF交于H,延长DA交x轴于G,延长AB交EF于N,则△DHF≌△AGE≌△AEN,∴S四边形ABOE=S四边形ADHE,∴S四边形ABOG=S四边形AEFD=4,∵双曲线y=kx过点A,∴k=4.学科@网2.如图,Rt△OAB的边OA在x轴上,点B在第一象限,点D是斜边OB的中点,反比例函数kyx经过点D,若S△AOD=6,则k=________.【答案】6∵∴,即∵点D在kyx=上,∴kba=即∴k=6.学科@网3.如图所示,反比例函数y=kx(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为_______.【答案】24.如图,已知第一象限内的点A在反比例函数2yx=上,第二象限的点B在反比例函数kyx=上,且OA⊥OB,sinA=3,则k的值为________.【答案】-15.反比例函数6yx=与3yx=在第一象限的图象如图所示,作一条平行于x轴的直线,分别交双曲线于A,B两点,连接OA,OB,求△AOB的面积。

反比例函数中比例系数k的几何意义

反比例函数中比例系数k的几何意义

19.6反比例函数中比例系数k的几何意义一、复习旧知:1.反比例函数的表达式有______种形式,分别是_________________________.2.反比例函数的图象是_______________.3.反比例函数的图象性质是:_____________________________________________________________________ _____________________________________________________________________ 二、创设情境---自主探究1.已知:如图1,∠AED=∠B ,AD=y ,AE=2,AB=x ,AC=6,写出y 与x 的函数关系式.2.已知:如图2,在△ABC 中,∠C=90°,BC=x ,AC=y ,S △ABC =6,则y 与x 的函数 表达式为:________________.3.已知:如图3,在矩形ACBH 中,BC=x ,AC=y ,S 矩形ACBH =12,则y 与x 的函数 表达式为:4观察2题和3题中图形面积与函数表达式中的k 值有怎样的关系.三、学习新知---合作探究已知点A (-6,2)、B (3,m )是反比例函数图象上的两点,根据要求完成下列问题: 1.反比例函数的表达式:________________________; 点B 坐标__________. 2.在平面直角坐标系中画出函数图象.图1图2图33.过点A 分别向x 轴和y 轴作垂线,垂足为点C 和点H ,连接AO (1)则S △AOC =_________. (2)则S 矩形ACOH =__________.4. 过点B 分别向x 轴和y 轴作垂线,垂足为点E 和点F ,连接BO (1)则S △BOF =__________. (2)则S 矩形BEOF =___________.5.观察问题3和问题4的结果有怎样的关系,它们的结果与反比例函数解析式中的k 又有怎样的关系?小结:如图,在反比例函数xky =(k ≠0)上任意一点P(x,y),过这一点分别作x 轴和y 轴的垂线PM 、PN ,连接OP ,则S △POM =___________ ; S 矩形PMON =___________.四、学以致用—自主练习1.已知:反比例函数图象上一点A ,过点A 作AC ⊥x 轴于点C ,作AB ⊥y 轴于 点B ,连接AO.(1)若点A (2,3),则反比例解析式k=_____; S △AOC =____; S 矩形ABOC =_____.(2)若S △AOC =4,且反比例函数图象在一、三象限内,则反比例函数表达式:__________ (3)若S 矩形ABOC =5,则反比例函数表达式:______________________________________ 2.计算与双曲线xky =(k ≠0)上的点有关的图形面积.。

反比例函数k 的几何意义

反比例函数k 的几何意义

反比例函数k 的几何意义全文共四篇示例,供读者参考第一篇示例:反比例函数是一种常见的函数形式,它在数学中起着重要的作用。

在数学中,反比例函数通常表示为y = k/x,其中k是一个常数。

在本文中,我们将探讨反比例函数k的几何意义,以便更好地理解它在数学中的应用。

让我们来看看反比例函数y = k/x的图像是什么样子的。

当k大于0时,函数图像呈现出一种特殊的形状,即一条从第一象限经过原点的曲线。

这种曲线被称为双曲线。

双曲线在数学中有着广泛的应用,例如在物理学和工程学中,它往往用来描述两个量之间呈反比例关系的情况。

在几何意义上,反比例函数k的值可以理解为曲线在坐标系中的形态和性质。

当k越大时,曲线越扁平,即曲线的曲率越小。

反之,当k 越小时,曲线越尖锐,曲率越大。

反比例函数k的值可以用来描述曲线的形状和性质。

反比例函数k的几何意义还可以从另一个角度来理解。

在数学中,函数y = k/x表示了两个变量之间的反比例关系。

当x增大时,y的值会减小。

这表明两个变量之间存在一种相反变化的关系。

在几何上,这种反比例关系可以理解为一种“交换”的关系,即当一个变量增大时,另一个变量会减小,反之亦然。

反比例函数k在数学中具有重要的几何意义。

它不仅可以描述曲线的形状和性质,还可以揭示两个变量之间的反比例关系。

通过深入研究反比例函数k的几何意义,我们可以更好地理解它在数学中的应用,并丰富我们对数学的认识和理解。

【文章字数不足,如有需要可继续添加内容】。

第二篇示例:反比例函数是数学中常见的一类函数,其数学表达式为y = k/x,其中k为一个常数且k≠0。

反比例函数在数学中有很多重要的应用,尤其是在几何中具有重要的意义。

我们来看反比例函数在几何中的基本性质。

对于反比例函数y =k/x,我们可以通过绘制其图像来直观地理解其性质。

当x取正值时,y 的值随着x的增大而减小;当x取负值时,y的值随着x的增大而增加。

这说明反比例函数是一个非对称的函数,它在坐标系中的图像呈现出一种特殊的形态。

反比例函数比例系数k的几何意义

反比例函数比例系数k的几何意义

反比例函数比例系数k的几何意义反比例函数y= k/x (k≠0)中比例系数k的几何意义,即过双曲线y=k/x (k≠0)上任意一点引x轴、y轴垂线,所得矩形面积为│k│1、如图,反比例函数4yx=-的图象与直线13y x=-的交点为A,B,过点A作y轴的平行线与过点B作x轴的平行线相交于点C,则ABC△的面积为()A.8 B.6 C2、如图,点A是y轴正半轴上的一个定点,点B是反比例函数y=2x(x>0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将()A.逐渐增大B.逐渐减小C.不变D.先增大后减小3、如图12,A、B是函数2yx=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则()A.2S=B.4S=C.24S<<D.4S>4、如图,已知双曲线)0k(xky>=经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=____________.5、如图5所示,P1(x1,y1)、P2(x2,y2),……P n(x n,y n)在函数y=x9(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3……△P n A n-1A n……都是等腰直角三角形,斜边OA1,A1A2……A n-1A n,都在x轴上,则y1+y2+…y n= 。

6、如图,已知点A、B在双曲线xky=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,则k=.7、如图,在第一象限内,点P(2,3),M()2,a是双曲线)0(≠=kxky上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为8、如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数1yx=(0x>)的图象上,则点E的坐标是(,).9、如图,点A、B是双曲线3yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,若1S=阴影,则12S S+=.10、如图,已知双曲线(0)ky kx=<经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(6-,4),则△AOC的面积为()A.12 B.9 C.6 D.411、如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则这个反比例函数的解析式为12、如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点.以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(A)A.点G B.点E C.点D D.点F13、已知点A在双曲线y=6x上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC于B.(1)则△AOC的面积=,(2)△ABC的周长为14、如图,一次函数y ax b=+的图象与x轴,y轴交于A,B两点,与反比例函数kyx=的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC BD=.(第11题)第3题第5题图第6题图第8题图9题图其中正确的结论是.(把你认为正确结论的序号都填上)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数k 的几何意义
一、教学目标
1.理解反比例函数y=k/x(k ≠0)中比例系数k 的几何意义;
2.通过由特殊到一般,再由一般到特殊的探究方法,感受知识的形成过程,能够根据反比例函数表达式求出相关图形的面积,会根据图形的面积确定反比例函数中k 的值;
3.通过反比例函数与矩形的对应关系渗透数形结合的思想,使学生感受到代数与几何的内在联系,矩形的两条邻边的长度变化而面积不变,渗透了整体思考的数学思想方法。

二、教学过程
(一)、情境引入
1、平面直角坐标系内一点P (x ,y )到x 轴的距离为______,到y 轴的距离为______.
2、反比例函数的定义是什么?如何确定系数k 的值?
3、反比例函数的系数k 能决定函数图像的什么?
反比例函数的比例系数k 有一个很重要的几何意义,这节课我们来共同研究一下:
(二)、探究新知
1、已知反比例函数 x y 2
-=图象上任一点A 作x 轴、y 轴的垂线AB 、AC ,垂足为
B 、
C (如下图所示),
(1)则矩形ABOC 的面积是否发生变化?若不变,请求出其面积;若改变,请说明理由。

(2)则△AOB 的面积呢?
(3)当k=5时呢?
学生自己先完成,在合作讨论展示,最后老师补充;
2、归纳总结: 过双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所
围成的矩形面积为常数。

过双曲线上任意一点作x 轴(或y 轴)的垂线,连接这点和原点
的线段,它们与x 轴(或y 轴)所围成的三角形的面积为常数21。

在解有关反比例函数的问题时,若能灵活运用反比例函数中k 的几何意义,会给解题带来很多方便。

现举例说明。

(三)、应用
1、基础练习
(1)若P 点为反比例函数(k <0)上任意一点,过P 点向x 轴作垂线交于A 点,已知S△AOP=4,则反比例函数的解析式为__________
(变式)如下图,在平面直角坐标系中,O 为坐标原点,菱形OABC 的对角线OB 在x 轴上,菱形面积为8,函数的图象经过点A ,则k 的值是_____.
(2).如下图所示,设A 为反比例函数图象上一点,且长方形ABOC 的面积为3,则这个反比例函数解析式为______.
(变式).如上图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的解析式为________.
2、提升练习
(1)、如下图,函数的图象与矩形▱OABC 的边AB 、BC 交于M 、N 两点,O 为坐标原点,A 点在x 轴上,C 点在y 轴上,B (4,2),那么四边形OMBN 的面积为_________
(变式)如上图,已知双曲线(x>0)经过矩形OABC的边AB的中点F,交BC于点E,且四边形OEBF的面积为2.则k=_______
(2)如下图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为.
(3)在双曲线上任取一点分别作x轴、y轴的垂线段,与x轴、y轴围成的矩形面积为12,则函数解析式为_____________.
(4)如下图,反比例函数的图象过点A(-2,m),AB⊥x轴于点B,且S △AOB=3,求k和m的值.
三、课堂小结
1、这节课你有什么收获,和大家交流一下!
2、在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便
四、课堂反馈
1、如图,在的图象上有A、B、C三点,边OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积为S1、S
2、S3,则有()
A.S
1>S
2
>S
3
B.S
1
<S
2
<S
3
C.S
1=S
2
=S
3
D.S
1
>S
3
>S
2
2、已知两个反比例函数和在第一象限内的图象如图所示,点P在
上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,则阴影部分的面积为________.
五、拓展练习:
1、若函数与函数的图象相交于A、B两点,AC垂直x轴于C,则△ABC的面积为________
2、如图,Rt△ABO的顶点A是双曲线与直线y=-x-(k+1)在第二象限的交
点,AB⊥x轴于B,且.
(1)求这两个函数解析式;
(2)若双曲线与直线的另一个交点为C,求△AOC的面积.。

相关文档
最新文档