高一数学均值不等式检测考试题2

合集下载

均值不等式测试题(含详解)

均值不等式测试题(含详解)

均值不等式测试题一、选择题1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( )A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( )A .x 2+1≥xB .112+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( )A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值224.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.210 5.设a>0,b>0,则以下不等式中不恒成立的是( )A.(a+b )(ba 11+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥-6.下列结论正确的是( )A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x +x 1 ≥2 D .当0<x ≤2时,x -x1无最大值 7.若a 、b 、c>0且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( )A .13-B .13+C .223+D .223-二.填空题:8.设x>0,则函数y=2-x4-x 的最大值为 ;此时x 的值是 。

9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。

10.函数y=142-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=242+x x (x ≠0)的最大值是 ;此时的x 值为 _______________.三.解答题:12.函数y=log a (x+3)-1(a>0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中mn>0,求n m 11+的最小值为。

均值不等式及数列经典练习

均值不等式及数列经典练习

均值不等式及数列经典练习1. 方法:2. 凑系数当40<<x 时,求的最大值)28(x x y -=。

3. 凑项。

当 ,45<x 求函数54124)(-+-=x x x f 的最大值4. 拆项。

求)1(,11072-≠+++=x x x x y 的值域。

5. 整体代换(遇到1了)已知a>0, b>0, b a t b a 11,12+==+求的最小值。

6. 换元法 求函数522++=x x y 的最大值7. 试着取平方看看: 求函数)2521(,2512<<-+-=x x x y 的最大值。

【练习】1. 若,20<<x 求)36(x x y -=的最大值。

2. 求函数)3(,31>+-=x x x y 的最小值。

3. 求函数)1(,182>-+=x x x y 的最小值。

4. 已知y x yx y x +=+>>求且,911,0,0的最小值。

参考答案:(1)3; (2)5; (3) 8; (4)94 1.已知:等差数列{n a }中,4a =14,前10项和18510=S .(1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n项和n G .2.数列{a n }满足a 1=1,a n =21a n -1+1(n ≥2) (1)若b n =a n -2,求证{b n }为等比数列;(2)求{a n }的通项公式.3.已知数列{}n a 是等差数列,且.12,23211=++=a a a a(1)求数列{}n a 的通项公式; (2)令).(R x x a b n n n ∈=求数列{}n b 前n 项和的公式.4.求下面各数列的和:(1)111112123123n++++++++++ ; (2).21225232132n n -++++5.数列{a n }的前n 项和为S n ,且a 1=1,a n +1=31S n ,n =1,2,3,….求: (1)a 2,a 3,a 4的值及数列{a n }的通项公式;(2)a 2+a 4+a 6+…+a 2n 的值.6.已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n +1-2a n (n ∈N *).(1)证明数列{a n +1-a n }是等比数列;(2)求数列{a n }的通项公式;7.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).求证: (1)数列{nS n }是等比数列;(2)S n +1=4a n .8.设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .。

(完整版)均值不等式测试题(含详解)

(完整版)均值不等式测试题(含详解)

均值不等式测试题一、选择题1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( )A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( )A .x 2+1≥xB .112+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( )A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值224.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.210 5.设a>0,b>0,则以下不等式中不恒成立的是( )A.(a+b )(ba 11+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥-6.下列结论正确的是( )A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x +x 1 ≥2 D .当0<x ≤2时,x -x1无最大值 7.若a 、b 、c>0且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( )A .13-B .13+C .223+D .223-二.填空题:8.设x>0,则函数y=2-x4-x 的最大值为 ;此时x 的值是 。

9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。

10.函数y=142-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=242+x x (x ≠0)的最大值是 ;此时的x 值为 _______________.三.解答题:12.函数y=log a (x+3)-1(a>0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中mn>0,求n m 11+的最小值为。

最全的均值不等式专题练习

最全的均值不等式专题练习

《 均值不等式》练习题1、 求下列函数的最小值(1) 已知t > 0 ,y = tt t 142+- ;(2) 、y = x 2 + 142+x ;(3)、y = 182++x x (x > 0 )(4)已知:0< x < 2π,求 f(x) = xx x 2sin sin 62cos 12++的最小值(5)若x> 0,y > 0,求 (x+22)21()21x y y ++ 的最小值2、已知 x < 45, 求函数 y = 4x -2 +541-x 的最大值。

3、求下列函数的最大值(1)、y = 41622++x x ; (2)、若20<x<60, y = 250022+-x x x4、已知x>0,132++x x x ≤ a 恒成立,求a 的取值范围5、已知a > 0,b > 0, a 2 +4b 2 = 1 , 求t = ba ab 22+的最大值。

6、已知:x > 0, y > 0,且x + y = 20,求lgx + lgy 的最大值7、已知:a > 0,b > 0,且.1222=+b a 求a.21b +的最大值8、已知 a + b = 1 ,求1212+++b a 的最大值9、若a + b+ c = 1,求121212+++++c b a 的最大值。

10、求下列函数的最大值(1)0< x <23,y = 4x (3-2x) (2) y = x 21x -(3)已知: a > 0,b > 0,c > 0,a 2 + b 2 + c 2 = 4 R 2 ,求y =ab +bc + ac 的最大值(结果用R 表示)(4)、已知:x > 0,y > 0,且x + 4y = 1,求xy 的最大值(5)、已知x > 0,y > 0,且143=+y x ,求xy 的最大值11、求下列函数的最小值(1)已知:x > 0, y > 0,且,191=+y x 求 x + y 的最小值(2)已知:a > 0, b > 0,且4a + b = 30,求ba 11+的最小值(3)、已知:x > 0, y > 0,且2x + 8y – xy = 0,求x+ y 的最小值(4)、已知:x > 0,y > 0,134=+yx 求x + 3y 的最小值 (5)、已知:x > 0,y >0,xlg2+ ylg8 = lg2. 求yx 311+的最小值均值不等式的高级应用12、求下列各式的最小值(1)、求)(162b a b a -+的最小值 (2)、设a >0,b >0, 求ab b a 211++的最小值。

均值不等式练习题及答案解析

均值不等式练习题及答案解析

均值不等式练习题及答案解析一.均值不等式1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab2. 若a,b?R*,则a?b2?*?a?b222a?b时取“=”)ab 若a,b?R,则a?b?22aba?b?若a,b?R,则ab??) ?? ?2a?b2注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域y=3x解:y=3x+11y=x+xx13x =∴值域为[,+∞)2x1x· =2; x1x· =-2x1≥22x1当x>0时,y=x+≥x11当x<0时, y=x+= -≤-2xx∴值域为解题技巧:技巧一:凑项例1:已知x?54,求函数y?4x?2?14x?5的最大值。

1解:因4x?5?0,所以首先要“调整”符号,又?x?54,?5?4x?0,?y?4x?2?14x?5不是常数,所以对4x?2要进行拆、凑项,???2?3?1 ??3?1????5?4x?4x?55?4x?当且仅当5?4x?15?4x,即x?1时,上式等号成立,故当x?1时,ymax?1。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求y?x的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2x??8为定值,故只需将y?x凑上一个系数即可。

当,即x=2时取等号当x=2时,y?x的最大值为8。

32评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设0?x?,求函数y?4x的最大值。

322x?3?2x?9解:∵0?x?∴3?2x?0∴y?4x?2?2x?2????222??当且仅当2x?3?2x,即x?3?3???0,?时等号成立。

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。

均值不等式能力训练题含答案

均值不等式能力训练题含答案

均值不等式能力训练题一、选择题1、已知f(x)=x+-2(x<0),则f(x)有 ( )A.最大值为0 B.最小值为0C.最大值为-4 D.最小值为-42、若0<x<1,则f(x)=x(4-3x)取得最大值时,x的值为 ( )A. B. C. D.3、若正数x,y满足x+3y=5xy,则3x+4y的最小值是( )A. B. C.5 D.64、已知为正整数,实数的最大值为40,则满足条件的数对(a,b)的个数为( ) A.1 B.3 C.5 D.7二、填空题5、若,且,则的最小值为.6、已知,则的最小值为________。

7、已知x>0,y>0,xy=x+2y,若xy≥m-2恒成立,则实数m的最大值是________.三、简答题8、已知,求的最小值9、已知,且,求的最小值10、设,求函数的最小值。

11、若a>0,b>0,且+=.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.参考答案一、选择题1、C 2、D 3、C 4、C二、填空题5、 6、64 7、10三、简答题8、【解析】∵,∴,∴,当且仅当,即时,取得最小值.9、【解析】∵,且,∴,当且仅当,即时,取等号,∴的最小值为.10、解:,当且仅当,即时取等号.11、解(1)由=+≥,得ab≥2,且当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)由(1)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.。

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。

均值不等式【高考题】

均值不等式【高考题】

利用一、求最值之杨若古兰创作直接求 例1、若x,y 是负数,则(x +1)2+(y +1)2的最小值是【】2y LXA.3B.7C .4D .922例2、设X ,”R ,a >1,b >1,若a x -b y -3,a +b =23,则1+1的最大值为【】xyA.2B.3C.1D.122练习1.若x >0,则x +2的最小值为.x练习2.设x ,y 为负数,则(x +y )(1+4)的最小值为【】xyA.6B.9C.12D 15练习3.若a >0,b >0,且函数f (x )-4x 3一ax 2-2bx +2在x -1处有极值,则ab 的最大值等于【】A.2B.3C.6D.9练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,贝1J x -吨. 练习5.求以下函数的值域:(a +b )2的最小值是【】cd A.0B.4C.2D.1 例3、已知a>0,b >0,c >0且a +b +c —1,则(1一1)(1一1)(1一1)最小值为【】abcA.5B.6C.7D.8凑系数例4、若x ,y e R +,且x +4y -1,则x .y 的最大值是. 练习1.已知x ,y E R +,且满足x +y =1,则孙的最大值为. 34练习2.当0<x <4时,求y -x (8-2x )的最大值.凑项例5、若函数f (x )-x +1(x >2)在x -a 处取最小值,则a -【】x -2⑴y-3x 2+2:2⑵ 练习6.已知x >0,y >0, 1 y -x + x x ,a ,b ,y 成等差数列,x , d ,y 成等比数列,则A-1+2B-1+3C-3D-4练习1.已知x <5,求函数尸4,一2+,的最大值.44%—5 练习2.函数,+%(%>3)的最小值为【】%—3A.2B.3C.4D.5练习3.函数2%2+3(%>0)的最小值为【】% A-艰BYCWD-微 两次用不等式例6、已知抽a +log b >1,贝I3a +9b 的最小值为 22例7、已知a >0,b >0,则1+1+2%a 的最小值是【】ab A-2B-2R C-4D-5例8、设a >b >c >0,则2a 2+L -10ac +25c 2的最小值是【aba (a -b ) A-2B-4C-2V 5D-5练习1.设a >b >0,A-1B-2C-3D-4 练习2.设a >b >0,则a 2+1的最小值是【】b (a —b )A-2B-3C-4D-5练习3.设a >b >0,则a +1的最小值是【】 十b (2a -b )A-33/2B-3<3C-232D-33/4222 练习4.设a >2b >0,则(a -b )2+9的最小值是-b (a-2b ) 换元例9、若%2+y 2二4,则%-y 的最大值是-练习1.设a ,b G R ,a 2+2b 2=6,则a +b 的最小值是【】 A--22B--52C--3D--732 例10、设%,y 是实数,且%2+y 2=4,则S =2%y 的最小值是【】%+y -2A --2B--、2C-2-2k D-2(<2+1)练习1.若%2+y2T 盯则最大值是%y —±,%+y -1 练习2.若0<a <1,0<%<y <1,且(log x )(log y )二1则冲【】aa 消元例11、设x ,y ,z 为正实数,满足%.2y +3z =0,则竺的最小值是. xz练习1.已知实数a ,b ,c 〉0满足a +b +c =9,ab +b c +ca=24,,则b 的取值范围为 两次用 11 a 2+—+j aba (a —b ) 的最小值是【例12、已知负数x,y,z满足x2+y2+z2=1,则S=上z的最小值是【】2xyzA.3B.3a+;")C.4D.2(v2+1)练习1.已知负数x,y,z满足x2+y2+z2=1,则S=上的最小值是【】2xyz2A.3B.9C.4D.2c2练习2.已知x,y,z均为负数,则盯+y z的最大值是【】x2+y2+z2A.q初C.2,/2D.2V3练习3.已知实数x,y,z满足x2+y2+z2=1,则尤xy+yz的最大值是全体代换例13、已知〃>0,b>0,a+b=2,贝y=1+4的最小值是【】abA.7B.4C.9D.5例14、函数y=a-(a>0,a01)的图象恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则I—+—的最小值为.mn例15、设a>0,b>0,若4万是3a与3b的等比中项,则1+1的最小值为abA.8B.4C.1D.14、例16、已知a,b,c都是正实数,且满足log(9a+b)=log abb,则使4a+b>c恒成93立的c的取值范围是A.[4,2)B.[0,22)C.[2,23)D.(0,25]练习1.函数klogG+3)」(〃>0且a=1)的图象恒过定点A,若点A在直线a mx+ny+1=0上,其中mn>0,则1+2的最小值为.mn练习2.若x,y e R+,且2x+y=1,则L1的最小值为.xy练习3.已知x>0,y>0,且1+9=1,求x+y的最小值.xy练习4.若x,y e R+且2x+y=1,求11的最小值.+xy练习5.已知a,b,x,y e R+且ab[,求x+y的最小值.+=1xy练习6.已知x>1,x>1,xx2=1000,则上+▲的最小值等于【I1212lg x lg x12A.4B,4<6C,7+2、落D.7—261-33练习7.若0<x<1,a,b为常数,则竺+上的最小值是x 1一x练习8.已知a >b >也,+'>与恒成立,则m 的取值范围是a -bb -ca 一c 练习9.a ,b e(0,+8),a +3b =1,则+_L 最小值为aa33b分离法【分式】例17、已知t >0,则函数y ='2一4t +1的最小值为.t例18、已知x >5,则f (x )=x 2一4x +5有【】 22x -4A.£大值58.最小值50最大值1口.最小值1 练习1.求y =x 2+7x +10(x >_1)的值域.x +1练习2.若x >1,则函数y =x +1+上的最小值为.'xx 2+1放缩法——解不等式例19、设x ,y 为实数,若4x 2+y 2+町=1,则2x +y 的最大值 是.例20已知2+1=2(x >0,y >0),则xy 的最小值是.xy 例21、若a 是1+2b 与1_2b 的等比中项,则2ab 的最大值为【】a +2bA.空B.,翔C.V5D.\;215丁"5"万 练习1.若实数x ,y 满足x 2+y 2+町=1,则x +y 的最大值是. 练习2.若正实数X ,Y 满足2X +Y +6=XY ,则XY 的最小值是 练习3.已知x >0,y >0,x +2y +2町=8,则X +2y 的最小值是【】A.3B.4C.£D.q练习4.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值.练习5:已知5+2=2(X >0,y >0)恒成立,则xy 的最小值是. Xy 练习6.若直角三角形周长为1,求它的面积最大值. 练习7.若实数X ,y 满足4X +4y =2X +1+2y +1则t=2X +2y 的取值范围是 取平方例22、若a ,b ,c >0且a 2+2ab +2ac +4bc =12,则a +b +c 的最小值是【】A.2x /3B .3C .2D .<3练习1.若a ,b ,c>0且a (a+b+c )+bc =4-2a ,则2a +b +c 的最小值为【】A -<3-1B .\;3+1C .2七3+2D.2,;3-2练习2.已知X ,y 为正实数,3X +2y =10,求函数w =3X +2y 的最值.取平方+解不等式 例23、已知a>0,b>0,c >0且a +b+c =1,则a 2+b 2+c 2最小值为【】A.1B.1C.1D.1结合2单3调性4——5与函数例24、若a ,b e R +,a +b=1,则ab+-1的最小值为【】abA.41B.41C.°1D,2 44224-练习1,求函数丫_%2+5的值域. y _E练习2.求以下函数的最小值,并求取得最小值时工的值. ⑴y _X 2+3X +1,(X >0)(2)y _2X +—,X >3X X -3(3)y _2sin X +—i —,X e (0,兀)sin X练习3.已知0<%<1,求函数y =\X E )的最大值. 练习4.0<X <2,求函数y _.X 2F 的最大值.3 练习5.设a ,b e R +且2a+b_1,S_2ab-4a 2-b 2的最大值是【】A.2-1B.2-1C.2+1D.2+122例25、已知0+b_1,则a 4+b 4的最小值是【】A.1B.£C.1D.1练习1.若实数a ,b ,c 满足2a +2b =2a +b ,2a +2b +2c =2a +b +c ,则c 的最大值是 用另一个公式例26、函数、3+4=7的最大值为.练习1.已知a ,b G R+,a 2+吃=1,,则a 、瓦的最大值是【】2 A.1B.1C.32D.三212例27、已知a 〉0,b >0,c >0且a+b+c =1,则工+_!+_!最小值为【】a 2b 2c 2A.12B.11C.21D.27直接取值【讨论】例28、a 2+b 2-1,b 2+c 2-2,c 2+a 2=2,则ab +bc +ca 的最小值【】A.右一1B.1_、,3C.-1_,运D.1+;32222利用二、恒成立成绩例1、若a ,b e R ,且ab>0,则以下不等式中,恒成立的是【】 A,a 2+b 2>2ab B-a +b>2、/abC 112ba 、C*-+->^=D--+->2ababbab 例2、设a ,b ,c 是互不相等的负数, A*|a -b 1<1a -c 1+1b -c I B,a 2+—>a +1a 2a0*I a -b I +>2D *a+3-a+1<a+2-aa -b例3、设a >0,b>0,则以下不等式中不恒成立的是【••••a 2+b 2+2>2a +2b *I a —b I >a —例4、已知不等式a+y )(i+a )>9对任意正实数羽》恒成立,则正实数a xy的最小值为【】 A.8B.6C.4D.2例5、若直线x +y =1通过点M (cos a ,sin 。

高一均值不等式练习题大全

高一均值不等式练习题大全

基本不等式练习题
1、若实数x ,y 满足224x y +=,求xy 的最大值
2、若x>0,求9()4f x x x =+
的最小值;
3、若0x <,求1y x x =+
的最大值
4、若x<0,求9()4f x x x =+
的最大值
5、求9()45
f x x x =+
-(x>5)的最小值.
6、若x ,y R +∈,x+y=5,求xy 的最值
7、若x ,y R +∈,2x+y=5,求xy 的最值
8、已知直角三角形的面积为4平方厘米,求该三角形周长的最小值
基本不等式练习题
1、求1 (3)3y x x x =
+>-的最小值.
2、求(5) (05)y x x x =-<<的最大值.
3、求1(14)(0)4y x x x =-<<的最大值。

4、求123 (0)y x x x =
+<的最大值.
5、若2x >,求1252
y x x =-+
-的最小值
6、若0x <,求21x x y x
++=的最大值。

7、求2
y =的最小值.
8(1)用篱笆围成一个面积为100m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。

最短的篱笆是多少?
(2)段长为36 m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?。

均值不等式专题20道-带答案

均值不等式专题20道-带答案

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。

均值不等式练习题

均值不等式练习题

均值不等式练习题1. 练习题一已知非零实数a、b满足ab<0,证明(a+b)/2 > √ab.解:我们将证明这个不等式是基于均值不等式的。

首先,根据均值不等式,我们知道对于任意两个正数x和y,有(x + y)/2 ≥ √xy.因此,我们可以推导出(a + b)/2 > √ab.首先,根据已知条件ab < 0,我们可以得出a和b有不同的符号。

假设a>0,b<0,那么我们可以得到√ab = √(a*(-b)) = √(a * -1 * (-b)) = √(a * 1 * b) = √(ab) < 0.另一方面,由于a>0,b<0,所以(a + b)/2 = (a + b)/2 > a/2 + b/2 > √ab + √ab = 2√ab > √ab.综上所述,我们证明了(a + b)/2 > √ab.2. 练习题二已知非零实数a、b、c满足abc = 1,证明a/b + b/c + c/a ≥ a + b + c.解:我们将证明这个不等式是基于均值不等式的。

首先,根据均值不等式,我们知道对于任意三个正数x、y、z,有(x/y + y/z + z/x)/3 ≥ (x + y + z)/(x + y + z),即(x/y + y/z + z/x) ≥ (x + y + z).因此,我们可以推导出(a/b + b/c + c/a)/3 ≥ (a + b + c)/(a + b + c),即(a/b + b/c + c/a) ≥ (a + b + c).首先,根据已知条件abc = 1,我们可以得到a、b、c有不同的符号。

假设a>0,b<0,c>0,那么我们可以得到b/c < 0,c/a > 0,那么a/b +b/c + c/a = a/b + (b/c) + (c/a) > a/√(bc) + (-1) + √(bc)/a = (a^2 - bc)/a√(bc) = (a^2 - 1)/a√(bc) = (a - 1/a)/√(bc).另一方面,由于abc = 1,我们知道√(bc) = 1/√a,所以(a - 1/a)/√(bc)= (a - 1/a)√a = (a^2 - 1)/a ≥ a + b + c.综上所述,我们证明了(a/b + b/c + c/a) ≥ (a + b + c).3. 练习题三已知非零实数a、b满足a+b = 2,证明a^2b^2(a^2+b^2) ≤ 2.解:我们将通过变量替换的方法来证明这个不等式。

完整版均值不等式练习题.docx

完整版均值不等式练习题.docx

均值不等式一、 知识点:二、习题讲解:例1:(1)求y =x +1x (x >0)的最小值(2)求y =x +1x (x ≥2)的最小值(3)已知2>x ,求21-+=x x y 的最小值变式训练:1. 已知0>x ,求xx y 42--=的最大值2.当1->x 时,求()11++=x x x f 的最小值3.已知45<x ,求函数54124-+-=x x y 的最大值4.已知R c b a ∈、、,求证:ac bc ab c b a ++≥++2225.423(0)y x x x =-->的最大值是2-6. 12,33y x x x =+>-7.12sin ,(0,)sin y x x xπ=+∈例2:(1)已知210<<x ,求()x x y 2121-=的最大值(2)已知:a 、b 都是正数,且1a b +=,1a a α=+,1b bβ=+,求αβ+的最小值变式训练: 1.已知310<<x ,求函数()x x y 31-=的最大值 2.当时,求(82)y x x =-的最大值。

3.设230<<x ,求函数)23(4x x y -=的最大值。

4.已知01x <<,求函数y =.;5.203x <<,求函数y =6.若21x y +=,则24xy+的最小值是______7.已知,x y R +∈,且满足134x y+=,则xy 的最大值为 ________。

例3:求函数()11332->+++=x x x x y 的最小值变式训练:1.231,(0)x x y x x ++=>2.设⎪⎭⎫⎝⎛∈2,0πx ,则函数x x y 2sin 1sin 22+=的最小值为3. 已知25≥x ,则()42542-+-=x x x x f 的最小值4. 2y =的最小值是5.求2710(1)1x x y x x ++=>-+的值域。

高中数学平均值不等式练习题含答案

高中数学平均值不等式练习题含答案

高中数学平均值不等式练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知a>0,若y=3a2+a+9a3,则下列说法正确的序号是()①y有最小值9√3;②y有最小值9;③y有最大值9.A.①B.②C.③D.以上都不正确2. 若实数a、b满足a+b=2,则3a+3b的最小值是()A.18B.6C.2√3D.2√343. 若n>0,则n+32n2的最小值为()A.2B.4C.6D.84. 已知x,y∈R+,且满足x2y=32,则x+y的最小值为()A.1B.2C.6D.45. “a>b>0”是“ab<a2+b22”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6. 函数f(x)=5x+20x2(x>0)的最小值为()A.10B.15C.20D.257. 已知a,b,c是正实数,且ab+bc+ac=1,则abc的最大值为()A.√39B.√33C.1D.√38. 在△ABC的内角A、B、C的对边分别为a、b、c,若a2+2b2=3c2,a=6sin A,则c的最大值为( )A.2√7B.√7C.3D.49. 定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得f(x1)+f(x2)2=C,则称函数f(x)在D上的均值为C.已知f(x)=lg x,x∈[10, 100],则函数f(x)=lg x在x∈[10, 100]上的均值为().A.3 2B.34C.710D.1010. 设a,b,c都是正数,且a+2b+c=1,则1a +1b+1c的最小值为()A.9B.12C.6+2√2D.6+4√211. 已知函数f(x)的定义域为D.若对于任意的x1∈D,存在唯一的x2∈D,使得√f(x1)⋅f(x2)=M成立,则称函数f(x)在D上的几何平均数为M.已知函数g(x)= 3x+1(x∈[0, 1]),则g(x)在区间[0, 1]上的几何平均数为________.12. 若a>−2,则a+16a+2的最小值为________.13. 设x>0,则函数y=2x+1x2+3的最小值是________.14. A(不等式选做题)若x>0,y>0且x+2y=1,则1x +1y的取值范围是________.B(几何证明选讲选做题)如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则线段DO的长等于________.C(坐标系与参数方程选做题)曲线{x=2+cosθy=−1+sinθ(θ为参数)上一点P,过点A(−2, 0) B(0, 2)的直线记为L,则点P到直线L距离的最小值为________.15. 若正数a,b,c满足a+b+c=1,则13a+2+13b+2+13c+2的最小值为________.16. 设f(x)是定义在(0, +∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a, f(a)),(b, −f(b))的直线与x轴的交点为(c, 0),则称c为关于函数f(x)的平均数,记为M f(a, b),例如,当f(x)=1(x>0)时,可得M f(a, b)=c=a+b2,即M f(a, b)为a,b的算术平均数.(1)当f(x)=________(x>0)时,M f(a, b)为a,b的几何平均数;(2)当f(x)=________(x>0)时,M f(a, b)为a,b的调和平均数2aba+b;(以上两空各只需写出一个符合要求的函数即可)17. 若x2+y2=2,设z=1x2+2yx,则z的最小值为________.18. 函数f(x)=3x+12x2(x>0)的最小值为________.19. 已知实数a1,a2,a3不全为零,(I)则a1a2+2a2a3a12+a22+a32的最大值为________;(II)设正数x,y满足x+y=2,令xa1a2+ya2a3a12+a22+a32的最大值为M,则M的最小值为________.20. 设正实数x,y,z满足x+2y+z=1,则1x+y +9(x+y)y+z的最小值为________.21. 求证:当a、b、c为正数时,(a+b+c)(1a +1b+1c)≥9.22. 在△ABC中,内角A,B,C的对边分别是a,b,c,且满足2c−ba =cos Bcos A.(1)求角A的大小;(2)若a=1,求b+c的最大值.23. 若a>0,b>0,且1a +1b=√ab.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.24. 设a,b,c为正实数,求证:a3+b3+c3+1abc≥2√3.25. (1)已知矩阵M =[2a21],其中a ∈R ,若点P(1, −2)在矩阵M 的变换下得到点P ′(−4, 0)(I)求实数a 的值;(II)求矩阵M 的特征值及其对应的特征向量. 25.(2)在平面直角坐标系xOy 中,动圆x 2+y 2−8x cos θ−6y sin θ+7cos 2θ+8=0(a ∈R)的圆心为P(x 0, y 0),求2x 0−y 0的取值范围. 25.(3)已知a ,b ,c 为实数,且a +b +c +2−2m =0,a 2+14b 2+19c 2+m −1=0. ①求证:a 2+14b 2+19c 2≥(a+b+c)214;②求实数m 的取值范围.26. 已知函数f (x )=|x −1|+|x +3|. (1)解不等式:f (x )≤6;(2)若a ,b ,c 均为正数,且a +b +c =f (x )min ,证明:(a +1)2+(b +1)2+(c +1)2≥493.27. 已知x 2+y 2=2,且|x|≠|y|,求1(x+y)2+1(x−y)2的最小值.28. 设a >0,b >0,已知函数f(x)=ax+b x+1.(Ⅰ)当a ≠b 时,讨论函数f(x)的单调性;(Ⅱ)当x >0时,称f(x)为a 、b 关于x 的加权平均数.(i)判断f(1),f(√ba ),f(ba )是否成等比数列,并证明f(ba )≤f(√ba ); (ii)a 、b 的几何平均数记为G .称2ab a+b为a 、b 的调和平均数,记为H .若H ≤f(x)≤G ,求x 的取值范围.29. 已知x >0,y >0,z >0,且xyz =1,求证:x 3+y 3+z 3≥xy +yz +xz .30. 已知关于x 的不等式|x −m|+2x ≤0的解集为(−∞,−1],其中m >0. (1)求m 的值;(2)若正数a,b,c满足a+b+c=m,求证:b2a +c2b+a2c≥1.31. 已知P为单位圆上一动点,A(0, 2),B(0, −1),求|AP|×|BP|2的最大值.32. 在△ABC中,内角A,B,C的对边分别为a,b,c,已知a sin B=b sin B+C2.(1)求A;(2)若b+c=2,求a取最小值时△ABC的面积S.33. 已知a,b∈R,且a>b,求证:2a+1a2−2ab+b2≥2b+3.34. 已知a,b,c均为正数,且满足√a2b2c23+ab+bc+ca=4.证明:(1)ab+bc+ca≥3;(2)a+b+c≥3.35. 已知函数f(x)=m−|x+2|,m∈R,且f(x−2)≥0的解集为[−3, 3].(1)求m的值;(2)若a,b,c都是正实数,且a+2b+3c=m,求证:1a +12b+13c≥3.36. 已知函数f(x)=|2x−2|+|x+1|.(1)求不等式f(x)≤4的解集;(2)若函数y=f(x)+|x+1|的最小值为k,求km+2m2(m>0)的最小值.37. 选修4−5:不等式选讲.若a,b,c均为正数,且a+b+c=6,√2a+√2b+1+√2c+3≤|x−2|+|x−m|对任意x∈R恒成立,求m的取值范围.38. 写出三元均值不等式的形式并证明.(默认已知二元均值不等式)39. 选做题:不等式选讲.已知a,b,c是不全相等的正数,求证:a+b2−√aba+b+c3−√abc3≤32,并指出等号成立的条件.40. (1)选修4−4:坐标系与参数方程已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2−2√2ρcos(θ−π4)=2.(I)把圆O1和圆O2的极坐标方程化为直角坐标方程;(II)求经过两圆交点的直线的极坐标方程. 40.(2)选修4−5:不等式选讲,设x+2y+3z=3,求4x2+5y2+6z2的最小值.参考答案与试题解析高中数学平均值不等式练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】平均值不等式【解析】根据函数的特点结合基本不等式进行判断即可.【解答】解:当a=1时,y=3+1+9=13,故;①y有最小值9√3错误.③y有最大值9错误.当a>0,若y=3a2+a+9a3≥3√3a2⋅a⋅9a33=3⋅√273=3×3=9,当且仅当3a2=a=9a3时取等号,此时方程无解,即y=3a2+a+9a3>9,故②y有最小值9,错误,故选:D.2.【答案】B【考点】平均值不等式【解析】此题暂无解析【解答】3a+3b≥2√3a⋅3b=2√3a+b=6,当且仅当a=b=1时取等号.故3a+3b的最小值是6;点评:本题考查不等式的平均值定理,要注意判断等号成立的条件.3.【答案】C【考点】平均值不等式【解析】利用题设中的等式,把n+32n2的表达式转化成n2+n2+32n2后,利用平均值不等式求得最小值.【解答】解:∵n+32n =n2+n2+32n∴n+32n2=n2+n2+32n2≥3√n2×n2×32n23=6(当且仅当n=4时等号成立)故选C【答案】 C【考点】 平均值不等式 【解析】由x 2y =32,可得y =32x 2,又x ,y ∈R +,利用均值不等式可得x +y =x +32x 2=x2+x2+32x 2≥3√x 2⋅x 2⋅32x 23即可得出. 【解答】解:∵ x 2y =32,∴ y =32x 2, 又∵ x ,y ∈R +,∴ x +y =x +32x =x 2+x 2+32x ≥3√x 2⋅x 2⋅32x 3=6,当且仅当x =2√23时取等号.∴ x +y 的最小值为6. 故选C . 5. 【答案】 A【考点】 平均值不等式 【解析】 此题暂无解析 【解答】a 2+b 2≥2ab 中参数的取值不只是指可以取非负数.均值不等式满足a+b 2≥√ab,(a >0,b >0).点评:本题考查不等式的平均值定理,要注意判断等号成立的条件. 6.【答案】 B【考点】 平均值不等式 【解析】 函数f(x)=5x +20x 2=2.5x +2.5x +20x 2,利用基本不等式可得结论.【解答】解:函数f(x)=5x +20x 2=2.5x +2.5x +20x 2≥3√2.5x ⋅2.5x ⋅20x 23=15, 当且仅当2.5x =20x 2,即x =2时,函数f(x)=5x +20x 2(x >0)的最小值为15. 故选:B . 7. 【答案】【考点】 平均值不等式 【解析】 由题意可得13=ab+bc+ca3≥√(abc)23(abc)2≤127,由此求得abc 的最大值.【解答】解:∵ a ,b ,c 是正实数, 且ab +bc +ac =1, ∴ 13=ab+bc+ca3≥√(abc)23,∴ (abc)2≤127, ∴ abc ≤√39, 即 abc 的最大值为 √39, 故选A .8. 【答案】 A 【考点】 余弦定理 正弦定理 平均值不等式 【解析】 此题暂无解析 【解答】解:∵ a 2+2b 2=3c 2,又c 2=a 2+b 2−2ab cos C ,∴ a 2+b 2−2ab cos C =13a 2+23b 2,即2ab cos C =23a 2+13b 2≥2√23ab ,∴ cos C ≥√23.又sin 2C =1−cos 2C ≤1−29=79,∴ 0<sin C ≤√73,∵csin C=a sin A=6,∴ c =6sin C ≤2√7.故选A . 9.【答案】 A【考点】 平均值不等式 【解析】根据定义,函数y =f(x),x ∈D ,若存在常数C ,对任意的x 1∈D ,存在唯一的x 2∈D ,使得f(x 1)+f(x 2)2=C ,则称函数f(x)在D 上的均值为C .充分利用题中给出的常数10,100.当x 1∈【10,100】时,选定x 2=1000x 1∈【10,100】容易算出.【解答】解:根据定义,函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得f(x1)+f(x2)2=C,则称函数f(x)在D上的均值为C.令x1⋅x2=10×100=1000当x1∈【10,100】时,选定x2=1000x1∈【10,100】可得:C=lg(x1x2)2=32故选A.10.【答案】D【考点】平均值不等式【解析】先利用a+2b+c=1与1a +1b+1c相乘,然后展开利用均值不等式求解即可,注意等号成立的条件.【解答】解:∵a,b,c都是正数,且a+2b+c=1,∴1a +1b+1c=(a+2b+c)(1a+1b+1c)=4+2ba +ab+ca+ac+cb+2bc≥4+2 √2+2+2√2=6+4√2,当且仅当a=c=√2b时等号成立.∴1a +1b+1c的最小值是6+4√2.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】2【考点】平均值不等式【解析】我们易得若函数在区间D上单调递增,则C应该等于函数在区间D上最大值与最小值的几何平均数,由g(x)=x,D=[0, 1],代入即可得到答案.【解答】解:根据已知中关于函数g(x)在D上的几何平均数为C的定义,结合g(x)=3x+1在区间[0, 1]单调递增则x1=0时,存在唯一的x2=1与之对应C=√1×4=2,故答案为:2.12.【答案】6【考点】平均值不等式【解析】此题暂无解析【解答】解:a+16a+2=(a+2)+16a+2−2≥2√(a+2)×16a+2−2=6(当且仅当a=2时,等号成立)故答案为:6.13.【答案】6【考点】平均值不等式基本不等式【解析】首先对函数式进行整理,把2x变成x+x,这样凑成符合均值不等式的形式,利用均值不等式写出最小值,且等号能够成立.【解答】解:∵x>0,∴函数y=2x+1x2+3=x+x+1x2+3≥3√x⋅x⋅1x23+3=6当且仅当x=1x2,即x=1时,等号成立.故答案为614.【答案】[3+2√2, +∞),3,5√22−1【考点】平均值不等式点到直线的距离公式与圆有关的比例线段参数方程与普通方程的互化【解析】A根据x>0,y>0且x+2y=1,则1x +1y=(1x+1y)(x+2y),然后化简整理,最后利用均值不等式即可求出所求.B根据直角三角形中的射影定理可知CD2=AD⋅BD,求出AD,从而求出DO;C先根据sin2θ+cos2θ=1将参数θ消去,得到曲线方程,再求出直线L的方程,利用点到直线的距离公式求出圆心到直线的距离,即可求出所求.【解答】解:A、∵x>0,y>0且x+2y=1,∴(1x +1y)(x+2y)=3+2yx+xy≥3+2√2∴ 1x +1y 的取值范围是[3+2√2, +∞)故答案为:[3+2√2, +∞)B 、∵ ∠ACB =90∘,CD ⊥AB ∴ CD 2=AD ⋅BD 即16=AD ×8 ∴ AD =2,则AB =10,OB =5,DO =8−5=3 故答案为:3C 、∵ {x =2+cos θy =−1+sin θ(θ为参数)∴ (x −2)2+(y +1)2=1过点A(−2, 0) B(0, 2)的直线记为L 的方程为x −y +2=0 圆心到直线的距离为d =√2=5√22∴ 点P 到直线L 距离的最小值为 5√22−1故答案为:5√22−115.【答案】 1【考点】 平均值不等式 【解析】根据a +b +c =1,得到(3a +2)+(3b +2)+(3C +2)=9,结合柯西不等式证出9(13a+2+13b+2+13c+2)≥9,从而13a+2+13b+2+13c+2≥1,当且仅当a =b =c =13时等号成立,由此可得13a+2+13b+2+13c+2的最小值.【解答】解:∵ a +b +c =1,∴ (3a +2)+(3b +2)+(3C +2)=3(a +b +c)+6=9 ∵ [(3a +2)+(3b +2)+(3C +2)](13a+2+13b+2+13c+2) ≥(√3a +2√3a +2√3b +2√3b +2√3c +2√3c +2)2=(1+1+1)2=9∴ 9(13a+2+13b+2+13c+2)≥9,得13a+2+13b+2+13c+2≥1当且仅当3a +2=3b +2=3C +2,即a =b =c =13时,13a+2+13b+2+13c+2的最小值为1故答案为:1 16. 【答案】 √x .(2)设f(x)=x ,(x >0),则经过点(a, a)、(b, −b)的直线方程为y−a −b−a =x−ab−a , 令y =0,求得x =c =2aba+b ,∴当f(x)=x(x>0)时,M f(a, b)为a,b的调和平均数2aba+b,故答案为:x.【考点】平均值不等式【解析】(1)设f(x)=√x,(x>0),在经过点(a, √a)、(b, −√b)的直线方程中,令y=0,求得x=c=√ab,从而得出结论.(2)设f(x)=x,(x>0),在经过点(a, a)、(b, −b)的直线方程中,令y=0,求得x=c=2aba+b,从而得出结论.【解答】解:(1)设f(x)=√x,(x>0),则经过点(a, √a)、(b, −√b)的直线方程为√a−√b−√a=x−ab−a,令y=0,求得x=c=√ab,∴当f(x)=√x,(x>0)时,M f(a, b)为a,b的几何平均数√ab,(2)设f(x)=x,(x>0),则经过点(a, a)、(b, −b)的直线方程为y−a−b−a =x−ab−a,令y=0,求得x=c=2aba+b,∴当f(x)=x(x>0)时,M f(a, b)为a,b的调和平均数2aba+b,17.【答案】−3 2【考点】平均值不等式【解析】设x=√2cosθ,y=√2sinθ,则z=1x2+2yx=12cos2θ√2sin√2cosθ,化简为12(tanθ+2)2−32,再利用二次函数的性质求得函数z的最小值.【解答】解:∵x2+y2=2,∴设x=√2cosθ,y=√2sinθ,z=1x2+2yx=12cos2θ√2sin√2cosθ=1+4sinθcosθ2cos2θ=sin2θ+cos2θ+4sinθcosθ2cos2θ=12tan2θ+2tanθ+12=12(tanθ+2)2−32,故当tanθ=−2时,函数z取得最小值为−32,故答案为:−32.18.【答案】 9【考点】 平均值不等式 【解析】将函数式的两项拆成3项,再利用平均值不等式,即可得到当且仅当3x2=12x 2时即x =2时,函数的最小值为9. 【解答】解:∵ x >0 ∴ 3x +12x =3x 2+3x 2+12x ≥3√3x 2⋅3x 2⋅12x 3=9当且仅当3x2=12x 2时,即x =2时,等号成立 由此可得,函数f(x)=3x +12x 2(x >0)的最小值为9 故选:9 19. 【答案】√52,√22【考点】 平均值不等式 【解析】观察分式的分子和分母的代数式的不同,进行拆分a 22项,构造均值不等式求最值. 【解答】解:由题意知: (1)a 1a 2+2a 2a 3a 12+a 22+a 32=a 1a 2+2a 2a 3a 12+15a 22+45a 22+a 32 ≤a a +2a a 2√12225+2√22325=a 1a 2+2a 2a 32√51a 2+2a 2a 3)=√52(2)xa 1a 2+ya 2a 3a 12+a 22+a 32=xa 1a 2+ya 2a 3a 12+x 2x 2+y 2a 22+y 2x 2+y 2a 22+a 32≤xa 1a 2+ya 2a 3xa 1a 222+ya 2a 322=√x 2+y 22 ∴ M =√x 2+y 22即M≥√22(x+y2)=√22∴M的最小值为√22.故(1)√52(2)√2220.【答案】7【考点】平均值不等式【解析】把式子1x+y +9(x+y)y+z中的1换成已知条件(x+y)+(y+z)=1,化简后再利用基本不等式即可.【解答】解:∵正实数x,y,z满足x+2y+z=1,∴1x+y +9(x+y)y+z=x+y+y+zx+y+9(x+y)y+z=1+y+zx+y+9(x+y)y+z≥1+2√y+zx+y×9(x+y)y+z=7,当且仅当y+zx+y =9(x+y)y+z,x+y+y+z=1,即x+y=14,y+z=34时,取等号.∴则1x+y +9(x+y)y+z的最小值为7.故答案为7.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】证明:当a、b、c为正数时,(a+b+c)(1a +1b+1c)=1+ba+ca+ab+1+cb+ac+bc+1=3+ba +ab+ca+ac+cb+bc.由均值不等式得ba +ab≥2,ca+ac≥2,cb+bc≥2,故有3+ba +ab+ca+ac+cb+bc≥3+2+2+2=9,当且仅当正数a、b、c全部相等时,等号成立.故(a+b+c)(1a +1b+1c)≥9成立.【考点】平均值不等式【解析】不等式的左边即3+ba +ab+ca+ac+cb+bc,由均值不等式证得此式大于或等于9.【解答】证明:当a、b、c为正数时,(a+b+c)(1a +1b+1c)=1+ba+ca+ab+1+cb+ac+bc+1=3+ba +ab +ca +ac +cb +bc .由均值不等式得 ba+ab≥2,ca+ac≥2,cb+bc≥2,故有 3+b a+a b+c a+a c+c b+bc≥3+2+2+2=9,当且仅当正数a 、b 、c 全部相等时,等号成立.故 (a +b +c)(1a +1b +1c )≥9 成立. 22.【答案】解:(1)(2c −b )cos A =a cos B,a sin A=b sin B=c sin C,(2sin C −sin B )cos A =sin A cos B , 2sin C cos A −sin B cos A =sin A cos B , 2sin C cos A =sin (A +B )=sin C , 在△ABC sin C ≠0, cos A =12,∠A =π3.(2)由余弦定理得:1=b 2+c 2−bc ,又b 2+c 2≥2bc ,即bc ≤1,当且仅当b =c 时取到等号成立, 所以1+3bc =b 2+c 2+2bc =(b +c )2,当bc =1时,(b +c )2取最大值,即b +c 的最大值为2. 【考点】 正弦定理 余弦定理 平均值不等式 【解析】由正弦定理化简已知等式可得2sinCcosA =sinC ,又sinC ≠0,即可得cosA =12,即可求得A 的大小.由余弦定理及不等式的解法得1=b 2+c 2−bc ,化简得bc ≤1从而得解. 【解答】解:(1)(2c −b )cos A =a cos B,a sin A=b sin B=c sin C,(2sin C −sin B )cos A =sin A cos B , 2sin C cos A −sin B cos A =sin A cos B , 2sin C cos A =sin (A +B )=sin C , 在△ABC sin C ≠0, cos A =12,∠A =π3.(2)由余弦定理得:1=b 2+c 2−bc , 又b 2+c 2≥2bc ,即bc ≤1,所以1+3bc =b 2+c 2+2bc =(b +c )2,当bc =1时,(b +c )2取最大值,即b +c 的最大值为2. 23. 【答案】(1)∵ a >0,b >0,且1a+1b =√ab ,∴ √ab =1a +1b ≥2√1ab ,∴ ab ≥2, 当且仅当a =b =√2时取等号.∵ a 3+b 3≥2√(ab)3≥2√23=4√2,当且仅当a =b =√2时取等号, ∴ a 3+b 3的最小值为4√2.(2)∵ 2a +3b ≥2√2a ⋅3b =2√6ab ,当且仅当2a =3b 时,取等号. 而由(1)可知,2√6ab ≥2√12=4√3>6, 故不存在a ,b ,使得2a +3b =6成立. 【考点】 平均值不等式 【解析】(Ⅰ)由条件利用基本不等式求得ab ≥2,再利用基本不等式求得a 3+b 3的最小值. (Ⅱ)根据 ab ≥2及基本不等式求的2a +3b >8,从而可得不存在a ,b ,使得2a +3b =6. 【解答】(1)∵ a >0,b >0,且1a+1b =√ab ,∴ √ab =1a+1b≥2√1ab,∴ ab ≥2,当且仅当a =b =√2时取等号.∵ a 3+b 3≥2√(ab)3≥2√23=4√2,当且仅当a =b =√2时取等号, ∴ a 3+b 3的最小值为4√2.(2)∵ 2a +3b ≥2√2a ⋅3b =2√6ab ,当且仅当2a =3b 时,取等号. 而由(1)可知,2√6ab ≥2√12=4√3>6, 故不存在a ,b ,使得2a +3b =6成立. 24. 【答案】证明:因为a ,b ,c 为正实数,所以a 3+b 3+c 3≥3√a 3b 3c 33=3abc >0,当且仅当a =b =c 时,等号成立.…又3abc +1abc ≥2√3,当且仅当3abc =1abc 时,等号成立. 所以,a 3+b 3+c 3+1abc≥2√3.…【考点】 平均值不等式 【解析】由条件可得a 3+b 3+c 3≥3√a 3b 3c 33=3abc >0,再由3abc +1abc ≥2=2√3,从而得到a 3+b 3+c 3+1abc ≥2√3.【解答】证明:因为a ,b ,c 为正实数,所以a 3+b 3+c 3≥3√a 3b 3c 33=3abc >0,当且仅当a =b =c 时,等号成立.…又3abc +1abc ≥2√3,当且仅当3abc =1abc 时,等号成立. 所以,a 3+b 3+c 3+1abc≥2√3.…25. 【答案】解:(1)(I)由[2a 21][1−2]=[−40],∴ 2−2a =−4⇒a =3.(II)由(I)知M =[2321],则矩阵M 的特征多项式为 f(λ)=[λ−232λ−1]=(λ−2)(λ−1)−6=λ2−3λ−4令f(λ)=0,得矩阵M 的特征值为−1与4. 当λ=−1时,{(λ−2)x −3y =0−2x +(λ−1)y =0⇒x +y =0∴ 矩阵M 的属于特征值−1的一个特征向量为[1−1];当λ=4时,{(λ−2)x −3y =0−2x +(λ−1)y =0⇒2x −3y =0∴ 矩阵M 的属于特征值4的一个特征向量为[32].(2)将圆的方程整理得:(x −4cos θ)2+(y −3sin θ)2=1 由题设得x 0=4cos θ,y 0=3sin θ(θ为参数,θ∈R). 所以2x 0−y 0=8cos θ−3sin θ=√73cos (θ+φ), 所以−√73≤2x 0−y 0≤√73. (3):①根据柯西不等式可得(a 2+b 24+c 29)(1+22+32)≥(a ×1+b 2×2+c3×3)2=(a +b +c)2 ∴ a 2+14b 2+19c 2≥(a+b+c)214.②∵ a +b +c +2−2m =0,a 2+b 24+c 29+m −1=0∴ 1−m ≥(2m−2)214解得:−52≤m ≤1. 【考点】特征值、特征向量的应用 圆的参数方程 平均值不等式【解析】(1)(I)点P(1, −2)在矩阵M 的变换下得到点P ′(−4, 0),利用二阶矩阵与平面列向量的乘法可求实数a 的值;(II)先求矩阵M 的特征多项式f(λ),令f(λ)=0,从而可得矩阵M 的特征值,进而可求特征向量.(2)先将圆的一般式方程转化成圆的标准方程,从而求出圆心的参数方程,利用参数方程将2x +y 表示成8cos θ−3sin θ,然后利用辅助角公式求出8cos θ−3sin θ的取值范围即可;(3)①根据柯西不等式直接证明即可;②将①中的a 、b 、c 用等式a +b +c +2−2m =0,a 2+14b 2+19c 2+m −1=0.代入,消去a 、b 、c 得到关于m 的不等关系,解之即可求出m 的范围. 【解答】解:(1)(I)由[2a 21][1−2]=[−40],∴ 2−2a =−4⇒a =3.(II)由(I)知M =[2321],则矩阵M 的特征多项式为 f(λ)=[λ−232λ−1]=(λ−2)(λ−1)−6=λ2−3λ−4令f(λ)=0,得矩阵M 的特征值为−1与4. 当λ=−1时,{(λ−2)x −3y =0−2x +(λ−1)y =0⇒x +y =0∴ 矩阵M 的属于特征值−1的一个特征向量为[1−1];当λ=4时,{(λ−2)x −3y =0−2x +(λ−1)y =0⇒2x −3y =0∴ 矩阵M 的属于特征值4的一个特征向量为[32].(2)将圆的方程整理得:(x −4cos θ)2+(y −3sin θ)2=1 由题设得x 0=4cos θ,y 0=3sin θ(θ为参数,θ∈R). 所以2x 0−y 0=8cos θ−3sin θ=√73cos (θ+φ), 所以−√73≤2x 0−y 0≤√73. (3):①根据柯西不等式可得(a 2+b 24+c 29)(1+22+32)≥(a ×1+b 2×2+c3×3)2=(a +b +c)2 ∴ a 2+14b 2+19c 2≥(a+b+c)214.②∵ a +b +c +2−2m =0,a 2+b 24+c 29+m −1=0∴ 1−m ≥(2m−2)214解得:−52≤m ≤1. 26. 【答案】(1)解:f(x)={−2x −2,x <−3,4,−3≤x ≤1,2x +2,x >1,当x <−3时,−2x −2≤6,即x ≥−4,解得−4≤x <−3; 当−3≤x ≤1时,4≤6,满足题意;当x >1时,2x +2≤6,即x ≤2,解得1<x ≤2. 综上,不等式f (x )≤6的解集为{x|−4≤x ≤2}. (2)证明:由(1)知f(x)min =4, ∴ a +b +c =4,∴ (a +1)+(b +1)+(c +1)=7, ∴ [(a +1)+(b +1)+(c +1)]2=49,∴ 49=(a +1)2+(b +1)2+(c +1)2+2(a +1)(b +1)+2(a +1)(c +1)+ 2(b +1)(c +1)≤3[(a +1)2+(b +1)2+(c +1)2], 当且仅当a =b =c =43时等号成立,∴ (a +1)2+(b +1)2+(c +1)2≥493.【考点】 不等式的证明绝对值不等式的解法与证明 平均值不等式【解析】(1)答案未提供解析. 【解答】(1)解:f(x)={−2x −2,x <−3,4,−3≤x ≤1,2x +2,x >1,当x <−3时,−2x −2≤6,即x ≥−4,解得−4≤x <−3; 当−3≤x ≤1时,4≤6,满足题意;当x >1时,2x +2≤6,即x ≤2,解得1<x ≤2. 综上,不等式f (x )≤6的解集为{x|−4≤x ≤2}. (2)证明:由(1)知f(x)min =4, ∴ a +b +c =4,∴ (a +1)+(b +1)+(c +1)=7, ∴ [(a +1)+(b +1)+(c +1)]2=49,∴ 49=(a +1)2+(b +1)2+(c +1)2+2(a +1)(b +1)+2(a +1)(c +1)+ 2(b +1)(c +1)≤3[(a +1)2+(b +1)2+(c +1)2], 当且仅当a =b =c =43时等号成立,∴ (a +1)2+(b +1)2+(c +1)2≥493.27.【答案】解:∵ x 2+y 2=2,∴ (x +y)2+(x −y)2=4.∵ ((x +y)2+(x −y)2)(1(x+y)2+1(x−y)2)≥4,∴ 1(x+y)2+1(x−y)2≥1,当且仅当x =±√2,y =0,或x =0,y =±√2时,1(x+y)2+1(x−y)2取得最小值是1.平均值不等式【解析】由题意可得(x+y)2+(x−y)2=4,再根据((x+y)2+(x−y)2)(1(x+y)2+1(x−y)2)≥4,求得1(x+y)+1(x−y)的最小值.【解答】解:∵x2+y2=2,∴(x+y)2+(x−y)2=4.∵((x+y)2+(x−y)2)(1(x+y)2+1(x−y)2)≥4,∴1(x+y)2+1(x−y)2≥1,当且仅当x=±√2,y=0,或x=0,y=±√2时,1(x+y)2+1(x−y)2取得最小值是1.28.【答案】(1)函数的定义域为{x|x≠−1},f′(x)=a−b(x+1)2∴当a>b>0时,f′(x)>0,函数f(x)在(−∞, −1),(−1, +∞)上单调递增;当0<a<b时,f′(x)<0,函数f(x)在(−∞, −1),(−1, +∞)上单调递减.(2)(i)计算得f(1)=a+b2,f(√ba)=√ab,f(ba)=2aba+b.∵(√ab)2=a+b2×2aba+b∴f(1),f(√ba ),f(ba)成等比数列,∵a>0,b>0,∴2aba+b≤√ab∴f(ba )≤f(√ba);(ii)由(i)知f(ba )=2aba+b,f(√ba)=√ab,故由H≤f(x)≤G,得f(ba )≤f(x)≤f(√ba).当a=b时,f(ba )=f(x)=f(√ba)=f(1)=a,此时x的取值范围是(0, +∞),当a>b时,函数f(x)在(0, +∞)上单调递增,这时有ba ≤x≤√ba,即x的取值范围为b a ≤x≤√ba;当a<b时,函数f(x)在(0, +∞)上单调递减,这时有√ba ≤x≤ba,即x的取值范围为√b a ≤x≤ba.【考点】利用导数研究函数的单调性等比数列的性质平均值不等式(Ⅰ)确定函数的定义域,利用导数的正负,结合分类讨论,即可求得数f(x)的单调性;(Ⅱ)(i)利用函数解析式,求出f(1),f(√ba ),f(ba),根据等比数列的定义,即可得到结论;(ii)利用定义,结合函数的单调性,即可确定x的取值范围.【解答】(1)函数的定义域为{x|x≠−1},f′(x)=a−b(x+1)∴当a>b>0时,f′(x)>0,函数f(x)在(−∞, −1),(−1, +∞)上单调递增;当0<a<b时,f′(x)<0,函数f(x)在(−∞, −1),(−1, +∞)上单调递减.(2)(i)计算得f(1)=a+b2,f(√ba)=√ab,f(ba)=2aba+b.∵(√ab)2=a+b2×2aba+b∴f(1),f(√ba ),f(ba)成等比数列,∵a>0,b>0,∴2aba+b≤√ab∴f(ba )≤f(√ba);(ii)由(i)知f(ba )=2aba+b,f(√ba)=√ab,故由H≤f(x)≤G,得f(ba )≤f(x)≤f(√ba).当a=b时,f(ba )=f(x)=f(√ba)=f(1)=a,此时x的取值范围是(0, +∞),当a>b时,函数f(x)在(0, +∞)上单调递增,这时有ba ≤x≤√ba,即x的取值范围为b a ≤x≤√ba;当a<b时,函数f(x)在(0, +∞)上单调递减,这时有√ba ≤x≤ba,即x的取值范围为√b a ≤x≤ba.29.【答案】证明:因为x>0,y>0,z>0,所以x3+y3+z3≥3xyz,x3+y3+1≥3xy,y3+z3+1≥3yz,x3+z3+1≥3xz,将以上各式相加,得3x3+3y3+3z3+3≥3xyz+3xy+3yz+3xz,又因为xyz=1,从而x3+y3+z3≥xy+yz+xz.【考点】平均值不等式【解析】根据算术平均数不小于其几何平均数可得:x3+y3+z3≥3xyz,x3+y3+1≥3xy,y3+z3+1≥3yz,x3+z3+1≥3xz,相加得出结论.【解答】证明:因为x>0,y>0,z>0,所以x3+y3+z3≥3xyz,x3+y3+1≥3xy,y3+z3+1≥3yz,x3+z3+1≥3xz,将以上各式相加,得3x3+3y3+3z3+3≥3xyz+3xy+3yz+3xz,又因为xyz=1,从而x3+y3+z3≥xy+yz+xz.30.【答案】(1)解:|x−m|+2x≤0,即{x≥m,x−m+2x≤0,或{x<m,m−x+2x≤0,化简得:{x≥m,x≤m3,或{x<m,x≤−m,由于m>0,所以不等式组的解集为(−∞,−m].由题设可得−m=−1,即m=1. (2)证明:由(1)可知,a+b+c=1,又由均值不等式有b 2a +a≥2b,c2b+b≥2c,a2c+c≥2a,三式相加可得:b 2a +a+c2b+b+a2c+c≥2b+2c+2a,所以b 2a +c2b+a2c≥a+b+c=1.【考点】绝对值不等式平均值不等式【解析】此题暂无解析【解答】(1)解:|x−m|+2x≤0,即{x≥m,x−m+2x≤0,或{x<m,m−x+2x≤0,化简得:{x≥m,x≤m3,或{x<m,x≤−m,由于m>0,所以不等式组的解集为(−∞,−m].由题设可得−m=−1,即m=1. (2)证明:由(1)可知,a+b+c=1,又由均值不等式有b 2a +a≥2b,c2b+b≥2c,a2c+c≥2a,三式相加可得:b 2a +a+c2b+b+a2c+c≥2b+2c+2a,所以b 2a +c2b+a2c≥a+b+c=1.31.【答案】设P(cosα, sinα),则S=|AP|×|BP|2=√cos2α+(sinα−2)2[cos2α+(1+sinα)2],整理可得:S=8√(1+sinα2)2(54−sinα),利用均值不等式可得:S≤8×√(1+5 43)3=3√3,当且仅当sinα=12时,等号成立.因此|AP|×|BP|2的最大值为3√3.【考点】平均值不等式两点间的距离公式【解析】设P(cosα, sinα),S=|AP|×|BP|2=√cos2α+(sinα−2)2[cos2α+(1+sinα)2],整理可得:S=8√(1+sinα2)2(54−sinα),利用均值不等式即可得出.【解答】设P(cosα, sinα),则S=|AP|×|BP|2=√cos2α+(sinα−2)2[cos2α+(1+sinα)2],整理可得:S=8√(1+sinα2)2(54−sinα),利用均值不等式可得:S≤8×√(1+5 43)3=3√3,当且仅当sinα=12时,等号成立.因此|AP|×|BP|2的最大值为3√3.32.【答案】解:(1)因为a sin B=b sin B+C2,所以a sin B=b sin(π2−A2),即a sin B=b cos A2,由正弦定理得sin A sin B=sin B cos A2,由于B为△ABC的内角,所以sin B≠0,所以sin A=cos A2,即2sin A2cos A2=cos A2,由于A为△ABC的内角,所以cos A2≠0,所以sin A2=12,又因为A∈(0,π),所以A2=π6,A=π3.(2)在△ABC中由余弦定理知:a2=b2+c2−2bc cos A=(b+c)2−3bc≥(b+c)2−3(b+c2)2=1,所以a≥1,当且仅当b=c=1时等号成立,此时S=12bc sin A=√34.【考点】二倍角的正弦公式诱导公式三角形的面积公式平均值不等式余弦定理正弦定理【解析】此题暂无解析【解答】解:(1)因为a sin B=b sin B+C2,所以a sin B=b sin(π2−A2),即a sin B=b cos A2,由正弦定理得sin A sin B=sin B cos A2,由于B为△ABC的内角,所以sin B≠0,所以sin A=cos A2,即2sin A2cos A2=cos A2,由于A为△ABC的内角,所以cos A2≠0,所以sin A2=12,又因为A∈(0,π),所以A2=π6,A =π3.(2)在△ABC 中由余弦定理知:a 2=b 2+c 2−2bc cos A =(b +c )2−3bc ≥(b +c )2−3(b+c 2)2=1,所以a ≥1,当且仅当b =c =1时等号成立, 此时S =12bc sin A =√34. 33.【答案】解:∵ a ,b ∈R ,且a >b , ∴ 2a +1a 2−2ab+b 2−2b=2(a −b)+1(a −b)2=(a −b)+(a −b)+1(a −b)2≥3√(a −b)⋅(a −b)⋅1(a−b)23=3,当且仅当a −b =1时取等号,∴ 2a +1a −2ab+b ≥2b +3. 【考点】 平均值不等式 【解析】根据均值不等式即可求出 【解答】解:∵ a ,b ∈R ,且a >b , ∴ 2a +1a 2−2ab+b 2−2b =2(a −b)+1(a −b)2=(a −b)+(a −b)+1(a −b)2≥3√(a −b)⋅(a −b)⋅1(a−b)23=3,当且仅当a −b =1时取等号,∴ 2a +1a 2−2ab+b 2≥2b +3. 34. 【答案】证明:(1)由√a 2b 2c 23=√ab ×bc ×ca 3≤ab+bc+ca3,有ab +bc +ca +ab+bc+ca3≥4,得ab +bc +ca ≥3(当且仅当a =b =c =1时取等号). (2)由a 2+b 2≥2ab (当且仅当a =b 时取等号), b 2+c 2≥2bc (当且仅当b =c 时取等号), c 2+a 2≥2ca (当且仅当c =a 时取等号),有a 2+b 2+c 2≥ab +bc +ca (当且仅当a =b =c 时时取等号),(a +b +c)2=a 2+b 2+c 2+2ab +2bc +2ca ≥3(ab +bc +ca)≥9 (当且仅当a =b =c =1时取等号), 即a +b +c ≥3. 【考点】 不等式的证明 平均值不等式 基本不等式 【解析】 【解答】证明:(1)由√a 2b 2c 23=√ab ×bc ×ca 3≤ab+bc+ca3,有ab +bc +ca +ab+bc+ca3≥4,得ab +bc +ca ≥3(当且仅当a =b =c =1时取等号). (2)由a 2+b 2≥2ab (当且仅当a =b 时取等号),b 2+c 2≥2bc (当且仅当b =c 时取等号), c 2+a 2≥2ca (当且仅当c =a 时取等号),有a 2+b 2+c 2≥ab +bc +ca (当且仅当a =b =c 时时取等号), (a +b +c)2=a 2+b 2+c 2+2ab +2bc +2ca ≥3(ab +bc +ca)≥9 (当且仅当a =b =c =1时取等号), 即a +b +c ≥3. 35.【答案】(1)解:因为f(x)=m −|x +2|, 所以f(x −2)≥0等价于|x|≤m . 由|x|≤m 有解,得m ≥0,且其解集为{x|−m ≤x ≤m},又f(x −2)≥0的解集为[−3,3], 故m =3.(2)由(1)知a +2b +3c =3,又a ,b ,c 是正实数, 由均值不等式得1a +12b +13c =13(a +2b +3c)(1a +12b +13c )=13(3+a 2b +a 3c +2b a +2b 3c +3c a +3c 2b ) =13[3+(a 2b+2b a)+(a 3c+3c a)+(2b 3c+3c 2b)]≥13(3+2+2+2)=3,当且仅当a =2b =3c 时取等号, 即1a +12b+13c≥3.【考点】 不等式的证明绝对值不等式的解法与证明 平均值不等式【解析】 此题暂无解析 【解答】(1)解:因为f(x)=m −|x +2|, 所以f(x −2)≥0等价于|x|≤m . 由|x|≤m 有解,得m ≥0,且其解集为{x|−m ≤x ≤m},又f(x −2)≥0的解集为[−3,3], 故m =3.(2)由(1)知a +2b +3c =3,又a ,b ,c 是正实数,由均值不等式得1a +12b+13c=13(a +2b +3c)(1a+12b+13c)=13(3+a 2b +a 3c +2b a +2b 3c +3c a +3c 2b ) =13[3+(a 2b+2b a)+(a 3c+3c a)+(2b 3c+3c 2b)]≥13(3+2+2+2)=3,当且仅当a =2b =3c 时取等号, 即1a +12b +13c ≥3. 36.【答案】解∶(1)①当x ≤−1时,不等式|2x −2|+|x +1|≤4 可化为(2−2x )−(x +1)≤4,得x ≥−1,故有x =−1; ②当−1<x <1时,不等式|2x −2|+|x +1|≤4可化为(2−2x )+(x +1)≤4,得x ≥−1,故有−1<x <1; ③当x ≥1时,不等式|2x −2|+|x +1|≤4可化为 (2x −2)+(x +1)≤4,得x ≤53,故有1≤x <53 .综上,不等式f (x )≤4的解集为[−1,53].(2)因为y =f (x )+|x +1|=2|x −1|+2|x +1|=2(|x −1|+|x +1|)≥2|x −1−(x +1)|=4, 所以k =4,所以km +2m 2=4m +2m 2=2m +2m +2m 2≥3√2m ⋅2m ⋅2m 23=6, 当且仅当2m =2m 2,即m =1时“=”成立,所以km +2m 2的最小值为6. 【考点】绝对值不等式的解法与证明 平均值不等式【解析】 此题暂无解析 【解答】解∶(1)①当x ≤−1时,不等式|2x −2|+|x +1|≤4 可化为(2−2x )−(x +1)≤4,得x ≥−1,故有x =−1; ②当−1<x <1时,不等式|2x −2|+|x +1|≤4可化为(2−2x )+(x +1)≤4,得x ≥−1,故有−1<x <1; ③当x ≥1时,不等式|2x −2|+|x +1|≤4可化为 (2x −2)+(x +1)≤4,得x ≤53,故有1≤x <53 .综上,不等式f (x )≤4的解集为[−1,53].(2)因为y =f (x )+|x +1|=2|x −1|+2|x +1|=2(|x −1|+|x +1|)≥2|x −1−(x +1)|=4, 所以k =4, 所以km +2m 2=4m +2m 2=2m +2m +2m ≥3√2m ⋅2m ⋅2m 3=6,当且仅当2m =2m 2,即m =1时“=”成立,所以km +2m 2的最小值为6. 37. 【答案】解:(√2a +√1+2b +√3+2c)2=(1×√2a +1×√2b +1+1×√2c +3)2≤(12+12+12)(2a +2b +1+2c +3)=3(2×6+4)=48.∴ √2a +√1+2b +√3+2c ≤4√3.当且仅当√2a =√2b +1=√2c +3即2a =2b +1=2c +3时等号成立. 又a +b +c =6,∴ a =83,b =136,c =76时,√2a +√2b +1+√2c +3有最大值4√3.∴ |x −2|+|x −m|≥4√3.对任意的x ∈R 恒成立. ∵ |x −2|+|x −m|≥|(x −2)−(x −m)|=|m −2|, ∴ |m −2|≥4√3,解得m ≤2−4√3.或m ≥2+4√3.【考点】 平均值不等式 【解析】利用平均值不等式求得√2a +√2b +1+√2c +3≤4√3,由绝对值的性质可得|x −2|+|x −m|≥|m −2|,结合题意可得|m −2|≥4√3,由此求得m 的范围. 【解答】解:(√2a +√1+2b +√3+2c)2=(1×√2a +1×√2b +1+1×√2c +3)2≤(12+12+12)(2a +2b +1+2c +3)=3(2×6+4)=48.∴ √2a +√1+2b +√3+2c ≤4√3.当且仅当√2a =√2b +1=√2c +3即2a =2b +1=2c +3时等号成立. 又a +b +c =6,∴ a =83,b =136,c =76时,√2a +√2b +1+√2c +3有最大值4√3.∴ |x −2|+|x −m|≥4√3.对任意的x ∈R 恒成立. ∵ |x −2|+|x −m|≥|(x −2)−(x −m)|=|m −2|, ∴ |m −2|≥4√3,解得m ≤2−4√3.或m ≥2+4√3. 38. 【答案】若a >0,b >0,c >0,则a+b+c 3≥√abc 3(当且仅当a =b =c 时取等号).证明:令x =√a 3,y =√b 3,z =√c 3,则xyz =√abc 3,∴ x 3+y 3+z 3−3xyz =(x +y)3−3x 2y −3xy 2+z 3−3xyz =(x +y)3+z 3−3x 2y −3xy 2−3xyz=(x +y +z)[(x +y)2−z(x +y)+z 2]−3xy(x +y +z) =(x +y +z)(x 2+y 2+z 2+2xy −xz −yz −3xy) =12(x +y +z)(2x 2+2y 2+2z 2−2xy −2xz −2yz) =12(x +y +z)[(x −y)2+(y −z)2+(x −z)2]≥0,∴ x 3+y 3+z 3≥3xyz ,当且仅当x =y =z 时取等号. 即a +b +c ≥3√abc 3,当且仅当a =b =c 时取等号. ∴a+b+c 3≥√abc 3.【考点】 平均值不等式 【解析】类比二元均值不等式得出三元均值不等式,利用作差法证明. 【解答】若a >0,b >0,c >0,则a+b+c 3≥√abc 3(当且仅当a =b =c 时取等号).证明:令x =√a 3,y =√b 3,z =√c 3,则xyz =√abc 3,∴ x 3+y 3+z 3−3xyz =(x +y)3−3x 2y −3xy 2+z 3−3xyz =(x +y)3+z 3−3x 2y −3xy 2−3xyz=(x +y +z)[(x +y)2−z(x +y)+z 2]−3xy(x +y +z) =(x +y +z)(x 2+y 2+z 2+2xy −xz −yz −3xy) =1(x +y +z)(2x 2+2y 2+2z 2−2xy −2xz −2yz)。

高考数学总复习 第六章 第2课时 均值不等式随堂检测含解析 试题

高考数学总复习 第六章 第2课时 均值不等式随堂检测含解析  试题

2021年高考数学总复习 第六章 第2课时 均值不等式随堂检测〔含解析〕新人教版制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅……日期:2022年二月八日。

1.(2021·高考卷)假设a ,b ∈R ,且ab >0,那么以下不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 解析:选D.∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误.对于B 、C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +ab ≥2 b a ·a b=2. 2.假设a >0,b >0,且ln(a +b )=0,那么1a +1b的最小值是( ) A.14B .1C .4D .8a >0,b >0,ln(a +b )=0得⎩⎪⎨⎪⎧ a +b =1a >0b >0. 故1a +1b =a +b ab =1ab ≥1a +b22=1122=4.当且仅当a =b =12时上式取“=〞. 3.要设计一个矩形,现只知道它的对角线长度为10,那么在所有满足条件的设计中,面积最大的一个矩形的面积为( )A .50B .25 3C .50 3D .100 x 、y ,那么x 2+y 2=100.于是S =xy ≤x 2+y 22=50,当且仅当x =y 时等号成立.4.(2021·高考卷)设x ,y ∈R ,且xy ≠0,那么⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________. 解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=〞成立. 答案:95.函数f (x )=x +p x -1(p 为常数,且p >0),假设f (x )在(1,+∞)上的最小值为4,那么实数p 的值是________.解析:由题意得x -1>0,f (x )=x -1+p x -1+1≥2p +1,当且仅当x =p +1时,取等号,那么2p +1=4,解得p =94. 答案:94制卷人:打自企; 成别使; 而都那。

高一数学平均值不等式选学试题

高一数学平均值不等式选学试题

高一数学平均值不等式选学试题1.(2007•北京)如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d且等号成立时a,b,c,d的取值唯一B.ab≥c+d且等号成立时a,b,c,d的取值唯一C.ab≤c+d且等号成立时a,b,c,d的取值不唯一D.ab≥c+d且等号成立时a,b,c,d的取值不唯一【答案】A【解析】根据均值不等式分别有:;;则a,b,c,d满足a+b=cd=4,进而可得2化简即得.当且仅当a=b=c=d=2时取等号.解:如果a,b是正数,则根据均值不等式有:,则(a+b)2≥4ab如果c,d是正数,则根据均值不等式有:;则∵a,b,c,d满足a+b=cd=4,∴2当且仅当a=b=c=d=2时取等号.化简即为:ab≤c+d且等号成立时a,b,c,d的取值唯一.故选A.点评:要熟练使用均值不等式,能正用、逆用,而且还要会变用.使用时还要特别注意等号成立的条件.2.在半径为0.5m的圆桌中心上方安装一吊灯,桌面上灯光的强度y=k,其中k是常数,r 是灯与桌面上被照点的距离,θ是光线与桌面的夹角,为使桌边最亮,则sinθ=()A.B.C.D.【答案】B【解析】根据题意列出照度函数关系式,建立三角函数模型,然后用均值不等式求最值即可.解:设桌边与垂足O的距离为a,则,∴r=∴桌边上灯光的强度y=k=•sinθcos 2θ=•=•≤当且仅当sin2θ=cos2θ,即sinθ=时,桌边上灯光的强度最大故选B.点评:本题考查函数模型的构建,考查均值不等式的应用,解题的关键是理解照度的含义,建立三角函数模型.3.求证,q=(x1﹣a)2+(x2﹣a)2+…+(xn﹣a)2若则一定有()A.P>q B.P<q C.P、q的大小不定D.以上都不对【答案】B【解析】设f(x)=(x1﹣x)2+(x2﹣x)2+…+(xn﹣x)2,将此式化成二次函数的一般形式,结合二次函数的最值即可进行判定.解:设f(x)=(x1﹣x)2+(x2﹣x)2+…+(xn﹣x)2,则f(x)=nx2﹣2(x1+x2+…+xn)x+x12+x22+…+xn2当时,f(x)取得最小值,即P<q.故选B.点评:本题主要考查了二次函数在函数极值中的应用,解答的关键是利用函数思想结合二次函数的最值即可.4.设底部为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为()A.B.C.D.【答案】C【解析】设底边边长为a,高为h,利用体积公式V=Sh= a2×h,得出h=,再根据表面积公式得S=+a2,最后利用基本不等式求出它的最大值及等号成立的条件即得.解:设底边边长为a,高为h,则V=Sh= a2×h,∴h=,表面积为S=3ah+a2=+a2=++a2≥3=定值,等号成立的条件,即a=,故选C.点评:本小题主要考查棱柱、棱锥、棱台、棱柱、棱锥、棱台的侧面积和表面积、基本不等式等基础知识,考查运算求解能力,考查转化思想.属于基础题.5.已知x,y,z∈R,且x+y+z=8,x2+y2+z2=24,则x的取值范围是()A.[,4]B.[,4]C.[,3]D.[,3]【答案】B【解析】由y+z=8﹣x,知yz=[(y+z)2﹣(y2+z2)]=x2﹣8x+20,进而y,z是方程t2﹣(8﹣x)t+x2﹣8x+20=0的两个实根,知△≥0.由此能够证明≤x≤4.证明:由y+z=8﹣x,y2+z2=24﹣x2,知yz=[(y+z)2﹣(y2+z2)]=x2﹣8x+20,故y,z是方程t2﹣(8﹣x)t+x2﹣8x+20=0的两个实根,由△≥0得到(8﹣x)2﹣4(x2﹣8x+20)≥0整理得3x2﹣16x+16≤0,解得≤x≤4,故答案为:B点评:本题考查不等式的证明,解题时要注意根的判别式和公式的灵活运用.6.函数的最小值是()A.B.C.3D.4【答案】D【解析】先将函数化为:,因为x>0,再利用基本不等式即可求函数的最小值.解:由题意,∵x>0∴=4当且仅当,即x=1时,函数取得最小值4故选D.点评:本题以函数为载体,考查基本不等式的运用,解题的关键是将函数变形,使得满足基本不等式的条件.7.已知x,y,z均为正数,,则的最小值是()A.1B.3C.D.【答案】A【解析】由x,y,z均为正数,,可知,=1①,=,利用基本不等式结合①可得结论.解:∵x,y,z均为正数,,∴=1①,∴xyz=xy+xz+yz(x,y,z均为正数);又==≥=1(当且仅当x=y=z=3时取“=”).故选A.点评:本题考查均值不等式的应用,将条件转化为=1,即xyz=xy+xz+yz(x,y,z均为正数)是应用不等式的关键,属于中档题.8.已知a,b,c是正实数,且ab+bc+ac=1,则abc的最大值为()A.B.C.1D.【答案】A【解析】由题意可得=≥,即(abc)2≤,由此求得abc的最大值.解:∵a,b,c是正实数,且ab+bc+ac=1,∴=≥,∴(abc)2≤,∴abc≤,即abc的最大值为,故选A.点评:本题主要考查平均值不等式的应用,属于中档题.9.已知x,y∈R,且满足x2y=32,则x+y的最小值为()+A.1B.2C.6D.4【答案】C,利用均值不等式可得x+y=x+=【解析】由x2y=32,可得,又x,y∈R+即可得出.解:∵x2y=32,∴,,∴x+y=x+==6,当且仅当时取等号.又∵x,y∈R+∴x+y的最小值为6.故选C.点评:本题考查了均值不等式的用法,属于基础题.,且a+b+c=6,则lga+lgb+lgc的取值范围是()10.若a,b,c∈R+A.(﹣∞,lg6]B.(﹣∞,3lg2]C.[lg6,+∞)D.[3lg2,+∞)【答案】B【解析】先根据对数的运算法则得lga+lgb+lgc=lg(abc),再由平均值不等式可求得取值范围.解:∵a,b,c∈R,+∴abc≤=8,当且仅当a=b=c时等号成立,∴lga+lgb+lgc=lg(abc)≤lg8=3lg2,则lga+lgb+lgc的取值范围是(﹣∞,3lg2].故选B.点评:本题主要考查平均值不等式在函数极值中的应用.在应用平均值不等式时一定要注意取等号的要求.。

高中数学人教B版必修第一册《2.2.4 均值不等式及其应用》练习题(2)

高中数学人教B版必修第一册《2.2.4 均值不等式及其应用》练习题(2)

人教B 版必修第一册《2.2.4 均值不等式及其应用》练习题(2)一、单选题(本大题共7小题,共35.0分) 1.若非空实数集X 中存在最大元素M 和最小元素m ,则记△(X)=M −m.下列命题中正确的是( )A. 已知X ={−1,1},Y ={0,b},且△(X)=△(Y),则b =2B. 已知X =[a,a +2],Y ={y|y =x 2,x ∈X},则存在实数a ,使得△(Y)<1C. 已知X ={x|f(x)≥g(x),x ∈[−1,1]},若△(X)=2,则对任意x ∈[−1,1],都有f(x)≥g(x)D. 已知X =[a,a +2],Y =[b,b +3],则对任意的实数a ,总存在实数b ,使得△(X ∪Y)≤32.给出下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0。

其中能使成立的条件的序号是( )A. ①③④B. ①②④C. ②④D. ①③3.若n >0,则n +9n 的最小值为( )A. 2B. 4C. 6D. 84.三棱锥PABC 中,底面ABC 满足BA =BC ,∠ABC =π2,点P 在底面ABC 的射影为AC 的中点,且该三棱锥的体积为196,当其外接球的表面积最小时,P 到底面ABC 的距离为( )A. 3B. √193C.√1932D. √19335.已知x >0,y >0,且x 2+3xy −2=0,则2x +y 的最小值是( )A. 2√23B. √23C. 2√103D. √1036.如下图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n >l,n ∈N ∗)个点,相应的图案中总的点数记为,则…=A.B.C.D.7.若正数满足,则的最小值是( )A. 2B. 3;C. 4D. 5二、多选题(本大题共2小题,共10.0分) 8.下列结论正确的是( )A. 若a>b>0,则1a <2bB. 若a,b>0,4b+a=ab,则a+b的最小值为10C. 函数f(x)=1x−1+x的最小值是3D. 若a>b>c,a+b+c=0,则ca−c >cb−c9.下面代数式,最小值为4的有()A. x+1x−1+1(x>1)B. x2+y2−2x−2y+6,其中x,y∈RC. sinx+4sinx ,其中0<x≤π2D. 3x−1+log2x(x≥2)三、单空题(本大题共5小题,共25.0分)10.二次不等式ax2+bx+c<0的解集为R的条件是______ .11.圆柱形金属饮料罐的容积为16πcm3,它的高是______ cm,底面半径是______ cm时可使所用材料最省.12.已知x,y∈R∗,且2x+3y=4,则xy的最大值为______ .13.已知第一象限内的点A(a,b)在直线x+4y−1=0上,则1a +1b的最小值为______ .14.正项等比数列{a n}满足:a3=a2+2a1,若存在a m,a n,使得a m⋅a n=64a 12,则1m +9n的最小值为______.四、解答题(本大题共3小题,共30.0分)15.已知a,b都是大于零的实数.(1)证明:a2b +b2a≥a+b;(2)若a>b,证明:a2+ab3+1a(a−b)>4.16.某展览馆用同种规格的木条制作如图所示的展示框,其内框与外框均为矩形,并用木条相互连结,连结木条与所连框边均垂直.水平方向的连结木条长均为8cm,竖直方向的连结木条长均为4cm,内框矩形的面积为3200cm2.(不计木料的粗细与接头处损耗)(1)如何设计外框的长与宽,才能使外框矩形面积最小?(2)如何设计外框的长与宽,才能使制作整个展示框所用木条最少?17.函数f(x)=log a(1−x)+log a(x+3)(0<a<1).(Ⅰ)求函数f(x)的零点;(Ⅱ)若函数f(x)的最小值为−2,求a的值.【答案与解析】1.答案:D解析:解:对于A,因为△(X)=2,△(X)=△(Y),所以△(Y)=2,于是b=2或−2,未必b=2,所以A错;对于B,假设存在实数a,使△(Y)<1,若a≥0,△(Y)=(a+2)2−a2=4(a+1)≥4,矛盾,若a+2≤0,△(Y)=a2−(a+2)2=−4(a+1)≥4,矛盾,若−1<a<0,△(Y)=(a+2)2>1,矛盾,若−2<a<−1,△(Y)=a2>1,矛盾,若a=−1,△(Y)=1−0=1,矛盾,所以B错;对于C,取f(x)=|x|,g(x)=1,则△(X)=2,但对任意x∈[−1,1],f(x)≥g(x)不成立,所以C 错;对于D,对任意的实数a,只须b满足[a,a+2]⊂[b,b+3],就有X∪Y=Y,从而△(X∪Y)=△(Y)= 3≤3,所以D对.故选:D.A举反例判断;B用反证法,分类讨论判断;C举反例判断;D对任意的实数a,求出b满足条件即可.本题以命题真假判断为载体,考查了集合的基本概念,考查了不等式性质,属于中档题.2.答案:A解析:此题考查基本不等式成立的条件,关键是对基本不等式的熟练掌握.解:①ab>0,③a>0,b>0,④a<0,b<0都可得ba >0,ab>0成立,从而能使ba+ab≥2成立.故选A.3.答案:C解析:解:n>0,则n+9n ≥2√n⋅9n=6,当且仅当n=3时,取得最小值6,故选:C.运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查运算能力,属于基础题.4.答案:B解析:分析:本题考查了棱锥的结构特征,体积计算,考查基本不等式的应用,属于中档题.用AB表示出棱锥的高h,根据勾股定理和基本不等式得出外接球半径r最小时对应的h即可.解析:设AB=BC=a,棱锥的高为h,则V=13×12a2ℎ=196,即a2ℎ=19,设AC的中点为D,∵PD⊥平面ABC,且△ABC为直角三角形,∠ABC=π2,∴棱锥P−ABC的外接球球心O在直线PD上,显然当外接球面积最小时,O在线段PD上,∴设外接球半径为r,OD=d,则r=ℎ−d=ℎ−√r2−a22,∴r2−a22=(ℎ−r)2,化简得r=ℎ2+a222ℎ=ℎ2+a24ℎ=ℎ2+194ℎ2=ℎ4+ℎ4+194ℎ2≥3√19643,当且仅当ℎ4=194ℎ2即ℎ=√193时取等号.故选:B.5.答案:C解析:解:由x2+3xy−2=0,得3xy=2−x2,所以,y=2−x23x =23x−x3,由基本不等式可得2x+y=2x+23x −x3=5x3+23x≥2√5x3⋅23x=2√103,当且仅当5x3=23x(x>0),即当x=√105时,等号成立,因此,2x+y的最小值为2√103,故选:C.由x2+3xy−2=0得y=23x −x3代入2x+y化简之后利用基本不等式可求出2x+y的最小值.本题考查利用基本不等式求最值,对不等式进行灵活变形,是解本题的关键,属于中等题.解析:试题分析:每个边有n个点,把每个边的点数相加得3n,这样角上的点数被重复计算了一次,故第n个图形的点数为3n−3,即.令…=,故选B..考点:1.归纳推理;2.数列的求和..7.答案:D解析:本题考查了利用基本不等式求最值,由条件可知,故,展开后利用基本不等式求解即可.解:由已知得,所以时等号成立),故选D.8.答案:AD解析:解:对于A,由a>b>0,则0<1a <1b,故1a<2b正确,故A正确,对于B,由a,b>0,4b+a=ab⇒4a +1b=1,a+b=(a+b)(4a+1b)=5+4ba+ab≥5+4=9,故B错误,对于C,当x<0时,f(x)<0,故C错误,对于D,由a>b>c⇒a−c>0,b−c>0,a−c>b−c,所以1a−c <1b−c,由a>b>c,a+b+c=0⇒c<0,所以ca−c >cb−c,故D正确.故选:AD.A利用不等式的基本性质可判断,B利用“乘1法”与基本不等式的性质即可得出,C利用特殊值可判断,D利用不等式的基本性质可判断.本题考查了基本不等式的性质,不等式的基本性质,属于基础题.解析:解:根据题意,依次分析选项: 对于A ,由于x >1,则x +1x−1+1=(x −1)+1x−1+2≥2√x−1x−1+2=4,当且仅当x =2时等号成立,即x +1x−1+1的最小值为4,符合题意,对于B ,x 2+y 2−2x −2y +6=(x −1)2+(y −1)2+4≥4,当且仅当x =y =1时等号成立,即x 2+y 2−2x −2y +6的最小值为4,符合题意,对于C ,0<x ≤π2,则0<sinx ≤1,则当sinx =1时,sinx +4sinx 取得最小值5,不符合题意, 对于D ,函数y =3x−1和y =log 2x 在[2,+∞)都是增函数,则y =3x−1+log 2x 在[2,+∞)是增函数,则3x−1+log 2x ≥32−1+log 22=4,当且仅当x =2时等号成立,符合题意, 故选:ABD .根据题意,依次分析选项中代数式的最小值,综合可得答案. 本题考查代数式的最值,涉及基本不等式的性质和应用,属于基础题.10.答案:{a <0b 2−4ac <0解析:解:二次不等式ax 2+bx +c <0的解集为R 则:二次函数的图象开口方向向下,并且y 与x 轴没有交点. 即:{a <0b 2−4ac <0故答案为:{a <0b 2−4ac <0首先利用一元二次不等式的解集为R ,从而确定二次函数的图象开口方向向下,并且y 与x 轴没有交点,进一步求出条件.本题考查的知识要点:一元二次不等式的解的情况,以及一元二次不等式与二次函数的关系.11.答案:4;2解析:解:设圆柱的底面半径r ,高h ,容积为v , 则v =πr 2ℎ,即有ℎ=vπr 2,用料为S =2πr 2+2πrℎ=2π(r 2+vπr ) =2π(r 2+v2πr +v2πr )≥2π⋅33r 2⋅v2πr ⋅v 2πr =6π⋅3v 24π2,当且仅当r2=v2πr ,即r=3v2π时S最小即用料最省.此时ℎ=vπr2=34vπ,∴ℎr=2,又由16π=πr2ℎ,解得ℎ=4,r=2.故答案为:4,2.设圆柱的底面半径r,高h容积为v,则v=πr2ℎ,ℎ=vπr2,要求用料最省即圆柱的表面积最小,由题意可得S=2πr2+2πrℎ,配凑基本不等式的形式,从而求最小值,从而可求高与底面半径之比,再由体积,即可得到所求.本题主要考查了基本不等式在最值求解中的应用,利用基本不等式的关键是要符合其形式,并且要注意验证等号成立的条件.12.答案:23解析:本题考查了基本不等式求最值,属于基础题.利用基本不等式求解即可.解:∵x,y∈R∗,∴4=2x+3y≥2√6xy,化为:xy≤23,当且仅当2x=3y=2时取等号,则xy的最大值为23.故答案为:23.13.答案:9解析:解:第一象限内的点A(a,b)在直线x+4y−1=0上,∴a+4b=1,a,b>0.则1a +1b=(a+4b)(1a+1b)=5+4ba+ab≥5+2√4ba×ab=9,当且仅当a=2b=13时取等号.故答案为:9.第一象限内的点A(a,b)在直线x+4y−1=0上,可得a+4b=1,a,b>0.再利用“乘1法”与基本不等式的性质即可得出.本题考查了“乘1法”与基本不等式的性质,属于基础题.14.答案:2解析:解:∵正项等比数列{a n}满足:a3=a2+2a1,∴q2−q−2=0,∴公比为q=2,∵等比数列{a n}中存在两项a m,a n,使得a m a n=64a12,a1≠0,∴2m+n−2=26,∴m+n=8.∴1m +9n=18(m+n)(1m+9n)=18(10+nm+9mn)≥18(10+6)=2,当且仅当n=3m=6时取等号.∴1m +9n的最小值为2.故答案为:2.求出公比为2,利用等比数列{a n}中存在两项a m,a n,使得a m a n=64a12,可得2m+n−2=26,化为m+n=8.再利用“乘1法”和基本不等式的性质即可得出.本题考查了等比数列的通项公式、“乘1法”和基本不等式的性质,考查了推理能力和计算能力,属于中档题.15.答案:证明:(1)∵a,b都是大于零的实数,∴a2b +b⩾2a,b2a+a⩾2b,两式相加得a2b +b2a≥a+b,当且仅当a=b时取等号.∴a2b +b2a≥a+b.(2)由(1)知a2⩾b(a+b−b2a )=ab+b2(a−b)a∵a>b,∴a2+ab3+1a(a−b)⩾ab+b2(a−b)a+ab3+1a(a−b)=(ab+ab3)+[b2(a−b)a+1a(a−b)]⩾2ab+2ba>4,当且仅当a=2,b=1时等号成立,∴a>b时,a2+ab3+1a(a−b)>4.解析:(1)根据a,b都是大于零的实数,利用基本不等式得到a2b +b⩾2a,b2a+a⩾2b,两式相加即可证明a2b +b2a≥a+b成立;(2)由(1)知a2⩾b(a+b−b2a )=ab+b2(a−b)a,然后结合a>b,利用基本不等式即可证明a2+ab3+1a(a−b)>4成立.本题考查了利用基本不等式和利用综合法证明不等式,考查了转化思想,属中档题.16.答案:解:(1)设展示框外框的长为xcm ,宽为ycm ,则内框长为(x −16)cm ,宽为(y −8)cm ,由题意x >16,y >8,因为内框的面积为3200cm 2,所以(x −16)(y −8)=3200,所以y =3200x−16+8,外框面积为S =xy =8x +3200x x−16=3328+8(x −16)+3200×16x−16,因为x >16,所以x −16>0,所以S ≥3328+2√8(x −16)×3200×16x−16=3328+1280=4608,当且仅当8(x −16)=16×3200x−16即x =96时等号成立,所以外框的长与宽分别是96cm ,48cm 时,才能使外框矩形面积最小;(2)由(1)可知,所用木条的总长度为4(x +y)=4(x +8+3200x−16)=4(x −16+3200x−16+24)≥4(2√3200+24)=96+320√2,当且仅当x −16=3200x−16即x =16+40√2,y =8+40√2时等号成立;所以外框的长与宽分别是(16+40√2)cm ,(8+40√2)cm 时,才能使制作整个展示框所用木条最少 解析:(1)设展示框外框的长为xcm ,宽为ycm ,则内框长为(x −16)cm ,宽为(y −8)cm ,利用x ,y 表示面积,列出面积表达式,变形,利用基本不等式求其最小值; (2)利用(1)得到木条的长度表达式,变形,结合基本不等式求最小值.本题考查了基本不等式在实践中的应用;关键是由题意列出面积和长度的不等式,凑出基本不等式的形式,利用基本不等式求最小值.17.答案:解:(1)要使函数有意义:则有{1−x >0x +3>0,解之得:−3<x <1,所以函数的定义域为:(−3,1),函数可化为f(x)=log a (1−x)(x +3)=log a (−x 2−2x +3), 由f(x)=0,得−x 2−2x +3=1, 即x 2+2x −2=0, 解得x =−1±√3, ∵x =−1±√3∈(−3,1),∴f(x)的零点是−1+√3和−1−√3; (2)函数可化为:f(x)=log a (1−x)(x +3) =log a (−x 2−2x +3)=log a [−(x +1)2+4],∵−3<x<1,∴0<−(x+1)2+4≤4,∵0<a<1,∴log a[−(x+1)2+4]≥log a4即f(x)min=log a4,由题知,log a4=−2,∴a−2=4∴a=1.2解析:本题主要考查了对数函数的性质以及函数的零点问题,灵活转化函数的形式是关键,属于中档题.(1)函数的零点也就是方程的解,解方程即可,需要判断所求的解在不在f(x)的定义域内;(2)根据对数函数是减函数,求出f(x)的最值,然后代入求解.。

经典均值不等式练习题

经典均值不等式练习题

均值不等式均值不等式又名基本不等式、均值定理、重要不等式。

是求范围问题最有利的工具之一,在形式上均值不等式比较简单,但是其变化多样、使用灵活。

尤其要注意它的使用条件(正、定、等)。

1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3. 均值不等式链:若b a 、都是正数,则2211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立。

(注:以上四个式子分别为:调和平均数、几何平均数、代数平均数、加权(平方)平均数)一、 基本技巧技巧1:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

技巧2:分离配凑例 求2710(1)1x x y x x ++=>-+的值域。

技巧3:利用函数单调性例求函数2y =的值域。

技巧4:整体代换例 已知0,0x y >>,且191x y+=,求x y +的最小值。

典型例题1. 若正实数X ,Y 满足2X+Y+6=XY , 则XY 的最小值是2. 已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则()cdb a 2+的最小值是( )A.0B.1C.2D. 43. 若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围为( )A.[)+∞,0B.[)+∞-,4C.[)+∞-,5D.[]4,4-4. 若直线2ax+by-2=0 (a,b ∈R +)平分圆x 2+y 2-2x-4y-6=0,则a 2+b1的最小值是( )A.1B.5C.42D.3+225. 已知x>0,y>0,x+2y+3xy=8,则x+2y 的最小值是.6. 已知,x y R +∈,且满足134x y +=,则xy 的最大值为.7. 设0,0.a b >>1133a b a b +与的等比中项,则的最小值为( ) A 8 B 4 C 1 D 148. 若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( ) A. 245 B. 285C.5D.6 9. 若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是(写出所有正确命题的编号).①1ab ≤; ②≤; ③ 222a b +≥; ④333a b +≥; ⑤112a b+≥ 10.设0a >b >,则()211a ab a a b ++-的最小值是( ) (A )1 (B )2 (C )3 (D )411.下列命题中正确的是A 、1y xx =+的最小值是2B 、2y =的最小值是2C 、423(0)y x x x =-->的最大值是2-D 、423(0)y x x x=-->的最小值是2-12. 若21x y +=,则24x y +的最小值是______。

人教版高一上学期数学(必修一)《2.2.4均值不等式及其应用》同步测试题及答案

人教版高一上学期数学(必修一)《2.2.4均值不等式及其应用》同步测试题及答案

人教版高一上学期数学(必修一)《2.2.4均值不等式及其应用》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________一、选择题 1.在不等式a+b2≥√ab 中,a ,b 需满足 ( )A .a>0,b>0B .a ≥0,b ≥0C .ab ≥0D .ab>02.已知x ,y 均为正数,且满足x+2y=4,则xy 的最大值为 ( )A .√2B .2C .2√2D .√33.若x>1,则y=x 2x -1的最小值为 ( ) A .3 B .-3 C .4 D .-44.已知a>0,若关于x 的不等式x+ax+1≥3在(-1,+∞)上恒成立,则a 的最小值为 ( )A .1B .2C .4D .85.下列函数中,最小值是2√2的是 ( ) A .y=x+2x B .y=x 3+1x3 C .y=x 2+2x 2+4 D .y=√x +√x6.[2023·广东佛山一中高一月考] 已知x>1,则x -1x 2-2x+4的最大值为 ( ) A .√36 B .12 C .√23 D .17.已知x>0,y>0,且x+2y=4,则(1+x )(1+2y )的最大值为 ( ) A .36B .4C .16D .98.(多选题)以下结论中正确的是 ( )A .y=x+1x的最小值为2B .当a>0,b>0时,1a +1b +2√ab ≥4 C .y=x (1-2x ),0<x<12的最大值为18D .当且仅当a ,b 均为正数时,a b +ba ≥2恒成立9.(多选题)[2023·江西抚州一中高一期中] 已知正数m ,n 满足2m+2n+5=mn ,则 ( )A .∀m ,n ∈(0,+∞),mn ≥25B.∀m,n∈(0,+∞),m+n≥10C.∃m,n∈(0,+∞),4m+n=20D.∃m,n∈(0,+∞),4m+n<25二、填空题★10.设x>0,y>0,x+y=2xy,则x+y的最小值为.11.已知不等式x+4x-2>m对任意x∈(2,+∞)恒成立,则实数m的取值范围为.12.[2023·浙江温州中学高一期末] 若x>0,y>1,则4yx +x3y-1的最小值为.三、解答题13.已知a>0,b>0,且a+b+ab=3.(1)求ab的取值范围;(2)求a+b的取值范围.14.(1)若x<3,求y=2x+1+1x-3的最大值.(2)已知x>0,求y=2xx2+1的最大值.15.规定a☉b=√ab+a+b(a,b为正实数).若1☉k=3,则k的值为,此时函数y=√x的最小值为.16.(1)已知0<x<32,求4x(3-2x)的最大值;(2)已知a>b>c,求(a-c)(1a-b +1b-c)的最小值.参考答案1.B[解析] 在均值不等式中,我们规定a>0,b>0,但当a=0,b=0时也满足a+b2≥√ab.故选B.2.B [解析] ∵x ,y 均为正数,x+2y=4,∴xy=12×2xy ≤12×(x+2y )24=2(当且仅当x=2y=2时等号成立).故选B .3.C [解析] ∵x>1,∴y=x 2x -1=x 2-1+1x -1=x+1+1x -1=x-1+1x -1+2≥2+2=4,当且仅当1x -1=x-1,即x=2时等号成立,∴y=x 2x -1的最小值为4.故选C .4.C [解析] 因为x>-1,所以x+1>0,所以x+a x+1=x+1+ax+1-1≥2√(x +1)·ax+1-1=2√a -1,当且仅当x+1=ax+1,即x=√a -1时取等号,所以x+ax+1的最小值为2√a -1.因为不等式x+ax+1≥3在(-1,+∞)上恒成立,所以2√a -1≥3,解得a ≥4,所以a 的最小值为4.故选C .5.D [解析] 对于A ,当x<0时,y=x+2x<0,故A 不符合题意;对于B ,当x<0时,y=x 3+1x3<0,故B 不符合题意;对于C ,当x=0时,y=x 2+2x 2+4=12,故C 不符合题意;对于D ,由均值不等式知y=√x +√x ≥2√√x ·√x=2√2(当且仅当x=2时取等号),故D 符合题意.故选D . 6.A [解析] 由x>1,得x-1>0,则x -1x 2-2x+4=x -1(x -1)2+3=1x -1+3x -1≤2√(x -1)·3x -1=√36,当且仅当x-1=3x -1,即x=1+√3时取等号,故x -1x 2-2x+4的最大值为√36.故选A .7.D [解析] 由题意得,(1+x )+(1+2y )=6,1+x>1,1+2y>1,所以(1+x )(1+2y )≤[(1+x )+(1+2y )2]2=9,当且仅当1+x=1+2y ,即x=2,y=1时取等号.故选D .8.BC [解析] 对于A ,当x<0时,y<0,故A 错误;对于B ,当a>0,b>0时,1a +1b+2√ab ≥2√1a ·1b +2√ab =√ab+2√ab ≥2·√√ab2√ab =4,当且仅当a=b=1时取到等号,故B 正确;对于C ,y=x (1-2x )=12×2x (1-2x )≤12(2x+1-2x 2)2=18,当且仅当x=14时取等号,故y 的最大值为18,故C 正确;对于D ,当a ,b 同号时,a b +ba≥2√a b ·ba=2,当且仅当a=b 时取等号,故D 错误.故选BC .9.ABD [解析] 由mn=2m+2n+5≥4√mn +5,得(√mn -5)(√mn +1)≥0,可得mn ≥25,当且仅当m=n=5时等号成立,故A 正确;由2m+2n+5=mn ≤(m+n )24,得(m+n-10)(m+n+2)≥0,可得m+n ≥10,当且仅当m=n=5时等号成立,故B 正确;显然m ≠2,则n=2m+5m -2=2+9m -2,m>2,所以4m+n=4m+9m -2+2=4(m-2)+9m -2+10≥2√4(m -2)·9m -2+10=22,当且仅当m=72,n=8时等号成立,故C 错误,D 正确.故选ABD .10.2 [解析] ∵x>0,y>0,x+y=2xy ,xy ≤(x+y 2)2,∴x+y ≤(x+y )22,∴x+y ≥2,当且仅当x=y=1时等号成立,故x+y 的最小值为2.[技巧点拨] 由含有两个变量的等式求这两个变量的和(或积)的最值,需要借助基本不等式消去积(或和),得到关于这两个变量的和(或积)的一元二次不等式,解这个不等式即可.11.(-∞,6) [解析] 因为x>2,所以x-2>0,所以x+4x -2=x-2+4x -2+2≥2√4+2=6,当且仅当x-2=4x -2,即x=4时等号成立,又不等式x+4x -2>m 对任意x ∈(2,+∞)恒成立,所以m<6,故实数m 的取值范围为(-∞,6). 12.8 [解析]4y x+x 3y -1=4(y -1)+4x+x 3y -1=4(y -1)x+x 3y -1+4x.因为4(y -1)x+x 3y -1≥2√4(y -1)x·x 3y -1=4x ,当且仅当4(y -1)x=x 3y -1,即2(y-1)=x 2时等号成立,4x+4x≥2√4x ·4x=8,当且仅当4x=4x,即x=1时等号成立,所以4y x+x3y -1≥8,当且仅当2(y-1)=x 2,x=1,即x=1,y=32时等号成立,所以4y x+x 3y -1的最小值为8.13.解:(1)因为a>0,b>0,且a+b+ab=3,所以a+b=3-ab ≥2√ab ,当且仅当a=b=1时取等号,可得0<√ab ≤1,所以0<ab ≤1,故ab 的取值范围是(0,1]. (2)因为a+b=3-ab ≥3-(a+b 2)2,当且仅当a=b=1时取等号,所以a+b ≥2,故a+b 的取值范围是[2,+∞).14.解:(1)因为x<3,所以3-x>0. y=2(x-3)+1x -3+7=-[2(3-x )+13-x]+7,由均值不等式可得2(3-x )+13-x≥2√2(3-x )·13-x=2√2当且仅当2(3-x )=13-x,即x=3-√22时,等号成立,所以-[2(3-x )+13-x]≤-2√2,所以y=-[2(3-x )+13-x]+7≤7-2√2,故y 的最大值是7-2√2. (2)因为x>0,所以y=2x x 2+1=2x+1x,又x+1x≥2√x ·1x=2,当且仅当x=1x,即x=1时,等号成立,所以0<y ≤22=1,故y 的最大值为1.15.1 3 [解析] 由题意得1☉k=√k +1+k=3,即k+√k -2=0,可得k=1,则y=√x =√x+x+1√x =1+√x +√x≥1+2=3,当且仅当√x =√x ,即x=1时,等号成立.综上可得,k=1,y=√x的最小值为3.16.解:(1)∵0<x<32,∴3-2x>0,∴4x (3-2x )=2[2x (3-2x )]≤2[2x+(3-2x )2]2=92,当且仅当2x=3-2x ,即x=34时,等号成立,∴4x (3-2x )(0<x <32)的最大值为92. (2)(a-c )(1a -b+1b -c)=(a-b+b-c )(1a -b +1b -c )=1+1+b -c a -b +a -b b -c .∵a>b>c ,∴a-b>0,b-c>0,∴2+b -c a -b +a -b b -c ≥2+2√b -c a -b ·a -bb -c =4,当且仅当a-b=b-c ,即2b=a+c 时取等号,∴(a-c )(1a -b +1b -c )的最小值为4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 均值不等式第二课时 优化训练1.若lg x +lg y =2,则 1x +1y的最小值是( )A.120B.15C.12D .2 解析:选B.由lg x +lg y =2得xy =100,且x >0,y >0,1x +1y≥21xy =15,当且仅当1x =1y,即x =y =10时“=”成立.2.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )A.3-1B.3+1 C .23+2 D .23-2解析:选D.若a ,b ,c >0且a (a +b +c )+bc =4-23,∴a 2+ab +ac +bc =4-23,4-23=a 2+ab +ac +bc =14(4a 2+4ab +4ac+2bc +2bc )≤14(4a 2+4ab +4ac +2bc +b 2+c 2),∴(23-2)2≤(2a+b +c )2,则2a +b +c ≥23-2.3.设tan x =3tan y (0<y <x <π2),则u =x -y 的最大值是( )A.π6B.π4C.π3D.π2解析:选A.这是一个和三角函数有关的最值问题,首先要根据三角函数和与差的公式,写出x -y 的一个函数关系式.tan(x -y )=tan x -tan y 1+tan x tan y =3tan y -tan y 1+3tan y tan y =2tan y 1+3tan 2y =21tan y +3tan y ≤223=33,而0<y <x <π2,所以0<x -y <π2.所以0<tan(x -y )≤33,所以x-y 的最大值为π6.4.设a ,b ,c ,d ∈R ,a 2+b 2=c 2+d 2=1,则abcd 的最大值等于________.解析:因为a 2+b 2=1≥2|ab |,c 2+d 2=1≥2|cd |,所以1≥4|abcd |,即abcd 的最大值为14.答案:145.已知x >1,求3x +4x -1+1的最小值.解:3x +4x -1+1=3(x -1)+4x -1+4≥23 x -1 ·4x -1+4=43+4,当3(x -1)=4x -1,即x =233+1时,等号成立.所以所求最小值为43+4.1.已知x >54,函数y =4x +14x -5的最小值为( )A .-3B .2C .5D .7解析:选D.∵x >54,∴4x -5>0,∴y =4x +14x -5=4x -5+14x -5+5≥2 4x -5 ·14x -5+5=7.当且仅当4x -5=14x -5,即x =32时,取等号.2.(2009年高考天津卷)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为( )A .8B .4C .1D.14解析:选B.由条件知3a ·3b =3,∴a +b =1, 1a +1b=(1a +1b )·1=(1a +1b )(a +b )=2+b a +a b ≥4,当且仅当b a =a b,即a =b =12时,取等号.3.下列不等式中恒成立的是( )A .cot θ+tan θ≥2B .x +2x≥2 2C.sin 2θ+3sin 2θ+2≥2 D.y x +xy≥2(xy >0) 解析:选D.若θ=135°时A 不成立;由于x +2x=x +1x+1x≥331=3,故B 不成立;由于sin 2θ+3sin 2θ+2=sin 2θ+2+1sin 2θ+2≥2,当sin 2θ+2=1sin 2θ+2时,sin 2θ=-1无解,故C 不恒成立;所以答案为D.4.设实数a ,b ,x ,y 满足a 2+b 2=1,x 2+y 2=3,则ax +by 的最大值是( )A .2 B. 3 C. 5 D.10解析:选B.容易想到如下解法:∵ax ≤a 2+x 22,by ≤b 2+y 22,∴ax +by ≤12(a 2+b 2+x 2+y 2)=2.故选A.但等号是在a =x ,b =y 下成立的,这与题设相矛盾.此题若能联系到sin 2x +cos 2x =1,便可利用三角换元来解.令a =cos θ,b =sin θ,x =3cos φ,y =3sin φ, 则ax +by =cos θ·3cos φ+sin θ·3sin φ =3cos(θ-φ)≤3,故选B.5.设M =(1a +1)(1b +1)(1c+1)且abc =1(其中a ,b ,c 均为正数),则M 的取值范围是( )A .[0,18)B .[18,1)C .[1,8)D .[8,+∞)解析:选 D.M =(1a +abc )(1b +abc )(1c+abc )≥2bc ·2ac ·2ab =8abc =8(当且仅当a =b =c =1时,等号成立).6.设a >b >0,那么a 2+1b a -b的最小值是( )A .2B .3C .4D .5解析:选C.由a >b >0,可知0<b (a -b )=a 24-(b -a 2)2≤14a 2,所以a 2+1b a -b ≥a 2+4a 2≥4,当且仅当a =2,b =22时等号成立.7.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析:∵ab =a +b +3≥2ab +3, ∴ab -2ab -3≥0,即(ab -3)(ab +1)≥0,∴ab -3≥0,即ab ≥3,∴ab ≥9. 答案:[9,+∞)8.(2011年苏州质检)若正数a ,b 满足a +b +1=ab ,则3a +2b 的最小值是________.解析:∵a +b +1=ab ,∴(a -1)(b -1)=2,∴3a +2b =5+3(a -1)+2(b -1)≥5+23×2 a -1 b -1 =5+4 3.当且仅当3(a -1)=2(b -1),即a =1+233,b =3+1时,等号成立.答案:5+4 39.已知a >0,b >0,a +b =1,则1a +1b的取值范围是__________.答案:[4,+∞)10.x ,y ,z ∈R +,x -2y +3z =0,求y2xz 的最小值.解:由x -2y +3z =0,得y =x +3z 2,代入y 2xz ,得x 2+9z 2+6xz4xz≥6xz +6xz 4xz=3,当且仅当x =3z 时,等号成立.∴y 2xz的最小值是3.11.如图,某村计划建造一个室内面积为800平方米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?解:设矩形蔬菜温室的一边长为x 米,则另一边长为800x米,因此种植蔬菜的区域的一边长为(x -4)米,另一边长为(800x-2)米,由⎩⎪⎨⎪⎧x -4>0800x -2>0,得4<x <400,所以其面积S =(x -4)·(800x-2)=808-(2x +3200x)≤808-22x ·3200x=808-160=648(m 2). 当且仅当2x =3200x,即x =40∈(4,400)时等号成立,因此当矩形温室的边长各为40米,20米时,蔬菜的种植面积最大,最大种植面积是648 m 2.12.如图所示,为处理含有某种杂质的污水,要制造一个下底宽为2 m 的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a m ,高度为b m ,已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60 m 2,问当a ,b 各为多少时,经沉淀后流出的水中该杂质的质量分数最小.(A ,B 孔的面积忽略不计)解:设流出的水中杂质的质量分数为y ,则y =kab,其中k 为比例系数(k >0).根据题意,得2×2b +2ab +2a =60(a >0,b >0),所以b =30-a2+a (0<a <30),所以y =k ab =k30a -a 22+a.令t =a +2,则a =t -2,从而30a -a 22+a =30 t -2 - t -2 2t=34t -t 2-64t =34-(t +64t ),所以y =k ab ≥k 34-2t ·64t=k18.当且仅当t =64t ,即a +2=64a +2时,取等号,所以a =6.由a =6可得b =3.综上所述,当a =6,b =3时,经沉淀后流出的水中杂质的质量分数最小.。

相关文档
最新文档