高中数学选修1,1《变化率与导数》教案
1.1 变化率与导数 导学案(教师版)
§1.1 变化率与导数 1.1.1 变化率问题 1.1.2 导数的概念内容要求 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程.2.了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.知识点1 函数的变化率定义实例平均变化率函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1,简记作:ΔyΔx①平均速度;②曲线割线的斜率瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率在Δx →0时的极限,即lim x ∆→f (x 0+Δx )-f (x 0)Δx =0lim x ∆→ΔyΔx①瞬时速度:物体在某一时刻的速度;②切线斜率 若一质点的运动方程为s =t 2+1,则在时间段[1,2]中的平均速度是________. 解析 v -=(22+1)-(12+1)2-1=3.答案 3知识点2 函数f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ΔyΔx =0lim x ∆→ f (x 0+Δx )-f (x 0)Δx称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→Δy Δx = 0limx ∆→f (x 0+Δx )-f (x 0)Δx .【预习评价】设f (x )=2x +1,则f ′(1)=________. 解析 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx =0lim x ∆→ [2(1+Δx )+1]-(2×1+1)Δx =2.答案 2题型一 平均变化率【例1】 已知函数h (x )=-4.9x 2+6.5x +10.(1)计算从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2;②1;③0.1;④0.01. (2)根据(1)中的计算,当Δx 越来越小时,函数h (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势? 解 (1)∵Δy =h (1+Δx )-h (1) =-4.9(Δx )2-3.3Δx , ∴ΔyΔx =-4.9Δx -3.3.①当Δx =2时,ΔyΔx =-4.9Δx -3.3=-13.1; ②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2; ③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79;④当Δx =0.01时,ΔyΔx =-4.9Δx -3.3=-3.349.(2)当Δx 越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3.规律方法 求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.【训练1】 求函数f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率,并求当x 0=2,Δx =0.1时平均变化率的值.解 函数f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为 f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=[3(x 0+Δx )2+2]-(3x 20+2)Δx=6x 0·Δx +3(Δx )2Δx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y =3x 2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.题型二 物体运动的瞬时速度【例2】 一辆汽车按规律s =2t 2+3(时间单位:s ,位移单位:m)做直线运动,求这辆汽车在t =2 s 时的瞬时速度.解 设在t =2 s 附近的时间增量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt )2.因为Δs Δt =8+2Δt ,0lim t ∆→ΔsΔt =0lim t ∆→(8+2Δt )=8,所以这辆汽车在t =2 s 时的瞬时速度为8 m/s.规律方法 求瞬时速度是利用平均速度“逐渐逼近”的方法得到的,其求解步骤如下:(1)由物体运动的位移s 与时间t 的函数关系式求出位移增量Δs =s (t 0+Δt )-s (t 0);(2)求时间t 0到t 0+Δt 之间的平均速度v -=ΔsΔt ,(3)求0lim t ∆→ΔsΔt 的值,即得t =t 0时的瞬时速度.【训练2】 一质点按规律s (t )=at 2+2t +1做直线运动(位移单位:m ,时间单位:s),若该质点在t =1 s 时的瞬时速度为4 m/s ,求常数a 的值. 解 ∵Δs =s (1+Δt )-s (1)=[a (1+Δt )2+2(1+Δt )+1]-(a +3) =a ·(Δt )2+(2a +2)·Δt , ∴ΔsΔt =a ·Δt +2a +2. 在t =1 s 时,瞬时速度为0limt ∆→ΔsΔt=2a +2,即2a +2=4,∴a =1.方向1 求函数在某点处的导数【例3-1】 求函数f (x )=3x 2-2x 在x =1处的导数. 解 ∵Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1) =3(Δx )2+4Δx ,∴Δy Δx =3(Δx )2+4Δx Δx=3Δx +4,∴y ′|x =1=0lim x ∆→ΔyΔx =0lim x ∆→(3Δx +4)=4.方向2 已知函数在某点处的导数求参数【例3-2】 已知函数y =ax -1x 在x =1处的导数为2,求a 的值.解∵Δy=a(1+Δx)-11+Δx-⎝⎛⎭⎪⎫a-11=aΔx+Δx1+Δx,∴ΔyΔx=aΔx+Δx1+ΔxΔx=a+11+Δx,∴limx∆→ΔyΔx=limx∆→⎝⎛⎭⎪⎫a+11+Δx=a+1=2,从而a=1.规律方法求一个函数y=f(x)在x=x0处的导数的步骤如下:(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=limx∆→ΔyΔx.【训练3】利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解由导数的定义知,函数在x=2处的导数f′(2)=limx∆→f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-3(-22+3×2)=-(Δx)2-Δx,于是f′(2)=limx∆→-(Δx)2-ΔxΔx=limx∆→(-Δx-1)=-1.课堂达标1.如果质点M按规律s=3+t2运动,则在时间段[2,2.1]中相应的平均速度是()A.4 B.4.1 C.0.41 D.3解析v-=(3+2.12)-(3+22)0.1=4.1.答案 B2.函数f (x )在x 0处可导,则0lim h ∆→f (x 0+h )-f (x 0)h ( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .与x 0,h 均无关 答案 B3.若质点A 按照规律s =3t 2运动,则在t =3时的瞬时速度为( ) A .6B .18C .54D .81解析 因为Δs Δt =3(3+Δt )2-3×32Δt=18Δt +3(Δt )2Δt =18+3Δt ,所以lim t ∆→ΔsΔt =18.答案 B4.若一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1.解析 Δs Δt =7(t +Δt )2+8-(7t 2+8)Δt=7Δt +14t ,当0lim t ∆→ (7Δt +14t )=14t =1时,t =114.答案 1145.已知函数f (x )=x ,则f ′(1)=________. 解析 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0lim x ∆→1+Δx -1Δx=0limx ∆→11+Δx +1=12.答案 12课堂小结利用导数定义求导数三步曲:(1)作差求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)作比求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限得导数f ′(x 0)=0lim x ∆→ΔyΔx .简记为一差、二比、三极限.基础过关1.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx 等于( ) A .4B .4xC .4+2ΔxD .4+2(Δx )2解析 Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2Δx=4+2Δx . 答案 C2.如图,函数y =f (x )在A ,B 两点间的平均变化率是( ) A .1 B .-1 C .2 D .-2解析 Δy Δx =f (3)-f (1)3-1=1-32=-1.答案 B3.如果某物体的运动方程为s =2(1-t 2) (s 的单位为m ,t 的单位为s),那么其在1.2 s 末的瞬时速度为( ) A .-4.8 m/s B .-0.88 m/s C .0.88 m/sD .4.8 m/s解析 物体在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得. 答案 A4.设f (x )=ax +4,若f ′(1)=2,则a 等于________. 解析 因为f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0lim x ∆→a (1+Δx )+4-a -4Δx =a ,所以f ′(1)=a =2. 答案 25.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是________.解析 v 初=s ′|t =0=0lim t ∆→s (0+Δt )-s (0)Δt=0lim t ∆→ (3-Δt )=3.答案 36.求函数y =2x 2+4x 在x =3处的导数. 解 Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx ,∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16.∴y ′|x =3=0lim x ∆→ΔyΔx =0lim x ∆→ (2Δx +16)=16.7.已知f (x )=x 2,g (x )=x 3,求满足f ′(x )+2=g ′(x )的x 的值. 解 由导数的定义知,f ′(x )=0lim x ∆→(x +Δx )2-x 2Δx =2x ,g ′(x )=0lim x ∆→(x +Δx )3-x 3Δx =3x 2.∵f ′(x )+2=g ′(x ),∴2x +2=3x 2, 即3x 2-2x -2=0, 解得x =1-73或x =1+73.能力提升8.设f (x )为可导函数,且满足0lim x →f (1)-f (1-2x )2x =-1,则f ′(1)为( )A .1B .-1C .2D .-2解析 令x →0,则Δx =1-(1-2x )=2x →0,所以 0lim x → f (1)-f (1-2x )2x =0lim x ∆→f (1)-f (1-Δx )Δx=f ′(1)=-1. 答案 B9.设函数f (x )可导,则0lim x ∆→f (1+Δx )-f (1)3Δx 等于( )A .f ′(1)B .3f ′(1) C.13f ′(1)D .f ′(3)解析 根据导数的定义,得 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx ,所以0lim x ∆→f (1+Δx )-f (1)3Δx =13f ′(1),故选C. 答案 C10.过曲线y =x 2+1上两点P (1,2)和Q (1+Δx ,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率k =________,当Δx =0.001时,割线的斜率k =________.解析 ∵Δy =(1+Δx )2+1-(12+1) =2Δx +(Δx )2,∴ΔyΔx =2+Δx , ∴割线斜率为2+Δx .当Δx =0.1时,割线PQ 的斜率k =2+0.1=2.1. 当Δx =0.001时,割线PQ 的斜率k =2+0.001=2.001. 答案 2.1 2.00111.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 解析 由导数的定义,得f ′(0)=0lim x ∆→f (Δx )-f (0)Δx=0lim x ∆→a (Δx )2+b (Δx )+c -cΔx =0lim x ∆→[a ·(Δx )+b ]=b >0.又⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0,a >0,∴ac ≥b 24,∴c >0. ∴f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2b b =2.当且仅当a =c =|b |2时等号成立. 答案 212.一质点M 按规律s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值. 解 因为Δs =s (2+Δt )-s (2) =a (2+Δt )2+1-a ·22-1 =4a Δt +a (Δt )2,所以Δs Δt =4a +a Δt .所以当t =2时,质点M 的瞬时速度为0lim t ∆→Δs Δt =4a , 即4a =8,所以a =2.创新突破13.用导数的定义求函数y =f (x )=1x 在x =1处的导数. 解 ∵Δy =f (1+Δx )-f (1) =11+Δx -11=1-1+Δx 1+Δx =-Δx1+Δx ·(1+1+Δx ), ∴Δy Δx =-11+Δx ·(1+1+Δx ), ∴0lim x ∆→Δy Δx =0lim x ∆→-11+Δx ·(1+1+Δx ) =-11+0×(1+1+0)=-12,∴y ′|x =1=f ′(1)=-12.。
高中数学变化率与导数精品教学设计
变化率与导数教学设计一、内容与内容解析变化是自然界的普遍现象,丰富多彩的变化问题随处可见。
函数是描述运动变化规律的重要工具。
如何定量刻画千变万化的变化现象,是数学研究的重要课题。
17世纪创立的微积分就源于研究运动物体的变化规律,它是数学发展中的里程碑。
本节课的核心内容是平均变化率和瞬时变化率。
这是微积分中的两个核心概念,有着极其丰富的实际背景和广泛的应用。
对于宏观地描述一个简单的变化过程,可以利用平均变化率的这个指标,但是随着对变化问题研究的深入和细化,用平均变化率已经不足刻画一个较复杂的变化问题,需要引进瞬时变化率的概念。
由平均变化率的概念拓展至瞬时变化率的概念,这不是两个平行概念间的迁移,而是在原有概念基础上的质的飞跃。
如果说平均变化率是静态的概念,那么瞬时变化率则是一个动态的概念。
其蕴涵的无限分割的微分的思想,无限逼近的极限的思想是两个极为重要的数学思想。
因此本节课的重点是理解瞬时变化率的概念,学会用瞬时变化率来“度量”变化过程。
二、目标与目标解析抽象的数学往往都具有丰富的实践背景,变化率概念的形成和发展也不例外。
课堂教学需要再现数学概念的形成与发展过程,让学生体会数学的重要思想和丰富内涵,感受数学工具在解决实际问题的作用,使学生认识到数学概念的形成也是人的思想的自然合理、符合逻辑的发展过程。
因此确定本节课的教学目标为:1.从具体案例中,发现平均变化率是在刻画变化规律中过程的重要指标作用和局限性。
2.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,激发学生求变、求新的学习热情。
3.自然合理地形成微分、逼近、极限等数学观点,体会微积分的思想及其内涵,理解导数就是瞬时变化率。
三、教学问题诊断分析函数是刻画运动变化的重要数学模型,函数的图象与性质是学生定性分析变化现象的重要认知基础。
或许学生能够从函数图象上感受函数变化的快与慢。
但学生往往缺乏从定量和抽象的层面去分析数学问题本质的习惯与能力。
高中数学选修1-1教学设计-变化率问题+导数的概念
3.1 变化率与导数3.1.1 变化率问题3.1.2 导数的概念1.理解函数在某点附近的平均变化率.(重点)2.了解导数的概念并会求函数在某点处的导数.(难点)3.了解平均变化率与瞬时变化率的关系.(易错点)[基础·初探]教材整理1 变化率问题阅读教材P72~P74“思考”部分,完成下列问题.函数的变化率函数y=f(x)从x1到x2的平均变化率(1)定义式:ΔyΔx=f x2-f x1x2-x1.(2)实质:函数值的改变量与自变量的改变量之比.(3)作用:刻画函数值在区间[x1,x2]上变化的快慢.判断(正确的打“√”,错误的打“×”)(1)Δx表示x2-x1是相对于x1的一个增量,Δx可以为零.( )(2)Δy表示f(x2)-f(x1),Δy的值可正可负也可以为零.( )(3)ΔyΔx表示曲线y=f(x)上两点(x1,f(x1)),(x2,f(x2))连线的斜率.( )【答案】(1)×(2)√(3)√教材整理2 导数的概念阅读教材P74导数的概念~P75例1以上部分,完成下列问题.1.函数y =f (x )在x =x 0处的瞬时变化率(1)定义式:lim Δx →0 Δy Δx =lim Δx →0f x 0+Δx -f x 0Δx .(2)实质:瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值.(3)作用:刻画函数在某一点处变化的快慢. 2.函数f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f x 0+Δx -f x 0Δx .判断(正确的打“√”,错误的打“×”)(1)函数y =f (x )在x =x 0处的导数值与Δx 值的正、负无关.( ) (2)瞬时变化率是刻画某函数值在区间[x 1,x 2]上变化快慢的物理量.( ) (3)在导数的定义中,Δx ,Δy 都不可能为零.( ) (4)函数f (x )=x 在x =0处的瞬时变化率为0.( ) 【答案】 (1)√ (2)× (3)× (4)×[小组合作型]平均变化率(1)函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为______,当x 0=2,Δx =0.1时平均变化率的值为________.(2)已知函数f (x )=-x 2+x 的图象上的一点A (-1,-2)及临近一点B (-1+Δx ,-2+Δy ),则ΔyΔx=________.【自主解答】 (1)函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为f x0+Δx -f x 0x 0+Δx -x 0=x 0+Δx 2+2]-x 20+Δx=6x 0·Δx +Δx 2Δx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y=3x2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.(2)∵Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)-[-(-1)2+(-1)]=-(Δx)2+3Δx,∴ΔyΔx=-Δx2+3ΔxΔx=-Δx+3.【答案】(1)6x0+3Δx12.3 (2)-Δx+3求平均变化率的主要步骤1.计算函数值的改变量Δy=f(x2)-f(x1).2.计算自变量的改变量Δx=x2-x1.3.得平均变化率ΔyΔx=f x2-f x1x2-x1.[再练一题]1.求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx都为13,在哪一点附近平均变化率最大?【导学号:97792034】【解】在x=1附近的平均变化率为:k 1=f+Δx-fΔx=+Δx2-1Δx=2+Δx;在x=2附近的平均变化率为:k 2=f+Δx-fΔx=+Δx2-22Δx=4+Δx;在x=3附近的平均变化率为:k 3=f+Δx-fΔx=+Δx2-32Δx=6+Δx.若Δx=1 3,则k1=2+13=73,k2=4+13=133,k 3=6+13=193.由于k1<k2<k3,故在x=3附近的平均变化率最大.若一物体的运动方程为s =⎩⎨+t -2,0≤3t 2+2,t ≥3(路程单位:m ,时间单位:s).求:(1)物体在t =3 s 到t =5 s 这段时间内的平均速度; (2)物体在t =1 s 时的瞬时速度. 【精彩点拨】根据问题选择对应的函数解析式→根据平均速度和瞬时速度的概念求解 【自主解答】 (1)因为Δs =3×52+2-(3×32+2)=48(m),Δt =2 s ,所以物体在t =3 s 到t =5 s 这段时间内的平均速度为Δs Δt =482=24(m/s).(2)因为Δs =29+3[(1+Δt )-3]2-29-3×(1-3)2=[3(Δt )2-12Δt ](m),所以Δs Δt =Δt 2-12Δt Δt=(3Δt -12)(m/s),则物体在t =1 s 时的瞬时速度为lim Δt →0 ΔsΔt =lim Δt →0(3Δt -12)=-12(m/s).求物体瞬时速度的步骤1.设非匀速直线运动的规律s =s (t ).2.求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0).3.求平均速率v =ΔsΔt.4.计算瞬时速率:当Δt →0时,ΔsΔt→v (常数).[再练一题]2.质点M 按规律s =2t 2+3作直线运动(位移单位:cm ,时间单位:s).求质点M 在t =2时的瞬时速度以及在[1,3]上的平均速度.【解】 v =lim Δt →0s +Δt -sΔt=lim Δt →0+Δt 2-2×22Δt=lim Δt →0(2Δt +8)=8(cm/s),v =s 3-s 13-1=2×32+3-2×12+32=8(cm/s).[探究共研型]探究导数或瞬时变化率反映函数变化的什么特征?【提示】导数可以反映函数在一点处变化的快慢程度.(1)求函数y=x在x=1处的导数;(2)求函数y=x2+ax+b在x处(a,b为常数)的导数.【精彩点拨】本题求函数的导数,可以按照“求导数的三步曲”来求解. 【自主解答】(1)Δy=1+Δx-1,Δy Δx =1+Δx-1Δx=11+Δx+1,lim Δx→011+Δx+1=12,∴y′|x=1=1 2 .(2)Δy=[(x+Δx)2+a(x+Δx)+b]-(x2+ax+b)=2x·Δx+(Δx)2+a·Δx=(2x+a)·Δx+(Δx)2,Δy Δx =x+aΔx+Δx2Δx=(2x+a)+Δx,lim Δx→0ΔyΔx=limΔx→0(2x+a+Δx)=2x+a,∴f′(x)=2x+a.1.求函数f(x)在某点处导数的步骤与求瞬时变化率的步骤相同,简称:一差、二比、三极限.2.利用定义求函数y=f(x)在点x0处的导数的两个注意点:(1)在求平均变化率ΔyΔx时,要注意对ΔyΔx的变形与约分,变形不彻底可能导致limΔx→0ΔyΔx不存在;(2)当对ΔyΔx取极限时,一定要把ΔyΔx变形到当Δx→0时,分母是一个非零常数的形式.[再练一题]3.求函数y=x-1x在x=1处的导数.【导学号:97792035】【解】∵Δy=(1+Δx)-11+Δx-⎝⎛⎭⎪⎫1-11=Δx+Δx1+Δx,∴ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.当Δx→0时,ΔyΔx→2,∴f′(1)=2,即函数y=x-1x在x=1处的导数为2.1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44【解析】∵x=2,Δx=0.1,∴Δy=f(x+Δx)-f(x)=f(2.1)-f(2)=(2.12+1)-(22+1)=0.41.【答案】 B2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则( )A.f′(x)=aB.f′(x)=bC.f′(x0)=aD.f′(x0)=b【解析】ΔyΔx=f x+Δx-f x0Δx=a+b·Δx,f′(x)=limΔx→0ΔyΔx=limΔx→0(a+b·Δx)=a.【答案】 C3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为__________. 【解析】s(2+Δt)-s(2)=2(2+Δt)2-2×22=2(Δt)2+8Δt.∴limΔt→0s+Δt-sΔt=limΔt→0Δt2+8ΔtΔt=limΔt→0(2Δt+8)=8.【答案】84.设f(x)=ax+4,若f′(1)=2,则a=________.【解析】f′(1)=limΔx→0f+Δx-fΔx=limΔx→0a+Δx+4-a+Δx=a,又∵f′(1)=2,∴a=2.【答案】 25.求函数y=2x2+4x在x=3处的导数.【解】Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)=2(Δx)2+16Δx,∴ΔyΔx=Δx2+16ΔxΔx=2Δx+16.y′|x=3=limΔx→0ΔyΔx=limΔx→0(2Δx+16)=16.。
北师大版高中数学(选修1-1)《第三章变化率与导数》word教案
=f (x +∆x )-f (x )第三章 变化率和导数 3.1.1 瞬时变化率—导数教学目标:(1)理解并掌握曲线在某一点处的切线的概念(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度(3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的 定义及其几何意义,培养学生转化问题的能力及数形结合思想教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的 运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是 方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我 们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景一、复习引入1、什么叫做平均变化率;2、曲线上两点的连线(割线)的斜率与函数 f(x)在区间[x A ,x B ]上的平均变化率3、如何精确地刻画曲线上某一点处的变化趋势呢?下面我们来看一个动画。
从这个动画可以看出,随着点P 沿曲线向点 Q 运动,随着点 P 无限逼近点 Q 时,则割线的斜率就会无限逼近曲线在点 Q 处的切线的斜率。
所以我们可以用 Q 点处的切线的斜率来刻画曲线在点 Q 处的变化趋势 二、新课讲解1、曲线上一点处的切线斜率不妨设 P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线 PQ 的斜率为 k PQ =f ( x ) - f ( x )1 0 x - x1 0,设 x 1-x 0△= x ,则 x 1 △= x +x 0,∴ k PQ =f ( x + ∆x ) - f ( x )0 0 ∆x当点 P 沿着曲线向点 Q 无限靠近时,割线 PQ 的斜率就会无限逼近点 Q 处切线斜率,即当 △x 无限趋近于 0 时, k0 0∆x无限趋近点 Q 处切线斜率。
2、曲线上任一点(x 0,f(x 0))切线斜率的求法:k = f ( x 0 +∆x ) - f ( x 0 )∆x,当 △x 无限趋近于 0 时,k 值即为(x 0,f(x 0))处切线的斜率。
高中数学选修1-1《变化率问题》教案
人教版选修1-1第三章导数及其应用P72—74t (d)2030342102030A (1, 3.5)B (32, 18.6)C (34, 33.4)T (℃)210教材分析本节课是导数的起始课,教材从变化率问题开始,引入平均变化率的概念,并用平均变化率探求瞬时变化率,然后,从数学上给予变化率在数量上的精确描述,即导数。
这样处理符合学生的认知规律,使学生的导数学习有了生长点,因此函数平均变化率教学的成败,直接决定导数概念的学习与理解。
二、教学目标分析1、知识与技能:理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。
2、过程与方法:感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。
3、情感态度与价值观:体会平均变化率的思想及内涵,使学生逐渐掌握数学研究的基本思考方式和方法,培养学生互相合作的风格以及勇于探究、积极思考的学习精神。
三、重点与难点分析:根据新课程标准及对教材的分析,确定本节课重难点如下:重点:平均变化率的实际意义和数学意义难点:平均变化率概念的理解和运用四、学情分析1、有利因素:高二学生个性活泼、思维活跃、积极性高,已具有对数学问题进行合理探究的意志与能力。
2、不利因素:学生两极分化开始形成,学生个体差异比较明显。
五、教法学法根据对教材、重难点、目标及学生情况的分析,本着教法为学法服务的宗旨,确定以下教法、学法:探究发现式教学法、类比学习法,并利用多媒体辅助教学。
遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。
依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
六、教学过程设计(一)创设情景、激发热情[情境1]:法国《队报》网站的文章称刘翔以不可思议的速度统治了赛场。
2019-2020年高中数学《变化率与导数》教案1 新人教A版选修1-1
2019-2020年高中数学《变化率与导数》教案1 新人教A版选修1-1 [教学目的]1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义;2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法3.在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。
[教学重点和难点]导数的概念是本节的重点和难点[教学方法]讲授启发,自学演练。
[授课类型]:新授课[课时安排]:1课时[教具]:多媒体、实物投影仪[教学过程]一、复习提问(导数定义的引入)1.什么叫瞬时速度?(非匀速直线运动的物体在某一时刻t0的速度)2.怎样求非匀速直线运动在某一时刻t0的速度?在高台跳水运动中,如果我们知道运动员相对于水面的高度(单位:)与起跳后的时间(单位:)存在关系,那么我们就会计算任意一段的平均速度,通过平均速度来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少?(2)新课我们现在会算任意一段的平均速度,先来观察一下2秒附近的情况。
先计算2秒之前的时间段内的平均速度,请同学们完成表格1左边部分,(事先准备好的),再完成表格的右边部分〉表格1问题:1你能描述一下你算得的这些数据的变化规律吗?(表格2)关于这些数据,下面的判断对吗?2.当趋近于0时,即无论从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近于一个确定的值-13.1。
3. 靠近-13.1且比-13.1大的任何一个数都可以是某一段上的平均速度;4. 靠近-13.1且比-13.1小的任何一个数都可以是某一段上的平均速度;5. -13.1表示在2秒附近,运动员的速度大约是-13.1。
分析:秒时有一个确定的速度,2秒附近的任何一段上的平均速度都不等于瞬时速度,所以比-13.1大的数作为2秒的瞬时速度不合理,比-13.1小的数作为2秒的瞬时速度也不合理,因此,运动员在2秒时的瞬时速度是-13.1。
高中数学选修1,1《变化率与导数》教案
高中数学选修1,1《变化率与导数》教案高中数学选修1-1《变化率与导数》教案【一】一、内容和内容解析本节内容选自课标实验教材人教A版,是导数的起始课,主要内容有变化率问题和导数的概念。
导数是微积分中的核心概念,它有极其丰富的实际背景和广泛的应用。
在本章的学习中,学生将学习导数的有关知识,体会其中蕴含的思想方法,感受其在解决实际问题中的作用,了解微积分的文化价值。
大纲教材中导数概念学习的起点是极限,这种建立概念的方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质理解。
课标教材则不介绍极限的形式化定义及相关知识,而是通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),这种直观形象的方法中蕴含了逼近的思想,这样定义导数的优点是:1.使学生将更多精力放在导数本质的理解上;2.学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义.基于上述分析,本节课的教学重点是:丰富学生的感性经验,运用逼近的思想方法引导学生探索理解导数的思想及内涵。
二、目标和目标解析1.通过分析实例,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;2.通过动手计算培养学生观察、分析、比较和抽象概括的能力,体会逼近的思想方法;3.经历从生活中的变化率问题抽象概括出平均变化率的过程,体会数学知识来源于生活,又服务于生活。
通过概念的形成过程体会从特殊到一般的数学思想方法。
三、教学问题诊断分析1.吹气球是很多人具有的生活经验,运动速度是学生非常熟悉的物理知识,但是如何从具体实例中抽象出共同的数学问题的本质是本节课教学的关键之一。
对于吹气球问题要用函数的观点分析变化过程中的自变量和函数值,自然地引导学生建立半径r关于体积V的函数关系式;在吹气过程中要注意观察或者想象,并把实际操作转化为相应的数学语言,比如当吹入差不多大小相同的一口气时,是指气球的体积的增量相同等。
高中数学教学课例《变化率与导数》课程思政核心素养教学设计及总结反思
学科
高中数学
教学课例名
《变化率与导数》
称
本节是选修 1-1 第三章导数及其应用的第一节,本
节的内容概念性很强。本节的重难点是 教材分析
重点:理解平均变化率,瞬时变化率,导数的概念
难点:导数概念的理解
1、了解导数概念的实际背景
教学目标
2、会求函数在某一点附近的平均变化率
3、会利用导数的定义求函数在某点处的导数
学生学习能
学生的基础都很差,通过组内探究找出困惑,各个
力分析 小组分别分析,老师做总结。
先从学生的认知角度出发,通过简单的图像了解到 教学策略选
其变化率,让学生了解变化率,从而得出导数的概念。 择与设计
先从一般抽象出来,得到导数的概念。
通过对函数图像的研究,了解到其变化率,最先感
受图形的变化,让学生认识到变化率,得出自变量的增 教学过程
量与函数值的增量的比值是平均变化率。当自变量的增
量趋近于零时,得出瞬时变化率。从而得出导数的概念。
课例研究综
因为我们学生的基础相当糟糕,所以在讲解过程
述
Байду номын сангаас
中,讲解很慢,在讲解过程中我发现学生对这种抽象的
概念很难理解。应该给他们足够多的时间去消化,而且
对后面的求到公式很重要。
我在本节课中也有很多的不足,知识的把握程度不
够,综合能力较弱,为了更好的提升自己和给学生更深
的理解,我会更加努力认真上好每一节课
变化率与导数教案
变化率与导数教案一、教学目标:1.理解变化率的概念,知道变化率可以用来描述函数在一些点的瞬时变化。
2.掌握求函数在一些点的瞬时变化率的方法,可以利用导数求变化率。
3.理解导数的概念,认识导数是函数变化率的极限。
4.掌握求函数导数的方法,可以通过“导函数”公式或者导数的定义求函数的导数。
5.掌握利用导数求函数的极值、切线以及函数的增减性。
二、教学重难点:1.掌握求函数在一些点的瞬时变化率的方法,可以利用导数求变化率。
2.掌握求函数导数的方法,可以通过“导函数”公式或者导数的定义求函数的导数。
3.掌握利用导数求函数的极值、切线以及函数的增减性。
三、教学准备:1.教学课件、电子白板2.笔记本电脑、投影仪3.相关教学素材:函数的图像、求导公式。
四、教学过程:步骤一:导入与引入1.导入:通过呈现一个问题引入本节课的主题:“小明骑自行车从家到学校的距离是10公里,他用了1小时到达。
那么,小明在哪个位置的时候速度最快?”引导学生思考问题。
2.引入:让学生想一想在一小时内的任何时刻骑车的速度都是一样的吗?为什么?引导学生思考速度是如何变化的。
这种速度的变化可以用什么来描述?步骤二:引导学生理解变化率1.提问:让学生思考如果小明家到学校的距离是20公里,他用了1小时到达,那么小明在哪个位置的时候速度最快?在哪个位置的时候速度最慢?2.学生合作讨论,教师介绍:引导学生思考速度变化率的概念,说明速度变化率可以反映速度的变化情况。
如果速度变化率是正值,说明速度在增加;如果速度变化率是负值,说明速度在减小;如果速度变化率是零,说明速度保持不变。
3.举例说明:通过一个具体的例子,如小明每隔10分钟记录下自行车的位置,并计算出速度变化率。
通过计算结果展示速度是如何变化的。
步骤三:引导学生理解导数1.导入:提问学生,是否可以通过计算出速度变化率来确定速度在一些位置的变化情况?2.导入定义:引导学生理解导数的概念,导数是函数的变化率的极限。
数学选修《变化率与导数》高中教案
数学选修《变化率与导数》高中教案数学选修《变化率与导数》高中教案数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。
它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。
下面是整理的有关数学选修《变化率与导数》高中教案。
高中数学选修1-1《变化率与导数》教案1教学准备1.教学目标(1)理解平均变化率的概念.(2)了解瞬时速度、瞬时变化率、的概念.(3)理解导数的概念(4)会求函数在某点的导数或瞬时变化率.2.教学重点/难点教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成和理解教学难点:会求简单函数y=f(x)在x=x0处的导数3.教学用具多媒体、板书4.标签教学过程一、创设情景、引入课题【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。
【板演/PPT】【师】人们发现在高台跳水运动中,运动员相对于水面的高度h (单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?【板演/PPT】让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。
【设计意图】自然进入课题内容。
二、新知探究[1]变化率问题【合作探究】探究1气球膨胀率【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是如果将半径r表示为体积V的函数,那么【板演/PPT】【活动】【分析】当V从0增加到1时,气球半径增加了气球的平均膨胀率为(1)当V从1增加到2时,气球半径增加了气球的平均膨胀率为0.620.16可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少?解析:探究2高台跳水【师】在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?(请计算)【板演/PPT】【生】学生举手回答【活动】学生觉得问题有价值,具有挑战性,迫切想知道解决问题的方法。
人教课标版高中数学选修1-1《变化率与导数(第1课时)》教案-新版
3.1.1 变化率与导数第一课时一、教学目标 1.核心素养:通过了解平均变化率,培养学生的数学抽象和运算能力. 2.学习目标(1)理解平均变化率的概念. (2)了解平均变化率的几何意义. (3)会求函数在某点处附近的平均变化率. 3.学习重点平均变化率的概念、函数在某点处附近的平均变化率. 4.学习难点 平均变化率的概念. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P72—P74,思考:什么是平均变化率?计算平均变化率的步骤有哪些?平均变化率有怎样的几何意义? 2.预习自测1.在平均变化率的定义中,自变量的增量x ∆满足( ) A.0x ∆> B.0x ∆< C.0x ∆= D.0x ∆≠ 解:D2.下列各式中,不能表示平均变化率的是( ) A.yx ∆∆ B.1212()()f x f x x x -- C.11()()f x x f x x +∆-∆ D.1221()()f x f x x x --解:D(二)课堂设计 1.知识回顾(1)sv t=,即速度等于路程变化量除以时间变化量.(2)1212y y k x x -=-,即直线的斜率等于直线上两点纵坐标之差除以横坐标之差.2.问题探究问题探究一 ●活动一 分析实例 想一想:(1)气球在吹起过程中,随着吹入气体的增加,它的膨胀速度有何变化? (2)你认为膨胀速度与哪些量有关系? (3)球的体积公式是什么?有哪些基本量?(4)结合球的体积公式,试用两个变量之间的关系来表述气球的膨胀率问题?总结:可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=,如果将半径r 表示为体积V 的函数,那么343)(πV V r =. 分析:对于343)(πV V r =, (1)当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈-,气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--(2)当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-,气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 想一想:当空气容量从1V 增加到2V 时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系2() 4.9 6.510h t t t =-++.想一想:如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度. 在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=.●活动二 探索新知上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数()f x 从1x 到2x 的平均变化率,若设12x x x -=∆,)()(12x f x f f -=∆ (这里x ∆看作是对于1x 的一个“增量”可用1x +x ∆代替2x ,同样)()(12x f x f y f -=∆=∆),则平均变化率为=∆∆=∆∆x fx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212. 问题探究二 平均变化率有怎样的几何意义? ●活动一 观察结构,得出结论 平均变化率=∆∆x f 1212)()(x x x f x f --表示函数()y f x =图像上两点11(,())x f x ,22(,())x f x 连线的斜率.问题探究三 如何计算函数在某点附近的平均变化率?●活动一 初步运用,计算平均变化率例1 物体的运动方程是23s t =+,则在一小段时间[2,2.1]内相应的平均速度为( ) A.0.41 B.3 C.4 D.4.1 【知识点:平均变化率】详解:平均速度为22(3 2.1)(32)4.12.12s t ∆+-+==∆-,答案选D.●活动二 结合图形,深化运用例2 现有重庆市某年3月和4月某天日最高气温记载.观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:思考1:“气温陡增”是一句生活用语,若从数学角度描述,那该如何描述? 2:如何从数学角度说明曲线上升的陡峭程度?温度T (℃时间t (d )【知识点:平均变化率;数学思想:数形结合】详解:(1)“气温陡降”从数学角度是指在相应时间内,气温的平均变化率很大. (2)从A 到B ,平均变化率为18.6 3.50.49321-≈-;从B 到C ,平均变化率为33.418.67.43432-=-点拨:关于平均变化率计算的问题,关键是准确算出各自的变化量. 3.课堂总结 【知识梳理】 平均变化率=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212. 【重难点突破】x ∆表示横坐标的变化量,可以为正数,也可以是负数,但不能为0. 4.随堂检测1.物体的运动方程是22s t =,则从2s 到3s 这段时间内路程的增量为( ) A.18 B.8 C.10 D.12 【知识点:平均变化率】 解:B2.某质点A 沿直线运动的方程为221y x =-+,则该质点从t =1到t =2时的平均速度为( ) A.-4 B.-8 C.-6 D.6 【知识点:平均变化率】 解:C3.已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3];(2)[-2,-1];(3)[-1,2];(4)[5,10] 【知识点:平均变化率】解:(1)(3)(1)431y f f x ∆-==∆-;(2)(2)(1)31y f f x ∆---==-∆-;(3)(2)(1)13y f f x ∆--==∆(4)(10)(5)155y f f x ∆-==∆. 4.某婴儿从出生到第12个月的体重变化如右图所示,试分别计算从出生到第3个月以及第6个月到第12个月该婴儿体重的平均变化率. 【知识点:平均变化率;数学思想:数形结合】 解:11(3)(0)13y f f x ∆-==∆;22(12)(6)0.46y f f x ∆-==∆. (三)课后作业 基础型 自主突破1.在平均变化率的定义中,自变量的增量满足( )A.0x ∆>B.0x ∆<C.0x ∆=D.0x ∆≠ 【知识点:平均变化率】 解:D2.物体的运动规律是()s s t =,物体在t 至t t +∆这段时间内的平均速度是( )A._st v t = B._s t v t ∆=∆ C._s v t ∆=∆ D.0t ∆→时,_s t v t ∆=∆解:C【知识点:平均变化率】 能力型 师生共研3.水经过水管从容器甲中流向容器乙,t s 后容器甲中水的体积0.1()52t V t -=⨯(单位:3cm ),计算第一个10s 内的平均变化率. 【知识点:平均变化率】 解:(10)(0)1104y v v x ∆-==-∆. 4.已知函数()21f x x =+,g()2x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及g()x 的平均变化率.【知识点:平均变化率】解:在[-3-1],上,(-1)(-3)22f f f x ∆-==∆;(-1)(-3)22g g g x ∆-==-∆; 在[05],上,(5)(0)25f f f x ∆-==∆;(5)(0)25g g g x ∆-==-∆. 探究型 多维突破5.已知函数2()f x x x =-+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 【知识点:平均变化率】 解:-3x ∆+∵222(1)(1)32y x x x x -+∆=--+∆+-+∆=-∆+∆-,∴=∆∆xy-3x ∆+. 6.过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,则当0.1x ∆=时割线的斜率为 .【知识点:平均变化率】 解:3.311.3311(1.1,1.331), 3.310.1y Q k x ∆-===∆. (四)自助餐1.在平均变化率的定义中,自变量的增量x ∆是( ) A.0x ∆> B.0x ∆< C.0x ∆≠ D.0x ∆= 【知识点:平均变化率】 解:C2.设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆是( ) A.()0f x x +∆ B.()0f x x +∆ C.()0f x x ⋅∆ D.()()00f x x f x +∆- 【知识点:平均变化率】 解:D3.已知函数()224f x x =-的图象上一点()1,2-及附近一点()1,2x y +∆-+∆,则yx∆∆等于( ) A.4 B.4x C.42x +∆ D.()242x +∆ 【知识点:平均变化率】 解:C4.自变量0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数( ) A.在区间[]01,x x 上的平均变化率 B.在0x 处的变化率 C.在1x 处的变化量 D.在区间[]01,x x 上的导数 【知识点:平均变化率】 解:A5.如果质点M 按规律23s t =+运动,则在一小段时间[]2,2.1中相应的平均速度是( ) A.4 B.4.1 C.0.41 D.3 【知识点:平均变化率】 解:B6.一质点运动方程为253s t =-,则在一段时间[]1,1t +∆内的平均速度是( ) A.36t ∆+ B.36t -∆+ C.36t ∆- D.36t -∆- 【知识点:平均变化率】 解:D7.已知212s gt =(其中g 为重力加速度),t 从3秒到3.1秒的平均速度是 . 【知识点:平均变化率】 解:3.05g8.已知函数32y x =-,当2x =时,yx∆=∆ . 【知识点:平均变化率】 解:2612yx x x∆=∆+∆+∆。
高中数学选修2-21.1.1 变化率与导数学案
§1.1 变化率与导数学案§1.1.1 变化率问题学习目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率.教学重点:平均变化率的概念、函数在某点处附近的平均变化率.教学难点:平均变化率的概念.教学过程:一、学习背景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等.导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.二、新课学习(一)问题提出问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?分析: (1)当V从0增加到1时,气球半径增加了气球的平均膨胀率为(2)当V从1增加到2时,气球半径增加了气球的平均膨胀率为可以看出:思考: 当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2++-=t t t h .如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算: 5.00≤≤t 和21≤≤t 的平均速度探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?(二)平均变化率概念1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变化率.2.若设12x x x -=∆, )()(12x f x f f -=∆(这里x ∆看作是对于1x 的一个“增量”可用x x ∆+1代替2x ,同样)()(12x f x f y f -=∆=∆)则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考: 观察函数)(x f 的图象平均变化率=∆∆xf1212)()(x x x f x f --表示什么?三、典例分析例1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-则=∆∆xy. [解析]:例2 求2x y =在0x x =附近的平均变化率.[解析]:四、课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 . 2.物体按照43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率. 3.过曲线3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线, 求出当1.0=∆x 时割线的斜率. 五、课堂反馈1. 设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( ) A ()x x f ∆+0 B ()x x f ∆+0 C ()x x f ∆⋅0 D ()()00x f x x f -∆+2. 一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为( )A -4B -8C 6D -63. 将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( ) A R R ∆π8 B ()248R R R ∆+∆ππ C ()244R R R ∆+∆ππ D ()24R ∆π4. 在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则xy∆∆为( ) A 21+∆+∆x x B 21-∆-∆x x C 2+∆x D xx ∆-∆+12 5. 在高台跳水运动中,若运动员离水面的高度h (单位:m )与起跳后时间t (单位:s )的函数关系是()105.69.42++-=t t t h ,则下列说法不正确的是( )A 在10≤≤t 这段时间里,平均速度是s m /6.1B 在49650≤≤t 这段时间里,平均速度是s m /0 C 运动员在⎥⎦⎤⎢⎣⎡4965,0时间段内,上升的速度越来越慢 D 运动员在[]2,1内的平均速度比在[]3,2的平均速度小6.函数()x f y =的平均变化率的物理意义是指把()x f y =看成物体运动方程时,在区间[]21,t t 内的7.函数()x f y =的平均变化率的几何意义是指函数()x f y =图象上两点()()111,x f x P 、()()222,x f x P 连线的8.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是 9.正弦函数x y sin =在区间⎥⎦⎤⎢⎣⎡6,0π和⎥⎦⎤⎢⎣⎡2,3ππ的平均变化率哪一个较大? 10.甲、乙两人跑步路程与时间关系以及百米赛跑路程与时间关系分别如图(1)(2)所示,试问:(1)甲、乙两人哪一个跑得较快?(2)甲、乙两人百米赛跑,问接近终点时,谁跑得较快?11.一水库的蓄水量与时间关系如图所示,试指出哪一段时间(以两个月计)蓄水效果最好?哪一段时间蓄水效果最差?12.在受到制动后的t 秒内一个飞轮上一点P 旋转过的角度(单位:孤度)由函数()23.04t t t -=ϕ(单位:秒)给出(1)求t =2秒时,P 点转过的角度(2)求在t t ∆+≤≤22时间段内P 点转过的平均角速度,其中①1=∆t ,②1.0=∆t ③01.0=∆t§1.1.2 导数的概念学习目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数. 教学重点:瞬时速度、瞬时变化率的概念、导数的概念. 教学难点:导数的概念. 学习过程: 一、创设情景 (一)平均变化率: (二)探究探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:二、学习新知 1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考: 当t ∆趋近于0时,平均速度v 有什么样的变化趋势? 结论: 小结:2.导数的概念 从函数)(x f y =在0x x =处的瞬时变化率是:0000()()lim lim x x f x x f x f xx ∆→∆→+∆-∆=∆∆我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或'|x x y =即0000()()()lim x f x x f x f x x∆→+∆-'=∆ 说明: (1)导数即为函数)(x f y =在0x x =处的瞬时变化率;(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()limx x f x f x f x x x →-'=-.三、典例分析例1 (1)求函数23x y =在1=x 处的导数.(2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数. 分析: 先求)()(00x f x x f y f -∆+=∆=∆,再求xy ∆∆,最后求x yx ∆∆→∆0lim .[解析]: (1)(2)例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C o )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.[解析]:注: 一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四、课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为. 2.求曲线3)(x x f y ==在1x =时的导数. 3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五、课堂反馈1.自变量由0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数( )A 在区间],[10x x 上的平均变化率B 在0x 处的变化率C 在1x 处的变化率D 在区间],[10x x 上的导数2.下列各式中正确的是( )Ax x f x x f y x x x ∆-∆-=→∆=)()(|000'lim 0 B x x f x x f x f x ∆∆-∆-=→∆)()()(000'lim Cx x f x x f y x x x ∆+∆+=→∆=)()(|000'lim 0 D x x x f x f x f x ∆∆--=→∆)()()(0000'lim3.设4)(+=ax x f ,若2)1('=f ,则a 的值( ) A 2 B . -2C 3D -34.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( )A 0B 3C -2D t 23-5.函数xx y 1+=, 在1=x 处的导数是6.13-=x y ,当2=x 时 ,=∆∆→∆xyx lim 07.设圆的面积为A ,半径为r ,求面积A 关于半径r 的变化率。
人教版高中数学选修1-1第三章 变化率与导数 同步教案
学生姓名 性别 年级 学科 数学 授课教师上课时间 年 月 日第( )次课 共( )次课课时:2课时教学课题 人教版 选修1-1 第三章 变化率与导数 同步教案教学目标知识目标:掌握并理解平均变化率;理解导数的概念及其几何意义能力目标:通过导数的概念形成过程,让学生掌握从特殊到一般的方法,提高联系与转化的思维能力情感态度价值观:通过合作与交流,让学生体会数学的理性与严谨,感受探索的乐趣教学重点与难点 导数的概念及其几何意义教学过程(一)变化率问题知识梳理1.函数的变化率的定义Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1)Δx称为函数在区间[x 1,x 2]上的平均变化率. 2.平均变化率的计算公式Δy Δx =y 2-y 1x 2-x 1=f (x 2)-f (x 1)x 2-x 1=f (x 0+Δx )-f (x 0)Δx例题精讲【题型一、求平均变化率】【例1】 求函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率,并求当x 0=2,Δx =0.1时平均变化率的值.【方法技巧】求平均变化率可根据定义代入公式直接求解,解题的关键是弄清自变量的增量Δx 与函数值的增量Δy ,求平均变化率的主要步骤是:(1)先计算函数值的改变量Δy =f (x 1)-f (x 0); (2)再计算自变量的改变量Δx =x 1-x 0; (3)得平均变化率Δy Δx =f (x 1)-f (x 0)x 1-x 0.【题型二、求物体运动的平均速度】【例2】 以初速度v 0竖直向上抛一物体的位移s 与时间t 的关系为:s (t )=v 0t -12gt 2.(1)求物体从时刻t 0到时刻t 0+Δt 这段时间的平均速度v ; (2)求物体在t =10 s 到10.4 s 这段时间的平均速度.【方法技巧】已知物体的运动方程,即知道物体运动过程中位移与时间的函数关系,求其在[t 0,t 0+Δt ]内的平均速度,根据平均速度的意义可知就是求这个函数在[t 0,t 0+Δt ]内的平均变化率.【题型三、平均变化率的实际应用】【例3】蜥蜴的体温与阳光的照射有关,其关系为T (t )=120t +5+15,其中T (t )为体温(单位:℃),t 为太阳落山后的时间(单位:min).求:(1)从t =0到t =10 min ,蜥蜴的体温的平均变化率. (2)体温T (t )对时间t 的变化率.【方法技巧】 平均变化率是一个比值,它是揭示一个量随另一个量变化快慢的重要指标,学习时应通过实例体会和经历求平均变化率的过程,注意平均变化率对于不同的实际问题可能有不同的名称.如物体运动时的平均变化率就是平均速度,它是位移增量与时间增量的比,气球膨胀的平均变化率就是气球膨胀率,它是半径增量与体积增量的比.函数的平均变化率就是从这些实际问题中抽象出来的一个重要数学概念.巩固训练1.在例1中,分别求函数在x 0=1,2,3附近Δx 取12时的平均变化率k 1,k 2,k 3,并比较其大小.2. 动点P 沿x 轴运动,运动方程为x =10t +5t 2,式中t 表示时间(单位:s),x 表示距离(单位:m),求在20≤t ≤20+Δt 时间段内动点的平均速度,其中(1)Δt =1,(2)Δt =0.1,(3)Δt =0.01.3.一正方形铁板在0 ℃时,边长为10 cm ,加热后会膨胀,当温度为t ℃时,边长变为10(1+at )cm ,a 为常数.试求铁板面积对温度的膨胀率.(二)导数的概念知识梳理 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率在Δx →0时的极限,即2.函数f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率是0lim→∆x Δy Δx =0lim →∆x f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x0)或y ′|x =x0 ,即0lim→∆x f ′(x 0)=0lim→∆x ΔyΔx= 错误!未指定书签。
变化率与导数教案
变化率与导数教案教案标题:变化率与导数教案教案目标:1. 了解变化率的概念和意义;2. 理解导数的定义和计算方法;3. 掌握使用导数求函数在某一点的变化率;4. 能够应用变化率和导数解决实际问题。
教案内容和步骤:一、引入(5分钟)1. 激发学生学习本课内容的兴趣,例如,介绍一些实际应用中变化率的重要性和意义。
2. 提问引导学生思考:什么是变化率?我们可以如何计算它?二、理论讲解(15分钟)1. 介绍变化率的定义:变化率是指函数在某一点的增长速度或减少速度。
2. 解释变化率的计算方法:计算函数在两个点间的斜率,或者通过求函数的导数。
3. 引入导数的概念:导数是函数在某一点的变化率。
介绍导数的符号表示和几何意义。
4. 讲解导数的计算方法:通过限定增量趋近于零的极限来计算导数。
三、例题演练(15分钟)1. 给出一个函数,要求学生计算其一些特定点上的导数。
2. 指导学生使用限定增量计算导数的方法,理解导数的物理意义。
3. 利用导数计算函数在某一点的变化率,并解释其意义。
四、综合应用(15分钟)1. 提供一些实际问题,要求学生应用导数和变化率的概念解决问题。
2. 通过问题的解答,巩固学生对导数和变化率的理解。
五、拓展延伸(10分钟)1. 引导同学思考:导数和变化率是否总是有意义的?有什么例外情况?2. 讲解导数在图像上的几何意义:导数表示函数图像的切线斜率。
3. 鼓励学生通过阅读相关书籍或课外资料,深入了解导数的应用领域。
六、总结与评价(5分钟)1. 总结本节课的重点内容,强调变化率与导数的关系和应用。
2. 提醒学生复习导数计算的方法和应用技巧。
3. 鼓励学生提出问题和困惑,并对本节课的教学进行评价。
备注:根据实际教学情况,上述步骤的时间可以适当调整。
同时,可以在教案中加入多媒体教学资源、互动讨论等教育工具,以提高学生的参与度和理解能力。
人教版高中选修1-13.1变化率与导数课程设计
人教版高中选修1-13.1变化率与导数课程设计一、课程目标通过本节课的学习,学生将能够:•理解变化率的定义和概念•掌握导数的定义和求解方法•能够应用导数解决实际问题•培养数学思维,提高数学素养二、教学内容和方法2.1 教学内容1.变化率的定义和概念–平均变化率–瞬时变化率2.导数的定义和求解方法–函数的导数定义–导数的四则运算法则–导数的基本公式3.应用导数解决实际问题–最大值与最小值问题–凸凹性问题–变化率问题2.2 教学方法1.给出经典的例子来引出变化率和导数的概念和定义,然后通过练习加深理解。
2.给出一些实际的问题来应用导数解决,培养学生的应用能力。
3.鼓励学生自主思考和探究,积极参与课堂讨论,加深理解。
三、教学步骤和课时安排3.1 教学步骤1.介绍变化率和导数的概念及其意义,通过具体的例子加深理解。
2.讲解导数的定义及其求解方法,让学生通过例题练习并思考。
3.给出一些实际问题,让学生应用导数解决。
4.总结和归纳,帮助学生深入理解和掌握导数的应用。
3.2 课时安排本节课共计两个课时,具体安排如下:第一课时•介绍变化率和导数的概念•讲解导数的定义及其求解方法第二课时•应用导数解决实际问题•总结和归纳四、教学评价本节课的教学评价将从以下几个方面进行:知识掌握情况、技能应用情况、思维能力和团队合作能力。
通过课堂讨论、作业练习和考试评测等方式进行评价,最终形成评价报告,以便更好地指导后续教学和提高教学质量。
五、教学资源•人教版高中数学选修1教材及相关辅助教材•计算机和投影仪•教师和学生的课前和课后阅读材料六、课后作业•着重加强思考和应用能力的练习题•提高练习题需掌握的知识点和技能的练习题七、教学反思本节课主要是介绍和讲解变化率和导数的概念及其应用,在教学过程中,需要结合具体实例来加深理解和掌握。
同时,需要注重培养学生的应用能力,通过练习和作业来提高学生的思考和解决实际问题的能力。
为了更好地掌握教学质量,需要加强对学生的评估和反馈,通过不断的调整和改进,提高教学效果和满足学生的需求。
高中数学《变化率与导数》教案3 新人教A版选修1-1
课题:3.1 函数的变化率教学目标:1、知识目标:通过生活实例使学生理解函数增量、函数的平均变化率的概念;掌握求简单函数平均变化率的方法,会求函数的平均变化率;理解函数的平均变化率的含义,引出函数的瞬时变化率概念,简单应用为下一节导数概念的学习打好基础。
2、能力目标:使学生在研究过程中熟悉数学研究的途径:背景——数学表示——应用,培养学生独立思考,解决问题的能力和在生活中建立数学模型,用数学理论解释生活问题、应用数学的能力。
3、情感目标:使学生通过学习,了解简单的情景蕴涵建立模型解决问题的一般思想方法,鼓励学生主动探究、不惧困难,勇于挑战自我的思想品质。
并养成学生探究——总结型的学习习惯。
教学重点:函数自变量的增量、函数值的增量的理解函数平均变化率和瞬时变化率的理解和简单应用。
教学难点:函数平均变化率转化为瞬时变化率的理解。
教学方法:例举分析——归纳总结——实际应用教学过程:一、引入:1、情境设置:(图片)巍峨的珠穆朗玛峰、攀登珠峰的队员两幅陡峭程度不同的图片2、问题:当陡峭程度不同时,登山队员的感受是不一样的,如何用数学来反映山势的陡峭程度,给我们的登山运动员一些有益的技术参考呢?3、引入:让我们用函数变化的观点来研讨这个问题。
二、例举分析:(一)登山问题例:如图,是一座山的剖面示意图:A是登山者的出发点,H是山顶,登山路线用y=f(x)表示才问题:当自变量x样表示? 分析:1、选取平直山路AB 放大研究 若),(),,(1100y x B y x A自变量x 的改变量:1x x =∆ 函数值y 的改变量:1y y =∆ 直线AB 的斜率:xyx x y y k ∆∆=--=0101说明:当登山者移动的水平距离变化量一定(x ∆为定值)时,垂直距离变化量(y ∆)越大,则这段山路越陡峭;2、选取弯曲山路CD 放大研究方法:可将其分成若干小段进行分析:如CD 1的陡峭程度可用直线CD 1的斜率表示。
人教课标版高中数学选修1-1《变化率与导数(第3课时)》教学设计
3.1.3 变化率与导数(第三课时)一、教学目标 1.核心素养:通过了解导数的几何意义,培养学生的数学建模能力. 2.学习目标(1)理解曲线切线的概念.(2)通过函数图像直观理解导数的几何意义. (3)会用导数的几何意义解题. 3.学习重点曲线切线的概念、切线的斜率、导数的几何意义. 4.学习难点 导数的几何意义. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P76—P78,思考:什么是函数图像的切线?平均变化率与割线斜率有什么关系?导数有怎样的几何意义? 2.预习自测1.若曲线()y h x =在点P (a ,()h a )处切线方程为2++10x y =,则( ) A.'()0h a < B.'()0h a > C.'()0h a = D.'()h a )的符号不定 解:A2.设0'()0f x =,则曲线()y f x =在点00(,())x f x 处的切线( )A.不存在B.与x 轴垂直C.与x 轴平行D.与x 轴平行或重合 解:D3.已知函数()y f x =在区间[0,3]上图像如图所示,记1k ='(1)f ,2k ='(2)f ,3k ='(3)f ,则123,,k k k 之间的大小关系为( )A.321k k k >>B.123k k k >>C.213k k k >>D.132k k k >> 解:B(二)课堂设计 1.知识回顾(1)函数()f x 从1x 到2x 的平均变化率为2121y y y x x x -∆=∆-. (2)函数()y f x =在0x x =处的导数是:0000()()lim limx x f x x f x yxx ∆→∆→+∆-∆=∆∆. (3)两点11(,)x y ,22(,)x y 连线的斜率2121y y k x x -=-. 2.问题探究问题探究一 曲线的切线是指什么 ●活动一 分析实例如下图,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?我们发现,当点n P 沿着曲线无限接近点P 即0x ∆→时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.问题探究二 导数有怎样的几何意义?重点、难点知识★▲ 想一想:(1)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? (2)切线PT 的斜率k 为多少? 易知割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆说明:(1)当0x ∆→时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.所以切线斜率的本质:函数在0x x =处的导数. (2)曲线在某点处的切线: ①与该点的位置有关;②要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;③曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. 函数()y f x =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率, 即0000()()()limx f x x f x f x k x∆→+∆-'==∆.问题探究三 如何求切线在某点处的切线方程? ●活动一 初步运用导数几何意义 求曲线在某点处的切线方程的基本步骤: ①求出切点P 的坐标;②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x∆→+∆-'==∆,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程.例1.设曲线2y ax =在点(1,a )处的切线与直线260x y --=平行,则a =( ) A.1 B.12 C.12- D.-1 【知识点:导数的几何意义】详解:222(1)1()2y a x a a x a x ∆=+∆-=∆+∆22ya x a a x∆=∆+=∆,所以1|2x y a ==,所以22a =,即1a =. ●活动二 结合实例,深化运用 例2.在曲线2y x =上切线倾斜角为4π的点是( ) A.(0,0) B.(2,4) C.11(,)416 D.11(,)24【知识点:导数的几何意义】详解:依题,函数在某点处的导数为1,设切点坐标为200(,)x x .2220(1)1()2y a x a x x x ∆=+∆-=∆+∆,02yx x x∆=∆+∆ 所以00|2x x y x ==,依题02=1x ,所以01=2x ,切点坐标为11(,)24,选D.3.课堂总结 【知识梳理】(1)切线斜率的本质:函数在0x x =处的导数. (2)求曲线在某点处的切线方程的基本步骤: ①求出切点P 的坐标;②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程. 【重难点突破】直线与曲线相切与直线与曲线只有一个交点不等价. 4.随堂检测 1.曲线9y x=在点(3,3)处的切线倾斜角α等于( ) A.45° B.60° C.135° D.120° 【知识点:导数的几何意义】 解:C2.求曲线2()1y f x x ==+在点(1,2)P 处的切线方程. 【知识点:导数的几何意义】 解:2y x = 详解:0(1)(1)'(1)lim2x f x f k f x∆→+∆-===∆,∴切线方程为2y x =.3.下图是函数()y f x =的图象,请回答下面的问题:请指出函数的单调区间,并用导数的几何意义说明. 【知识点:导数的几何意义;数学思想:数形结合】 解:增区间:[-21][35],,, 切线斜率为正,导数大于0减区间:[-5-2][13],,, 切线斜率为负,导数小于0.4.已知曲线22y x =上的点(1,2),求过该点且与过该点的切线垂直的直线方程. 【知识点:导数的几何意义】解:'(1)4k f ==,∴所求直线方程为:4-2y x =. (三)课后作业 基础型 自主突破1.函数()y f x =在0x x =处的导数()0f x '的几何意义是( ) A.在点0x 处的斜率B.在点()()00,x f x 处的切线与x 轴所成夹角的正切值C.曲线()y f x =在点()()00,x f x 处切线的斜率D.点()()00,x f x 与点()0,0连线的斜率 【知识点:导数的几何意义】 解:C2.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程是( ) A.430x y --= B.450x y +-= C.430x y -+= D.430x y ++= 【知识点:导数的几何意义】 解:A3.曲线2122y x =-在点31,2⎛⎫- ⎪⎝⎭处切线的倾斜角是( )A.1B.4πC.54π D.4π- 【知识点:导数的几何意义】 解:B能力型 师生共研4.如图,函数()y f x =的图象在点P 处的切线方程是8y x =-+,则(5)'(5)f f += .【知识点:导数的几何意义;数学思想:数形结合】 解:25.曲线3231y x x =-+在点()1,1-处的切线方程是( )A.34y x =-B.32y x =-+C.43y x =-+D.45y x =- 【知识点:导数的几何意义】 解:B6.曲线221y x =+在()1,3P -处的切线方程是( )A.41y x =--B.47y x =--C.41y x =-D.47y x =- 【知识点:导数的几何意义】 解:A探究型 多维突破7.已知曲线C :3y x =在点(1,1)P 处的切线为直线l ,问:l 和曲线C 有几个交点? 求出交点坐标.【知识点:导数的几何意义】解:2'3,y x =切线斜率3k =,∴切线方程l 为32y x =-.联立曲线求解,有2个交点,分别为11-2-8(,),(,). (四)自助餐1.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( ) A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=- 【知识点:导数的几何意义】解:A2.过点(-1,0)作抛物线21y x x =++的切线,则其中一条切线为( ) A.220x y ++= B.330x y -+= C.10x y ++= D.10x y -+= 【知识点:导数的几何意义】 解:D3.曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23【知识点:导数的几何意义】 解:A4.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A.1B.2C.3D.4 【知识点:导数的几何意义】 解:A5.曲线32242y x x x =--+在点(1,一3)处的切线方程是___________. 【知识点:导数的几何意义】 解:5+2y x =-6.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A.2 B.12 C.12- D.2-【知识点:导数的几何意义】 解:B7.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( )A.112⎡⎤--⎢⎥⎣⎦,B.[]10-,C.[]01,D.112⎡⎤⎢⎥⎣⎦,【知识点:导数的几何意义】解:A ∵0,tan [0,1]4k παα≤≤∴=∈ ,'22[0,1]y x ∴=+∈, ∴1[1,]2x ∈--8.若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标轴围成的三角形的面积为18,则a =( )A.64B.32C.16D.8 【知识点:导数的几何意义】 解:A9.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A.1-或25-64B.1-或214C.74-或25-64D.74-或7【知识点:导数的几何意义】解:A 设切线方程为(1)y k x =-,由直线与曲线3y x =相切可得32(1)3x k x x k⎧=-⎨=⎩,解得2704k k ==或.当0k =时,直线与215+94y ax x =-相切,则250,64a ∆=∴=-; 同理,当0k =时,1a =-.。
高中数学教案——变化率与导数 教案
§1.1 变化率与导数§1变化率问题教学目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率. 教学重点:平均变化率的概念、函数在某点处附近的平均变化率. 教学难点:平均变化率的概念. 教学过程: 一、创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等.导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二、新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π= 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r = (1)当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈-气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--(2)当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考: 当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2++-=t t t h .如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗? 探究过程: 如图是函数105.69.4)(2++-=t t t h 的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--= 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s , 但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.(二)平均变化率概念1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变化率.2.若设12x x x -=∆,)()(12x f x f f -=∆(这里x ∆看作是对于1x 的一个“增量”可用x x ∆+1代替2x ,同样)()(12x f x f y f -=∆=∆)则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212思考: 观察函数)(x f 的图象平均变化率=∆∆xf1212)()(x x x f x f --表示什么?hto三、典例分析例1已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-则=∆∆xy . 解: )1()1(22x x y ∆+-+∆+--=∆+-∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2求2x y =在0x x =附近的平均变化率.解: 2020)(x x x y -∆+=∆所以x x x x x y ∆-∆+=∆∆220)(x x x x x x x x ∆+=∆-∆+∆+=020202022 所以2x y =在0x x =附近的平均变化率为x x ∆+02四、课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为.43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率. 3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线,求出当1.0=∆x 时割线的斜率. 五、回顾总结 1.平均变化率的概念.2.函数在某点处附近的平均变化率. 六、布置作业§1.1.2导数的概念教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数. 教学重点:瞬时速度、瞬时变化率的概念、导数的概念. 教学难点:导数的概念. 教学过程: 一、创设情景 (一)平均变化率 (二)探究探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: (1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗? 探究过程: 如图是函数105.69.4)(2++-=t t t h 的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.二、新课讲授 1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考: 当t ∆趋近于0时,平均速度v 有什么样的变化趋势?结论: 当t ∆趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-.从物理的角度看,时间t ∆间隔无限变小时,平均速度v 就无限趋近于史的瞬时速度.因此,运动员在2t =时的瞬时速度是13.1/m s -为了表述方便,我们用0(2)(2)lim13.1t h t h t∆→+∆-=-∆表示“当2t =,t ∆趋近于0时,平均速度v 趋近于定值13.1-”小结: 局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值.2.导数的概念从函数)(x f y =在0x x =处的瞬时变化率是:0000()()limlimx x f x x f x fxx ∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =即0000()()()limx f x x f x f x x∆→+∆-'=∆说明:(1)导数即为函数)(x f y =在0x x =处的瞬时变化率; (2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()lim x f x f x f x x x ∆→-'=-.三、典例分析例1(1)求函数23x y =在1=x 处的导数.(2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数. 分析: 先求)()(00x f x x f y f -∆+=∆=∆,再求x y ∆∆,最后求xy x ∆∆→∆0lim .解: (1)法一 定义法(略)法二222211113313(1)|limlim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- (2)x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim (3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆例2将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f根据导数定义0(2)()f x f x fx x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆所以00(2)limlim(3)3x x ff x x ∆→∆→∆'==∆-=-∆同理可得:(6)5f '= 在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在第2h 附近,原油温度大约以3/C h 的速率下降在第6h 附近,原油温度大约以5/C h 的速率上升.注: 一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四、课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为. 2.求曲线3)(x x f y ==在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义. 五、回顾总结1.瞬时速度、瞬时变化率的概念.2.导数的概念. 六、布置作业§1.1.3导数的几何意义教学目标:1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题. 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义. 教学难点:导数的几何意义. 教学过程: 一、创设情景(一)平均变化率、割线的斜率 (二)瞬时速度、导数我们知道,导数表示函数)(x f y =在0x x =处的瞬时变化率,反映了函数)(x f y =在0x x =附近的变化情况,导数0()f x '的几何意义是什么呢?二、新课讲授(一)曲线的切线及切线的斜率,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?我们发现,当点n P 沿着曲线无限接近点P 即0→∆x 时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.问题: (1)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? (2)切线PT 的斜率k 为多少?容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x∆→+∆-'==∆说明: (1)设切线的倾斜角为α,那么当0→∆x 时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线: 1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.(二)导数的几何意义函数)(x f y =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率,即0000()()()limx f x x f x f x k x∆→+∆-'==∆说明: 求曲线在某点处的切线方程的基本步骤:①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()limx f x x f x f x k x∆→+∆-'==∆得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程. (三)导函数由函数)(x f y =在0x x =处求导数的过程可以看到,当0x x =时,0()f x '是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为)(x f 的导函数. 记作:()f x '或y ',即0()()()limx f x x f x f x y x∆→+∆-''==∆.注: 在不致发生混淆时,导函数也简称导数.(四)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数之间的区别与联系(1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.(2)函数的导数,是指某一区间内任意点x 而言的,就是函数)(x f 的导函数.(3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是求函数在点0x 处的导数的方法之一. 三、典例分析例1(1)求曲线1)(2+==x x f y 在点)2,1(P 处的切线方程.(2)求函数23x y =在点(1,3)处的导数.解: (1)222100[(1)1](11)2|limlim 2x x x x x x y x x=∆→∆→+∆+-+∆+∆'===∆∆ 所以,所求切线的斜率为2因此,所求的切线方程为22(1)y x -=-即20x y -=(2)因为222211113313(1)|limlim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- 所以,所求切线的斜率为6,因此,所求的切线方程为36(1)y x -=-即630x y --=例2,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解: 我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴, 所以,在0t t =附近曲线比较平坦,几乎没有升降. (2)当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<, 所以,在1t t =附近曲线下降,即函数2() 4.9 6.510h x x x =-++在1t t =附近单调递减. (3)当2t t =时,曲线()h t 在2t 处的切线2l 的斜率2()0h t '<, 所以,在2t t =附近曲线下降,即函数2() 4.9 6.510h x x x =-++在2t t =附近单调递减.可以看出,直线1l 的倾斜程度小于直线2l 的倾斜程度, 这说明曲线在1t 附近比在2t 附近下降的缓慢.例3,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min )变化的图象.根据图像,估计0.2,0.4,0.6,0.8t =时,血管中药物浓度的瞬时变化率(精确到0.1).解: 血管中某一时刻药物浓度的瞬时变化率,就是药物浓度()f t 在此时刻的导数,从图像上看,它表示曲线()f t 在此点处的切线的斜率. ,画出曲线上某点处的切线,利用网格估计这条切线的斜率, 可以得到此时刻药物浓度瞬时变化率的近似值.作0.8t =处的切线,并在切线上去两点,如(0.7,0.91),(1.0,0.48), 则它的斜率为0.480.911.41.00.7k -=≈--,所以(0.8) 1.4f '≈-下表给出了药物浓度瞬时变化率的估计值:t药物浓度瞬时变化率'()f t四、课堂练习1.求曲线3)(x x f y ==在点(1,1)处的切线. 2.求曲线y x =在点(4,2)处的切线.五、回顾总结1.曲线的切线及切线的斜率.2.导数的几何意义.六、布置作业。
人教版高中选修1-13.1变化率与导数课程设计 (2)
人教版高中选修1-13.1变化率与导数课程设计一、课程概述本课程主要涉及变化率与导数的相关知识,是高中数学选修1中的一部分。
在本课程中,学生将学习如何计算函数的导数以及利用导数求解优化问题。
同时,本课程将帮助学生深入理解函数的变化规律,能够在实际生活中灵活运用导数的概念和方法。
二、教学目标•理解函数的变化率概念和导数的定义;•掌握导数的运算法则,如求和法、差法、积法、商法;•能够利用导数求某一函数的极值,解决最值问题;•学习平均变化率和瞬时变化率的概念;•能够利用平均变化率和瞬时变化率求解实际生活中的问题。
三、教学内容1. 导数的定义及求法知识点:•导数的定义;•洛必达法则求导法;•常函数、初等函数的导数公式;•导数运算法则:求和法、差法、积法、商法。
学习目标:•理解导数的定义;•掌握求导的方法和技巧;•熟练掌握初等函数的导数公式和导数的运算法则。
2. 极值问题知识点:•极值的概念;•极值定理;•求函数的极值的方法;•极值问题的应用。
学习目标:•掌握函数极值问题的解法;•能够灵活运用极值问题解决实际生活中的问题。
3. 平均变化率和瞬时变化率知识点:•平均变化率的概念;•瞬时变化率的概念;•通过导数求解瞬时变化率。
学习目标:•理解平均变化率和瞬时变化率的意义及概念;•掌握计算平均变化率和瞬时变化率的方法;•熟练掌握通过导数求解瞬时变化率的技巧。
四、教学方法本课程采用讲授-练习相结合的教学方法。
教师应通过讲解相关知识点、梳理思路、演示计算方法等方式引导学生掌握所学知识;同时通过举例、练习、考试等方式来加深学生对知识点的理解,督促学生熟悉掌握。
并需注重培养学生的解决实际问题的能力,引导学生将所学知识应用到实践中。
五、教学要点•导数的定义及求法;•常函数、初等函数的导数公式;•导数运算法则:求和法、差法、积法、商法;•求函数的极值的方法;•极值问题的应用;•平均变化率和瞬时变化率的概念及其计算方法。
六、教学时长本课程需要4个学时,建议在连续的2-3周内进行授课,以便学生能够更好地掌握所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1:大家可能有过吹气球的经验。在吹气球的过程中,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢。这个过程中的自变量和函数值分别是谁?试建立它们之间的函数关系,从数学角度如何描述上述变化过程呢?
设计意图:通过分析生活实例,提炼数学模型,为归纳函数平均变化率概念提供具体背景。
变化率的几何意义是什么?
图4
设计意图:从几何角度得到平均变化率的几何意义,体现数形结合的思想。
r(v0??v)?r(v0)。?v?0?vlim
问题8对于一般函数f(x)在x?x0处的瞬时变化率如何表示呢?
设计意图:引导学生舍弃具体问题的实际意义,抽象得出函数在某点处的瞬时变化率,即导数,帮助学生实现认识上的飞跃。
高中数学选修1,1《变化率与导数》教案
一、内容和内容解析
本节内容选自课标实验教材人教A版,是导数的起始课,主要内容有变化率问题和导数的概念。
导数是微积分中的核心概念,它有极其丰富的实际背景和广泛的应用。在本章的学习中,学生将学习导数的有关知识,体会其中蕴含的思想方法,感受其在解决实际问题中的作用,了解微积分的文化价值。
2.对于利用平均速度解决瞬时速度的问题还是第一次,很难做到一次到位,因此,从平均变化率向瞬时变化率的过渡是本节课的一个难点;同时,这个问题所涉及到的逼近思想,学生虽然在数学1二分法的学习中已经有所接触,但是没有经过反复练习,运用起来还是有一定难度,所以,逼近思想的渗透、逼近方法的应用将是本节课的一个难点。
大纲教材中导数概念学习的起点是极限,这种建立概念的方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质理解。
课标教材则不介绍极限的形式化定义及相关知识,而是通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),这种直观形象的方法中蕴含了逼近的思想,这样定义导数的优点是:
x2?x1?x
其中△x、△y的值可正、可负,但△x值不能为0,△y的值可以为0。
x?x
若函数f(x)为常函数时△y =0。变式:
f(x)?f(x)f(x?? x)?f(x)
?
x?x? x
2
1
1
1
2
1
。
21
?问题4观察函数f(x)的平均变化率,结合直线的斜率分析平均
f(x)?f(x)
x2?x1
?y?x
图1
问题2怎样才能更准确的描述运动员的运动状态呢?
设计意图:分析实例,抽象数学模型,为归纳函数平均变化率概念提供又一重要背景,并使学生初步感受平均变化率的不足,激发进一步探求新知的欲望。
师生活动:
问题2
中的平均变化率计算公式v?
h(t2)?h(t1)
t2?t1
并借助于几何画给予直观解释。
3.分析归纳,得到概念
五、教学过程设计
1.创设情境、引入新课
教师介绍:微积分的创立是数学发展的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要方法和手段。在本章中,学生将通过大量的实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,那么,我们先来研究变化率的问题,引出新课。
设计意图:充分挖掘章引言的教学价值,它说明了三方面的问题:首先,简明的指出了函数和微积分的关系;其次,概述了微积分的创立史及它的地位;第三,概述本章的学习内容。
问题3对比问题1和问题2中的平均变化率计算关系式,他们有什么共同特点?对于一般函数f(x),如何计算其平均变化率?
设计意图:让学生结合两个实例,对比、分析,抽象概括出一般形式,经历由特殊到一般的数学过程。
师生活动:学生讨论,分析,归纳根据前面的实例,得到结论:
f(x2)?f(x1)称为函数f(x)从x1到x2的平均变化定义:一般地,函数y=f(x)中,式子21f(x2)?f(x1)?y率,则?
师生活动:回忆吹气球的过程(或者让学生现场吹气球),建立半径r关于体积V的函
数关系:r(V)?
r(V2)?r(V1)
。通过观察和计算,用数据解释上述现象,并通过几何画板演示,更逼真的
V2?V1
感受上述现象。图1直观地演示了当球的体积增大(黑色部分面积变大,绿色越来越薄)时,半径增大越来越小。图2演示当A,B两点向右运动时,自变量的增量保持不变,但是平均变化率越来越小。
1.使学生将更多精力放在导数本质的理解上;
2.学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义.
基于上述分析,本节课的教学重点是:丰富学生的感性经验,运用逼近的思想方法引导学生探索理解导数的思想及内涵。
二、目标和目标解析
1.通过分析实例,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;
师生活动:在前面两个问题的基础上提出导数的概念:
一般地,函数f(x)在x?x0处的瞬时变化率是:
lim
y?|f?(x0)?lim称为函数y = f (x)在x = x0处的导数,记作f?(x0)或x ?x,即:?x?00?x?0f(x? x)?f(x) ?y?lim? x? x00 ?x?0 f(x0? x)?f(x0) .? x
基于上述分析本节课的教学难点是:帮助学生理解气球平均变化率问题和逼近的思想方法的应用。
四、教学支持条件分析
在教学中适时地使用信息技术,充分发挥信息技术的优势,帮助学生更好地理解概念1.通过将计算结果实物投影,让学生积极主动地参与到课堂中来,使学生保持高水平的思维活动;
2.通过几何画板演示,使学生对概念的理解更直观,生动。
2.通过动手计算培养学生观察、分析、比较和抽象概括的能力,体会逼近的思想方法; 3.经历从生活中的变化率问题抽象概括出平均变化率的过程,体会数学知识来源于生活,又服务于生活。通过概念的形成过程体会从特殊到一般的数学思想方法。
三、教学问题诊断分析
1.吹气球是很多人具有的生活经验,运动速度是学生非常熟悉的物理知识,但是如何从具体实例中抽象出共同的数学问题的本质是本节课教学的关键之一。对于吹气球问题要用函数的观点分析变化过程中的自变量和函数值,自然地引导学生建立半径r关于体积V的函数关系式;在吹气过程中要注意观察或者想象,并把实际操作转化为相应的数学语言,比如当吹入差不多大小相同的一口气时,是指气球的体积的增量相同等。