关于第二章平行线与相交线的竞赛题

合集下载

2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析

2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析

2023年七年级数学下册第二章《相交线与平行线》综合测评卷(试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 在数学课上,老师让同学们画对顶角∠1与∠2,下列画法正确的是()A B C D2. 如图1,三条直线交于点O,若∠1=30°,∠2=60°,则直线AB与CD的位置关系是()A. 平行B. 垂直C. 重合D. 以上均有可能图1 图2 图33. 如图2,已知a∠b,直线a,b被直线c所截,若∠1=∠60°,则∠2的度数为()A. 130°B. 120°C. 110°D. 100°4. 一副三角尺按图3所示放置,点C在FD的延长线上,若AB∠CF,则∠DBC的度数为()A. 10°B. 15°C. 30°D. 45°5. 如图4,在三角形ABC中,AB∠AC,AD∠BC,垂足分别为点A,D,则点B到直线AD的距离为()A. 线段AB的长B. 线段BD的长C. 线段AC的长D. 线段DC的长图4 图5 图6 图7 图86. 如图5,与∠α构成同位角的角有()A. 1个B. 2个C. 3个D. 4个7. 有下列说法:∠两条直线被第三条直线所截,内错角相等;∠互补的两个角就是平角;∠过一点有且只有一条直线与已知直线平行;∠平行于同一条直线的两直线平行;∠在同一平面内,垂直于同一条直线的两条直线平行. 其中正确的有()A. 0个B. 1个C. 2个D. 3个8.如图6,∠AOB与∠AOC互余,∠AOD与∠AOC互补,OC平分∠BOD,则∠AOB的度数是()A.20°B.22.5°C.25°D.30°9.如图7,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,∠ODE=∠ADC.若反射光DC恰好与OB平行,则∠DEB的度数是()A. 74°B. 63°C. 64°D. 73°10. 如图8,已知AF平分∠BAC,D在AB上,DE平分∠BDF,∠1=∠2,有下列结论:∠DF∠AC;∠DE∠AF;∠∠1=∠DF A;∠∠C+∠DEC=180°.其中成立的有()A. ∠∠∠B. ∠∠∠C. ∠∠∠D. ∠∠∠二、填空题(本大题共6小题,每小题3分,共18分)11. 图9是苗苗同学在体育课上跳远后留下的脚印,她的跳远成绩是线段(选填“AM”“BN”或“CN”)的长度,这样测量的依据是.图9 图10 图1112. 如图10,已知直线AB与CD相交于E点,FE∠AB,垂足为点E,若∠1=120°,则∠2=°.13. 如图11,已知DE∠BF,AC平分∠BAE,∠DAB=70°,那么∠ACF=°.14. 如图12,点E是AD延长线上一点,∠B=30°,∠C=120°,如果添加一个条件,使BC∠AD,则可添加的条件为.(只填一个即可)图12 图13 图1415. 如图13,把一张长方形纸片沿AB折叠,已知∠1=75°,则∠2的度数为________°.16. 如图14,已知DH∠EG∠BC,DC∠EF,DC与EG交于点M,那么在图中与∠EFB相等的角(不包括∠EFB)有.(填上所有符合条件的角)三、解答题(本大题共6小题,共52分)17.(6分)如图15,已知∠α,∠β,求作∠AOB,使∠AOB=2∠α-∠β.(要求:尺规作图,不写作法,保留作图痕迹)图1518.(7分)如图16,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°,求∠COF的度数.图1619.(8分)如图17,已知∠1+∠2=180°,∠3=∠B,直线AB与DE是否平行?并说明理由.图1720.(9分)如图18,已知∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?请说明理由.图1821.(10分)如图19,已知直线AB,CD相交于点O,OF平分∠AOE,∠COF=∠DOF=90°.(1)写出图中所有与∠AOD互补的角.(2)若∠AOE=120°,求∠BOD的度数.图1922.(12分)如图20,已知BC∠EG,AF∠DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.图20附加题(共20分,不计入总分)1.(6分)如图1,已知点D是射线AB上一动点,连接CD,过点D作DE∠BC交直线AC于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A. 104°B. 64°C. 104°或64°D. 104°或76°2.(14分)如图2,已知直线l1∠l2,直线l3与l1,l2分别交于点C,D,在C,D之间有一点P,当P点在C,D之间运动时,∠P AC,∠APB,∠PBD之间的数量关系是否发生变化?若点P在C,D两点的外侧运动时(与点C,D不重合),试探索∠P AC,∠APB,∠PBD之间的数量关系.图2参考答案一、1. C 2. B 3. B 4. B 5. B 6. C 7. C 8. B 9. A 10. A二、11. BN垂线段最短12. 30 13. 125 14. 答案不唯一,如∠1=30°15. 30 16. ∠DCB,∠GMC,∠DME,∠HDC,∠FEG三、17. 解:如图1所示,∠AOB即为所求.图118.∠COF=110°.19.解:AB∥DE.理由如下:因为∠1+∠ADC=180°,∠1+∠2=180°,所以∠ADC=∠2.根据“同位角相等,两直线平行”,可得EF∥DC.根据“两直线平行,内错角相等”,可得∠3=∠EDC.因为∠3=∠B,所以∠EDC=∠B.根据“同位角相等,两直线平行”,可得AB∥DE.20. 解:(1)AD∠BC.理由如下:因为∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,所以∠ADF=∠BCF.根据“同位角相等,两直线平行”,可得AD∠BC.(2)AB∠EF.理由如下:因为BE平分∠ABC,所以∠ABC=2∠ABE.因为∠ABC=2∠E,所以∠ABE=∠E.根据“内错角相等,两直线平行”,可得AB∠EF.21. 解:(1)因为直线AB,CD相交于点O,所以∠AOC,∠BOD分别与∠AOD互补.因为OF平分∠AOE,所以∠AOF=∠EOF.因为∠COF=∠AOF+∠AOC,∠DOF=∠EOF +∠EOD,且∠COF=∠DOF=90°,所以∠DOE=∠AOC,所以∠DOE也是∠AOD的补角.所以与∠AOD互补的角有∠AOC,∠BOD和∠DOE.(2)因为OF平分∠AOE,所以∠EOF=12∠AOE=12×120°=60°.因为∠DOF=90°,所以∠DOE=∠DOF-∠EOF=90°-60°=30°.因为∠DOE与∠BOD都是∠AOD的补角,所以∠BOD=∠DOE=30°.22. 解:(1)因为BC∠EG,所以∠E=∠1=50°.因为AF∠DE,所以∠AFG=∠E=50°.(2)如图2,过点A作AM∠BC.因为BC∠EG,所以AM∠EG,所以∠F AM=∠AFG=50°.因为AM∠BC,所以∠QAM=∠Q=15°. 所以∠F AQ=∠F AM+∠QAM=50°+15°=65°.因为AQ平分∠F AC,所以∠CAQ=∠F AQ=65°.所以∠MAC=∠CAQ+∠QAM=65°+15°=80°. 图2因为AM∠BC,所以∠ACB=∠MAC=80°.附加题1. C 提示:分两种情况讨论:∠点D在线段AB上;∠点D在线段AB的延长线上.2. 解:不变化,当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由如下:如图1,过点P作PE∠l1,则∠APE=∠PAC.因为l1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.图1 图2 图3若点P在C,D两点的外侧运动时(与点C,D不重合),有两种情况:∠如图2,当点P在点C的上方时,∠APB=∠PBD-∠PAC. 理由如下:过点P作PE∠l1,则∠APE=∠PAC.因为l 1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE =∠PBD-∠PAC.∠如图3,当点P在点D的下方时,∠APB=∠PAC-∠PBD. 理由如下:过点P作PE∠l2,则∠BPE=∠PBD.因为l1∠l2,所以PE∠l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE =∠PAC-∠PBD.。

北师大版七年级数学下册第二章《相交线与平行线》考试卷附解析版)

北师大版七年级数学下册第二章《相交线与平行线》考试卷附解析版)
(2)如图⑤, ,则 ______________.
(3)利用上述结论解决问题:如图已知 , 和 的平分线相交于 , ,求 的度数.
22.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(1)如图,一束光线 射到平面镜 上,被 反射到平面镜 上,又被 反射,若被 反射出的光线 与光线 平行,且 ,则 _________, ________.
4.如图, , ,则图中与 相等 角(不含 )有______个;若 ,则 ________.
5.在 、 两座工厂之间要修建一条笔直的公路,从 地测得 地的走向是南偏东 ,现 、 两地要同时开工,若干天后,公路准确对接,则 地所修公路的走向应该是( )
A.北偏西 B.南偏东 C.西偏北 D.北偏西
6.如图,直线l//m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()
【答案】95°
【解析】
【详解】如图,作EF∥AB,则EF∥CD,
∴∠ABE+∠BEF=180°,∵∠ABE=120°,∴∠BEF=60°,
∵∠DCE=∠FEC=35°,∴∠BEC=∠BEF+∠FEC=95°.
故答案为95°.
点睛:本题关键在于构造平行线,再利用平行线的性质解题.
13.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是________.①第一次向左拐 ,第二次向右拐 ;②第一次向右拐 ,第二次向左拐 ;③第一次向右拐 ,第二次向左拐 ;④第一次向左拐 ,第二次向左拐 .
A. 20°B. 25°C. 30°D. 35°
【答案】A
【解析】
【详解】如图,过点B作BD//l,

考点解析:北师大版七年级数学下册第二章相交线与平行线专项练习试题(含答案解析)

考点解析:北师大版七年级数学下册第二章相交线与平行线专项练习试题(含答案解析)

北师大版七年级数学下册第二章相交线与平行线专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°2、如图,在A 、B 两地之间要修条笔直的公路,从A 地测得公路走向是北偏东48︒,A ,B 两地同时开工,若干天后公路准确接通,若公路AB 长8千米,另一条公路BC 长是6千米,且从B 地测得公路BC 的走向是北偏西42︒,则A 地到公路BC 的距离是( )A .6千米B .8千米C .10千米D .14千米3、如果一个角的补角是这个角的4倍,那么这个角为( )A .36°B .30°C .144°D .150°4、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )A .40°B .50°C .140°D .150°5、点P 是直线l 外一点,,,A B C 为直线l 上三点,4cm,5cm,2cm PA PB PC ===,则点P 到直线l 的距离是( )A .2cmB .小于2cmC .不大于2cmD .4cm6、直线m 外一点P 它到直线的上点A 、B 、C 的距离分别是6cm 、5cm 、3cm ,则点P 到直线m 的距离为( )A .3cmB .5cmC .6cmD .不大于3cm7、如图,已知直线AD ∥BC ,BE 平分∠ABC 交直线DA 于点E ,若∠DAB =54°,则∠E 等于( )A .25°B .27°C .29°D .45°8、如图,三角尺COD 的顶点O 在直线AB 上,90COD ∠=︒.现将三角尺COD 绕点O 旋转,若旋转过程中顶点C 始终在直线AB 的上方,设AOC α∠=,BOD β∠=,则下列说法中,正确的是( )A .若10α=︒,则70β=︒B .α与β一定互余C .α与β有可能互补D .若α增大,则β一定减小9、如图所示,直线l 1∥l 2,点A 、B 在直线l 2上,点C 、D 在直线l 1上,若△ABC 的面积为S 1,△ABD 的面积为S 2,则( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定10、如图,O 是直线AB 上一点,OE 平分∠AOB ,∠COD =90°,则图中互余的角有( )对.A .5B .4C .3D .2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若α∠与β∠互余,且:2:3αβ∠∠=,则2536αβ∠+∠=______.2、如图,OE 是AOB ∠的平分线,CD OB ∥交OA 于点C ,交OE 于点D ,50ACD ∠=︒,则CDO ∠的度数是______°.3、(1)已知α∠与β∠互余,且3518α'∠=︒,则β∠=________.(2)82325'''︒+________=180°.(3)若27m n a b -+与443a b -是同类项,则m +n =________.4、如图,P 是直线a 外一点,点A ,B ,C ,D 为直线a 上的点,PA =5,PB=4,PC =2,PD =7,根据所给数据写出点P 到直线a 的距离l 的取值范围是______5、如图,A 、B 、C 为直线l 上的点,D 为直线l 外一点,若2ABD CBD ∠∠=,则CBD ∠的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC ,∠COE 比它的补角大100°,将一直角三角板AOB 的直角点放在点O 处,一条直角边OA 在射线OD 上,另一边OB 在直线DE 上方,将直角三角板绕点O 按每秒10°的速度逆时针旋转一周.设旋转时间为t 秒.(1)求∠COE 的度数;(2)若射线OC 的位置保持不变,在旋转过程中,是否存在某个时刻,使得∠BOC =∠BOE ?若存在,请求出t 的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC 也绕O 点以每秒10°的速度顺时针旋转一周.从旋转开始多长时间.射线OC 平分∠BOE .直接写出t 的值.(本题中的角均为大0°且小180°的角)2、如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若42AOB ∠=︒,36DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,且30DOE ∠=︒,求AOC ∠的度数.3、如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,仅用无刻度直尺在线段OC 上确定一点D ,使得OD =CD .4、如图,方格纸中每个小正方形的边长都是1.(1)过点P 分别画PM ∥AC 、PN ∥AB ,PM 与AB 相交于点M ,PN 与AC 相交于点N .(2)求四边形PMAN 的面积.5、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOC=76°;(1)求∠DOE的度数;(2)求∠BOF的度数.-参考答案-一、单选题1、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角2、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.3、A【分析】设这个角为x,则它的补角为180x︒-,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.【详解】解:设这个角为x,则它的补角为180x︒-,根据题意得:︒-=,x x1804解得:36x=︒.故选:A【点睛】本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.4、C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∵拐弯前、后的两条路平行,∴140∠=∠=︒(两直线平行,内错角相等).B C故选:C.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.5、C【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且245<<,∴点P到直线l的距离不大于2cm,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】解:垂线段最短,点P到直线m的距离3cm,故选:D.【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.7、B【分析】根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.【详解】解:∵AD∥BC,∴∠ABC=∠DAB=54°,∠EBC=∠E,∵BE平分∠ABC,∠ABC=27°,∴∠EBC=12∴∠E=27°.故选:B.【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.【分析】根据题意,作出相应图形,然后结合角度计算对各个选项依次判断即可.【详解】解:A 、当10α=︒时,18080COD βα=︒--∠=︒,选项错误;B 、当点D 在直线AB 上方时,α与β互余,如图所示,当点D 到如图所示位置时,α与β互补,选项错误;C 、根据B 选项证明可得:α与β可能互补,选项正确;D 、如图所示,当点D 到直线AB 下方时,α增大,β也增大,选项错误;故选:C.【点睛】题目主要考查角度的计算及互余、互补的关系,根据题意,作出相应图形是解题关键.9、B【分析】由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.【详解】解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.故选:B.【点睛】本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.10、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE 平分∠AOB ,∴∠AOE =∠BOE =90°,∴互余的角有∠AOC 和∠COE ,∠AOC 和∠BOD ,∠COE 和∠DOE ,∠DOE 和∠BOD 共4对,故选:B .【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.二、填空题1、69°【分析】由题意可设∠α=2x ,∠β=3x ,根据α∠与β∠互余可得关于x 的方程,解方程即可求出x ,然后代值计算即可;【详解】解:因为:2:3αβ∠∠=,所以设∠α=2x ,∠β=3x ,因为α∠与β∠互余,所以2x +3x =90°,解得x =18°,所以∠α=36°,∠β=54°, 所以25253654693636αβ∠+∠=⨯︒+⨯︒=︒;故答案为69°.【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.2、25【分析】 先证明1,2AODBOD AOB 再证明,50,CDO BOD ACD AOB 从而可得答案.【详解】解: OE 是AOB ∠的平分线,1,2AOD BOD AOB ∵CD OB ∥,50ACD ∠=︒,50,CDOBOD ACD AOB 125,2CDO AOB 故答案为:25【点睛】本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.3、5442'︒ 972755'''︒ 3【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m 、n 的值,然后代值计算即可.【详解】解:(1)α∠与β∠互余,且3518α'∠=︒,∴90=903518=5442βα'∠=︒-︒-︒'︒∠;故答案为:5442'︒;(2)18082325=972755''''''︒-︒︒;故答案为:972755'''︒;(3)∵27m n a b -+与443a b -是同类项,∴2474m n -=⎧⎨+=⎩, ∴63m n =⎧⎨=-⎩, ∴()633m n +=+-=.故答案为:3.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.4、0<l ≤2【分析】根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.【详解】解:∵点P 为直线外一点,点A 、B 、C 、D 直线a 上不同的点,∵直线外一点与直线上各点连线的所有线段中,垂线段最短∴点P 到直线a 的距离l 小于等于2,故答案为:0<l ≤2.本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.5、60°度【分析】由邻补角的定义,结合2ABD CBD ∠∠=,可得答案.【详解】解:2,180,ABD CBD ABD CBD ∠∠∠+∠=︒=118060.3CBD ∴∠=⨯︒=︒ 故答案为:60︒【点睛】本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为180︒”是解本题的关键.三、解答题1、(1)140゜(2)存在,t =2秒或20秒;(3)533秒 【分析】(1)设∠COE =x 度,则其补角为(180−x )度,根据∠COE 比它的补角大100°列方程即可求得结果;(2)存在两种情况:当OC 在直线DE 上方时;当OC 在直线DE 下方时;就这两种情况考虑即可;(3)画出图形,结合图形表示出∠COE 与∠COB ,根据角平分线的性质建立方程即可求得t 值.【详解】(1)设∠COE =x 度,则其补角为(180−x )度,由题意得:x −(180−x )=100解得:x =140即∠COE =140゜当OC在直线DE上方时,此时OB平分∠BOC ∵∠COE=140゜∴1702BOC COE∠=∠=︒当OB没有旋转时,∠BOC=50゜所以OB旋转了70゜−50゜=20゜则旋转的时间为:t=20÷10=2(秒)当OC在直线DE下方时,如图由图知:∠BOE+∠BOC+∠COE=360゜即:2∠BOE+∠COE=360゜∵OB旋转了10t度∴∠BOE=(10t−90)度∴2(10t−90)+140=360解得:t=20综上所述,当t=2秒或20秒时,∠BOC=∠BOE(3)OB、OC同时旋转10t度如图所示,∠COE=(180゜+40゜)−(10t)゜=(220−10t)゜∵2×(10t)゜−∠COB+50゜=360゜∴∠COB =2× (10t )゜−310゜∵∠COB =∠COE∴2× 10t −310=220-10t 解得:533t = 即当t 的值为533秒时,满足条件.【点睛】本题考查了角平分线的性质,角的和差运算,补角的概念,解一元一次方程等知识,注意数形结合及分类讨论.2、(1)78°;(2)80°.【分析】(1)根据角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)结合图形可得BOD BOC DOC ∠=∠+∠,然后将角度代入计算即可;(2)由互补可得180AOD BOD ∠+∠=︒,结合图形可得:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠,由角平分线定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得12BOC AOC ∠=∠,利用等量代换得出321802AOC DOE ∠+∠=︒,将已知角度代入求解即可. 【详解】解:(1)OB 是AOC ∠的平分线,且42AOB ∠=︒,OD是COE∠的平分线,且36DOE∠=︒,∴42AOB BOC∠=∠=︒,36COD DOE∠=∠=︒,∴423678 BOD BOC DOC∠=∠+∠=︒+︒=︒,∴78BOD∠=︒;(2)∵AOD∠与BOD∠互补,∴180AOD BOD∠+∠=︒,由图知:AOD AOC COD∠=∠+∠,BOD BOC COD∠=∠+∠,由角平分线定义知:12BOC AOC∠=∠,∴11802AOC DOE AOC DOE∠+∠+∠+∠=︒,即321802AOC DOE∠+∠=︒,∵30DOE∠=︒,∴32301802AOC∠+⨯︒=︒,即80AOC∠=︒.【点睛】题目主要考查角平分线及互补的定义,角度之间的计算,理解题意,找准角度进行计算是解题关键.3、(1)作图见解析;(2)作图见解析【分析】(1)先作出MON CBN∠=∠,在截取BC=OA即可;(2)连接AC,AB,利用平行四边形的性质即可得到点D.【详解】(1)如图所示即为所求;(2)连接OC,AC,AB,交点即为所求;【点睛】本题主要考查了作一个角等于已知角,截一个线段等于已知线段,平行四边形的性质,准确作图判断是解题的关键.4、(1)见解析;(2)18.【分析】(1)直接利用网格结合平行线的判定方法得出答案;(2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.【详解】解:(1)如图所示:点M,点N即为所求;(2)四边形PMAN的面积为:5×7﹣12×3×3﹣12×2×4﹣12×2×4﹣12×3×3=18.【点睛】本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.5、(1)38°;(2)33°【分析】(1)根据对顶角相等得出∠BOD,再根据角平分线计算∠DOE;(2)求出∠DOE的补角∠COE,再用角平分线得出∠EOF,最后根据∠BOF=∠EOF-∠BOE求解.【详解】解:(1)∵∠AOC=76°,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=12∠BOD=38°;(2)∵∠DOE=38°,∴∠COE=180°-∠DOE=142°,∵OF平分∠COE,∴∠EOF=12∠COE=71°,∴∠BOF=∠EOF-∠BOE=33°.【点睛】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.。

相交线与平行线竞赛精彩试题

相交线与平行线竞赛精彩试题

1.如图,将三角板的直角极点放在直角尺的一边上,∠1=30°,∠2=50°,则∠ 3 的度数为()A、 80B、 50C、 30D、 202.将一个直角三角板和一把直尺如图搁置,假如∠α =43°,则∠ β的度数是()A、43°B、47°C、30°D、60°3.如图,直线 a∥ b,那么∠ x 的度数是_________ .4.如图, AB∥ CD,∠ ABF=∠ DCE。

试说明:∠ BFE=∠ FEC。

A BFEC D5. 如图,已知AB//CD, BE 均分ABC, DE均分ADC,O BAD=70,(1) 求EDC的度数; (2)若O BED的度数.BCD=40,试求5. 如图, DB∥FG∥ EC,∠ACE=36°, AP均分∠ BAC,∠PAG=12°,则∠ ABD= _________度.6.已知:如图, DG⊥BC, AC⊥BC, EF⊥AB,∠ 1=∠ 2,求证: CD⊥ AB.7.如图,已知∠ 1+∠2=180°,∠ 3=∠ B,试判断∠ AED与∠ ACB的大小关系,并说明原因.8.如图,已知∠ 1=∠2,∠ 3=∠ 4,∠ 5=∠ 6,试判断 ED与 FB 的地点关系,并说明为何.9. 如图,∠ 1+∠2=180°,∠ DAE=∠BCF,DA均分∠ BDF.(1) AE 与 FC会平行吗?说明原因.(2) AD与 BC的地点关系如何?为何?(3) BC均分∠ DBE吗?为何?10.四边形 ABCD 中,∠ B= ∠ D=90 °,AE 、CF 分别是∠ BAD 和∠ DCB 的内角均分线和外角均分线,(1)分别在图1、图 2、图 3 下边的横线上写出AE 与 CF 的地点关系;(2)选择此中一个图形,证明你得出的结论.11 已知,如图,∠1=∠ACB ,∠ 2=∠ 3, FH⊥AB 于 H.问 CD 与 AB 有什么关系?12.已知:如图,AE ⊥ BC, FG⊥ BC,∠ 1=∠ 2,求证: AB ∥ CD.13.如图,已知∠HDC 与∠ ABC 互补,∠ HFD= ∠ BEG ,∠ H=20 °,求∠ G 的度数.14.如图 AB ∥CD ,∠ 1=∠2,∠ 3=∠ 4,试说明AD ∥ BE.15.如图,∠ 1= ∠ 2,∠ 2=∠ G,试猜想∠ 2 与∠ 3 的关系并说明原因.16.如图,点 E、F、M 、N 分别在线段 AB 、AC 、BC 上,∠ 1+ ∠ 2=180°,∠ 3=∠ B,判断∠CEB 与∠ NFB 能否相等?请说明原因.17.如图,已知 OA ∥ BE,OB 均分∠ AOE ,∠ 4=∠ 5,∠ 2 与∠ 3 互余;那么 DE 和 CD 有如何的地点关系?为何?18.如图, DH 交 BF 于点 E, CH 交 BF 于点 G,∠ 1= ∠2,∠ 3=∠4,∠ B=∠ 5.试判断 CH 和DF 的地点关系并说明原因.19.如图,已知∠3=∠1+∠ 2,求证:∠ A+ ∠ B+ ∠ C+∠ D=180 °.20 如图,已知:点 A 在射线 BG 上,∠ 1=∠ 2,∠ 1+ ∠ 3=180°,∠ EAB= ∠ BCD .求证: EF∥ CD .21.如图,六边形 ABCDEF 中,∠ A= ∠ D,∠ B=∠ E,CM 均分∠ BCD 交 AF 于 M , FN 均分∠AFE 交 CD 于 N.试判断 CM 与 FN 的地点关系,并说明原因.22.如图,在四边形 ABCD 中, AB ∥ CD ,点 E、F 分别在 AD 、BC 边上,连结 AC 交 EF 于G,∠ 1=∠ BAC .(1)求证: EF∥ CD ;(2)若∠ CAF=15 °,∠ 2=45°,∠ 3=20 °,求∠ B 和∠ ACD 的度数.23. 如图,在梯形 ABCD中, AD∥BC, AD=6cm, CD=4cm, BC=BD=10cm,点 P 由 B 出发沿BD方向匀速运动,速度为 1cm/s ;同时,线段 EF 由 DC出发沿 DA方向匀速运动,速度为 1cm/s ,交 BD于 Q,连结 PE.若设运动时间为 t ( s)( 0< t < 5).解答以下问题:(1)当 t 为何值时, PE∥ AB;(2)设△ PEQ的面积为y( cm2),求 y 与 t 之间的函数关系式;(3)能否存在某一时辰t ,使 S△ PEQ=225S△ BCD?若存在,求出此时 t 的值;若不存在,说明原因;(4)连结 PF,在上述运动过程中,五边形PFCDE的面积能否发生变化?说明原因.1.如图,要把角钢(1)弯成 120°的钢架( 2),则在角钢( 1)上截去的缺口是____度。

平行线与相交线经典习题

平行线与相交线经典习题

平行线与相交线一、判断题1.两直线相交,有公共顶点的角是对顶角.〔〕2.同一平面内不相交的两条线段必平行.〔〕3.一个钝角的补角比它的余角大90º.〔〕4.平面内两条直线被第三条直线所截,如果内错角相等,则同位角也相等.〔〕5.如果一个角等于它的补角,那么这个角一定是直角.〔〕6.如果m∥l,n∥l,那么根据等量代换,有m∥n.〔〕7.如图1,∠1与∠2是同位角.〔〕8.如果两条直线平行,那么同旁内角的平分线互相垂直.〔〕9.如图2,直线a、b、c交于一点,则图中有三对对顶角.〔〕10.如图3,如果直线AB∥DE,则∠B+∠C+∠D=180º.〔〕二、填空题1.一个角的补角与这个角的余角的度数比是3∶1,则这个角是度.2.如图4,点O是直线AB上一点,∠AOD=120º,∠AOC=90º,OE平分∠BOD,则图中互为补角的角有对.3.如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.4.如图6,与∠1成同位角的角有;与∠1成内错角的是;与∠1成同旁内角的角是.5.如图7,∠1=∠2,∠DAB =85º,则∠B = 度.6.如图8,已知∠1+∠2=180º,则图中与∠1相等的角共有 个.7.如图9,直线a 、b 都与直线c 相交,给出以下条件:①∠1=∠2;②∠3=∠6;③∠1=∠8; ∠5+∠8=180º,其中能判断a ∥b 的条件是: 〔把你认为正确的序号填在空格内〕8.假设要把一个平面恰好分成5个部分,需要 条直线,这些直线的位置关系是 .三、选择题1.以下说法中,正确的选项是〔 〕 〔A 〕锐角小于它的补角 〔B 〕锐角大于它的补角 〔C 〕钝角小于它的补角 〔D 〕锐角小于的余角2.如图10,假设∠AOB =180º,∠1是锐角,则∠1的余角是〔 〕〔A 〕21∠2-∠1 〔B 〕21∠2-23∠1 〔C 〕21〔∠2-∠1〕 〔D 〕31〔∠2+∠1〕3.如图11,是同位角位置关系的是〔 〕〔A 〕∠3和∠4 〔B 〕∠1和∠4 〔C 〕∠2和∠4 〔D 〕∠1和∠2 4.假设两个角的一边在同一直线上,另一边互相平行,则这两个角〔 〕 〔A 〕相等 〔B 〕互补 〔C 〕相等或互补 〔D 〕都是直角 5.假设一个角等于它余角的2倍,则该角是它补角的〔 〕 〔A 〕21 〔B 〕31 〔C 〕51 〔D 〕61 6.如图12,四条直线相交,∠1和∠2互余,∠3是∠1的余角的补角,且∠3=116º,则∠4等于〔 〕〔A 〕116º 〔B 〕126º 〔C 〕164º 〔D 〕154º7.同一平面内有三条直线a 、b 、c ,满足a ∥b ,b 与c 垂直,那么a 与c 的位置关系是〔 〕 〔A 〕垂直 〔B 〕平行 〔C 〕相交但不垂直 〔D 〕不能确定8.如图13,AB ∥EF ∥DC ,EG ∥DB ,则图中与∠1相等的角〔∠1除外〕有〔 〕 〔A 〕6个 〔B 〕5个 〔C 〕4个 〔D 〕3个9.如图14,一只小猴顺着一根斜放的竹竿往上爬,眼睛一直盯着挂在上端的帽子.在小猴爬行的过程中,视线与水平方向所成角〔 〕〔A 〕逐渐变大 〔B 〕逐渐变小 〔C 〕没有变化 〔D 〕无法确定 10.以下判断正确的选项是〔 〕〔A 〕相等的角是对顶角 〔B 〕互为补角的两个角一定是一个锐角和一个钝角 〔C 〕内错角相等 〔D 〕等角的补角相等 四、解答以下各题1.一个角的补角与它余角的2倍的差是平角的31,求这个角的度数.2.如图15,已知直线AB 和CD 相交于O ,∠AOE =∠EOC ,且∠AOE =28º.求∠BOD 、∠DOE 的度数.3.如图16,补全下面的思维过程,并说明这一步的理由. 〔1〕∠B =∠1 〔2〕BC ∥EF ↓ ↓∥ 理由: ∠2 = 理由:五、完成以下推理过程1.已知:如图17,AB ⊥BC 于B ,CD ⊥BC 于C ,∠1=∠2.求证:BE ∥CF .证明:∵ AB ⊥BC ,CD ⊥BC 〔已知〕∴ ∠1+∠3=90º,∠2+∠4=90º〔 〕 ∴ ∠1与∠3互余,∠2与∠4互余又∵ ∠1=∠2〔 〕 ∵ ∠3=∠4〔 〕 ∴ BE ∥CF 〔 〕2.已知:如图18,AB ∥CD ,∠1=∠2,求证:∠B =∠D .证明:∵ ∠1=∠2〔已知〕 ∴ ∥ 〔 〕∴ ∠BAD +∠B = 〔 〕又∵ AB ∥CD 〔已知〕 ∴ + =180º〔 〕 ∴ ∠B =∠D 〔 〕六、作图题如图19,已知∠BAC 及BA 上一点P ,求作直线MN ,使MN 经过点P ,且MN ∥AC . 〔要求:使用尺规正确作图,保留作图痕迹〕七、计算与说理1.已知:如图20,∠ABC =50º,∠ACB =60º,∠ABC 、∠ACB 的平分线交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F .求∠BOC 的度数.2.如图21,AB ∥DE ,∠1=∠ACB ,∠CAB =21∠BAD ,试说明AD ∥BC .6.假设两个角的两边分别平行,而一个角30°,则另一角的度数是____________________. 7、命题“同角的补角相等”改写成“如果……, 那么……”的形式可写成 ______________________________. 二、选择题(6×3)8、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。

第二章平行线与相交线的单元测试题及答案

第二章平行线与相交线的单元测试题及答案

第(3)题1234A BC D EF第(5)题1234a b c 12ab c 第(2)题第(10)??ABCDE第二章《平行线与相交线》测验题(时间;60分钟 满分100分)班级 姓名 成绩 一、填空题:(每空2分,共30分)1.同一平面内,两条直线的位置关系有 、 两种。

2.如图,在直线a 、b 被直线c 所截,若∠1=∠2 ,则 ∥ ,根据是 .3.如图,直线AB 、CD 被直线EF 所截,∠1=∠2,那么∠3与∠4的关系是 4.若a ∥b,b ∥c, 则a 与c 的关系是 ,理由是 .5.如图,直线a ∥b ,∠1=30°,那么∠2= ;∠3= ;∠4= 6.平行公理是:经过 一点, 一条直线与这条直线平行。

7.如图,在A 、B 两点之间要架设一条铁路,从A 处测得公路的走向是南偏东42°,如果A 、B 两处同时开工,那么,在B 处应按∠β=______度施工,以保证公路准确接通。

8.如图,直线AB ∥CD ,EF ⊥CD ,垂足为F ,射线FN 交 AB 于M ,∠NMB=136°,则∠EFN=第(8)题A B CDE FN MA B CD9.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 点,EG 平分∠BEF ,若∠1=72°,则∠2= °10.如图,AB ∥CD ,若∠ABE=120°,∠DCE=35°,则∠BEC= 。

1.下列说法中,正确的是( ) A .没有公共点的两线段一定平行B .如果直线a 与直线b 相交,直线b 与c 相交,那么,直线a 与c 也一定相交第(8)题第(10)题第(4)题4321D CB A E DC B A C .在同一平面内,两条直线不相交就一定平行D .不相交的两条直线,就是平行线 2.下列说法不正确的是( )A .同位角相等,两直线平行B .过一点有且只有一条直线与已知直线平行C .两直线平行,内错角相等D .同旁内角互补,两直线平行3.如图,已知:∠1=∠2,那么下列结论正确的是( ) A .∠C=∠D B .AD ∥BC C .AB ∥CDD .∠3=∠44.如图,AD ⊥BC 于D ,DE ∥AC ,那么∠C 与∠ADE 的关系是( )A .互余B .互邻C .相等D .互补5.两条直线被第三条直线所截,有一对同旁内角互补,则这一对同旁内角的平分线( ) A .平行 B .垂直 C .平行或垂直 D .平行或垂直或在同一平面上三、填写理由:(每题10分,共20分) 1. 如右上图, ∵CE ∥AB (已知)∴∠ECD=∠ ( )又∵EF ∥BC (已知)∴∠CEF+∠ECD=180°( ) ∴∠ABD+∠CEF= (等量代换) 2. 已知:如图,AB ∥CD ,∠ABC=∠ADC ,求证:AD ∥BC证明: ∵AB ∥CD ( )∴∠1= ( )又 ∵∠ABC=∠ADC ( ) ∴∠ABC -∠1=∠ADC -∠2即:∠3=∠4∴AD ∥ ( )A B C D 1234第(3)题A B CD E FD C B A FECBA四、解答题:(共35分)1.(9分)如图,DC ∥AB ,DB 平分∠ABC ,∠A=72°∠CBA=30°, 求:(1)∠CDB 的度数(2)∠ADB 的度数。

第二章-相交线与平行线练习题(带解析)

第二章-相交线与平行线练习题(带解析)

第二章 相交线与平行线练习题(带解析)1、如图,直线a 、b 、c 、d ,已知c⊥a,c⊥b,直线b 、c 、d 交于一点,若∠1=500,则∠2等于【 】(1)(2)(5)(6)(7) 2、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE 与∠DCF 的位置与大小关系是 ( ) 3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( )A .相等B .互补C .相等或互补D .相等且互补4、下列说法中,为平行线特征的是( )①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A .①B .②③C .④D .②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=( )A .60°B .50°C .30°D .20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为( )A .α+β+γ=360°B .α-β+γ=180°C .α+β-γ=180°D .α+β+γ=180°7、如图,由A 到B 的方向是( )8、如图,由AC∥ED,可知相等的角有( )(8) (9)A .6对B .5对C .4对D .3对9、如图,直线AB 、CD 交于O ,EO⊥AB 于O ,∠1与∠2的关系是( )A.互余B.对顶角C.互补 D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( )A .50°、40°B .60°、30°C .50°、130°D .60°、120°11、下列语句正确的是( )A .一个角小于它的补角B .相等的角是对顶角C .同位角互补,两直线平行D .同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A .600B .500C .400D .300A .是同位角且相等B .不是同位角但相等;C .是同位角但不等D .不是同位角也不等 A .南偏东30° B .南偏东60° C .北偏西30° D .北偏西60°A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①②B.①③C.①④D.③④分卷II分卷II 注释评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC=___°,∠CDB=____°。

北师大版七年级下册第二章-平行线与相交线同步练习题(含答案)

北师大版七年级下册第二章-平行线与相交线同步练习题(含答案)

第二章平行线与相交线同步练习题2.1 两条直线的位置关系一、选择题(共18小题)1.下列说法正确的是()A.两条不相交的线段叫平行线B.过一点有且只有一条直线与已知直线平行C.线段与直线不平行就相交D.与同一条直线相交的两条直线有可能平行2.如果线段AB与线段CD没有交点,则()A.线段AB与线段CD一定平行B.线段AB与线段CD一定不平行C.线段AB与线段CD可能平行D.以上说法都不正确3.如图,在方格纸上给出的线中,平行的有()A.1对B.2对C.3对D.4对4.已知∠1+∠2=90°,∠3+∠4=180°,下列说法正确的是()A.∠1是余角B.∠3是补角C.∠1是∠2的余角D.∠3和∠4都是补角5.下列说法错误的是()A.两个互余的角相加等于90°B.钝角的平分线把钝角分为两个锐角C.互为补角的两个角不可能都是钝角D.两个锐角的和必定是直角或钝角6.下列说法正确的是()A.两个互补的角中必有一个是钝角B.一个锐角的余角一定小于这个角的补角C.一个角的补角一定比这个角大D.一个角的余角一定比这个角小7.如果∠α+∠β=90°,而∠β与∠γ互余,那么∠α与∠γ的关系为()A.互余B.互补C.相等D.不能确定8.一个角的余角是它的补角的,则这个角为()A.60°B.45°C.30°D.90°9.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.有公共顶点并且相等的两个角是对顶角C.如果两个角不相等,那么这两个角不是对顶角D.以上说法都不对10.如图,∠1与∠2是对顶角的是()A.B.C.D.11.(2007•济南)已知:如图,AB∠CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角12.(2003•杭州)如图所示立方体中,过棱BB1和平面CD1垂直的平面有()A.1个B.2个C.3个D.0个13.(2006•大连)如图,∠PQR等于138°,SQ∠QR,QT∠PQ.则∠SQT等于()A.42°B.64°C.48°D.24°14.(2005•哈尔滨)过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为40°,则此钝角为()A.140°B.160°C.120°D.110°15.如图,已知0A∠m,OB∠m,所以OA与OB重合,其理由是()A.过两点只有一条直线B.过一点只能作一条垂线C.经过一点只有一条直线垂直于已知直线D.垂线段最短16.如图,∠BAC=90°,AD∠BC,则下列的结论中正确的个数是()①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.A.1个B.2个C.3个D.4个17.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是()A.垂线最短B.过一点确定一条直线与已知直线垂盲C.垂线段最短D.以上说法都不对18.已知线段AB=10cm,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有()A.1条B.2条C.3条D.4条二、填空题(共12小题)19.已知∠1=43°27′,则∠1的余角是_________,补角是_________.20.若一个角的余角是30°,则这个角的补角为_________°.21.两个角互余或互补,与它们的位置_________(填“有”或“无”)关.22.一个角的补角是它的余角的4倍,则这个角等于_________度.23.若∠α和∠β互为余角,并且∠α比∠β大20°,∠β和∠γ互为补角,则∠α=_________,∠β=_________,那么,∠γ﹣∠α=_________.24.如图,已知∠COE=∠BOD=∠AOC=90°,则图中与∠B0C相等的角为_________,与∠BOC互补的角为_________,与∠BOC互余的角为_________.25.如图,直线AB,CD相交于点O,∠EOC=60°,OA平分∠EOC,那么∠BOD的度数是_________.26.(2006•宁波)如图,直线a∠b,∠1=50°,则∠2=_________度.27.如图,点A,B,C在一条直线上,已知∠1=53°,∠2=37°,则CD与CE的位置关系是_________.28.老师在黑板上随便画了两条直线AB,CD相交于点0,还作∠BOC的平分线OE和CD的垂线OF(如图),量得∠DOE被一直线分成2:3两部分,小颖同学马上就知道∠AOF等于_________.29.如图,∠ADB=90°,则AD_________BD;用“<”连接AB,AC,AD,结果是_________.30.如图,已知BA∠BD,CB∠CD,AD=8,BC=6,则线段BD长的取值范围是_________.三、解答题(共9小题)31.已知一个角的补角加上10°后等于这个角的余角的3倍,求这个角的余角.32.如图所示,直线a,b,C两两相交,∠1=2∠3,∠2=80°,求∠4的度数.33.如图,直线AB,CD相交于点O,且∠1=∠2.(1)指出∠1的对顶角;(2)若∠2和∠3的度数比是2:5,求∠4和∠AOC的度数.34.如图,直线AB,EF相交于点O,∠AOE=30°,∠BOC=2∠AOC,求∠DOF的度数.35.如图,两条笔直的街道AB,CD相交于点0,街道OE,OF分别平分∠AOC,∠BOD,请说明街道EOF是笔直的.36.如图,OA∠OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.37.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?38.如图,直线AB,CD相交于O点,OM∠AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.2.1 两条直线的位置关系同步练习参考答案与试题解析一、选择题(共18小题)1.下列说法正确的是()A.两条不相交的线段叫平行线B.过一点有且只有一条直线与已知直线平行C.线段与直线不平行就相交D.与同一条直线相交的两条直线有可能平行考点:平行公理及推论;平行线.分析:根据平行线的定义对A、C进行判断;根据平行公理对B进行判断;根据与同一条直线相交的两条直线可能异面、平行或相交,则可对D进行判断.解答:解:A、在同一平面内,两条不相交的直线叫平行线,所以A选项错误;B、过直线外一点有且只有一条直线与已知直线平行,所以B选项错误;C、在同一平面内,直线与直线不平行就相交,所以C选项错误;D、与同一条直线相交的两直线可能平行,所以D选项正确.故选D.点评:本题考查了平行公理及推论:经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也考查了平行线的定义.2.如果线段AB与线段CD没有交点,则()A.线段AB与线段CD一定平行B.线段AB与线段CD一定不平行C.线段AB与线段CD可能平行D.以上说法都不正确考点:平行线.分析:根据两直线在同一平面内内的位置关系即可得出正确答案.解答:解:A、线段AB与线段CD不一定平行,有可能相交,故本选项错误;B、线段AB与线段CD不一定不平行,有可能平行,故本选项错误;C、线段AB与线段CD可能平行,故本选项正确;D、以上说法都不正确,也不对,故本选项错误;故选C.点评:此题考查了平行线,掌握两直线在同一平面内内的位置关系,要么平行,要么垂直.3.如图,在方格纸上给出的线中,平行的有()A.1对B.2对C.3对D.4对考点:平行线的判定.专题:网格型.分析:根据网格结构,找出与直线a所在的直角三角形的竖直方向的直角边的夹角相等的直线即可.解答:解:根据方格纸上给出的线可以看出a∠c,c∠b,a∠b,故选:C.点评:本题考查了平行线的判定,熟练掌握网格结构是解题的关键.4.已知∠1+∠2=90°,∠3+∠4=180°,下列说法正确的是()A.∠1是余角B.∠3是补角C.∠1是∠2的余角D.∠3和∠4都是补角考点:余角和补角.分析:根据余角和补角的知识,结合选项选出正确答案即可.解答:解:由题意得,A、∠1是∠2的余角,原说法错误,故本选项错误;B、∠3是∠4的补角,原说法错误,故本选项错误;C、∠1是∠2的余角,原说法正确,故本选项正确;D、∠3是∠4的补角,原说法错误,故本选项错误;故选C.点评:本题考查了余角和补角的知识,属于基础题,解答本题的关键是熟练余角和补角的说法,只能说两个角互为余(补)角或其中一个角是另一个角的余(补)角.5.下列说法错误的是()A.两个互余的角相加等于90°B.钝角的平分线把钝角分为两个锐角C.互为补角的两个角不可能都是钝角D.两个锐角的和必定是直角或钝角考点:余角和补角;角平分线的定义;角的计算.分析:根据补角和余角、角平分线、角的计算的知识结合选项选出正确答案即可.解答:解:A、两个互余的角相加等于90°,该说法正确,故本选项错误;B、钝角的平分线把钝角分为两个锐角,该说法正确,故本选项错误;C、互为补角的两个角不可能都是钝角,该说法正确,故本选项错误;D、两个锐角的和可能是锐角、直角、钝角,原说法错误,故本选项正确;故选D.点评:本题考查了余角和补角、角平分线、角的计算等知识,属于基础题,解答本题的关键是熟练掌握各知识点的概念.6.下列说法正确的是()A.两个互补的角中必有一个是钝角B.一个锐角的余角一定小于这个角的补角C.一个角的补角一定比这个角大D.一个角的余角一定比这个角小考点:余角和补角.专题:应用题.分析:根据锐角、钝角的定义,以及互余互补角的定义,依次判断即可得出答案.解答:解:A、互补的两个角可以都是直角,故本选项错误;B、一个锐角的余角一定小于这个角的补角,故本选项正确;C、钝角的补角一定比这个角小,故本选项错误;D、锐角的余角一定比这个角大,故本选项错误.故选B.点评:本题主要考查了锐角、钝角的定义,以及互余互补角的定义,比较简单.7.如果∠α+∠β=90°,而∠β与∠γ互余,那么∠α与∠γ的关系为()A.互余B.互补C.相等D.不能确定考点:余角和补角.分析:由∠α+∠β=90°可知∠α和∠β互余,另外∠β与∠γ互余,则∠α和∠γ是同一个角∠β的余角,同角的余角相等.因而∠α=∠γ.解答:解:∠∠β与∠γ互余∠∠β+∠γ=90°又∠∠α+∠β=90°∠∠α=∠γ故选C.点评:本题是一个基本的题目,考查了互余的定义,以及同角的余角相等这一性质.8.一个角的余角是它的补角的,则这个角为()A.60°B.45°C.30°D.90°考点:余角和补角.专题:计算题.分析:先设出这个角,根据题中的数量关系列方程解答.解答:解:设这个角是x,列方程得:90°﹣x=(180°﹣x).解得x=45°.故选B.点评:列方程时一定明确“余角是它的补角的”,不能误为(90°﹣x)=180°﹣x.9.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.有公共顶点并且相等的两个角是对顶角C.如果两个角不相等,那么这两个角不是对顶角D.以上说法都不对考点:对顶角、邻补角.分析:根据对顶角的定义对各选项分析判断后利用排除法求解.解答:解:A、如果两个角相等,那么这两个角是对顶角错误,例如,角平分线把角分成两个相等的角但不是对顶角,故本选项错误;B、有公共顶点并且相等的两个角是对顶角错误,理由同A,故本选项错误;C、如果两个角不相等,那么这两个角不是对顶角正确,故本选项正确;D、C选项正确,所以本选项错误.故选C.点评:本题主要考查了对顶角的定义,是基础题,熟记概念是解题的关键.10.如图,∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.专题:应用题.分析:根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.解答:解:A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,B、∠1与∠2没有公共顶点,不是对顶角,C、∠1与∠2的两边互为反向延长线,是对顶角,D、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故选C.点评:本题主要考查了对顶角的定义,难度较小.11.(2007•济南)已知:如图,AB∠CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角考点:垂线;余角和补角;对顶角、邻补角.分析:根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.解答:解:图中,∠2=∠COE(对顶角相等),又∠AB∠CD,∠∠1+∠COE=90°,∠∠1+∠2=90°,∠两角互余.故选B.点评:本题考查了余角和垂线的定义以及对顶角相等的性质.12.(2003•杭州)如图所示立方体中,过棱BB1和平面CD1垂直的平面有()A.1个B.2个C.3个D.0个考点:认识立体图形.分析:在立方体中,棱与面,面与面之间的关系有平行和垂直两种.解答:解:过棱BB1和平面CD1垂直的平面有CBB1C1,所以只有1个.故选A.点评:此题考查了立体图形和平面图形的理解能力,主要培养学生的观察能力和空间想象能力.要熟悉在立方体中,面与面之间的关系有平行和垂直两种.13.(2006•大连)如图,∠PQR等于138°,SQ∠QR,QT∠PQ.则∠SQT等于()A.42°B.64°C.48°D.24°考点:角的计算;垂线.专题:计算题.分析:利用垂直的概念和互余的性质计算.解答:解:∠∠PQR等于138°,QT∠PQ,∠∠PQS=138°﹣90°=48°,又∠SQ∠QR,∠∠PQT=90°,∠∠SQT=42°.故选A.点评:本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.14.(2005•哈尔滨)过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为40°,则此钝角为()A.140°B.160°C.120°D.110°考点:角的计算.专题:计算题.分析:本题是对有公共部分角的性质的考查,解决此类问题的关键是正确画出图形.解答:解:因为过一个钝角的顶点作这个角两边的垂线,所以两个直角的和是180°,而两条垂线的夹角为40°,所以此钝角为140度.故选A.点评:解决此类问题的关键是正确的画出图形.15.如图,已知0A∠m,OB∠m,所以OA与OB重合,其理由是()A.过两点只有一条直线B.过一点只能作一条垂线C.经过一点只有一条直线垂直于已知直线D.垂线段最短考点:垂线.分析:根据平面内,经过一点有且只有一条直线与已知直线垂直可得OA与OB重合.解答:解:根据垂线的性质:平面内,过一点有且只有一条直线与已知直线垂直可得OA与OB重合,故选:C.点评:此题主要考查了垂线的性质,关键掌握平面内,过一点有且只有一条直线与已知直线垂直可得OA与OB 重合,注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”.16.如图,∠BAC=90°,AD∠BC,则下列的结论中正确的个数是()①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.A.1个B.2个C.3个D.4个考点:垂线段最短.分析:根据垂线段定义:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段分别进行判断即可.解答:解:①点B到AC的垂线段是线段AB,说法正确;②线段AC是点C到AB的垂线段,说法正确;③线段AD是点D到BC的垂线段,说法错误,应该是线段AD是点A到BC的垂线段;④线段BD是点B到AD的垂线段,说法正确;故选:C.点评:此题主要考查了垂线段,关键是掌握垂线段的定义.17.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是()A.垂线最短B.过一点确定一条直线与已知直线垂盲C.垂线段最短D.以上说法都不对考点:垂线段最短.分析:过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.解答:解:其依据是:连接直线外一点与直线上各点的所有线段中,垂线段最短.故选:C.点评:本题考查了垂线的性质在实际生活中的运用,关键是掌握垂线段的性质:垂线段最短.18.已知线段AB=10cm,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有()A.1条B.2条C.3条D.4条考点:点到直线的距离.分析:根据从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.画出图形进行判断.解答:解:在线段AB的两旁可分别画一条满足条件的直线;作线段AB的垂线,将线段AB分成6cm,4cm两部分,所以符合条件的直线l有3条,故选C.点评:此题主要考查了从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的定义.二、填空题(共12小题)19.已知∠1=43°27′,则∠1的余角是46°33′,补角是136°33′.考点:余角和补角.专题:计算题.分析:根据余角及补角的定义进行计算即可.解答:解:∠∠1=43°27′,∠∠1的余角是90°﹣43°27′=46°33′;∠1的补角是:180°﹣43°27′=136°33′.故答案为:46°33′,136°33′.点评:本题考查的是余角及补角的定义,比较简单.20.若一个角的余角是30°,则这个角的补角为120°.考点:余角和补角.专题:计算题.分析:先根据余角的定义求出这个角的度数,进而可求出这个角的补角.解答:解:由题意得:180°﹣(90°﹣30°)=90°+30°=120°,故答案为:120.点评:本题主要考查了余角、补角的定义,掌握其定义,才能正确解答.21.两个角互余或互补,与它们的位置无(填“有”或“无”)关.考点:余角和补角.分析:根据余角和补角的定义解答.解答:解:两个角互余或互补,只与度数有关,与它们的位置无关.故答案为:无.点评:本题考查了余角和补角,只与角的度数有关,与位置无关.22.一个角的补角是它的余角的4倍,则这个角等于60度.考点:余角和补角.专题:常规题型.分析:设这个角为x,根据互为余角的和等于90°,互为补角的和等于180°表示出出这个角的余角与补角,然后列出方程求解即可.解答:解:设这个角为x,则它的余角为90°﹣x,补角为180°﹣x,根据题意得,180°﹣x=4(90°﹣x),解得x=60°.故答案为:60.点评:本题考查了互为余角与补角的定义,根据题意表示出这个角的余角与补角,然后列出方程是解题的关键.23.若∠α和∠β互为余角,并且∠α比∠β大20°,∠β和∠γ互为补角,则∠α=55°,∠β=35°,那么,∠γ﹣∠α=90°.考点:余角和补角.分析:根据互为余角的两个角的和等于90°可得∠α+∠β=90°,再根据∠α比∠β大20°可得∠α﹣∠β=20°,然后联立求解即可;再根据互为补角的两个角的和等于180°列式进行计算求出∠γ,然后求解即可.解答:解:∠∠α和∠β互为余角,∠α比∠β大20°,∠∠α+∠β=90°①,∠α﹣∠β=20°②,联立①②解得∠α=55°,∠β=35°,∠∠β和∠γ互为补角,∠∠γ=180°﹣∠β=180°﹣35°=145°,∠∠γ﹣∠α=145°﹣55°=90°.故答案为:55°,35°,90°.点评:本题考查了余角和补角的定义,熟记概念并根据∠α、∠β的关系列出两个等式求出这两个角是解题的关键.24.如图,已知∠COE=∠BOD=∠AOC=90°,则图中与∠B0C相等的角为∠DOE,与∠BOC互补的角为∠AOD,与∠BOC互余的角为∠COD,∠AOB.考点:余角和补角.分析:根据∠COE=∠BOD=90°,得出∠BOC=∠DOE,然后根据∠EOD+∠AOD=180°,可得∠BOC与∠AOD互补,根据∠BOD=∠AOC=90°可找出与∠BOC互余的角.解答:解:∠∠COE=∠BOD=90°,∠∠BOC=∠DOE(等角的余角相等),又∠∠EOD+∠AOD=180°,∠∠BOC与∠AOD互补,∠∠BOD=∠AOC=90°,∠∠DOC+∠COB=90°,∠COB+∠AOB=90°,∠与∠BOC互余的角为∠COD,∠AOB.故答案为:∠DOE,∠AOD,∠COD,∠AOB.点评:本题考查了余角和补角的知识,属于基础题,解答本题的关键是熟练掌握互余两角之和为90°,互补两角之和为180°.25.如图,直线AB,CD相交于点O,∠EOC=60°,OA平分∠EOC,那么∠BOD的度数是30°.考点:对顶角、邻补角;角平分线的定义.分析:根据角平分线的定义求出∠AOC,再根据对顶角相等的性质解答即可.解答:解:∠∠EOC=60°,OA平分∠EOC,∠∠AOC=∠EOC=×60°=30°,∠∠BOD=∠AOC=30°.故答案为:30°.点评:本题考查了对顶角相等的性质,角平分线的定义,是基础题,准确识图是解题的关键.26.(2006•宁波)如图,直线a∠b,∠1=50°,则∠2=40度.考点:垂线.专题:计算题.分析:因为直线a∠b,从图形中,不难发现,∠1与∠2互余;已知∠1,利用互余关系求∠2.解答:解:∠a∠b,∠∠1与∠2互余,∠∠1=50°,∠∠2=90°﹣∠1=90°﹣50°=40°.点评:利用余角和对顶角相等的性质即可求此角.27.如图,点A,B,C在一条直线上,已知∠1=53°,∠2=37°,则CD与CE的位置关系是互相垂直.考点:垂线.分析:先由已知条件得出∠1+∠2=90°,再根据平角的定义得出∠1+∠DCE+∠2=180°,则∠DCE=90°,由垂直的定义可知CD与CE互相垂直.解答:解:∠∠1=53°,∠2=37°,∠∠1+∠2=90°,∠点A,B,C在一条直线上,∠∠1+∠DCE+∠2=180°,∠∠DCE=90°,∠CD与CE互相垂直.故答案为:互相垂直.点评:本题考查了平角的定义,垂直的定义,比较简单.根据平角的定义求出∠DCE=90°是解题的关键.28.老师在黑板上随便画了两条直线AB,CD相交于点0,还作∠BOC的平分线OE和CD的垂线OF(如图),量得∠DOE被一直线分成2:3两部分,小颖同学马上就知道∠AOF等于45°.考点:垂线;对顶角、邻补角.分析:先由OE平分∠BOC,得出∠BOC=2∠BOE,再由∠DOE被一直线分成2:3两部分,结合图形可知∠DOB:∠BOE=2:3,如果设∠BOD=2x,根据平角的定义得出∠COD=180°,列出关于x的方程,解方程求出∠DOB 的度数,由对顶角相等得出∠AOC=∠BOD,然后根据OF∠CD可知∠AOF与∠AOC互余.解答:解:∠OE平分∠BOC,∠∠BOC=2∠BOE,∠∠DOE被一直线分成2:3两部分,∠∠DOB:∠BOE=2:3,设∠BOD=2x,则∠BOE=3x,∠BOC=6x,∠∠COD=180°,∠2x+6x=180°,∠2x=45°.∠∠DOB=45°,∠∠AOC=∠BOD=45°,∠OF∠CD,∠∠AOF=90°﹣∠AOC=45°.故答案为45°.点评:本题考查了垂直、角平分线、平角的定义,对顶角相等的性质,难度适中,利用数形结合及方程思想是解题的关键.29.如图,∠ADB=90°,则AD∠BD;用“<”连接AB,AC,AD,结果是AD<AC<AB.考点:垂线段最短.分析:根据垂直定义可得AD∠BD,再根据垂线段最短可得AD<AC<AB.解答:解:∠∠ADB=90°,∠AD∠BD,∠AD<AC<AB.故答案为:∠;AD<AC<AB.点评:此题主要考查了垂线段的性质,关键是掌握垂线段最短.30.如图,已知BA∠BD,CB∠CD,AD=8,BC=6,则线段BD长的取值范围是6<BD<8.考点:垂线段最短.分析:根据CB∠CD,得出BD>BC,再根据BA∠BD,得出BD<AD,最后根据AD=8,BC=6,即可求出线段BD长的取值范围.解答:解:∠CB∠CD,∠BD>BC,∠BA∠BD,∠BD<AD,∠AD=8,BC=6,∠线段BD长的取值范围是6<BD<8;故答案为:6<BD<8.点评:此题考查了垂线段最短,掌握垂线段最短的定义是解题的关键,从直线外一点到这条直线上各点所连的线段中,垂线段最短.三、解答题(共9小题)31.已知一个角的补角加上10°后等于这个角的余角的3倍,求这个角的余角.考点:余角和补角.专题:方程思想.分析:设这个角为x,根据题意列出方程,求出x的值,再根据余角的定义即可求解.解答:解:设这个角为x,则180°﹣x+10°=3(90°﹣x),解得x=40°,所以90°﹣40°=50°.故答案为:50°.点评:本题考查的是余角与补角的定义,利用方程的思想求解是解答此题的关键.32.如图所示,直线a,b,C两两相交,∠1=2∠3,∠2=80°,求∠4的度数.考点:对顶角、邻补角.分析:根据对顶角相等求出∠1,再求出∠3,然后根据对顶角相等解答即可.解答:解:由对顶角相等可得∠1=∠2=80°,∠∠1=2∠3,∠∠3=40°,∠∠4=∠3=40°(对顶角相等).点评:本题主要考查了对顶角相等的性质,根据已知条件“∠1=2∠3”求出∠3是解题的关键.33.如图,直线AB,CD相交于点O,且∠1=∠2.(1)指出∠1的对顶角;(2)若∠2和∠3的度数比是2:5,求∠4和∠AOC的度数.考点:对顶角、邻补角.分析:(1)根据对顶角的定义解答;(2)先求出∠1、∠2、∠3的比,再根据平角的定义列式求出这三个角,再根据对顶角相等求解.解答:解:(1)∠1的对顶角是∠AOC;(2)∠∠1=∠2,∠2和∠3的度数比是2:5,∠∠1:∠2:∠3=2:2:5,设∠2=2x,则∠1=2x,∠3=5x,由题意得,2x+2x+5x=180°,解得x=20,所以,∠1=40°,∠2=40°,∠3=100°,根据对顶角相等,∠4=∠BOC=40°,∠AOC=∠1=40°.点评:本题考查了对顶角相等的性质,设出∠1、∠2、∠3然后根据平角的定义列式求出这三个角是解题的关键,也是本题的难点.34.如图,直线AB,EF相交于点O,∠AOE=30°,∠BOC=2∠AOC,求∠DOF的度数.考点:对顶角、邻补角.分析:设∠AOC=x,表示出∠BOC=2x,根据邻补角的定义列式求出x,再求出∠EOC,然后根据对顶角相等解答.解答:解:设∠AOC=x,则∠BOC=2x,由邻补角的定义得,2x+x=180°,解得x=60°,所以,∠AOC=60°,∠∠AOE=30°,∠∠EOC=∠AOC﹣∠AOE=60°﹣30°=30°,∠∠DOF=∠EOC=30°.点评:本题考查了邻补角的定义,对顶角相等的性质,准确识图并求出∠AOC的度数是解题的关键.35.如图,两条笔直的街道AB,CD相交于点0,街道OE,OF分别平分∠AOC,∠BOD,请说明街道EOF是笔直的.考点:对顶角、邻补角.分析:根据对顶角相等可得∠AOC=∠BOD,再根据角平分线的定义可得∠1=∠AOC,∠2=∠BOD,从而得到∠1=∠2,再根据AB是笔直的街道可得∠2+∠AOF=180°,求出∠1+∠AOF=180°,从而得解.解答:解:∠∠AOC和∠BOD是对顶角,∠∠AOC=∠BOD,∠OE,OF分别平分∠AOC,∠BOD,∠∠1=∠AOC,∠2=∠BOD,∠∠1=∠2,∠AB是笔直的街道,∠∠2+∠AOF=180°,∠∠1+∠AOF=180°,即∠EOF=180°,∠EOF是一条直线,即街道EOF是笔直的.点评:本题考查了对顶角相等的性质,角平分线的定义,是基础题,求出∠EOF=180°是解题的关键.36.如图,OA∠OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.考点:垂线;角平分线的定义.分析:首先根据垂直定义可得∠AOB=90°,再由∠AON=120°可得∠BON,再根据角平分线的性质可得∠MOB=∠NOB,进而得到答案.解答:解:∠OA∠OB,∠∠AOB=90°,∠∠AON=120°,∠∠BON=120°﹣90°=30°,∠OB平分∠MON,∠∠MOB=∠NOB=30°,∠∠AOM=90°﹣30°=60°.点评:此题主要考查了垂线、角平分线的定义,关键是理清图中角的和差关系.37.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?考点:作图—应用与设计作图.分析:(1)过M作ME∠AB,过N作NF∠AB,根据垂线段最短可得汽车行驶到何处时,分别对两所学校影响最大;(2)此题说明时要分3段A到E;由F向B,由E向F分别说明对两学校的影响情况.解答:解:(1)如图所示:过M作ME∠AB,过N作NF∠AB,当汽车行驶到点E处时,对M学校影响最大;当汽车行驶到点F处时,对N学校影响最大;(2)由A向E行驶时,对两学校影响逐渐增大;由F向B行驶时,对两学校的影响逐渐减小;由E向F 行驶时,对M学校影响逐渐减小而对N学校影响逐渐增大.点评:此题主要考查了应用与设计作图,以及垂线段的性质,关键是正确画出图形.38.如图,直线AB,CD相交于O点,OM∠AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.考点:垂线;对顶角、邻补角.专题:计算题.分析:(1)由已知条件和观察图形可知∠1与∠AOC互余,再根据平角的定义求解;(2)利用已知的∠BOC=4∠1,结合图形以及对顶角的性质求∠AOC与∠MOD.解答:解:(1)因为OM∠AB,。

相交线与平行线难题汇编附答案

相交线与平行线难题汇编附答案

相交线与平行线难题汇编附答案一、选择题1.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.2.如图,不能判断12//l l 的条件是( )A .13∠=∠B .24180∠+∠=︒C .45∠=∠D .23∠∠=【答案】D【解析】【分析】根据题意,结合图形对选项一一分析,排除错误答案.【详解】A 、∠1=∠3正确,内错角相等两直线平行;B 、∠2+∠4=180°正确,同旁内角互补两直线平行;C 、∠4=∠5正确,同位角相等两直线平行;D 、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行. 故选:D .【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.3.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°【答案】C【解析】【分析】 根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.4.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.5.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )A .6个B .5个C .4个D .3个【答案】B【解析】【分析】 由对顶角关系可得∠EOD=∠COB ,则由∠COB+∠OBF=180°可知EC ∥BF ,再结合CE 是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC ∥BF ,结合CE 是角平分线可得∠ECB=∠ACE=∠CBF ,再由EC ∥BF 可得∠ACE=∠F=∠G ,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC ,共有5个与∠ECB 相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.6.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【答案】A【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.7.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.8.如图AD∥BC,∠B=30,DB平分∠ADE,则∠DEC的度数为()A .30B .60C .90D .120 【答案】B【解析】∵AD ∥BC ,∴∠ADB=∠DBC ,∵DB 平分∠ADE ,∴∠ADB=∠ADE ,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B .【点睛】此题主要考查了平行线的性质,正确得出∠ADB 的度数是解题关键.9.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.10.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.11.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.12.如图,AB CD ∥,BF 平分ABE ∠,且BF DE ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE交AB的延长线于G,AB CD,//∴∠=∠,D GBF DE,//∴∠=∠,G ABF∴∠=∠,D ABF∠,BF平分ABE∠=∠.∴∠=∠=∠,即2ABE DABE ABF D22故选:A.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.∠=∠,那么13.如图,现将一块含有60︒角的三角板的顶点放在直尺的一边上,若12∠的度数为()1A.50︒B.60︒C.70︒D.80︒【答案】B【解析】【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【详解】∵AB∥CD,∴∠3=∠2,∠1=∠2,∴∠1=∠3,∴2∠3+60°=180°,∴∠3=60°,∴∠1=60°,故选:B .【点睛】此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.14.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.15.若∠A 与∠B 是对顶角且互补,则它们两边所在的直线( )A .互相垂直B .互相平行C .既不垂直也不平行D .不能确定【答案】A【解析】∵∠A 与∠B 是对顶角,∴∠A=∠B ,又∵∠A 与∠B 互补,∴∠A+∠B=180°,可求∠A=90°.故选A .16.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠= ∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k,∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°AB CD∵//=∠DEF=120°∴AFE故答案为B.【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.17.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .19.如图,下列判断:①若12A C ∠=∠∠=∠,,则B D ∠=∠;②若12B D ∠=∠∠=∠,,则A C ∠=∠:③若,A C B D ∠=∠∠=∠,则12∠=∠.其中,正确的个数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】 ①根据12A C ∠=∠∠=∠,证明四边形DEBF 是平行四边形即可判断;②根据12B D ∠=∠∠=∠,证明DC ∥AB 即可判断;③根据,A C B D ∠=∠∠=∠证明DC ∥AB 即可判断.【详解】解:如图,标出∠3,①∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴四边形DEBF 是平行四边形(两组对边分别平行),∴B D ∠=∠,故①正确;②∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵B D ∠=∠,∴∠D+∠DEB=180°,∴DC ∥AB (同旁内角互补,两直线平行),∴A C ∠=∠(两直线平行,内错角相等);故②正确;③∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∴B CFB ∠=∠(两直线平行,内错角相等),又∵B D ∠=∠,∴D CFB ∠=∠,∴DE ∥FB (同位角相等,两直线平行),∴13∠=∠(两直线平行,同位角相等),∵2,3∠∠是对顶角,∴23∠∠=,∴12∠=∠(等量替换),故③正确.故D 为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.20.如图,下列推理错误的是( )A .因为∠1=∠2,所以c ∥dB .因为∠3=∠4,所以c ∥dC .因为∠1=∠3,所以a ∥bD .因为∠1=∠4,所以a ∥b【答案】C【解析】分析:由平行线的判定方法得出A 、B 、C 正确,D 错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c ∥d ,故正确; 根据同位角相等,两直线平行,可知因为∠3=∠4,所以c ∥d ,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.。

关于第二章平行线与相交线的竞赛题

关于第二章平行线与相交线的竞赛题

A BAB第二章平行线与相交线的竞赛题一、求角的度数1、已知AB ∥CD ,分别探讨下列四个图形(图①、图②、图③、图④)中∠APC 和∠PAB 、∠PCD 的关系,请用等式表示出它们的关系。

并证明它们。

解: ①过P 点作, ②过P 点作,∵ ∵∴ ∴ 又∵, 又∵,∴ ∴∴ ∴∴ ∴即: 即:③过P 点作, ∴∵ ∴∴ ∴又∵, 即:④过P 点作, ∴∵∴∴∴PFFF FCPACPBDCA图②图①B DPDC图④图③D E EE E24A BF321A BFAEMHGNCB又∵,即:2、如图,,求的度数?解:过E点作, 过F点作,∵,∴∵,∴∴,,∴3、如图所示.AE∥BD,∠1=3∠2,∠2=25°,求∠C?解: ∵∠1=3∠2,∠2=25°∴∠1=75°∵AE∥BD∴∴∵与是对顶角, ∴过F点作,∴,即:,解得:4、如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数? 解: ∵CD是∠ACB的平分线,∠ACB=40°∴又∵∴∵∴又∵∴5、如图所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG?DGCDE1EDCFB100°CAFGEDNM987654321解: ∵AB∥CD∴又∵∴∴∵平分∴又∵∴∴∵AB∥CD ∴∴6、如图,直线,直线AB交与于A,B,CA平分∠1,CB平分∠2,求∠C的度数?解: 过C点作又∵∴又∵CA平分∠1,CB平分∠2∴又∵∴∴7、如图,已知:CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,试说明:DA⊥AB解: ∵平分,平分∴,又∵∴∵∴又∴∴即:∴∴8、如图是一个的正方形,求图中的和?解:由于沿AB作对折时,图形能够重合,恰有E12DECBABA2DGC1二、角的关系1、如图所示.∠1=∠2,∠D=90°,EF ⊥CD 请说明∠3和∠B 的关系。

北师大版七年级下册数学第二章 平行线与相交线练习题(A.B.C

北师大版七年级下册数学第二章 平行线与相交线练习题(A.B.C

初中数学试卷北师大版七年级下册数学第二章 平行线与相交线练习题(A.B.C 卷)A 卷1.一定在△ABC 内部的线段是( )A .锐角三角形的三条高、三条角平分线、三条中线B .钝角三角形的三条高、三条中线、一条角平分线C .任意三角形的一条中线、二条角平分线、三条高D .直角三角形的三条高、三条角平分线、三条中线 2.下列说法中,正确的是( )A .一个钝角三角形一定不是等腰三角形,也不是等边三角形B .一个等腰三角形一定是锐角三角形,或直角三角形C .一个直角三角形一定不是等腰三角形,也不是等边三角形D .一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,则图中面积相等的三角形有( ) A .4对 B .5对 C .6对 D .7对 (注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .无法确定5.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( ) A .18 B .15 C .18或15 D .无法确定6.两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种 A .3 B .4 C .5 D .6 A .180° B .360° C .720° D .540° 7.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,X|k |B| 1 . c|O |m ∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.8.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.9.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.10.如图,在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.11.如图,AB∥CD,BC⊥AB,若AB=4cm,2S,求△ABD中AB边上的高.=12cm∆ABC12.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D 笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?13.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.14.一个三角形的周长为36cm ,三边之比为a ∶b ∶c =2∶3∶4,求a 、b 、c .15.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G , (1)完成下面的证明:∵ MG 平分∠BMN ( ), ∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM . ∵ AB ∥CD ( ), ∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________. ∵ ∠GMN +∠GNM +∠G =________( ), ∴ ∠G = ________. ∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:新课 标 第 一 网 _______________________________________________________________. 16.已知,如图D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E , ∠A =46°,∠D =50°.求∠ACB 的度数.17.已知,如图△ABC 中,三条高AD 、BE 、CF 相交于点O .若∠BAC =60°,求∠BOC 的度数.18.已知,如图△ABC 中,∠B =65°,∠C =45°,AD 是BC 边上的高,AE 是∠BAC 的平分线.求∠DAE 的度数.B 卷一、选择题(每题3分,共30分)1.图中三角形的个数是( ) A .8 B .9 C .10 D .11 2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )A B C D3.以下各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm 4.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( )A 、3个B 、4个C 、5个D 、6个6.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是第2题图 第1题图 第5题图直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。

第二章 相交线与平行线单元测试卷(二)及答案解析

第二章 相交线与平行线单元测试卷(二)及答案解析

第二章相交线与平行线单元测试卷(二)一.选择题(共10小题)1.下列说法中正确的个数是()①过两点有且只有一条直线;②两直线相交只有一个交点;③0的绝对值是它本身④射线AB和射线BA是同一条射线.A.1个B.2个C.3个D.4个2.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°3.如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A.360°B.180°C.120°D.904.如图,AO⊥BO,垂足为点O,直线CD经过点O,下列结论正确的是()A.∠1+∠2=180°B.∠1﹣∠2=90°C.∠1﹣∠3=∠2 D.∠1+∠2=90°5.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,这样做的理由是()A.两点之间,线段最短B.垂线段最短C.过一点可以作无数条直线D.两点确定一条直线6.如图,AC⊥BC,CD⊥AB,下列结论中,正确的结论有()①线段CD的长度是C点到AB的距离;②线段AC是A点到BC的距离;③AB>AC>CD;④线段BC是B到AC的距离;⑤CD<BC<AB.A.2个B.3个C.4个D.5个7.如图,∠ACB=90°,CD⊥AB,垂足为D,则点B到直线CD的距离是指()A.线段BC的长度B.线段CD的长度C.线段AD的长度D.线段BD的长度8.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个9.下列各组线中一定互相垂直的是()A.对顶角的平分线B.同位角的平分线C.内错角的平分线D.邻补角的平分线10.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°二.填空题(共8小题)11.如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=°.12.已知一个角的两边分别垂直于另一个角的两边,且这两个角的差是30°,则这两个角的度数分别是.13.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是,理由是.14.两条直线被第三条直线所截,∠2是∠3的同旁内角,∠1是∠3的内错角,若∠2=4∠3,∠3=2∠1,则∠1的度数是.15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.16.如图,点D在△ABC的边AC的延长线上,DE∥BC,若∠A=65°,∠B=40°,则∠D的度数为.17.如图,若要说明AC∥DE,则可以添加的条件是.18.若∠A与∠B的两边分别平行,且∠A比∠B的5倍少20°,则∠A的度数为.三.解答题(共3小题)19.直线AB∥CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,CM交AB于点N.(1)如图①,过点A作AC的垂线交CM于点M,若∠MCD=55°,求∠MAN的度数;(2)如图②,点G是CD上的一点,连接MA、MG,∠MGD+∠EAB=180°,MC平分∠AMG.①∠AMG和∠EAB满足怎么样的数量关系时EC⊥AM?②若∠AMG=36°,求∠ACD的度数.20.如图,直线EF分别与直线AB、CD交于M,N两点,∠1=55°,∠2=125°,求证:AB∥CD【要求写出每一步的理论依据】.21.已知直线l1∥l2,直线l3与l1、l2分别交于C、D两点,点P是直线l3上的一动点,如图①,若动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具有∠3+∠1=∠2这一相等关系?试说明理由;如图②,当动点P在线段CD之外且在CD的上方运动(不与C、D两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.参考答案与试题解析一.选择题(共10小题)1.【解答】解:①过两点有且只有一条直线,故①正确;②两直线相交只有一个交点,故②正确;③0的绝对值是它本身,故③正确;④射线AB和射线BA的端点不同,延伸方向也不同,不是同一条射线,故④错误.故选:C.2.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°.故选:C.3.【解答】解:因为对顶角相等,所以∠1+∠2+∠3=×360°=180°.故选:B.4.【解答】解:∵如图,AO⊥BO,∴∠AOB=90°.A、∠1+∠3=180°,只有当∠2=∠3时,等式∠1+∠2=180°才成立,故本选项不符合题意.B、∠1=180°﹣∠3,则∠1﹣∠2=180°﹣∠3﹣∠2=90°,故本选项符合题意.C、∠1>90°,∠2+∠3=90°,则∠1≠∠3+∠2,即∠1﹣∠3=∠2,故本选项不符合题意.D、∠2+∠3=90°,只有当∠1=∠3时,等式∠1+∠2=90°才成立,故本选项不符合题意.故选:B.5.【解答】解:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.故选:B.6.【解答】解:①线段CD的长度是C点到AB的距离,正确;②线段AC的长度是A点到BC的距离,错误;③AB>AC>CD,正确;④线段BC的长度是B到AC的距离,错误;⑤CD<BC<AB,正确;故选:B.7.【解答】解:∵BD⊥CD于D,∴点B到直线CD的距离是指线段BD的长度.故选:D.8.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④同一平面内,过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.9.【解答】解:A、对顶角的平分线在同一直线上,故本选项错误;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项错误;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项错误;D、邻补角的平分线互相垂直,故本选项正确.故选:D.10.【解答】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.二.填空题(共8小题)11.【解答】解:根据题意得:∠1=138°﹣60°=78°,故答案为:7812.【解答】解:∵一个角的两边分别垂直于另一个角的两边,∴这两个角相等或互补.又∵这两个角的差是30°,∴这两个角互补.设一个角为x,则另一个角为x+30°,根据题意可知:x+x+30°=180°.解得:x=75°,x+30°=75°+30°=105°.故答案为:75°、105°.13.【解答】解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为:PM,垂线段最短.14.【解答】解:如图,设∠1=x°,则∠3=2x°,∠2=4∠3=8x°,∵∠1+∠2=180°,∴x°+8x°=180°,解得:x=20,∴∠1=20°.故答案为:20°.15.【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.16.【解答】解:如图所示:∵∠A+∠B+∠ACB=180°,∠A=65°,∠B=40°,∴∠ACB=180°﹣∠A﹣∠B=108°﹣65°﹣40°=75°,又∵DE∥BC,∴∠ACB=∠D,∴∠D=75°.故答案为75°,17.【解答】解:由题可得,当∠A=∠EDB时,AC∥DE,(同位角相等,两直线平行)当∠A+∠ADE=180°时,AC∥DE,(同旁内角互补,两直线平行)当∠C=∠CDE时,AC∥DE,(内错角相等,两直线平行)故答案为:∠A=∠EDB(答案不唯一).18.【解答】解:设∠B=x,则∠A=5x﹣20°,由题意x=5x﹣20°,或x+5x﹣20°=180°,解得x=5°或()°,∴∠A=5°或()°故答案为5°或()°.三.解答题(共3小题)19.【解答】解:(1)∵CM是∠ACD的平分线,∠MCD=55°,∴∠ACD=2∠MCD=110°,又∵AB∥CD,∴∠BAC=180°﹣110°=70°,又∵AM⊥EF,∴∠MAN=90°﹣70°=20°;(2)①当∠AMG=∠EAB=90°时EC⊥AM,理由如下:∵CM是∠ACD的平分线,MC平分∠AMG,∴∠ACM=∠GCM,∠AMC=∠GMC,又∵CM=CM,∴△AMC≌△GMC(ASA),∴∠CGM=∠CAM,∵EC⊥AM,∴∠CGM=∠CAM=90°,∴∠MGD=90°,∵∠MGD+∠EAB=180°,∴∠EAB=∠BAF=90°,∵AB∥CD,∴∠ACG=90°,∴∠AMG=360°﹣90°﹣90°﹣90°=90°;②∵MC平分∠AMG且∠AMG=36°,∴∠CMG=18°,∵MC平分∠ACG,∴∠MCG=∠ACG,∵∠CAB+∠EAB=180°,∠MGD+∠EAB=180°,∴∠BAC=∠MGD,∵AB∥CD,∴∠BAC+∠ACD=180°,设∠ACD=α,则∠MCG=∠ACD=α,∠BAC=∠MGD=180°﹣α,∵∠MGD是△CMG的外角,∴∠MGD=∠CMG+∠MCG,即180°﹣α=α+18°,解得α=108°,∴∠ACD=108°.20.【解答】证明:∵∠1=55°(已知),∴∠CNM=55°(对顶角相等),∵∠2=125°(已知),∴∠CNM+∠2=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行).21.【解答】解:(1)∠3+∠1=∠2成立,理由如下:如图①,过点P作PE∥l1,∴∠1=∠AEP,∵l1∥l2,∴PE∥l2,∴∠3=∠BPE,∵∠BPE+∠APE=∠2,∴∠3+∠1=∠2;(2)∠3+∠1=∠2不成立,新的结论为∠3﹣∠1=∠2,理由为:如图②,过P作PE∥l1,∴∠1=∠APE,∵l1∥l2,∴PE∥l2,∴∠3=∠BPE,∵∠BPE﹣∠APE=∠2,∴∠3﹣∠1=∠2.。

(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测(含答案解析)(4)

(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测(含答案解析)(4)

一、选择题1.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55° 2.下列说法不正确...的是( ) A .对顶角相等 B .两点确定一条直线C .一个角的补角一定大于这个角D .垂线段最短 3.一个角的余角是它的补角的25,这个角是( ) A .30B .60︒C .120︒D .150︒ 4.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35° 5.用一副三角板不能画出的角是( ).A .75°B .105°C .110°D .135° 6.下列说法正确的有( )①绝对值等于本身的数是正数.②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离.④若AC =BC ,则点C 就是线段AB 的中点.⑤不相交的两条直线是平行线A .1个B .2个C .3个D .4个 7.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°8.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( )A .4 cmB .5 cmC .小于2 cmD .不大于2 cm 9.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56°10.如图,∠BCD =70°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=110°B .∠α+∠β=70°C .∠β﹣∠α=70°D .∠α+∠β=90° 11.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .6012.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒-二、填空题13.已知70AOB ∠=︒,COB ∠与AOB ∠互余,则AOC ∠的度数为______.14.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.15.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.16.如图,AB//CD , 15,25A C ︒︒∠=∠=则M ∠=______17.如图,直线AB 、CD 相交于点O ,OM AB ⊥于点O ,若42MOD ∠=,则COB ∠=__________度.18.如图,在三角形ABC 中,90BAC ∠=,AD BC ⊥于点D ,比较线段AB ,BC ,AD 长度的大小,用“<”连接为__________.19.如图,AB ∥CD ,则∠B+∠D+∠P =_____.20.如图AB 与CD 相交于O ,OP AB ⊥,若120∠=︒,则2∠=________.三、解答题21.如图所示,直线AB ,CD 相交于点O ,OE 平分AOD ∠,射线OF 在BOD ∠内部.(1)若56AOC ∠=︒,求∠BOE 的度数.(2)若OF 平分BOD ∠,请直接写出图中所有互余的角.(3)若::7:3:1EOD FOD FOB ∠∠∠=,求COE ∠的度数.22.如图,直线AB 与CD 相交于点O ,30AOC ∠=︒,射线OE 从OC 开始绕点O 按顺时针方向旋转到OB .(1)当OE AB ⊥时,求EOD ∠的度数.(2)当OE 平分COB ∠时,求EOD ∠的度数.23.如图1AOC ∠,和BOD ∠都是直角.(1)如果35DOC ∠=︒,则AOB ∠= ;(2)找出图1中一组相等的锐角为: .(3)选择,若DOC ∠变小,AOB ∠将变( );A .大B .小C .不变(4)在图2中,利用能够画直角的工具在图2上再画一个与BOC ∠相等的角,不写做法,保留作图痕迹.24.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .25.如图,直角三角板的直角顶点O 在直线AB 上,OC 、OD 是三角板的两条直角边,OE 平分AOD ∠.(1)若20COE ∠=︒,求BOD ∠的度数;(2)若COE α∠=,则BOD ∠= ︒(用含α的代数式表示);(3)当三角板绕点O 逆时针旋转到图2的位置时,其他条件不变,请直接写出COE ∠与BOD ∠之间有怎样的数量关系.26.如图,东西方向上有一条高速公路连接A ,B 两城市,在高速公路的一侧有一座水电站P ,现测得水电站在城市A 的东北方向上,在城市B 北偏西60°方向上.(1)求∠APB 的度数;(2)若一辆轿车以每小时90公里的速度沿AB 方向从A 城市开往B 城市,行驶1.5小时轿车正好在水电站P 的正南方向上,请用方向和距离描述轿车相对于水电站P 的位置.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.2.C解析:C【分析】根据对顶角的性质,直线的性质,补角的定义,垂线段的性质依次判断即可得到答案.【详解】解:A、对顶角相等,故该项不符合题意;B、两点确定一条直线,故该项不符合题意;C、一个角的补角一定不大于这个角,故该项符合题意;D、垂线段最短,故该项不符合题意;故选:C.【点睛】此题考查对顶角的性质,直线的性质,补角的定义,垂线段的性质,正确理解各性质及定义是解题的关键.3.A解析:A设这个角的度数是x°,根据题意得出方程2901805x x-=-(),求出方程的解即可.【详解】解:设这个角的度数是x°,则2901805x x-=-(),解得:x=30,即这个角的度数是30°,故选A.【点睛】本题考查了余角和补角,注意:∠A的余角是90°-∠A,∠A的补角是180°-∠A.4.D解析:D【分析】根据对顶角相等求出∠AOC,根据角平分线的定义计算即可求出∠COE的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE平分∠AOC,∴∠COE=12∠AOC=170352⨯︒=︒,故选:D.【点睛】本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键.5.C解析:C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.【详解】解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。

相交线与平行线难题汇编及解析

相交线与平行线难题汇编及解析

相交线与平行线难题汇编及解析一、选择题1.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.2.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB ∥CD ,∴∠1=∠AEG .∵EG 平分∠AEF ,∴∠AEF=2∠AEG ,∴∠AEF=2∠1=64°,∵AB ∥CD ,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.3.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】【分析】根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.【详解】∵a ∥b ,∴∠3=170∠=︒,∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55︒,故选:B.【点睛】此题考查平行线的性质,折叠的性质.4.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.5.如图AD∥BC,∠B=30o,DB平分∠ADE,则∠DEC的度数为()A.30o B.60o C.90o D.120o【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.6.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.7.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B .【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识8.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.9.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4 【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.10.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.13.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .14.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.15.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.16.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.18.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .19.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°【答案】B【解析】【分析】 根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC , ∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.20.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40°【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.。

(必考题)初中数学七年级数学下册第二单元《相交线与平行线》测试(有答案解析)(1)

(必考题)初中数学七年级数学下册第二单元《相交线与平行线》测试(有答案解析)(1)

一、选择题1.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠互补的是( ) A . B . C . D .2.如图,已知直线AB 、CD 被直线AC 所截,//AB CD ,E 是直线AC 右边任意一点(点E 不在直线AB ,CD 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+,②αβ-,③βα-,④360αβ︒--,AEC ∠的度数可能是( )A .①②③B .①②④C .①③④D .①②③④ 3.下列语句中正确的是( )A .直线AB 和直线BA 是两条不同的直线B .连接两点间的线段叫两点的距离C .一条射线就是一个周角D .一个角的余角比这个角的补角小 4.如图,按照上北下南,左西右东的规定画出方向十字线,∠AOE =m °,∠EOF =90°,OM 、ON 分别平分∠AOE 和∠BOF ,下面说法:①点E 位于点O 的北偏西m °;②图中互余的角有4对;③若∠BOF =4∠AOE ,则∠DON =54°;④若MON n AOE BOF ,则n 的倒数是23,其中正确有( )A .3个B .2个C .1个D .0个 5.如果∠l 与∠2互补,∠2为锐角,则下列表示∠2余角的式子是( ) A .90°-∠1 B .∠1 - 90° C .∠1 + 90° D .180°-∠1 6.一艘船停留在海面上,如果从船上看灯塔位于北偏东30°,那么从灯塔看船上位于灯塔的( )A .北偏东30°B .北偏东60°C .南偏西30°D .南偏西60° 7.如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒8.如图,∠BCD =70°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=110°B .∠α+∠β=70°C .∠β﹣∠α=70°D .∠α+∠β=90° 9.将一直角三角板与等宽的纸条如图放置,顶点C 在纸条边FG 上,且DE//FG ,当132∠=︒时,∠2的度数是( )A .48°B .32°C .58°D .64°10.在同一平面内,a 、b 、c 是直线,下列说法正确的是( )A .若a ∥b ,b ∥c 则 a ∥cB .若a ⊥b ,b ⊥c ,则a ⊥cC .若a ∥b ,b ⊥c ,则a ∥cD .若a ∥b ,b ∥c ,则a ⊥c11.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,若∠AOC =24°,则∠DOE 的度数是( )A .24°B .54°C .66°D .76°12.下面四个图形中∠1与∠2为互为对顶角的说法正确的是( )A .都互为对顶角B .图1、图2、图3中的∠1、∠2互为对顶角C .都不互为对顶角D .只有图3中的∠1、∠2互为对顶角二、填空题13.如果一个角的补角是120°,那么这个角的余角的度数是________.14.如图,点A 在直线m 上,点B 在直线l 上,点A 到直线l 的距离为a ,点B 到直线m 的距离为b ,线段AB 的长度为c ,通过测量等方法可以判断在a ,b ,c 三个数据中,最大的是_____________.15.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD=26°,则∠AOC=____,∠COB=___.16.如图,直线AB 、CD 相交于点O ,OM AB ⊥于点O ,若42MOD ∠=,则COB ∠=__________度.17.如图,172∠=︒,262∠=︒,362∠=︒,则4∠的度数为__________.18.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使∠COD =90°,当∠AOC =50°时,∠BOD 的度数是____________.19.如图,已知AB//CD ,120AFC ∠=︒,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AEC ∠=____度.20.将如图1的长方形ABCD 纸片()//AD BC 沿EF 折叠得到图2,折叠后DE 与BF 相交于点P .如果70,EPF ∠=︒则PEF ∠的度数为____.三、解答题21.小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知//AB CD ,则∠AEC=∠BAE +∠DCE 成立吗?请说明理由;(2)如图2,已知//AB CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠FAD=60°,∠ABC=40°,求∠BED 的度数;(3)将图2中的点B 移到点A 的右侧,得到图3,其他条件不变,若∠FAD=α°,∠ABC=β°,请你求出∠BED 的度数(用含α,β的式子表示).22.如图,直线AB 与CD 相交于点O ,OF ,OD 分别是AOE ∠,∠BOE 的平分线. (1)写出DOE ∠的补角;(2)若64BOE ∠=︒,求AOD ∠和BOF ∠的度数;(3)射线OD 与OF 之间的夹角DOF ∠等于多少度?请说明理由.23.如图,已知PE 平分,BEF PF ∠平分,135,255DFE ∠∠=︒∠=︒.(1)试说明://AB CD ;(2)求AEP CFP EPF ∠+∠+∠的度数.24.如图,直线AB 与CD 相交于点O ,90AOF ∠=︒,90COE ∠=︒,60DOF ∠=︒,OH 平分∠BOE .求:(1)∠BOE 的度数;(2)AOH ∠的度数.25.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.26.如图,∠AGF=∠ABC,∠1+∠2=180°,(1)求证;BF∥DE(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】解:A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项不符合题意;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项正确.故选:D.【点睛】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.2.A解析:A【分析】根据点E有3种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)当点E在CD的下方时,同理可得,∠AEC=α-β.综上所述,∠AEC的度数可能为β-α,α+β,α-β.即①α+β,②α-β,③β-α,都成立.故选A.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.3.D解析:D【分析】根据射线、直线的定义,余角与补角,周角的定义,以及线段的性质即可求解.【详解】A、直线AB和直线BA是一条直线,原来的说法是错误的,不符合题意;B、连接两点间的线段的长度叫两点的距离,原来的说法是错误的,不符合题意;C、周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的,不符合题意;D 、一个角的余角比这个角的补角小是正确的,符合题意;故选:D .【点睛】本题考查了射线、直线的定义,余角与补角,周角的定义,以及线段的性质,是基础题,熟记相关概念与性质是解题的关键.4.B解析:B【分析】根据方位角的定义,以及角平分线的定义,分别求出所需角的度数,然后分别进行判断,即可得到答案.【详解】解:∵∠AOE =m °,∴∠EOD=90°-m°,∴点E 位于点O 的北偏西90°-m °;故①错误;∵∠EOF =90°,∴∠EOD+∠DOF =90°,∠AOE+∠BOF=90°,∵∠AOD =∠BOD=90°,∴∠AOE+∠EOD=90°,∠DOF+∠FOB=90°,∠AOM+∠MOD=90°,∠BON+∠DON=90°,∵OM 、ON 分别平分∠AOE 和∠BOF ,∴∠AOM=∠EOM ,∠BON=∠FON ,∴∠EOM+∠MOD=90°,∠FON+∠DON=90°,∴图中互余的角共有8对,故②错误;∵∠BOF =4∠AOE ,∠AOE+∠BOF=90°,∴∠BOF=72°,∴∠BON=36°,∴∠DON=90°-36°=54°;故③正确;∵∠AOE+∠BOF=90°,∴∠MOE+∠NOF=11()904522AOE BOF , ∴9045135MON , ∴1353902MON n AOE BOF , ∴n 的倒数是23,故④正确; ∴正确的选项有③④,共2个;故选:B .【点睛】本题考查了角平分线的定义,余角的定义,方位角的表示,以及角度的和差关系,解题的关键是熟练掌握题意,正确找出图中角的关系进行判断.5.B解析:B【分析】首先根据补角的定义可得∠2=180°-∠1,再根据余角定义可得∠2余角的式子是90°-∠2,再进行等量代换即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,∴∠2=180°-∠1,∴∠2余角的式子是,90°-∠2=90°-(180°-∠1)=∠1-90°,故选:B.【点睛】本题主要考查了补角和余角,关键是掌握余角和补角的定义.6.C解析:C【分析】根据方向角的表示方法,可得答案.【详解】解:设此船位于海面上的C处,灯塔位于D处,射线CA、DB的方向分别为正北方向与正南方向,如图所示.∵从船上看灯塔位于北偏东30°,∴∠ACD=30°.又∵AC∥BD,∴∠CDB=∠ACD=30°.即从灯塔看船位于灯塔的南偏西30°.故选:C.【点睛】本题考查了方向角,理解题意画出图形是解题的关键.7.D解析:D【分析】过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120BAE ∠=︒,18060AEF BAE ∴∠=︒-∠=︒,又//AB CD ,//EF CD ∴,40DCE CEF ∴=∠=∠︒,6040100AEC AEF CEF ∴∠=∠+∠=︒+︒=︒,故选:D .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键. 8.B解析:B【分析】过点C 作CF ∥AB ,根据平行线的性质得到∠BCF =∠α,∠DCF =∠β,由此即可解答.【详解】如图,过点C 作CF ∥AB ,∵AB ∥DE ,∴AB ∥CF ∥DE ,∴∠BCF =∠α,∠DCF =∠β,∵∠BCD =70°,∴∠BCD =∠BCF +∠DCF =∠α+∠β=70°,∴∠α+∠β=70°.故选B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决9.C解析:C【分析】先根据平行线的性质,求得∠3的度数,再根据平角的定义,求得∠2的度数.【详解】解:如图,∵DE∥FG,∠1=32°,∴∠3=32°,∴∠2=180°-90°-32°=58°.故选:C.【点睛】本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.10.A解析:A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解.【详解】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若a∥b,b∥c,则a∥c,故本选项错误.故选:A.11.C解析:C【分析】根据对顶角相等求∠BOD,由垂直的性质求∠BOE,根据∠DOE=∠BOE−∠BOD求解.【详解】∵直线AB,CD相交于点O,∠AOC=24°,∴∠BOD=∠AOC=24°,∵EO⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE−∠BOD=90°−24°=66°.【点睛】本题考查了对顶角,垂直的定义.解题的关键是采用形数结合的方法得到∠DOE=∠BOE−∠BOD.12.D解析:D【分析】根据对顶角的定义来判断,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:根据对顶角的定义可知:C中∠1、∠2属于对顶角,故选:D.【点睛】本题考查对顶角的定义,是需要熟记的内容.二、填空题13.30°【分析】根据余角和补角的定义即可解答【详解】解:∵一个角的补角是120°∴这个角为:180°−120°=60°∴这个角的余角为:90°−60°=30°故答案为:30°【点睛】本题考查了余角和补解析:30°【分析】根据余角和补角的定义,即可解答.【详解】解:∵一个角的补角是120°,∴这个角为:180°−120°=60°,∴这个角的余角为:90°−60°=30°,故答案为:30°.【点睛】本题考查了余角和补角的定义,解决本题的关键是熟记余角和补角的定义.14.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB>ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.15.64°116°【分析】根据垂线的定义进行作答【详解】由OE⊥AB得到∠AOE=90°所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°∠COB=180°-∠BOD=116°【点解析:64° 116°.【分析】根据垂线的定义进行作答.【详解】由OE⊥AB,得到∠AOE=90°,所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°,∠COB=180°-∠BOD= 116°.【点睛】本题考查了垂线的定义,熟练掌握垂线的定义是本题解题关键.16.132【分析】先根据垂直定义得到∠AOM=90°求出∠AOD的度数然后根据对顶角的性质求解即可【详解】∵∴∠AOM=90°∵∴∠AOD=90+42=132°∴∠AOD=132°故答案为:132【点睛解析:132【分析】先根据垂直定义得到∠AOM=90°,求出∠AOD的度数,然后根据对顶角的性质求解即可.【详解】,∵OM AB∴∠AOM=90°,∵42MOD ∠=,∴∠AOD=90+42=132°,∴COB ∠=∠AOD=132°.故答案为:132.【点睛】本题考查了垂直的定义,对顶角的性质,熟练掌握对顶角相等是解答本题的关键. 17.108【分析】先根据题意得出a ∥b 再由平行线的性质即可得出结论【详解】解:如图∵∴∠2=∠3∴a ∥b ∵∠1=72°∴∠5=180°-72°=108°∴∠4=∠5=108°故答案为:108【点睛】本题解析:108【分析】先根据题意得出a ∥b ,再由平行线的性质即可得出结论.【详解】解:如图,∵262∠=︒,362∠=︒,∴∠2=∠3,∴a ∥b .∵∠1=72°,∴∠5=180°-72°=108°,∴∠4=∠5=108°.故答案为:108.【点睛】本题考查的是平行线的判定与性质,先根据题意得出直线a ∥b 是解答此题的关键. 18.40°或140°【分析】先根据题意可得OC 分在AB 同侧和异侧两种情況讨论并画出图然后根据OC ⊥OD 与∠AOC =50°计算∠BOD 的度数【详解】解:当OCOD 在直线AB 同侧时如图∵∠COD =90°∠A解析:40°或140°【分析】先根据题意可得OC 分在AB 同侧和异侧两种情況讨论,并画出图,然后根据OC ⊥OD 与∠AOC =50°,计算∠BOD 的度数.【详解】解:当OC 、OD 在直线AB 同侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180°-∠COD-∠AOC=180°-90°-50°=40°当OC、OD在直线AB异侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180-∠AOD=180°-(∠DOC-∠AOC)=180°-(90°-50°)=140°.故答案为:40°或140°【点睛】解答此类问题时,要注意对不同的情况进行讨论,避免出现漏解.19.90【详解】解:如图过点E作EH∥AB过点F作FG∥AB∵AB∥CD∴AB∥FG∥CDAB∥EH∥CD∴又∵∴∴∴即:∴故答案为:90【点睛】本题考查了平行线的性质平行公理作辅助线构造内错角是解题的解析:90【详解】解:如图,过点E作EH∥AB,过点F作FG∥AB,∵AB∥CD,∴AB∥FG∥CD,AB∥EH∥CD,∴AFG FAB,GFC FCD,AFG FAB,GFC FCD,又∵13EAF EAB∠=∠,13ECF ECD∠=∠,∴3EAB EAF,3ECD ECF,∴4FAB EAF,4ECD ECF,∴44120AFC AFG GFC FAB ECD EAF ECF,即:30EAF ECF,∴33390AEC EAB ECD EAF ECF EAF ECF.故答案为:90.【点睛】本题考查了平行线的性质,平行公理,作辅助线构造内错角是解题的关键.20.55°【分析】根据翻折可知对应角都相等另外两直线平行同旁内角互补利用这两条性质即可解答【详解】解:∵AE∥BF∴∠AEP=∠FPE=70°又∵折叠后DE 与BF相交于点P设∠PEF=x即∠AEP+2∠解析:55°【分析】根据翻折可知对应角都相等.另外两直线平行,同旁内角互补.利用这两条性质即可解答.【详解】解:∵AE∥BF,∴∠AEP=∠FPE=70°.又∵折叠后DE与BF相交于点P,设∠PEF=x,即∠AEP+2∠PEF=180°,即70°+2x=180°,x=55°.即∠PEF=55°,故答案为:55°.【点睛】解答此题的关键是要明白图形翻折变换后与原图形全等,对应的角和边均相等.三、解答题21.(1)成立,理由见解析;(2)50︒;(3)1118022βα-+.【分析】(1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.【详解】解:(1)如图1中,作EF//AB,则有EF//CD,∴∠1=∠BAE ,∠2=∠DCE ,∴∠AEC=∠1+∠2=∠BAE+∠DCE .(2)如图2,过点E 作EH ∥AB ,∵AB//CD ,∠FAD=60°,∴∠FAD=∠ADC=60°,∵DE 平分∠ADC ,∠ADC=60°,∴∠EDC=12∠ADC=30°, ∵BE 平分∠ABC ,∠ABC=40°, ∴∠ABE=12∠ABC=20°, 由(1)的结论,得203050BED ABE EDC ∠=∠+∠=︒+=︒︒. (3)如图3,过点E 作//EG AB .∵BE 平分ABC ∠,DE 平分ADC ∠, ABC β∠=︒,FAD ADC α∠=∠=︒ ∴1122ABE ABC β∠=∠=︒,1122CDE ADC α∠=∠=︒ ∵//AB CD ,////AB CD EG ∴11801802BEG ABE β∠=-∠=-,12CDE DEG α∠=∠=1118022BED BEG DEG βα∠=∠+∠=-+ 【点睛】本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.22.(1)∠COE,∠AOD,∠BOC;(2)∠AOD=148°,∠BOF=122°;(3)90°,见解析【分析】(1)根据互补的定义结合角平分线的定义确定∠DOE的补角;(2)先根据角平分线的定义得出∠BOD的度数,再由邻补角定义可得∠AOD=180°-∠BOD;先根据邻补角定义可得∠AOE=180°-∠BOE,再由角平分线的定义得出∠AOF的度数,从而求解;(3)运用平角的定义和角平分线的定义,证明∠DOF是90°,得直线OD、OF的位置关系.【详解】解:(1)由直线AB与CD相交于点O∴∠DOE+∠COE=180°;∠BOD+∠AOD=180°又∵OD平分 BOE∴∠DOE=∠BOD∴∠DOE+∠AOD=180°又∵∠AOD=∠BOC∴∠DOE+∠BOC=180°∴∠DOE的补角为∠COE,∠AOD,∠BOC;(2)因为OD是∠BOE的平分线,∠BOD=12∠BOE=32°,所以∠AOD=180°-∠BOD=148°,因为∠AOE=180°-∠BOE=116°,OF是∠AOE的平分线,所以∠AOF=12∠AOE=58°,所以∠BOF=180°-∠AOF=122°即∠AOD=148°,∠BOF=122°;(3)因为OF,OD分别是∠AOE,∠BOE的平分线,所以∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.【点睛】本题考查了角平分线、补角、垂线的定义以及角的计算,属于基础题型,比较简单.23.(1)见解析;(2)360°【分析】(1)由PE 与PF 分别为角平分线,得到两对角相等,根据∠1与∠2的度数求出∠BEF 与∠EFD 的度数之和为180°,利用同旁内角互补两直线平行即可得证;(2)过点P 作//PG AB ,得//PG CD ,再根据平行线的性质可得结论.【详解】解:(1)证明:∵PE 平分∠BEF ,PF 平分∠DFE ,∠1=35°,∠2=55°,∴∠1=∠BEP=12∠BEF ,∠2=∠PFD=12∠EFD , ∴∠BEF=70°,∠EFD=110°,即∠BEF+∠EFD=180°,∴AB ∥CD ;(2)过点P 作//PG AB// ,AB CD//,PG CD ∴180,AEP GPE ∴∠+∠=︒180,CFP GPF ∴∠+∠=︒360AEP CFP EPF ∴∠+∠+∠=︒【点睛】此题考查了平行线的性质性质和判定,熟练掌握平行线的判定方法是解本题的关键. 24.(1)60︒;(2)150︒.【分析】(1)根据∠FOB=90︒及∠DOF=60︒,可求出∠DOB ,根据∠BOE=∠DOE-∠DOB ,可求出∠BOE ;(2)根据OH 平分∠BOE 及∠BOE=60︒,可知∠BOH=∠EOH ,则∠AOH=180︒-∠BOH .【详解】解:(1)∵∠AOF=90︒,∠COE=90︒,∴∠DOE=90︒,∠FOB=90︒,∵∠DOF=60︒,∴∠DOB=∠FOB-∠FOD=906030︒-︒=︒,∴∠BOE=∠DOE-∠DOB=903060︒-︒=︒;(2)∵OH 平分∠BOE ,∠BOE=60︒,∴∠BOH=∠EOH=30︒,∴∠AOH=180********BOH ︒-∠=︒-︒=︒.【点睛】本题考查余角、补角及角平分线,找到互为余角和补角的角是解题的关键.25.45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.26.(1)证明见解析;(2)∠AFG=60°.【分析】(1)根据平行线的判定定理,由∠AGF =∠ABC ,可判断GF ∥BC ,由平行线的性质可得∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°,即可判断出BF ∥DE ;(2)由BF ∥DE ,BF ⊥AC 得到DE ⊥AC ,由∠2=150°得出∠1=30°,从而得出结论.【详解】(1)BF ∥DE ,理由如下:∵∠AGF =∠ABC ,∴GF ∥BC ,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF ∥DE ;(2)∵BF ∥DE ,BF ⊥AC ,∴DE ⊥AC ,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG =90°﹣30°=60°.【点睛】本题考查了平行线的判定与性质.解题的关键是熟练掌握平行线的判定与性质.。

北师大版七年级数学下册第二章相交线与平行线专项测试题-附答案解析(一)

北师大版七年级数学下册第二章相交线与平行线专项测试题-附答案解析(一)
【解析】解:经过直线外一点,有且只有一条直线与这条直线平行.
18、三条直线相交,最多有个交点.
【答案】3
【解析】解:
三条直线相交时,最多有 个交点.
19、如图,立定跳远比赛时,小明从点 起跳落在沙坑内 处,跳远成绩是 米,则小明从起跳点到落脚点的距离______ 米、(填“大于”“小于”或“等于”)
A. 个
B. 个
C. 个
D. 个
【答案】A
【解析】解:
(1)任意画出一条直线,在直线的同旁作出两条垂线段,并且这两条垂线段相等、过这两条垂线段的另一端点画直线,与已知直线平行,正确;
(2)可先在这个角的两边量出相等的两条线段长,过这两条线段的端点向角的内部应垂线,过角的顶点和两垂线的交点的射线就是角的平分线,正确;
A. 以上都有可能
B. 线段的延长线上
C. 线段的端点
D. 线段上
8、下列图形中 与 互为对顶角的是( )
A.
B.
C.
D.
9、在同一平面内,两条直线的位置关系是( )
A. 平行,垂直或相交
B. 垂直或相交
C. 平行或相交
D. 平行或垂直
10、已知 , ,则直线 与 的关系是( )
A. 垂直
B. 相交或平行
C. 个
D. 个
【答案】C
【解析】解:
①棱柱的上、下底面的形状相同,此选项正确;
②若 ,则点 为线段 的中点, 不一定在一条直线上,故此选项错误;
③相等的两个角一定是对顶角,交的顶点不一定在一个位置,故此选项错误;
④不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;
⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,此选项正确.

平行线与相交线测试题及答案

平行线与相交线测试题及答案

平行线与相交线测试题及答案第一篇:平行线与相交线测试题及答案一、选择题1、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°C.第一次左拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°D.第一次右拐50°,第二次右拐50°2、如图3,AB∥CD,那么∠A,∠P,∠C的数量关系是()A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A3、一个人从点A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.135°ABABBACFEDCCD图3D图4 图54、如图5所示,已知∠3=∠4,若要使∠1=∠2,则需()A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD5、下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个6、如图6,O是正六边形ABCDEF的中心,下列图形:△OCD,△ODE,△OEF,△OAF,•△OAB,其中可由△OBC平移得到的有()A.1个B.2个C.3个D.4个二、填空题7、命题“垂直于同一直线的两直线平行”的题设是是.8、三条直线两两相交,有个交点.EDBDAC43BADCACB图7图8图99、如图8,已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=_______.10、如图10所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD=______,∠AOC=_______,∠BOC=________.11、如图11所示,四边形ABCD中,∠1=∠2,∠D=72°,则∠BCD=_______.12、如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是_________,那么这两个角分别是度.三、作图题13、如图,(1)画AE⊥BC于E,AF⊥DC于F.(2)画DG∥AC交BC 的延长线于G.(3)经过平移,将△ABC的AC边移到DG,请作出平移后的△DGH.AD四、解答题BC14、已知:AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P.求∠P的度数15、如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.16、已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大小关系?试说明理由.参考答案:一、1.B2.C3.C4.D5.B6.B二、7.两条直线都和同一条直线垂直,这两条直线平行;8.1,3;9.70°,70°,110°;10.65°,65°,115°;11.108°;12.相等或互补;三、13.如下图:FADBE14.如图,过点P作AB的平行线交EF于点G。

北师大版七年级数学下册第二章《相交线与平行线》单元测试卷附答案

北师大版七年级数学下册第二章《相交线与平行线》单元测试卷附答案

第二章《相交线与平行线》单元测试卷(新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.已知∠A=25°,则∠A的补角等于()A.65°B.75°C.155°D.165°2.如图,直线a与直线c相交于点O,则∠1的度数是()A.60°B.50°C.40°D.30°第2题图第3题图第4题图3.如图,∠1=15°,AO⊥CO,直线BD经过点O,则∠2的度数为()A.75°B.105°C.100°D.165°4.如图,直线c与直线a,b都相交.若a∥b,∠1=55°,则∠2=()A.60°B.55°C.50°D.45°5.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2=()A.55°B.65°C.75°D.85°第5题图第6题图第7题图第8题图6.如图,下列说法中正确的是()A.若∠2=∠4,则AB∥CDB.若∠BAD +∠ADC=180°,则AB∥CDC.若∠1=∠3,则AD∥BCD.若∠BAD +∠ABC=180°,则AB∥CD7.(传统文化)一条古称在称物时的状态如图所示,已知∠1=80°,则∠2=()A.20°B.80°C.100°D.120°8.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2=()A.90°B.65°C.60°D.50°9.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4等于()。

竞赛数学:相交线与平行线

竞赛数学:相交线与平行线

竞赛数学:相交线与平行线在竞赛试题中,平行和垂直是做为基础知识应用在一些综合性的题目之中,单独出题的情况很少,但当平行和垂直的性质与实际情况结合时,往往也会被做为新题型来考查.【例1】请说明在同一平面内三条直线的位置关系及交点个数.【思考与分析】本题有多种分类,如以两条直线的位置关系分类,再考虑第三条直线的位置;又如以三条直线交点的个数分类等.下面我们就第二种分类加以说明.解:(1)如图1,三条直线互相平行,此时交点个数为0;(2)如图2,三条直线相交于同一点,此时交点个数为1;(3)如图3,三条直线两两相交且不交于同一点,此时交点个数为3;(4)如图4,其中两条直线平行,都与第三条直线相交,此时交点个数为2.综上所述,平面内三条直线的交点个数为0或1或2或3个.(如果按第一种情况进行分类研究,又该如何呢?请大家思考一下.)反思:求解中(2)、(3)两种情况称为三条直线两两相交.当题目中图形不全或不确定时,我们一定要注意分类.【例2】(1)请你在平面上画出6条直线(没有三条共点),使得它们中的每条直线都恰与另3条直线相交,并简单说明画法.(2)能否在平面上画出7条直线(任意3条都不共点),使得它们中的每条直线都恰与另3条直线相交,如果能,请画出一例,如果不能,请简述理由. 【思考与分析】“6条直线相交且任意3条都不共点”,要解决这个问题,我们可以首先画出两条相交直线,这样可以发现若不出现3条直线共点可以出现平行线.对于(2)中所求,可以根据(1)得到的结论先对其进行推理,不要盲目的画图.解:(1)在平面上任取一点A,过A作两直线m1与n1.在n1 上取两点B、C,在m1上取两点D、G.过B作m2∥m1,过C作m3∥m1,过D作n2∥n1,过G作n3∥n1,这时m2、m3、n2、n3交得E、F、H、I四点,如图所示.由于彼此平行的直线不相交,所以,图中每条直线都恰与另3条直线相交.(2)在平面上不能画出没有3线共点的7条直线,使得其中每条直线都恰与另外3条直线相交.理由如下:假设平面上可以画出7条直线,其中每一条都恰与其它3条相交,因两直线相交只有一个交点,又因没有3条直线共点,所以每条直线上恰有与另3条直线交得的3个不同的交点.根据直线去数这些交点,共有3×7=21个交点,但每个交点分属两条直线,被重复计数一次,所以这7条直线交点总数为因为这与交点个数应为整数矛盾.所以,满足题设条件的7条直线是画不出来的.反思:本题在说明理由时应用了假设法.利用假设推导出结果是否与题中条件冲突.这与我们以后要学的反证法相类似.【例3】平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.A. 4对B. 8对C. 12对D. 16对【思考与解】我们可将原图分解为八个“三线八角”即“直线AB和CD 被直线EF所截”、“直线AB和CD 被直线GH所截”、“直线EF和GH被直线AB所截”、“直线EF和GH被直线CD所截”、“直线AB和EF被直线GH所截”、“直线EF 和CD 被直线GH所截”、“直线AB和GH被直线EF所截”、“直线GH和CD 被直线EF所截”.每一个“三线八角”都有两对同旁内角,故原图中共有16对,因此选择D.【小结】解这类问题,关键是如何用图形分解法把图形分成若干个“三线八角”.【例4】有10条公路(假设公路是笔直的,并且可以无限延伸),无任何三条公路交于同一个岔口,现有31名交警,刚好满足每个岔口有且只有一名交警执勤,请你画出公路示意图.【思考与解】我们可以把公路想象成直线,岔口想象成交点,由警察的人数及题意可知,10条直线刚好有31个交点.根据前面所学知识,平面上的10条直线,若两两相交,最多出现45个交点,现在只要求出现31个交点,就要减去14个交点,这种情况下,通常采取两种办法:(1)多条直线共点;(2)出现平行线.根据题意,方法(1)不能实现,所以想到使用平行线.在某一方向上有5 条直线互相平行,则减少10个交点,若6条直线平行,则可减少15个交点,所以这个方向上最多可取5条平行线,这时还有4个点要去掉,换一个方向取3条平行线,即可再减少3个交点,这时还剩下2条直线与1个要减去的点,只须让其在第三个方向上互相平行即可,如图所示:【小结】本题考查我们对知识的综合应用能力,在做题时,要牢牢把握平行线的性质,与图形结合,从简单的图形推理找出问题的入手点.【例5】把正方形ABCD边AD平移得到EF,作出平移后的正方形能有几种作法?【思考与分析】据题意,平移是指正方形整体平移,只有一个.我们根据以前学过的作图方法和本周学的平移作图,作法有如下几个:作法1:过E作EF的垂线,截取EG=EF,过G点作EF的平行线,截取GH=EF(注意截取方向),连接FH就得到平移后的正方形.如图(1).作法2:过E、F分别作EF的垂线,截取EG=EF,FH=EF(注意截取方向),连接GH,就得到平移后的正方形.如图(1).作法3:过F作EF的垂线,截取FH=EF,过H点作EF的平行线,截取GH=EF(注意截取方向),连接EG就得到平移后的正方形.如图(1).作法4:过E作AC的平行线,过F作BD的平行线,截取EH=AC,FG=BD (注意截取方向).连接EG,GH,HF,就得到平移后的正方形.如图(2).作法5:连接EA,FD,过B点作EA的平行线,过C作FD的平行线.截取BG=EA,CH=FD(注意截取方向).如图(3).连接EG,GH,HF,就得到平移后的正方形.【小结】平移变换不改变图形的形状、大小和方向.连结对应点的线段平行且相等.要描述一个平移变换,必须指出平移的方向和移动的距离.【例6】电脑游戏上有一种俄罗斯方块的游戏,游戏规则:在所给各种各样的方块中,通过平移、旋转的方式,罗列方块使之排满每一横行,每排满一行,便消去一行,得100分,依次类推(本题特殊规定,只准平移),小方块在屏幕顶端居中出现(奇数列时居中偏左).现在电脑屏幕上显示(如图所示).(1)若按规定,想得分,甲方块需要怎样平移,才可能直接得分或为以后打下得分基础?乙方块呢?(2)若你把甲方块放到左侧,发现屏幕已暗示出丙方块为形状,在这种情况下,丙方块只需如何移动,便可得多少分?(注:屏幕上一共有10行10列)【思考与分析】第(1)题观察甲方块与底部方块的特点,我们可得出平移方式.第(2)题将丙方块通过平移嵌入空隙之中,即可得分.解:(1)甲方块可左移3个单位,下移7个单位放到屏幕左侧;乙方块需向右平移3个单位,下移8个单位,放到屏幕右侧.(可用其他平移方式)(2)丙方块下移7个单位,便可排满2行,得200分.【小结】解本题的关键是将各个方块通过平移嵌成一个长方形,需根据方块和现有图形选择合理的平移方式.【例7】如图1,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?【思考与分析】若P点在C、D之间运动时,我们只要过点P作出l1的平行线即可知道∠APB=∠PAC+∠PBD;若点P在C、D两点的外侧运动时(P点与点C、D不重合),则可以分为如图2和如图3两种情形,同样分别过点P作出l1或l2的平行线,即有∠APB=∠PBD-∠PAC或∠APB=∠PAC-∠PBD.解:若P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由是:如图1,过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE =∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:(1)如图2,有结论:∠APB=∠PBD-∠PAC.理由是:过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APB =∠BPE-∠APE,即∠APB=∠PBD-∠PAC.(2)如图3,有结论:∠APB=∠PAC-∠PBD.理由是:过点P作PE∥l2,则∠BPE=∠PBD,又因为l1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以∠APB =∠APE-∠BPE,即∠APB=∠PAC-∠PBD.【小结】我们做这类题的时候可以发现:点的移动带动角的位置变化,角的位置变化决定了角之间的关系.因此我们可以利用分类思想来分析题意,解决多种情况的讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章平行线与相交线提高题一、求角的度数1、已知AB ∥CD ,分别探讨下列四个图形(图①、图②、图③、图④)中∠APC 和∠PAB 、∠PCD 的关系,请用等式表示出它们的关系。

并证明它们。

解: ①过P 点作EF‖AB , ②过P 点作EF‖AB ,∵EF‖AB ∵EF‖AB∴∠PAB +∠APF =180° ∴∠PAB =∠APE 又∵AB ∥CD , EF‖AB 又∵AB ∥CD , EF‖AB ∴CD ∥EF ∴CD ∥EF ∴∠PCD +∠CPF =180° ∴∠PCD =∠EPC∴∠PAB +∠APF +∠PCD +∠CPF =180°+180° ∴∠PAB +∠PCD =∠APE +∠EPC 即: ∠PAB +∠APC +∠PCD =360° 即: ∠PAB +∠PCD =∠APC ③过P 点作EF‖AB , ∴CD ∥EF ∵EF‖AB ∴∠PCD =∠EPC∴∠PAB =∠APE ∴∠PCD −∠PAB =∠EPC −∠APE 又∵AB ∥CD , EF‖AB 即: ∠PCD −∠PAB =∠APC ④过P 点作EF‖AB , ∴CD ∥EF∵EF‖AB ∴∠PCD =∠EPC∴∠PAB =∠APE ∴∠PAB −∠PCD =∠APE −∠EPC又∵AB ∥CD , EF‖AB 即: ∠PAB −∠PCD =∠APC2、如图,AB ∥CD ,求∠1−∠2+∠3+∠4解:过E 点作GH‖AB , 过F 点作MN‖CD , ∵ GH‖AB , AB ∥CD ∴GH ∥CD ∵ MN‖CD , GH ∥CD ∴GH ∥MN∴∠1=∠BEH , ∠HEF =∠EFM , ∠MFD +∠4=180°∴∠1−∠2+∠3+∠4=∠1−(∠BEH +∠HEF)+(∠EFM +∠MFD )+∠4 =∠BEH −(∠BEH +∠HEF)+∠HEF +∠MFD +∠D =∠MFD +∠D =180° 3、如图所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C?解: ∵∠1=3∠2,∠2=25° ∴∠1=75° ∵AE ∥BD∴∠1+∠DFA =180°∴∠DFA =180°−75°=105°∵∠DFA 与∠BCF 是对顶角, ∴∠BCF =∠DFA =105° 过F 点作GF‖CB ,∴∠2=∠BFG =25° ,∠BFG +∠BFG +∠C =180° 即: 25°+105°+∠C =180°,解得: ∠C =50°4、如图所示.CD 是∠ACB 的平分线,∠ACB=40°,∠B=70°,DE ∥BC .求∠EDC 和∠BDC 的度数? 解: ∵CD 是∠ACB 的平分线,∠ACB=40°∴∠DCB =12∠ACB =20°又∵DE ∥BC∴∠EDC =∠DCB =20° ∵DE ∥BC∴∠CDE +∠BDC +∠B =180° 又∵∠B =70°∴∠BDC =180°−∠CDE −∠BDC =180°−70°−20°=90°5、如图所示.已知AB ∥CD ,∠B=100°,EF 平分∠BEC ,EG ⊥EF .求∠BEG 和∠DEG? 解: ∵AB ∥CD∴∠B +∠BEC =180° 又∵∠B =100°∴100°+∠BEC =180° ∴ ∠BEC =80∵EF 平分∠BEC ∴∠BEF =12∠BEF =40° 又∵EG ⊥EF ∴ ∠GEF =90° ∴∠BEG =90°−∠BEF =90°−40°=50° ∵AB ∥CD ∴∠BED =∠B =100°∴∠DEG =100°−∠BEG =100°−50°=50°6、如图,直线DE ∥FG ,直线 AB 交DE 与FD 于 A ,B ,CA 平分∠1,CB 平分∠ 2,求∠C 的度数? 解: 过C 点作MN‖DE 又∵DE ∥FG∴MN‖FG又∵CA 平分∠1,CB 平分∠ 2 ∴∠EAC =∠ACM =12∠1∠BCM =∠GBC =12∠2又∵DE ∥FG ∴∠1+∠2=180°∴∠ACB =∠EAC +∠BCM =12∠1+12∠2=12(∠1+∠2)=12×180°=90°7、如图,已知:CB ⊥AB ,CE 平分∠BCD ,DE 平分∠CDA,∠1+∠2=90°,试说明:DA ⊥AB 解: ∵CE 平分∠BCD ,DE 平分∠CDA∴∠ADC =2∠1 , ∠DCB =2∠2 又∵∠1+∠2=90°∴∠ADC +∠DCB =2∠1+2∠2=2(∠1+∠2)=180°∵CB ⊥AB ∴∠B =90°又∴AD ∥BC ∴∠A +∠B =180°即:90°+∠A =180° ∴ ∠A =90° ∴DA ⊥AB8、如图是一个3×3的正方形,求图中∠1+∠2+∠3+...+∠9的和? 解:由于沿AB 作对折时,图形能够重合,恰有∠1+∠9=∠2+∠6=∠4+∠8=90 °∴∠1+∠2+...+∠9=(∠1+∠9+∠2+∠6)+(∠4+∠8)+(∠3+∠5+ ∠7=3×90°+3×45°=405°.二、角的关系1、如图所示.∠1=∠2,∠D=90°,EF ⊥CD 请说明∠3和∠B 的关系。

解: ∵∠1=∠2 ∴AD ∥BC∵EF ⊥CD ∴∠EFC =90°,又∵∠D =90° ∴AD ∥EF ∴EF ∥BC ∴∠3=∠B2、如图所示.已知CD 平分∠ACB ,且DE ∥AC ,EF ∥CD .请说明EF 平分∠DEB 解: ∵DE ∥AC ,EF ∥CD ∴ ∠ACD =∠CDE =∠DEF∠DCE =∠FEB 又∵CD 平分∠ACB ∴∠ACD =∠DCE∴∠DEF =∠FEB ∴ EF 平分∠DEB 3、如图,AB ⊥BD ,CD ⊥BD ,E 为AB 上的一点,F 为CD 上的一点,EF 、BD 交于点O 。

写出图中所有互补的角?解: ∵AB ⊥BD ,CD ⊥BD∴∠ABD =∠CDB =90° ∴ AB ∥DC∴∠B +∠D =90°+90°=180°∠AEF +∠EFD =180°;∠BEF +∠EFC =180° 又∵EF 、BD 交于点∴∠BOE +∠EOD =180° ; ∠BOE + ∠DOF +∠EOD =180° ; ∠DOF +∠BOF =180° 除此之外,∠BEO +∠AEO =180° ; ∠DFO +∠CFO =180°综上所述,图中所有互补的角有:∠B 与∠D ,∠AEF 与∠EFD ,∠BEF 与∠EFC ,∠BOE 与∠EOD ,∠BOE 与∠BOF ,∠DOF 与∠EOD ,∠DOF 与∠BOF ,∠BEO 与∠AEO ,∠DFO 与∠CFO 共九对。

4、试说明在同一平面内,过点P 的四条相交线AB 、CD 、EF 、GH 把平面所分成八个角中,至少有一ODF321 C BEDAFCBEAFCBEDAD个角小于46°.解:设过点P 的四条相交线AB 、CD 、EF 、GH 把平面所分成八个角中,没有小于或等于46°的角.如图所示,则有:∠APE +∠EPG +∠GPC +∠CPB +∠BPF +∠FPH +∠HPD +∠DPA ≥8×46°即:∠APE +∠EPG +∠GPC +∠CPB +∠BPF +∠FPH +∠HPD +∠DPA ≥368°所以,这与平角等于360°矛盾,因此至少有一个角小于46°.5、两直线相交,有多少对不同对顶角?三条直线相交于同一点呢?如果是n 条直线相交于同一点呢?你能说清楚吗?不妨试试看。

解: 如上图,二条直线相交共有2组对顶角如上图,三条直线相交共有6对对顶角; n 条直线相交于一点,共有2n 条射线,能组成2n (2n−1)2个小于或等于平角的角,其中n 条直线共有n 个平角.因此,小于平角的角的个数应为2n(2n−1)−2n2个,即所有对顶角的个数为: [2n (2n−1)−n2]÷2=[2n (n −1)]÷2= n(n −1)组.6、如图,直线CD 和∠AOB 两边相交于点M 、N ,已知∠1+∠2=180° (1)试找出图中所有与∠1、∠2相等的角; (2)写出图中所有互补的角。

解: (1)与∠1相等的角有个,即∠AND ,∠BMC , ∠OMD ;与∠2相等的角也有个,即∠BMD ,∠OND ,∠MNC.(2)图中共有16对角互补:与互补的铁有:∠1与∠2,∠BMD ,∠OND ,∠CNA 分别互补; ∠AND 与∠2,∠BMD ,∠OND ,∠ANC 分别互补;NO2PH GFEDCBA1CBMℓ1ℓ2ℓ1ℓ2ℓ3A4A21321B∠BMC 与∠2,∠BMD ,∠OND ,∠ANC 分别互补; ∠OMD 与∠2,∠BMD ,∠OND ,∠ANC 分别互补. 7、关于多边形的内角和①说明三角形的内和等于180°解:如图,过三角形的顶点作CE‖AB ,延长BC 至∵CE‖AB∴ ∠1=∠4 , ∠2=∠3∴∠4+∠3+∠ACB =∠2+∠1+∠ACB =180° ∴三角形的内和等于180° ②说明四边形内角和等于360° 解:连结AC,∵在三角形ACD 中,有:∠D +∠DAC +∠ACD =180°在三角形ABC 中,有:∠B +∠BAC +∠ACB =180°∴∠D +∠DAC +∠ACD +∠B +∠BAC +∠ACB =360° 即: 四边形内角和等于360°三、关于平行线1、如图所示.直线的同侧有三点A ,B ,C ,且AB ∥,BC ∥.试说明 A ,B ,C 三点在同一条直线上.解: 设A ,B ,C 三点在同一条直线上,∵AB ∥ℓ,BC ∥ℓ.∴过 ℓ外一点B 有AB 和 BC 二条直线同时垂直于这与“过直线外一点有且只有一条直线与己知直线垂直”矛盾 ∴ A ,B ,C 三点在同一条直线上.2、如图所示.AB ∥CD ,∠BAE =30°,∠DCE =60°,EF ,EG 三等分∠AEC .问:EF 与EG 中有没有与AB 平行的直线,为什么?BDACBDCEBDCAlGAFBA MN EFGHP解:有.EF ∥AB过点作直线MN ∥AB 又∵AB ∥CD ∴MN ∥CD∴∠AEM =∠A =30° ∠MEC =∠C =60° ∴射线EM 三等分∠AEC ,即射线EM 和射线EF 重合 ∴EF ∥AB四、作图题1、如图,已知△ABC ,求作∠α,使2∠α=∠A +∠B (写出作法)解:作法:1、延长BD 至E2、以D 为圆心,以任意长为半径画弧, 交DE 于F ,交AD 于G ;3、以G 为圆心,以FD 的长为半径画弧, 在∠AED 的外部交前弧于H ;4、过H 点作射线DP ; 那么∠EDP 就是所求作的角.DCED。

相关文档
最新文档