2014届高三数学一轮复习精讲精练:3.6三角函数的图像和性质(二)
2014届高考数学(北师大版)一轮复习讲义课件:2.3三角函数的性质
⑥y=asinxcosx+b(sinx±cosx)+c. 这类问题的一般方法是:
设 t=sinx+cosx,t∈[- 2, 2],则 sinxcosx=t2-2 1转化为求 二次函数在[- 2, 2]上的最值问题.
3.三角函数的周期性 求三角函数的周期,通常应将函数式化为只有一个函数名,且 角度唯一,最高次数为一次的形式,然后借助于常见三角函数的周 期来求解. y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)(A>0,ω≠0) 的最小正周期分别为 T=|2ωπ|,T=|2ωπ|,T=|ωπ|.
所以原函数定义域为: {x|0<x<π2或 π≤x≤4}(如图).
题型二 三角函数的单调性 例 2(1)求函数 y=sin(π3-2x)的单调递减区间; (2)求 y=3tan(π6-x4)的周期及单调区间.
解析 (1)由已知函数得 y=-sin(2x-π3),欲求函数的单调递减 区间,只需求 y=sin(2x-π3)的单调递增区间.
若函数 y=Asin(ωx+φ)中 A>0,ω<0,可用诱导公式将函数变为 y =-Asin(-ωx-φ).则 y=-Asin(-ωx-φ)的增区间为原函数的减区间;
减区间为原函数的增区间,如 y=sin(π4-x)=-sin(x-π4),解 2kπ-π2≤x -π4≤2kπ+π2⇒2kπ-π4≤x≤2kπ+34π为原函数的减区间.
点评 比较三角函数值大小的一般步骤是:(1)先判断正负;(2) 不同名函数化为同名函数;(3)自变量不在同一单调区间的化为同一 单调区间.
变式迁移 2 求函数 y=log 1 (sin2x)的单调性.
2
2014届高三数学一轮复习精讲精练:3.6三角函数的图像和性质(二)
第6课 三角函数的图像和性质(二)【考点导读】1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数sin()y A x ωϕ=+的性质;2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】1.写出下列函数的定义域:(1)y =的定义域是______________________________; (2)sin 2cos x y x=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________.3.函数 22sin sin 44f x x x ππ=+--()()()的最小正周期是_______. 4. 函数y =sin(2x +3π)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2π)内是减函数,则ω的取值范围是______________.【范例解析】例1.求下列函数的定义域: (1)sin tan xy x =+(2)y =+ 解:(1),2tan 0,2sin 10.x k x x ππ⎧≠+⎪⎪≠⎨⎪+≥⎪⎩即,2,722.66x k x k k x k πππππππ⎧≠+⎪⎪≠⎨⎪⎪-≤≤+⎩,故函数的定义域为7{2266x k x k ππππ-≤≤+且,x k π≠,}2x k k Z ππ≠+∈(2)122log 0,tan 0.x x +≥⎧⎪⎨⎪≥⎩即04,.2x k x k πππ<≤⎧⎪⎨≤<+⎪⎩故函数的定义域为(0,)[,4]2ππ⋃.{663,}x k x k k Z πππ≤≤+∈ {,}2x x k k Z ππ≠+∈ π π (3π,0) 10ω-≤<点评:由几个函数的和构成的函数,其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集.例2.求下列函数的单调减区间: (1)sin(2)3y x π=-; (2)2cos sin()42xy x π=-;解:(1)因为222232k x k πππππ-≤-≤+,故原函数的单调减区间为5[,]()1212k k k Z ππππ-+∈. (2)由sin()042x π-≠,得{2,}2x x k k Z ππ≠+∈, 又2cos 4sin()24sin()42x x y x ππ==+-,所以该函数递减区间为3222242x k k πππππ+<+<+,即5(4,4)()22k k k Z ππππ++∈.点评:利用复合函数求单调区间应注意定义域的限制. 例3.求下列函数的最小正周期: (1)5tan(21)y x =+;(2)sin sin 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭. 解:(1)由函数5tan(21)y x =+的最小正周期为π2,得5tan(21)y x =+的周期2T π=. (2)sin()sin()(sin cos cos sin )cos 3233y x x x x x ππππ=++=+点评:求三角函数的周期一般有两种:(1)化为sin()A x ωϕ+的形式特征,利用公式求解;(2)利用函数图像特征求解.【反馈演练】1.函数x x y 24cos sin +=的最小正周期为 _____________. 2.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x 在[0,2]π上的单调递减区间为___________________.3.函数()sin ([,0])f x x x x π=-∈-的单调递增区间是________________.4.设函数()sin 3|sin 3|f x x x =+,则()f x 的最小正周期为_______________. 2π[,0]6π-32π[,]π2[,]63ππ,75[,]63ππ5.函数22()cos 2cos 2xf x x =-在[0,]π上的单调递增区间是_______________. 6.已知函数π124()πsin 2x f x x ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3cos 5α=,求()f α. 解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z . 故()f x 的定义域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得4sin 5α===.从而π124()πsin 2f ααα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ 7. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像 解:(Ⅰ))(8x f y x ==是函数πΘ的图像的对称轴,,1)82sin(±=+⨯∴ϕπ(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)由知)432sin(π-=x y故函数上图像是在区间],0[)(πx f y =。
2014高考数学一轮复习课件3.3三角函数的图象与性质
汇,在考查三角函数图象与性质的同时,注重考查三角变换
的技能,及数形结合、转化与化归等数学思想.
创新探究之四
三角函数单调性的创新应用
π (2012· 课标全国卷)已知ω>0,函数f(x)=sin(ωx+ )在 4 π ( ,π )上单调递减,则ω的取值范围是( 2 1 5 A.[ , ] 2 4 1 C.(0, ] 2 1 3 B.[ , ] 2 4 D.(0,2] )
π π kπ 【解析】 由3x≠ +kπ,k∈Z得x≠ + , 2 6 3 k∈Z,.
【答案】
D
5π 2.函数f(x)=2cos(x+ )是( 2
)
A.最小正周期为2π 的奇函数 B.最小正周期为2π 的偶函数 C.最小正周期为2π 的非奇非偶函数 D.最小正周期为π 的偶函数
π 5 【解析】 f(x)=2cos(x+ π)=2cos(x+ )=-2sin 2 2 x,故f(x)是最小正周期为2π的奇函数.
π 【解析】 f(x)=sin(πx- )-1=-cos πx-1, 2 2π 因此函数f(x)是偶函数,周期T= =2. π
【答案】
B
1.若f(x)=Asin(ωx+φ)(A,ω≠0),则 π (1)f(x)为偶函数的充要条件是φ= +kπ(k∈Z); 2 (2)f(x)为奇函数的充要条件是φ=kπ(k∈Z). 2.对称性:正、余弦函数的图象既是轴对称图形,又 是中心对称图形且最值点在对称轴上,正切函数的图象只 是中心对称图形.
π 设函数f(x)=sin(ωx+φ)(ω>0,|φ|< ),给出以 2 下四个论断: ①它的最小正周期为π ; π ②它的图象关于直线x= 成轴对称图形; 12 π ③它的图象关于点( ,0)成中心对称图形; 3 π ④在区间[- ,0)上是增函数. 6 以其中两个论断作为条件,另两个论断作为结论, 写出你认为正确的一个命题________(用序号表示).
高三数学一轮复习--三角函数图像与性质
戴氏教育中高考名校冲刺教育中心【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。
学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。
谢谢使用!!!】 主管签字:________§3.3 三角函数的图像与性质一、 考点、热点回顾2014会这样考 1.考查三角函数的图像:五点法作简图、图像变换、图像的解析式;2.考查三角函数的性质:值域或最值,单调区间、对称性等;3.考查数形结合思想.复习备考要这样做 1.会作三角函数的图像,通过图像研究三角函数的性质;2.对三角函数进行恒等变形,然后讨论其图像、性质;3.注重函数与方程、转化、数形结合等数学思想方法的应用.基础知识.自主学习 1. “五点法”作图原理在确定正弦函数y =sin x 在[0,2π]上的图像形状时,起关键作用的五个点是(0,0)、⎝⎛⎭⎫π2,1、(π,0)、⎝⎛⎭⎫32π,-1、(2π,0).余弦函数呢? 2. 三角函数的图像和性质函数性质 y =sin x y =cos x y =tan x 定义域RR{x |x ≠k π+π2,k ∈Z }图像值域[-1,1] [-1,1]R对称性对称轴:x =k π+π2(k ∈Z );对称中心:(k π,0)(k ∈Z )对称轴:x =k π(k ∈Z );对称中心:(k π+π2,0) (k ∈Z )对称中心:⎝⎛⎭⎫k π2,0(k ∈Z )周期2π2ππ单调性单调增区间[2kπ-π2,2kπ+π2](k∈Z);单调减区间[2kπ+π2,2kπ+3π2] (k∈Z)单调增区间[2kπ-π,2kπ] (k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间(kπ-π2,kπ+π2)(k∈Z)奇偶性奇函数偶函数奇函数[难点正本疑点清源]1.函数的周期性若f(ωx+φ+T)=f(ωx+φ) (ω>0),常数T不能说是函数f(ωx+φ)的周期.因为f(ωx+φ+T)=f⎣⎡⎦⎤ω⎝⎛⎭⎫x+Tω+φ,即自变量由x增加到x+Tω,Tω是函数的周期.2.求三角函数值域(最值)的方法(1)利用sin x、cos x的有界性;(2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数的单调性写出函数的值域;(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.1.设点P是函数f(x)=sin ωx (ω≠0)的图像C的一个对称中心,若点P到图像C的对称轴的距离的最小值是π4,则f(x)的最小正周期是________.答案π解析由正弦函数的图像知对称中心与对称轴的距离的最小值为最小正周期的14,故f(x)的最小正周期为T=4×π4=π.2.y=2-3cos⎝⎛⎭⎫x+π4的最大值为______,此时x=_______________________.答案534π+2kπ,k∈Z解析当cos⎝⎛⎭⎫x+π4=-1时,函数y=2-3cos⎝⎛⎭⎫x+π4取得最大值5,此时x+π4=π+2kπ (k∈Z),从而x=34π+2kπ,k∈Z.3. (2012·福建)函数f (x )=sin ⎝⎛⎭⎫x -π4的图像的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2答案 C解析 方法一 ∵正弦函数图像的对称轴过图像的最高点或最低点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .取k =-1,则x =-π4.方法二 用验证法.x =π4时,y =sin ⎝⎛⎭⎫π4-π4=0,不合题意,排除A ; x =π2时,y =sin ⎝⎛⎭⎫π2-π4=22,不合题意,排除B ; x =-π4时,y =sin ⎝⎛⎭⎫-π4-π4=-1,符合题意,C 项正确; x =-π2时,y =sin ⎝⎛⎭⎫-π2-π4=-22,不合题意,故D 项也不正确. 4. 函数y =tan ⎝⎛⎭⎫π4-x 的定义域为( )A .{x |x ≠k π-π4,k ∈Z }B .{x |x ≠2k π-π4,k ∈Z }C .{x |x ≠k π+π4,k ∈Z }D .{x |x ≠2k π+π4,k ∈Z }答案 A解析 令π4-x ≠k π+π2,k ∈Z ,∴x ≠k π-π4,k ∈Z .5. 给出下列四个命题,其中不正确的命题为( )①若cos α=cos β,则α-β=2k π,k ∈Z ; ②函数y =2cos ⎝⎛⎭⎫2x +π3的图像关于x =π12对称; ③函数y =cos(sin x )(x ∈R )为偶函数; ④函数y =sin|x |是周期函数,且周期为2π. A .①②B .①④C .①②③D .①②④答案 D解析 命题①:若α=-β,则cos α=cos β,假命题;命题②:x =π12,cos ⎝⎛⎭⎫2x +π3=cos π2=0,故x =π12不是y =2cos ⎝⎛⎭⎫2x +π3的对称轴;命题④:函数y =sin|x |不是周期函数.二、典型例题题型一 三角函数的定义域、值域问题例1 (1)求函数y =lg sin 2x +9-x 2的定义域;(2)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 思维启迪:求函数的定义域可利用三角函数的图像或数轴;求函数值域时要利用正弦函数的值域或化为二次函数.解 (1)由⎩⎪⎨⎪⎧sin 2x >09-x 2≥0, 得⎩⎪⎨⎪⎧2k π<2x <2k π+π,k ∈Z ,-3≤x ≤3. ∴-3≤x <-π2或0<x <π2.∴函数y =lg sin 2x +9-x 2的定义域为 {x |-3≤x <-π2或0<x <π2}.(2)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,t =-22时,y min =1-22. ∴函数y =cos 2x +sin x (|x |≤π4)的最大值为54,最小值为1-22.探究提高 (1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图像来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t的二次函数求值域(最值).(1)求函数y =sin x -cos x 的定义域;(2)已知函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin ⎝⎛⎭⎫x -π4·sin ⎝⎛⎭⎫x +π4,求函数f (x )在区间⎣⎡⎦⎤-π12,π2上的最大值与最小值.解 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图像,在同一坐标系中画出[0,2π]内y =sin x 和y =cos x 的图像,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }.(2)由题意得:f (x )=12cos 2x +32sin 2x +(sin x -cos x )·(sin x +cos x )=12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝⎛⎭⎫2x -π6. 又x ∈⎣⎡⎦⎤-π12,π2,∴2x -π6∈⎣⎡⎦⎤-π3,5π6, ∴sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,1. 故当x =π3时,f (x )取最大值1;当x =-π12时,f (x )取最小值-32.题型二 三角函数的单调性与周期性 例2 写出下列函数的单调区间及周期:(1)y =sin ⎝⎛⎭⎫-2x +π3;(2)y =|tan x |. 思维启迪:(1)化为y =-sin ⎝⎛⎭⎫2x -π3,再求单调区间及周期.(2)由y =tan x 的图像→y =|tan x |的图像→求单调性及周期. 解 (1)y =-sin ⎝⎛⎭⎫2x -π3, 它的增区间是y =sin ⎝⎛⎭⎫2x -π3的减区间, 它的减区间是y =sin ⎝⎛⎭⎫2x -π3的增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ; 增区间为⎣⎡⎦⎤k π+5π12,k π+11π12,k ∈Z . 最小正周期T =2π2=π.(2)观察图像可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,减区间是⎝⎛⎦⎤k π-π2,k π,k ∈Z . 最小正周期T =π.探究提高 (1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ) (其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答.列不等式的原则:①把“ωx +φ (ω>0)”视为一个“整体”;②A >0 (A <0)时,所列不等式的方向与y =sin x (x ∈R ),y =cos x (x ∈R )的单调区间对应的不等式方向相同(反).(2)对于y =A tan(ωx +φ) (A 、ω、φ为常数),其周期T =π|ω|,单调区间利用ωx +φ∈⎝⎛⎭⎫k π-π2,k π+π2,解出x 的取值范围,即为其单调区间.对于复合函数y =f (v ),v =φ(x ),其单调性的判定方法:若y =f (v )和v =φ(x )同为增(减)函数时,y =f (φ(x ))为增函数;若y =f (v )和v =φ(x )一增一减时,y =f (φ(x ))为减函数.(3)求含有绝对值的三角函数的单调性及周期时,通常要画出图像,结合图像判定.求函数y =sin ⎝⎛⎭⎫π3+4x +cos ⎝⎛⎭⎫4x -π6的周期、单调区间及最大、最小值. 解 ∵⎝⎛⎭⎫π3+4x +⎝⎛⎭⎫π6-4x =π2, ∴cos ⎝⎛⎭⎫4x -π6=cos ⎝⎛⎭⎫π6-4x =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3+4x =sin ⎝⎛⎭⎫π3+4x . ∴y =2sin ⎝⎛⎭⎫4x +π3,周期T =2π4=π2. 当-π2+2k π≤4x +π3≤π2+2k π (k ∈Z )时,函数单调递增,∴函数的递增区间为⎣⎡⎦⎤-5π24+k π2,π24+k π2 (k ∈Z ). 当π2+2k π≤4x +π3≤3π2+2k π (k ∈Z )时,函数单调递减,∴函数的递减区间为⎣⎡⎦⎤π24+k π2,7π24+k π2(k ∈Z ). 当x =π24+k π2 (k ∈Z )时,y max =2;当x =-5π24+k π2 (k ∈Z )时,y min =-2.题型三 三角函数的对称性与奇偶性例3 (1)已知f (x )=sin x +3cos x (x ∈R ),函数y =f (x +φ) ⎝⎛⎭⎫|φ|≤π2的图像关于直线x =0对 称,则φ的值为________.(2)如果函数y =3cos(2x +φ)的图像关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3D.π2答案 (1)π6(2)A解析 (1)f (x )=2sin ⎝⎛⎭⎫x +π3, y =f (x +φ)=2sin ⎝⎛⎭⎫x +π3+φ图像关于x =0对称, 即f (x +φ)为偶函数.∴π3+φ=π2+k π,k ∈Z ,φ=k π+π6,k ∈Z , 又∵|φ|≤π2,∴φ=π6.(2)由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π =3cos ⎝⎛⎭⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z , 取k =0,得|φ|的最小值为π6.故选A.探究提高 若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大值或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0. 如果求f (x )的对称轴,只需令ωx +φ=π2+k π (k ∈Z ),求x .如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π (k ∈Z )即可.(1)定义运算⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,则函数f (x )=⎪⎪⎪⎪⎪⎪3 3sin x 1 cos x 的图像的一条对称轴方程是( )A .x =5π6B .x =2π3C .x =π3D .x =π6答案 A 解析 f (x )=⎪⎪⎪⎪⎪⎪3 3sin x 1 cos x =3cos x -3sin x=23cos ⎝⎛⎭⎫x +π6. 所以当x =5π6时,f (x )=23cos ⎝⎛⎭⎫5π6+π6=-2 3. (2)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图像的一条对称轴方程是x =π4ω,函数f ′(x )的图像的一个对称中心是⎝⎛⎭⎫π8,0,则f (x )的最小正周期是________. 答案 π解析 由题设,有f ⎝⎛⎭⎫π4ω=±a 2+b 2, 即22(a +b )=±a 2+b 2, 由此得到a =b .又f ′⎝⎛⎭⎫π8=0,∴aω⎝⎛⎭⎫cos ωπ8-sin ωπ8=0, 从而tanωπ8=1,ωπ8=k π+π4,k ∈Z , 即ω=8k +2,k ∈Z ,而0<ω<5,∴ω=2, 于是f (x )=a (sin 2x +cos 2x )=2a sin ⎝⎛⎭⎫2x +π4, 故f (x )的最小正周期是π.思 想 与 方 法 系 列——方程思想在三角函数中的应用典例:(12分)已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,函数的最大值为1,最小值为-5,求a 和b 的值.审题视角 ①求出2x -π3的范围,求出sin ⎝⎛⎭⎫2x -π3的值域.②系数a 的正、负影响着f (x )的值,因而要分a >0,a <0两种情况讨论.③根据a >0或a <0求f (x )的最值,列方程组求解. 规范解答解 ∵0≤x ≤π2,∴-π3≤2x -π3≤23π,∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,[3分] 若a >0,则⎩⎨⎧2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123;[7分]若a <0,则⎩⎨⎧2a +b =-5-3a +b =1,解得⎩⎨⎧a =-12+63b =19-123.[11分]综上可知,a =12-63,b =-23+123或a =-12+63, b =19-12 3.[12分]温馨提醒 (1)对此类问题的解决,首先利用正弦函数、余弦函数的有界性或单调性求出y =Aa sin(ωx +φ)或y =Aa cos(ωx +φ)的最值,但要注意对a 的正负进行讨论,以便确定是最大值还是最小值.(2)再由已知列方程求解.(3)本题的易错点是忽视对参数a >0或a <0的分类讨论,导致漏解.方法与技巧1.利用函数的有界性(-1≤sin x ≤1,-1≤cos x ≤1),求三角函数的值域(最值). 2.利用函数的单调性求函数的值域或最值.3.利用换元法求复合函数的单调区间(要注意x 系数的正负号). 失误与防范1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,考虑问题应在函数的定义域内考虑.注意区分下列两题的单调增区间的不同: (1)y =sin ⎝⎛⎭⎫2x -π4;(2)y =sin ⎝⎛⎭⎫π4-2x .3.利用换元法求三角函数最值时注意三角函数的有界性,如:y =sin 2x -4sin x +5,令t = sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误.三、习题练习A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1. 函数y =cos x -12的定义域为( )A.⎣⎡⎦⎤-π3,π3 B.⎣⎡⎦⎤k π-π3,k π+π3,k ∈Z C.⎣⎡⎦⎤2k π-π3,2k π+π3,k ∈Z D .R2. y =sin ⎝⎛⎭⎫x -π4的图像的一个对称中心是( )A .(-π,0) B.⎝⎛⎭⎫-3π4,0 C.⎝⎛⎭⎫3π2,0D.⎝⎛⎭⎫π2,03. (2011·山东)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上是增加的,在区间⎣⎡⎦⎤π3,π2上是减少的,则ω等于( )A.23B.32C .2D .3 4. 函数f (x )=cos 2x +sin ⎝⎛⎭⎫5π2+x 是( )A .非奇非偶函数B .仅有最小值的奇函数C .仅有最大值的偶函数D .有最大值又有最小值的偶函数 二、填空题(每小题5分,共15分) 5.函数y =lg(sin x )+cos x -12的定义域为_____________________________.6. 已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=2cos(2x +φ)+1的图像的对称轴完全相同.若x ∈[0,π2],则f (x )的取值范围是________. 7. 函数f (x )=2sin ωx (ω>0)在⎣⎡⎦⎤0,π4上是增加的,且在这个区间上的最大值是3,那么ω=________.三、解答题(共22分)8. (10分)设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f (x )的单调增区间.9. (12分)(1)求函数y =2sin ⎝⎛⎭⎫2x +π3 (-π6<x <π6)的值域; (2)求函数y =2cos 2x +5sin x -4的值域.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·天津)将函数f (x )=sin ωx (其中ω>0)的图像向右平移π4个单位长度,所得图像经过点⎝⎛⎭⎫3π4,0,则ω的最小值是( )A.13 B .1 C.53 D .2 2. (2012·上海)若S n =sin π7+sin 2π7+…+sin n π7(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是 ( )A .16B .72C .86D .1003. 已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C .2 D .3二、填空题(每小题5分,共15分)4. 函数y =2sin(3x +φ) (|φ|<π2)的一条对称轴为x =π12,则φ=________.5. 函数y =sin x +1sin x(0<x <π)的最小值为________. 6. 已知定义在R 上的函数f (x )满足:当sin x ≤cos x 时,f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .给出以下结论:①f (x )是周期函数;②f (x )的最小值为-1;③当且仅当x =2k π (k ∈Z )时,f (x )取得最小值;④当且仅当2k π-π2<x <(2k +1)π(k ∈Z )时,f (x )>0; ⑤f (x )的图像上相邻两个最低点的距离是2π.其中正确的结论序号是________.三、解答题7. (13分)已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.。
高三一轮复习《三角函数的图象与性质》
3
2
2
o 3 x
2
2
{ } x
|
x
2
k, k
Z
R
( )
2
k,
2
k
,k Z
7
一张图学透
必备知识 关键能力 限时规范训练
正切函数的图像与性质
-----------------
-----------------
-----------------
-----------------
y
. . . . . . . 3 2
必备知识 关键能力 限时规范训练
1.求三角函数单调区间的方法 求函数 f(x)=Asin(ωx+φ)的单调区间,可利用换元法转化为两个简单函数(t=ωx+φ 与 y=Asin t)进行求解,应注意ω,A 的符号对复合函数单调性的影响,牢记基本法则—— 同增异减. 2.已知函数的单调性求参数 (1)明确一个不同:“函数 f(x)在区间 M 上单调”与“函数 f(x)的单调区间为 N”两者 的含义不同,显然 M 是 N 的子集; (2)抓住两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式 求解;二是利用导数,转化为导函数在区间 M 上的保号性,由此列不等式求解.
f
(x)在,32
上单调递减,故
C
不正确;
当32π<x<2π时,所以
f
(x)在
3
2
,2
上不单调,故
D
不正确.故选
A.
19
必备知识 关键能力 限时规范训练
题型三、三角函数的单调性
练习1.函数y=1-2cos x的单调递减区间是________. 解析:函数 y=1-2cos x 的单调递减区间
(名师伴你行)2014高考数学一轮复习课件 第四章 三角函数的图像与性质
解析:当a=1,或a=-1时,相邻两交点间的距离最 大,最大值为2π.
答案:D
π π 2.设函数f(x)=sin2x+4+cos2x+4,则(
)
π π A.y=f(x)在0,2单调递增,其图像关于直线x=4对称 π π B.y=f(x)在 0,2 单调递增,其图像关于直线x=2对称 π π C.y=f(x)在 0,2 单调递减,其图像关于直线x=4对称 π π D.y=f(x)在 0,2 单调递减,其图像关于直线x=2对称
π π 解析:f(x)=sin2x+4+cos2x+4
=
π 2· sin2x+2=
2cos2x,
其图像如下.故选D.
答案:D
3.若函数f(x)=sinωx(ω>0)在区间
π π 在区间3,2上单调递减,则ω=(
π 0, 3
图像
函数 性质 值域
y=sinx
y=cosx
y=tanx
6 _______ □ 13 ______ □ 21 ____________ □ 对称轴: 对称轴: 对称中心:
7 _______; □ 14 _____; □ 对称性 对称中心:
22 ____________ 对称中心: □
8 _________ □ 15 ______ □
1 (0,0) 答案:□ 5 (2π,0) □ ∈Z) 9 □
2 □
π ,1 2
3 (π,0) □ 4 □
3 π,-1 2
6 [-1,1] □ 2π 10 □
π 7 □ x=kπ+ 2 (k∈Z)
π π 2kπ- ,2kπ+ 2 2
8 (kπ,0)(k □ (k∈Z) 11 □
2014届高考数学(理科)二轮复习专题讲义:专题二 第1讲三角函数的图像与性质
2014届高考数学(理科)二轮复习专题讲义:专题二 第1讲三角函数的图像与性质(1)三角函数的定义:若角α的终边过点P (x ,y ),则sin α=y r ,cos α=x r ,tan α=yx (其中r =x 2+y 2).(2)诱导公式:注意“奇变偶不变,符号看象限”. (3)基本关系:sin 2x +cos 2x =1,tan x =sin xcos x .二、经典例题领悟好[例1] (1)(2013·辽宁五校第二次联考)若θ∈⎝⎛⎭⎫π2,π,则 1-2sin (π+θ)sin ⎝⎛⎭⎫3π2-θ=( )A .sin θ-cos θB .cos θ-sin θC .±(sin θ-cos θ)D .sin θ+cos θ(2)(2013·江西师大附中模拟)已知角α终边上一点P (3,1),则2sin 2α-3tan α=( ) A .-1-3 3 B .1-3 3 C .-2 3 D .0[解析] (1)1-2sin (π+θ)sin ⎝⎛⎭⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|, 又θ∈⎝⎛⎭⎫π2,π, ∴sin θ-cos θ>0, 故原式=sin θ-cos θ.(2)由已知得|OP |=2,由三角函数定义可知sin α=12,cos α=32,即α=2k π+π6(k ∈Z ).所以2sin 2α-3tan α=2sin ⎝⎛⎭⎫4k π+π3-3tan ⎝⎛⎭⎫2k π+π6=2sin π3-3tan π6=2×32-3×33=0. [答案] (1)A (2)D(1)当角的终边所在的位置不是唯一确定的时候要注意分情况解决,否则机械地使用三角函数定义会出现错误.(2)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.三、预测押题不能少1.(1)已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355B.377C.31010D.13解析:选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.(2)已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记∠AOB =α.若点A 的纵坐标为35,则sin α=________;tan 2α=________.解析:由点A 的纵坐标为35及点A 在第二象限,得点A 的横坐标为-45,所以sin α=35,cos α=-45,tan α=-34.故tan 2α=2tan α1-tan 2α=-247. 答案:35 -247函数y =A sin(ωx +φ)的图像: (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图像变换:y =sin x ――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ) ―――――――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ)――――――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 二、经典例题领悟好[例2] (1)(2013·四川高考)函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图像如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3(2)(2013·新课标Ⅱ)函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y=sin ⎝⎛⎭⎫2x +π3的图像重合,则φ=________. [解析] (1)∵34T =512π-⎝⎛⎭⎫-π3=34π,∴T =π, ∴2πω=π(ω>0),∴ω=2. 由图像知当x =512π时,2×512π+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k ∈Z ).∵-π2<φ<π2,∴φ=-π3.(2)y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+φ的图像,整理得y =cos(2x -π+φ).∵其图像与y =sin ⎝⎛⎭⎫2x +π3的图像重合, ∴φ-π=π3-π2+2k π,∴φ=π3+π-π2+2k π,即φ=5π6+2k π.又∵-π≤φ<π,∴φ=5π6.[答案] (1)A (2)5π6(1)在利用图像求三角函数y =A sin(ωx +φ)的有关参数时,注意直接从图中观察振幅、周期,即可求出A 、ω,然后根据图像过某一特殊点来求φ,若是利用零点值来求,则要注意是ωx +φ=k π(k ∈Z ),根据点在单调区间上的关系来确定一个k 的值,此时要利用数形结合,否则就易步入命题人所设置的陷阱.(2)作三角函数图像左右平移变换时,平移的单位数是指单个变量x 的变化量,因此由y =sin ωx (ω>0)的图像得到y =sin(ωx +φ)的图像时,应将图像上所有点向左(φ>0)或向右(φ<0)平移|φ|ω个单位,而非|φ|个单位.三、预测押题不能少2.(1)将函数y =sin ⎝⎛⎭⎫2x +π4的图像向左平移π4个单位,再向上平移2个单位,则所得图像的一个对称中心是( )A.⎝⎛⎭⎫π4,2 B.⎝⎛⎭⎫π3,2 C.⎝⎛⎭⎫π8,2D.⎝⎛⎭⎫π2,2解析:选C 将y =sin ⎝⎛⎭⎫2x +π4的图像向左平移π4个单位,再向上平移2个单位得y =sin ⎝⎛⎭⎫2x +3π4+2的图像,其对称中心的横坐标满足2x +3π4=k π,即x =k π2-3π8,k ∈Z ,取k =1,得x =π8.(2)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图像如图所示.若函数y =f (x )在区间[m ,n ]上的值域为[-2,2],则n -m 的最小值是( )A .1B .2C .3D .4解析:选C 根据已知可得,f (x )=2sin π4x ,若f (x )在[m ,n ]上单调,则n -m 取最小值.又当x =2时,y =2;当x =-1时,y =-2,故(n -m )min =2-(-1)=3.(1)三角函数的单调区间: y =sin x 的单调递增区间是2222k k ππ⎡⎤π-π+⎢⎥⎣⎦, (k ∈Z ),单调递减区间是2222k k π3π⎡⎤π+π+⎢⎥⎣⎦, (k ∈Z ); y =cos x 的单调递增区间是[2k π-π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z ).(2)y =A sin(ωx +φ),当φ=k π时为奇函数;当y =k π+π2时为偶函数;对称轴方程可由ωx+φ=k π+π2求得.二、经典例题领悟好[例3] (2013·安徽高考)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. [解] (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+2=2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎣⎡⎦⎤π8,π2上单调递减.求解三角函数的奇偶性、对称性、周期、最值和单调区间等问题时,通常要运用各种三角函数公式,通过恒等变换(降幂、辅助角公式应用)将其解析式化为y =A sin(ωx +φ),y =A cos(ωx +φ)(A ,ω,φ是常数,且A >0,ω≠0)的形式,再研究其各种性质.有关常用结论与技巧:(1)我们往往运用整体换元法来求解单调性与对称性,求y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,且A >0,ω≠0)的单调区间时一定要注意ω的取值情况,若ω<0,则最好用诱导公式将其转化为-ω>0后再去求解,否则极易出错.(2)对y =A sin(ωx +φ),y =A cos(ωx +φ)(A ,ω,φ是常数,且A >0,ω≠0)结合函数图像可观察出如下几点:①函数图像的对称轴都经过函数的最值点,对称中心的横坐标都是函数的零点; ②相邻两对称轴(对称中心)间的距离都是半个周期;③图像上相邻两个最大(小)值点之间的距离恰好等于一个周期. 三、预测押题不能少3.已知函数f (x )=3sin x cos x +cos 2x +a . (1)求f (x )的最小正周期及单调递减区间;(2)若f (x )在区间⎣⎡⎦⎤-π6,π3上的最大值与最小值的和为32,求a 的值. 解:(1)因为f (x )=32sin 2x +1+cos 2x 2+a =sin ⎝⎛⎭⎫2x +π6+a +12, 所以T =π.由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 得π6+k π≤x ≤2π3+k π,k ∈Z . 故函数f (x )的单调递减区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ). (2)因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6,-12≤sin ⎝⎛⎭⎫2x +π6≤1. 因为函数f (x )在⎣⎡⎦⎤-π6,π3上的最大值与最小值的和为⎝⎛⎭⎫1+a +12+⎝⎛⎭⎫-12+a +12=32, 所以a =0.三角函数的考查形式灵活多变,主要考查三角函数的奇偶性、单调性、周期性、对称性和有界性等,三角函数与平面向量、数列、函数的零点和不等式等知识的交汇命题成为近年高考的热点.一、经典例题领悟好[例1] (2013·湖北省武汉市调研测试)已知x 0,x 0+π2是函数f (x )=cos 2⎝⎛⎭⎫ωx -π6-sin 2ωx (ω>0)的两个相邻的零点.(1)求f ⎝⎛⎭⎫π12的值;(2)若对∀x ∈⎣⎡⎦⎤-7π12,0,都有|f (x )-m |≤1,求实数m 的取值范围. (1)学审题——审条件之审视结构f (x )―――――→恒等变换 f (x )=A sin(ωx +φ)的形式――→零点 T 2=π2―→ω的值―→f ⎝⎛⎭⎫π12的值. (2)学审题——审结论之逆向分析|f (x )-m |≤1―→f (x )-1≤m ≤f (x )+1―→m ≥f (x )max -1且m ≤f (x )min +1―→求f (x )的最值. [解] (1)f (x )=1+cos ⎝⎛⎭⎫2ωx -π32-1-cos 2ωx 2=12⎣⎡⎦⎤cos ⎝⎛⎭⎫2ωx -π3+cos 2ωx =12⎣⎡⎦⎤⎝⎛⎭⎫12cos 2ωx +32sin 2ωx +cos 2ωx =12⎝⎛⎭⎫32sin 2ωx +32cos 2ωx =32⎝⎛⎭⎫12sin 2ωx +32cos 2ωx=32sin ⎝⎛⎭⎫2ωx +π3. 由题意可知,f (x )的最小正周期T =π,∴2π|2ω|=π.又∵ω>0,∴ω=1,∴f (x )=32sin ⎝⎛⎭⎫2x +π3. ∴f ⎝⎛⎭⎫π12=32sin ⎝⎛⎭⎫2×π12+π3=32sin π2=32. (2)|f (x )-m |≤1,即f (x )-1≤m ≤f (x )+1. ∵对∀x ∈⎣⎡⎦⎤-7π12,0,都有|f (x )-m |≤1, ∴m ≥f (x )max -1且m ≤f (x )min +1. ∵-7π12≤x ≤0,∴-5π6≤2x +π3≤π3,∴-1≤sin ⎝⎛⎭⎫2x +π3≤32, ∴-32≤32sin ⎝⎛⎭⎫2x +π3≤34,即f (x )max =34,f (x )min =-32,∴-14≤m ≤1-32.故m 的取值范围为⎣⎡⎦⎤-14,1-32.本题考查了三角函数与函数的零点、不等式的交汇,求解的难点是由|f (x )-m |<1恒成立,转化为m ≥f (x )max -1且m ≤f (x )min +1成立,即求f (x )在x ∈⎣⎡⎦⎤-7π12,0的最值. 二、预测押题不能少1.已知函数 f (x )=cos x ·cos ⎝⎛⎭⎫x -π3. (1)求f ⎝⎛⎭⎫2π3的值;(2)求使f (x )<14成立的x 的取值集合.解:(1)f ⎝⎛⎭⎫2π3=cos 2π3·cos π3=-cos π3·cos π3=-⎝⎛⎭⎫122=-14. (2)f (x )=cos x ·cos ⎝⎛⎭⎫x -π3 =cos x ·⎝⎛⎭⎫12cos x +32sin x =12cos 2x +32sin x cos x =14(1+cos 2x )+34sin 2x =12cos ⎝⎛⎭⎫2x -π3+14. f (x )<14等价于12cos ⎝⎛⎭⎫2x -π3+14<14,即cos ⎝⎛⎭⎫2x -π3<0.于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为511|<<Z 1212x k x k k ππ⎧⎫π+π+∈⎨⎬⎩⎭,.三角函数的概念是考查三角函数的重要工具,在高考命题中很少单独考查,2012年山东卷即考查动态中三角函数的定义.一、经典例题领悟好[例2] (2012·山东高考)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.[解析] 因为圆心由(0,1)平移到了(2,1),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切于点B ,过C 作P A 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝⎛⎭⎫2-π2=-cos 2,|CD |=cos ⎝⎛⎭⎫2-π2=sin 2,所以P 点坐标为(2-sin 2,1-cos 2),即OP 的坐标为(2-sin 2,1-cos 2).[答案] (2-sin 2,1-cos 2)解决本题的关键有以下几点:(1)正确理解圆的滚动过程,确定圆心C 的坐标; (2)正确作出辅助线,并求得BP 与BC 的长度; (3)正确应用向量的坐标运算求出OP 的坐标. 二、预测押题不能少2.在平面直角坐标系中,点O (0,0),P (6,8),将向量OP 绕点O 按逆时针方向旋转3π4后得向量OQ ,则点Q 的坐标是( )A .(-72,-2)B .(-72,2)C .(-46,-2)D .(-46,2)解析:选A 画出草图,可知点Q 落在第三象限,则可排除B 、D ;代入A ,cos ∠QOP =6×(-72)+8×(-2)62+82=-502100=-22,所以∠QOP =3π4.代入C ,cos ∠QOP =6×(-46)+8×(-2)62+82=-246-16100≠-22.1.(2013·浙江高考)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1D .2π,2解析:选A 由f (x )=sin x cos x +32cos 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎫2x +π3,得最小正周期为π,振幅为1.2.(2013·浙江高考)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B 若f (x )是奇函数,则φ=π2+k π(k ∈Z ),且当φ=π2时,f (x )为奇函数.3.(2013·福建质检)函数f (x )=x 2cos x 22x ππ⎛⎫-≤≤ ⎪⎝⎭的图像大致是( )解析:选B 因为f (-x )=(-x )2cos(-x )=x 2cos x =f (x ),所以函数f (x )为偶函数,排除C 、D ;又f ⎝⎛⎭⎫π3=⎝⎛⎭⎫π32cos π3=π218>0,所以排除A.4.三角形ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A -cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( ) A .1 B .-1 C .3D .4解析:选B 因为三角形ABC 是锐角三角形,所以A +B >90°,即A >90°-B ,则sin A >sin(90°-B )=cos B ,sin A -cos B >0,同理cos A -sin C <0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1. 5.(2013·济南模拟)若函数f (x )=2sin ⎝⎛⎭⎫π6x +π3(-2<x <10)的图像与x 轴交于点A ,过点A的直线l 与函数的图像交于B ,C 两点,则(OB +OC )·OA =( ) A .-32 B .-16 C .16D .32解析:选D 由f (x )=0解得x =4,即A (4,0),过点A 的直线l 与函数的图像交于B ,C 两点,根据对称性可知,A 是BC 的中点,如图,所以OB +OC =2OA ,所以(OB +OC )·OA =2OA ·OA =2|OA |2=2×42=32.6.(2013·济南模拟)如图是函数y =A sin(ωx +φ) R A>0>0,0<<2x ωϕπ⎛⎫∈ ⎪⎝⎭,,在区间⎣⎡⎦⎤-π6,5π6上的图像.为了得到这个函数的图像,只需将y =sin x (x ∈R )的图像上所有的点()A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变解析:选A 由题意知,A =1;由2πω=5π6+π6,得ω=2;由2×π3-π62+φ=π2+2k π(k ∈Z ),0<φ<π2,得φ=π3,故y =sin ⎝⎛⎭⎫2x +π3.只要把函数y =sin x 的图像向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变,即可得y =sin ⎝⎛⎭⎫2x +π3的图像. 7.设α∈⎝⎛⎭⎫0,π4,若tan ⎝⎛⎭⎫α+π4=2cos 2α,则α=________. 解析:∵tan ⎝⎛⎭⎫α+π4=2cos 2α, ∴sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).因为α∈⎝⎛⎭⎫0,π4,所以sin α+cos α≠0. 因此(cos α-sin α)2=12,即sin 2α=12.由α∈⎝⎛⎫0,π4,得2α∈⎝⎛⎫0,π2,所以2α=π6,即α=π12. 答案:π128.(2013·荆州市质检)函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图像关于点⎝⎛⎭⎫-3π8,0对称,则函数的解析式为________________. 解析:由题意知最小正周期T =π=2πω,∴ω=2,2×⎝⎛⎭⎫-3π8+φ=k π(k ∈Z ),∴φ=k π+3π4(k ∈Z ).又0<φ<π,∴φ=3π4,∴y =sin ⎝⎛⎭⎫2x +3π4. 答案:y =sin ⎝⎛⎭⎫2x +3π4 9.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图像如图,则f ⎝⎛⎭⎫π24=________.解析:由图像可知,此正切函数的半周期等于3π8-π8=2π8=π4,即周期为π2,所以ω=2.由题意可知,图像过定点⎝⎛⎭⎫3π8,0,所以0=A tan2×3π8+φ,即3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ),又|φ|<π2,所以φ=π4.再由图像过定点(0,1),可得A =1.综上可知,f (x )=tan ⎝⎛⎭⎫2x +π4.故有f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=tan π3= 3. 答案: 310.(2013·安徽高考)设函数f (x )=sin x +sin ⎝⎛⎭⎫x +π3. (1)求f (x )的最小值,并求使f (x )取得最小值的x 的集合;(2)不画图,说明函数y =f (x )的图像可由y =sin x 的图像经过怎样的变化得到. 解:(1)因为f (x )=sin x +12sin x +32cos x =32sin x +32cos x =3sin ⎝⎛⎭⎫x +π6, 所以当x +π6=2k π-π2,即x =2k π-2π3(k ∈Z )时,f (x )取最小值- 3.此时x 的取值集合为2=2Z 3x x k k ⎧⎫ππ-∈⎨⎬⎩⎭,. (2)先将y =sin x 的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),得y =3sin x 的图像;再将y =3sin x 的图像上所有的点向左平移π6个单位长度,得y =f (x )的图像.11.(2013·长春市调研)函数f (x )=A sin(ωx +φ) >0>0<<R 22A x ωϕππ⎛⎫∈ ⎪⎝⎭,,-,的部分图像如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-π,-π6时,求f (x )的取值范围. 解:(1)由图像得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将⎝⎛⎭⎫π6,1代入得1=sin ⎝⎛⎭⎫π6+φ,而-π2<φ<π2,所以φ=π3.因此函数f (x )=sin ⎝⎛⎭⎫x +π3. (2)由于x ∈⎣⎡⎦⎤-π,-π6,-2π3≤x +π3≤π6, 所以-1≤sin ⎝⎛⎭⎫x +π3≤12, 所以f (x )的取值范围是⎣⎡⎦⎤-1,12. 12.(2013·辽宁省五校模拟)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).(1)求sin 2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数y =3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,π2上的值域.解:(1)∵角α的终边经过点P (-3,3), ∴sin α=12,cos α=-32,tan α=-33.∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,x ∈R ,∴y =3cos ⎝⎛⎭⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝⎛⎭⎫2x -π6-1. ∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.∴-12≤sin ⎝⎛⎭⎫2x -π6≤1. ∴-2≤2sin ⎝⎛⎭⎫2x -π6-1≤1. 故函数y =3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,π2上的值域为[-2,1].。
高三一轮复习10三角函数的图象与性质
3.4 三角函数的图象与性质一.【课标要求】1.能画出sin y x =,cos y x =,tan y x =的图像,了解三角函数的周期性;2.借助图像理解正弦函数、余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质(如单调性、最大和最小值、图像与x 轴交点等);3.会求正弦型函数sin()y A x ωϕ=+的周期、单调区间、最值、对称中心、对称轴等,会由图像求参数的值二.【命题走向】近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。
在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法预测2012年高考对本讲内容的考察为: 1.题型为1道选择题(求值或图象变换),1道解答题(求值或图像变换);2.热点问题是三角函数的图象和性质,特别是sin()y A x ωϕ=+的图象及其变换;三.【知识回顾】s y inx = cos y x = tan y x =(1)周期函数的定义对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,T 叫做这个函数的周期.(2)最小正周期:若()f x 在所有周期中存在一个最小正数,称它为最小正周期. (3)函数方程与周期①周期的定义本身就是方程()()f x T f x +=对x R ∀∈恒成立. ②对()()f x T f x +=可作变形:若()()f x a f x b +=+,则()f x 的周期为||T b a =-若()1()f x a f x +=±,则()f x 的周期为2T a = 若()()f x a f x +=-,则()f x 的周期为2T a =3.函数sin()(0,0),[0,)y A x A x ωϕω=+>>∈+∞的有关概念当函数sin()(0,0)y A x A ωϕω=+>>表示一个振动量时,A :振幅;12f T ωπ==:频率;2T πω=:周期;x ωϕ+:相位,当0ω=时,ϕ称为初相. 注:上述概念是在0,0A ω>>前提下定义的,若00A ω<<或,则ϕ不是初相.4.由sin y x =到sin()(0,0)y A x A ωϕω=+>>的图像变换(1)沿x 轴平移:按“左加右减”法则;沿y 轴平移:按“上加下减”法则(2)相位变换把正弦函数sin ()y x x R =∈曲线上所有点伸长(当0A >时)或向右(当0A <时)平移||ϕ个单位长度→得到函数sin()()y x x R ϕ=+∈的图像. (3)周期变换把正弦函数sin ()y x x R =∈曲线上所有点的横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的1ω倍(纵坐标不变) →得到函数sin ()y x x R ω=∈的图像.(4)振幅变换把正弦函数sin ()y x x R =∈曲线上所有点向上(当1k >时)或缩短(当01k <<时)到原来的A 倍(横坐标不变)→得到函数sin ()y A x x R =∈的图象. (5)上下平移变换把正弦函数sin ()y x x R =∈曲线上所有点向上(当0k >时)或向下(当0k <时)平行移动||k个单位长度→得到函数sin ()y x k x R =+∈的图象.5.如何得到sin()(0,0)y A x A ωϕω=+>>的图像(1)变换作图法由函数sin ()y x x R =∈的图象通过变换得到sin()(0,0)y A x A ωϕω=+>>的图像,有两种主要途径:”先平移后伸缩”,”先伸缩后平移”. 方法一:“先平移后伸缩”00)||sin ()sin()y x x R y x ϕϕϕϕ><=∈−−−−−−−→=+向左()或向右(平移个单位1sin()y x ωωϕ=+−−−−−−−→横坐标变为原来的倍纵坐标不变sin()y A x ωϕ=+−−−−−−−→纵坐标变为原来的A 倍横坐标不变方法二:“先伸缩后平移”1sin ()sin y x x R y x ωω=∈−−−−−−−→=横坐标变为原来的倍纵坐标不变00)||sin()y x ϕϕϕωωϕ><−−−−−−−→=+向左()或向右(平移个单位sin()y A x ωϕ−−−−−−−→=+纵坐标变为原来的A 倍横坐标不变在“先伸缩后平移”方法中,注意在变换过程中应将x 的系数化为“1”,即平移量为||ϕω个单位. ()x x x ϕωωϕωω→+=+(2)“五点法”作图关键是找准五点,这五个点就分别使y 能取到最小值、最大值、曲线与x 轴相交的点.一般令0,3,,,222x ωϕππππ+=,即可得到所画图像的关键点的坐标.其中横坐标成等差数列,公差为4π.再利用周期性扩展到整个定义域. 6.函数sin()(0,0)y A x A ωϕω=+>>的图像和性质(1)熟记sin ,cos ,tan y x y x y x ===的图像和性质.(2)把x ωϕ+看成一个整体,与基本函数对照起来,代入相应公式可解决正弦型函数的如下性质: ①定义域:R②值域: [,]A A -③最值:要想求何时取得最大值, max y A =,只须令22x k πωϕπ+=+,求出x 要想求何时取得最小值, min y A =-,只须令22x k πωϕπ+=-+,求出x④单调性:单调增区间:只须令2222k x k πππωϕπ-+≤+≤+,求出x 的范围.单调减区间:只须令32222k x k πππωϕπ+≤+≤+,求出x 的范围. ⑤周期性: 2||T πω=注:在求解三角函数的周期性有关的问题时,就注意数型结合,特别是与对称性有关的图像,如:|sin()|y A x ωϕ=+的周期为||πω,但|sin()|(0)y A x b b ωϕ=++≠的周期仍为2||πω.⑥对称轴:过波峰或波谷处且与x 轴垂直的直线为其对称轴若sin()y A x ωϕ=+已知,要求对称轴,只须令2x k πωϕπ+=+,求出x . 若已知sin()y A x ωϕ=+图像关于直线k x x =对称,求某参数时,只须令2k x k πωϕπ+=+.⑦对称中心:图像与x 轴的交点是其对称中心若sin()y A x ωϕ=+已知,要求对称中心,只须令x k ωϕπ+=,求出0x x =,则对称中心为0(,0)x . 若已知sin()y A x ωϕ=+图像关于点(,0)k x 对称,求某参数时,只须令k x k ωϕπ+=.⑧奇偶性: sin()y A x ωϕ=+本身不一定具备奇偶性,但当ϕ满足一定条件时,使它能化到sin y A x ω=±或cos y A x ω=±时,就具备了奇偶性.主要利用了“奇变偶不变”的思想.sin sin y A x y A x ω=±⎫⎬=±⎭奇函数; cos cos y A x y A x ω=±⎫⎬=±⎭偶函数sin()y A x ωϕ=+为奇函数,k k Z ϕπ⇔=∈,化到sin y A x ω=±;sin()y A x ωϕ=+为偶函数,2k k Z πϕπ⇔=+∈,化到cos y A x ω=±;cos()y A x ωϕ=+为奇函数,2k k Z πϕπ⇔=+∈,化到sin y A x ω=±;cos()y A x ωϕ=+为偶函数,k k Z ϕπ⇔=∈,化到cos y A x ω=± 三.【方法与规律】7.求函数sin()y A x b ωϕ=++的解析式解决问题的关键是确定参数,,A ωϕ,基本方法是在观察图像的基础上,利用待定系数法求解. (1) 求,A b :确定函数的最大值M 、最小值m ,则,22A M m M mb =-+=. (2) 求ω:确定函数的周期T ,则2Tπω=. (3) 求ϕ:常用方法有① 代入法:把图像上一个已知点代入(此时,,A b ω已知)或代入图像与直线y b =的交点求解(此时要注意交点在上升区间还是下降区间上) ② 五点法:往往以寻找“五点法”中第一零点(,0)ωϕ-作为突破口,具体如下: “第一点”(即图像上升时与x 轴的交点)为0x ωϕ+=;“第二点”(即图像的“峰点”)为2x πωϕ+=;“第三点”(即图像下降时与x 轴的交点)为x ωϕπ+=;“第四点”(即图像的“谷点”)为32x πωϕ+=;“第五点”(即图像再次上升时与x 轴的交点)为2x ωϕπ+=. (4)当不能确定周期T 时,往往要根据图像与y 轴的交点,先求ϕ.8.函数sin()(0,0)y A x A ωϕω=+>>的单调性(1)函数sin()(0,0)y A x A ωϕω=+>>的单调区间的确定,基本思想是把x ωϕ+看作一个整体,比如:令2222k x k πππωϕπ-+≤+≤+,求出x 的范围.所得区间即为单调增区间. 令32222k x k πππωϕπ+≤+≤+,求出x 的范围.所得区间即为单调减区间. 若函数sin()y A x ωϕ=+中,0,0A ω><,可用诱导公式将函数变为sin()y A x ωϕ=---,则sin()y A x ωϕ=--的增区间,为原函数的减区间;减区间为原函数的增区间.对于cos()y A x ωϕ=+的单调性的讨论与上面类似. (2)利用单调性比较大小 比较三角函数值的大小,往往是利用奇偶性或周期性转化为属于同一单调区间上的两个同名三角函数值,再利用单调性比较.9.三角函数的最值与值域的常见类型及解题策略最值问题是三角函数中考查频率最高的重点内容之一,是对三角函数概念、图像、性质以及诱导公式、同角三角函数关系、三角公式变换等内容的综合考查,也是与函数的交汇点. (1)sin cos y a x b x =+型引入辅助角公式sin cos )y a x b x x ϕ=+=+,其中tan baϕ=,利用三角函数的有界性,有[y ∈. (2)22sin sin cos cos y a x b x x c x =++型22sin sin cos cos sin 2cos2)y a x b x x c x y A x B x x ϕ=++−−−−→=++降次、整理,其中tan BAϕ=,再利用有界性处理. (3)sin cos sin cos a x b a x by y c x d c x d++==++或型转化为sin ()cos ()x f y x f y ==或的形式,再利用有界性|sin |1x ≤或|cos |1x ≤求最值. (4)22sin cos cos sin y a x b x c y a x b x c =++=++或型 可转化为以sin cos x x 或为变量的二次函数,通过配方来求解. (5)sin cos a x by c x d+=+型可化归为sin()()x f y ϕ+=的形式,由有界性求最值;或用数型结合,常用到直线斜率的几何意义.(6)sin (,0)sin cy a x a b c b x=+>,令sin x t =,||1t ≤,则转化为求(11)cy at t bt=+-≤≤的最值,一般要用图像. (7)(sin cos )sin cos y a x x b x x c =±++型令sin cos x x t ±=,||t ≤.四.【典例解析】考点一、三角函数的定义域例1.求下列函数的定义域(1)lg(2sin 1)y x =- (2)y =例2.求下列函数的定义域(1)lg(2sin )y x =; (2)lg cos y x =考点二、三角函数的单调性例3.求下列函数的单调递减区间 (1)sin(2)3y x π=- (2)|sin()|4y x π=-+例4.求下列函数的单调区间 (1)12sin()243x y π=- (2)12log sin 2y x = (3)sin 2x y =考点三、三角函数的值域和最值例5. 求下列函数的值域(1)2()sin cos ,[,]42f x x x x x ππ=+∈(2)2cos 12cos 1x y x +=-; (3)2sin 2cos xy x-=-例6.已知函数2()cos sin (0,)f x x a x b a b R =-+>∈的最大值为0,最小值4-,求a b 、的值.考点四、三角函数解析式的求法例7.已知曲线sin()(0,0)y x A ωϕω=+>>上的一个最高点的坐标为(2π.(1) 求这条曲线的解析式. (2) 求()f x 的对称轴方程.例8.已知函数sin()(||,0)2y A x πωϕϕω=+<>的图像的一部分如图所示.(1) 求()f x 的表达式;(2) 说明()f x 的图像可由sin y x =的图像经过怎样的变换得到.例9.(2009山东卷理)将函数sin 2y x =的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是 .考点五、三角函数的图像例10.(2009浙江理)已知是实数,则函数的图象不可能...是 ( )例11.(2009辽宁理,8)已知函数()cos()f x A x ωϕ=+) 的图象如图所示,,则= .例12.(2009宁夏海南卷理)已知函数sin()(0,)y x ωϕωπϕπ=+>-≤<的图像如图所示,则 =________________【练习】1.函数tan y x ω=在(,)22ππ-内是减函数,则ω的取值范围是 .4πa ()1sin f x a ax =+2()23f π=-(0)f ϕ2.函数sin()(0,||,)2y A x x R πωϕωϕ=+><∈的部分图像如图所示,则函数表达式为 .3.给出下面的3个命题: ①函数|sin(2)|3y x π=+的最小正周期是2π; ②函数3sin()2y x π=-在区间3[,]2ππ上单调递增; ③54x π=是函数5sin(2)2y x π=+的图像的一条对称轴. 其中正确命题的序号是 .4.(08年高考天津卷)设函数()sin(2),2f x x x R π=-∈,则下列结论中, ()f x 是①最小正周期为π的奇函数 ②最小正周期为π的偶函数③最小正周期为2π的奇函数 ④最小正周期为2π的偶函数 5.已知2()sin ()(0,0,0)2f x A x A πωϕωϕ=+>><<且()y f x =的最大值为2,其图像相邻的两对称轴的距离为2,并过点(1,2)(1)求ϕ, (2)计算(1)(2)(2008)f f f ++⋅⋅⋅+。
2014届高考人教A版数学(理)一轮复习讲义4.3三角函数的图象与性质
第3讲三角函数的图象与性质【2014年高考会这样考】1.考查三角函数的单调性、奇偶性、周期性和对称性.2.考查三角函数的图象在研究三角函数性质中的应用.对应学生56考点梳理正弦、余弦、正切函数的图象与性质(下表中k∈Z).一点提醒求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解,否则将出现错误. 两种方法求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域;(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决.考点自测1.(2011·新课标全国)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增解析 先将f (x )化为单一函数形式: f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,∵f (x )的最小正周期为π,∴ω=2. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +φ+π4.由f (x )=f (-x )知f (x )是偶函数, 因此φ+π4=k π+π2(k ∈Z ).又|φ|<π2,∴φ=π4,∴f (x )=2cos 2x .由0<2x <π,得0<x <π2时,f (x )单调递减,故选A. 答案 A2.(2012·湖南)函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( ).A .[-2,2]B .[-3,3]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-32,32解析 因为f (x )=sin x -32cos x +12sin x = 3×⎝ ⎛⎭⎪⎫32sin x -12cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3]. 答案 B3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ).A .关于直线x =π3对称B .关于点⎝ ⎛⎭⎪⎫π3,0对称C .关于直线x =-π6对称D .关于点⎝ ⎛⎭⎪⎫π6,0对称解析 由题意知T =2πω=π,则ω=2,所以f (x )= sin ⎝ ⎛⎭⎪⎫2x +π3,又f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫23π+π3=sin π=0. 答案 B4.(2013·郑州模拟)已知ω是正实数,且函数f (x )=2sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π4上是增函数,那么( ). A .0<ω≤32 B .0<ω≤2 C .0<ω≤247 D .ω≥2解析 由x ∈⎣⎢⎡⎦⎥⎤-π3,π4且ω>0,得ωx ∈⎣⎢⎡⎦⎥⎤-ωπ3,ωπ4.又y =sin x 是⎣⎢⎡⎦⎥⎤-π2,π2上的单调增函数,则⎩⎪⎨⎪⎧ωπ4≤π2,-ωπ3≥-π2,解得0<ω≤32.答案 A5.(2012·全国)当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.解析 y =sin x -3cos x =2⎝ ⎛⎭⎪⎫12sin x -32cos x =2sin ⎝ ⎛⎭⎪⎫x -π3的最大值为2,又0≤x <2π,故当x -π3=π2,即x =5π6时,y 取得最大值. 答案 5π6对应学生57考向一 与三角函数有关的定义域和值域问题【例1】►(1)函数y =sin x -cos x 的定义域为________.(2)函数f (x )=2cos x (sin x -cos x )+1在x ∈⎣⎢⎡⎦⎥⎤π8,3π4上的最大值为________,最小值为________.[审题视点] (1)求使sin x ≥cos x 的x 的集合即可;(2)先化成形如f (x )=A sin(ωx +φ)的形式,再由x 的范围求解. 解析 (1)sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π,k ∈Z ,解得2k π+π4≤x ≤2k π+5π4,k ∈Z .所以定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z. (2)f (x )=2cos x sin x -2cos 2x +1=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,∵x ∈⎣⎢⎡⎦⎥⎤π8,3π4,∴2x -π4∈⎣⎢⎡⎦⎥⎤0,5π4,∴sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故f (x )max =2,f (x )min =-1. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)2 -1(1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)首先把三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域),或用换元法(令t =sin x ,或t =sin x ±cos x )化为关于t 的二次函数求值域(最值).【训练1】 (1)函数y =1tan x -1的定义域为________;(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值为________,最大值为________. 解析(1)由题意知:tan x ≠1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π,k ∈Z, 又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z , 故函数的定义域为:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z. (2)y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2sin 2x -sin x +1=2⎝ ⎛⎭⎪⎫sin x -142+78.又x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1, ∴当sin x =14时,y min =78; 当sin x =-12时,y max =2. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z (2)78 2考向二 三角函数的单调性【例2】►(2012·北京)已知函数f (x )=(sin x -cos x )sin 2xsin x .(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.[审题视点] 求原函数的定义域,只要使得原函数式有意义即可;先化简原函数为f (x )=A sin(ωx +φ)的形式,再求周期及单调区间. 解 (1)由sin x ≠0,得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }, 因为f (x )=(sin x -cos x )sin 2xsin x=2cos x (sin x -cos x )=sin 2x -cos 2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π4-1,所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ). 所以f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫k π-π8,k π和⎝ ⎛⎦⎥⎤k π,k π+3π8(k ∈Z ).求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数. 【训练2】 求下列函数的单调递增区间: (1)y =cos ⎝ ⎛⎭⎪⎫2x +π6;(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2.解 (1)将2x +π6看做一个整体,根据y =cos x 的单调递增区间列不等式求解.函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .故y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为k π-7π12,k π-π12(k ∈Z ).(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2=-3sin ⎝ ⎛⎭⎪⎫x 2-π3,∴由π2+2k π≤x 2-π3≤2k π+3π2,k ∈Z , 得4k π+5π3≤x ≤4k π+11π3,k ∈Z . 故y =3sin ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间为⎣⎢⎡⎦⎥⎤4k π+5π3,4k π+11π3(k ∈Z ). 考向三 三角函数的奇偶性、周期性及对称性【例3】►(1)若0<α<π2,g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α是偶函数,则α的值为________.(2)函数y =2sin(3x +φ)⎝ ⎛⎭⎪⎫||φ<π2的一条对称轴为x =π12,则φ=________.[审题视点] (1)只需令π4+α=π2+k π(k ∈Z ); (2)应满足3×π12+φ=k π+π2,k ∈Z .解析 (1)要使g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α为偶函数,则需π4+α=k π+π2,k ∈Z ,α=k π+π4,k ∈Z ,∵0<α<π2,∴α=π4.(2)由y =sin x 的对称轴为x =k π+π2(k ∈Z ), 即3×π12+φ=k π+π2(k ∈Z ),得φ=k π+π4(k ∈Z ), 又|φ|<π2,∴k =0,故φ=π4. 答案 (1)π4 (2)π4函数f (x )=A sin(ωx +φ)(ω≠0),(1)函数f (x )为奇函数的充要条件为φ=k π(k ∈Z );为偶函数的充要条件为φ=k π+π2(k ∈Z ).(2)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;如要求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.【训练3】 (2013·银川联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2 (x ∈R ),下面结论错误的是( ). A .函数f (x )的最小正周期为π B .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称 D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数解析 f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确,故选C.答案 C对应学生58规范解答6——如何解决三角函数的值域(或最值)问题【命题研究】 通过近三年的高考试题分析,对三角函数的值域(或最值)的考查特别青睐,主要考查y =A sin(ωx +φ)形式的三角函数在R 上或给定的闭区间[a ,b ]上的值域(或最值),往往作为某一种答题的其中一问,题目难度不大. 【真题探究】► (本小题满分12分)(2012·湖北)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω、λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的取值范围.[教你审题] 一审 准确化成形如f (x )=A sin(ωx +φ)+h 的形式; 二审 充分利用对称轴x =π; 三审 确定λ的值.[规范解答] (1)f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ.(3分)由直线x =π是y =f (x )图象的一条对称轴, 可得sin ⎝ ⎛⎭⎪⎫2ωx -π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ), 又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56.(5分)所以f (x )的最小正周期是6π5.(6分)(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6- 2.(9分)由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1,得-1-2≤2sin ⎝ ⎛⎭⎪⎫53x -π6-2≤2-2,(11分)故函数f (x )在⎣⎢⎡⎦⎥⎤0,3π5上的取值范围为[-1-2,2-2].(12分)[阅卷老师手记] (1)将所给函数变换到f (x )=A sin(ωx +φ)+h 的形式时由于变换公式和变换方法不熟造成失分.(2)有的考生混淆了对称轴与对称中心,导致失分.第一步:三角函数式的化简,一般化成形如y =A sin(ωx +φ)+h 的形式或y =A cos(ωx +φ)+k 的形式.第二步:根据题设条件求出y =A sin(ωx +φ)+h 中有关的参数.第三步:由x 的取值范围确定ωx +φ的取值范围,再确定sin(ωx +φ)的取值范围.第四步:求出所求函数的值域(或最值).【试一试】 (2011·北京)已知函数f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.解 (1)因为f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2; 当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.对应学生255A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·山东)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( ).A.23B.32C .2D .3解析 由题意知f (x )的一条对称轴为x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32. 答案 B2.已知函数f (x )=sin(x +θ)+3cos(x +θ)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为( ).A .0B.π6C.π4D.π3解析 据已知可得f (x )=2sin ⎝ ⎛⎭⎪⎫x +θ+π3,若函数为偶函数,则必有θ+π3=k π+π2(k ∈Z ),又由于θ∈⎣⎢⎡⎦⎥⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意. 答案 B3.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( ).A .2- 3B .0C .-1D .-1- 3解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2.∴函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为2- 3. 答案 A4.(2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ).A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析 由f (x )=sin(2x +φ),且f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,∴f ⎝ ⎛⎭⎪⎫π6=±1,即sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1. ∴π3+φ=k π+π2(k ∈Z ).∴φ=k π+π6(k ∈Z ). 又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ.∴sin φ<0.∴对于φ=k π+π6(k ∈Z ),k 为奇数.∴f (x )=sin(2x +φ)=sin ⎝ ⎛⎭⎪⎫2x +k π+π6=-sin ⎝ ⎛⎭⎪⎫2x +π6.∴由2m π+π2≤2x +π6≤2m π+3π2(m ∈Z ), 得m π+π6≤x ≤m π+2π3(m ∈Z ),∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤m π+π6,m π+2π3(m ∈Z ). 答案 C二、填空题(每小题5分,共10分)5.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值为________. 解析 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.答案 326.若f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值是2,则ω=________.解析 由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3, 所以ωπ3=π4,解得ω=34. 答案 34三、解答题(共25分) 7.(12分)设f (x )=1-2sin x . (1)求f (x )的定义域;(2)求f (x )的值域及取最大值时x 的值.解 (1)由1-2sin x ≥0,根据正弦函数图象知: 定义域为{x |2k π+56π≤x ≤2k π+13π6,k ∈Z }. (2)∵-1≤sin x ≤1,∴-1≤1-2sin x ≤3, ∵1-2sin x ≥0,∴0≤1-2sin x ≤3, ∴f (x )的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f (x )取得最大值.8.(13分)(2013·东营模拟)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4. (1)求函数f (x )的最小正周期和图象的对称轴; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域.解 (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4 =12cos 2x +32sin 2x +(sin x -cos x )(sin x +cos x ) =12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.∴最小正周期T =2π2=π,由2x -π6=k π+π2(k ∈Z ), 得x =k π2+π3(k ∈Z ).∴函数图象的对称轴为x =k π2+π3(k ∈Z ). (2)∵x ∈⎣⎢⎡⎦⎥⎤-π12,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π3,5π6,∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.即函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域为⎣⎢⎡⎦⎥⎤-32,1.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·新课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π单调递减,则ω的取值范围是( ).A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆85k π+π5,85k π+π,k ∈Z ,排除B ,C.取ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π ⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 答案 A2.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( ).A.π4B.π3C.π2 D.3π4解析 由题意可知函数f (x )的周期T =2×⎝ ⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f (x )=sin(x+φ),令x +φ=k π+π2(k ∈Z ),将x =π4代入可得φ=k π+π4(k ∈Z ),∵0<φ<π,∴φ=π4. 答案 A二、填空题(每小题5分,共10分)3.(2013·徐州模拟)已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析 f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎪⎨⎪⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象,可得函数的最小值为-1,最大值为22,故值域为⎣⎢⎡⎦⎥⎤-1,22.答案 ⎣⎢⎡⎦⎥⎤-1,224.(2012·西安模拟)下列命题中:①α=2k π+π3(k ∈Z )是tan α=3的充分不必要条件; ②函数f (x )=|2cos x -1|的最小正周期是π;③在△ABC 中,若cos A cos B >sin A sin B ,则△ABC 为钝角三角形; ④若a +b =0,则函数y =a sin x -b cos x 的图象的一条对称轴方程为x =π4. 其中是真命题的序号为________. 解析 ①∵α=2k π+π3(k ∈Z )⇒tan α=3, 而tan α=3⇒/ α=2k π+π3(k ∈Z ),∴①正确. ②∵f (x +π)=|2cos(x +π)-1|=|-2cos x -1|=|2cos x +1|≠f (x ),∴②错误. ③∵cos A cos B >sin A sin B ,∴cos A cos B -sin A sin B >0, 即cos(A +B )>0,∵0<A +B <π,∴0<A +B <π2, ∴C 为钝角,∴③正确.④∵a +b =0,∴b =-a ,y =a sin x -b cos x =a sin x +a cos x =2a sin ⎝ ⎛⎭⎪⎫x +π4,∴x =π4是它的一条对称轴,∴④正确. 答案 ①③④ 三、解答题(共25分)5.(12分)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 解 (1)∵f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3-3cos 2x 8=12cos 2x -14,∴f (x )的最小正周期为2π2=π. (2)由(1)知h (x )=f (x )-g (x )=12cos 2x -12sin 2x =22cos ⎝ ⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )取得最大值22.故h (x )取得最大值时,对应的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π8,k ∈Z. 6.(13分)已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,又∵a >0,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1, 因此a =2,b =-5.(2)由(1)得a =2,b =-5,∴f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1 =4sin ⎝ ⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 综上,g (x )的递增区间为⎝ ⎛⎦⎥⎤k π,k π+π6(k ∈Z );递减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3(k ∈Z ).。
2014届高三数学(文)一轮总复习三角函数的图象与性质
解析:∵
π π f(x)=sin x =-sin x =-cos 2 2
∴f(x)是偶函数,故选项 D 错误.故选 D.
x,
2.函数 f(x)=|sin x|的一个单调递增区间是( C
)
π π (A) , 4 4 π 3 (C) π , 2
思维导引:(1)结合选项可知,两对称轴间的距离 应为函数的半个周期,从而求出ω,再由在
可求出 .
π π π π , 上单调递减知 f =1,f =-1, 3 2 3 2
(2)先化简三角函数,再求解.
π π 解析:(1)∵x= ,x= 均为函数的对称轴, 3 2 π π , 上单调递减, 且在 3 2 T π π π ∴ = - = , 2 2 3 6
=sin x+cos x =
π 2 sin x . 4
π π π 由- +2kπ ≤x+ ≤ +2kπ ,k Z, 2 4 2
3π π 得+2kπ ≤x≤ +2kπ ,k Z, 4 4
π 又 x [0,π ],∴f(x)的单调递增区间为 0, . 4
2
(1)三角函数的定义域的求法 求三角函数定义域实际上是构造简单的三角不 等式(组),常借助三角函数线或三角函数图象来 求解. (2)三角函数值域的不同求法 ①利用 sin x 和 cos x 的值域直接求;
②把所给的三角函数式变换成 y=Asin(ωx+ ) 的形式求值域; ③把 sin x 或 cos x 看作一个整体,转换成二次 函数求值域; ④利用 sin x±cos x 和 sin xcos x 的关系转换 成二次函数求值域.
高考数学一轮复习 讲义三角函数图像与性质 学生
课题:三角函数图像与性质知识点:1.正弦、余弦、正切函数的图像 2.正弦、余弦、正切函数的性质 函数性质sinx y =cosx y =tanx y =定义域RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ图像值域[]1,1-[]1,1-R 对称性对称轴:()Z k k x ∈+=2ππ对称中心:()()Z k k ∈0,π对称轴:()z k k x ∈=π 对称中心:(,0)2k ππ+无对称轴对称中心:()Z k k ∈⎪⎭⎫⎝⎛0,2π 周期 π2π2π奇偶性奇 偶奇单调性单调递增区间()Z k k k ∈⎥⎦⎤⎢⎣⎡+-22,22ππππ 单调递减区间()Z k k k ∈⎥⎦⎤⎢⎣⎡++232,22ππππ 单调递增区间[]()Z k k k ∈-πππ2,2单调递减区间[]()Z k k k ∈+πππ2,2单调递增区间Z k k k ∈+-)2,2(ππππ最值当22ππ+=k X 时,y 的最大值:1;22ππ-=k X 时,y 的最小值:1,其中Z k ∈当πk x 2=时,y 的最大值:1;当ππ+=k x 2时,y 的最小值:1,其中Z k ∈无最大值,无最小值用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 【注2】1.三角函数定义域的求法:求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin (ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【注3】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反). 2.如何确定函数sin()(0)y A x A ωϕ=+>当0ω<时函数的单调性对于函数sin()y A x ωϕ=+求其单调区间,要特别注意ω的正负,若为负值,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.求函数sin()y A x ωϕ=+ (或cos()y A x ωϕ=+,或tan()y A x ωϕ=+)的单调区间的步骤: (1)将ω化为正.(2)将x ωϕ+看成一个整体,由三角函数的单调性求解.4.特别提醒:解答三角函数的问题时,不要漏了“k Z ∈”. 三角函数存在多个单调区间时易错用“∪”联结.求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 【注4】先化成sin)y A x B ωϕ=++(的形式再求解.其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【注5】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=()f x ,则函数是奇函数,否则是非奇非偶函数.2.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【注6】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π, 而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变. 2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.典型例题例1下列函数中最小正周期为π的是( ) A .sin y x =B .sin y x =C .tan2x y = D .cos 4y x =例2函数π()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C . π D .π2例3已知直线π6x =是函数()πsin ω0ω86f x x ⎛⎫=+<< ⎪⎝⎭()图象的一条对称轴,则f (x )的最小正周期为( ) A .π4B .π2C .πD .2π例4已知函数()sin 2f x x π⎛⎫=- ⎪⎝⎭,则()f x 是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数D .周期为2π的偶函数例5函数()π26f x sin x ⎛⎫=-⎪⎝⎭的图象的一条对称轴是( ) A .π3x =-B .π12x =C .π4x =D .π3x =例6已知函数π()3(2)6f x sin x =+,则下列说法正确的是( )A .图象关于点π(0)6,对称 B .图象关于点π(0)3,对称 C .图象关于直线π6x =对称 D .图象关于直线π3x =对称 例7函数()ππ448f x tan x ⎛⎫=+⎪⎝⎭的单调递增区间是( )A .()534422k k k Z ⎛⎫-+∈ ⎪⎝⎭,B .()354422k k k Z ⎛⎫-+∈ ⎪⎝⎭,C .()538822k k k Z ⎛⎫-+∈ ⎪⎝⎭, D .()358822k k k Z ⎛⎫-+∈ ⎪⎝⎭,例8设函数()sin 2f x x =,x ∈R ,若[)0,θπ∈,函数()f x θ+是偶函数,则θ的值为( ) A .12π或1112πB .6π或56π C .4π或34π D .3π或23π例9函数()πcos 3f x x x ⎛⎫=+- ⎪⎝⎭的单调递减区间为( )A .π4π|π,π,33x k k k Z ⎡⎤++∈⎢⎥⎣⎦ B .π2ππ,π,63k k k Z ⎡⎤++∈⎢⎥⎣⎦ C .π4π2π,2π33k k k Z ⎡⎤++∈⎢⎥⎣⎦, D .π2π2π,2π,63k k k Z ⎡⎤++∈⎢⎥⎣⎦例10下列坐标所表示的点不是函数tan()26x y π=-的图象的对称中心的是 ( ) A .03π⎛⎫⎪⎝⎭, B .503π⎛⎫- ⎪⎝⎭, C .203π⎛⎫ ⎪⎝⎭, D .403π⎛⎫ ⎪⎝⎭, 例11函数()π223f x sin x ⎛⎫=-⎪⎝⎭的一个单调递减区间是( ) A .5π11π66⎡⎤⎢⎥⎣⎦, B .π5π1212⎡⎤⎢⎥⎣⎦, C .5π11π1212⎡⎤⎢⎥⎣⎦, D .π5π66⎡⎤⎢⎥⎣⎦, 例12函数()sin ,[,0]3f x x x ππ⎛⎫=-∈- ⎪⎝⎭的单调递增区间是( )A .5,6ππ⎡⎤-⎢⎥⎣⎦ B .5,66ππ⎡⎤--⎢⎥⎣⎦ C .,03π⎡⎤-⎢⎥⎣⎦ D .,06π⎡⎤-⎢⎥⎣⎦ 例13函数()πtan 23f x x ⎛⎫=-⎪⎝⎭的图象的一个对称中心为( ) A .π012⎛⎫⎪⎝⎭, B .7π012⎛⎫ ⎪⎝⎭, C .5π012⎛⎫- ⎪⎝⎭, D .π012⎛⎫- ⎪⎝⎭, 例14函数 ()sin 23f x x π⎛⎫=+ ⎪⎝⎭ 的图象的对称轴方程可以为( )A .12x π=B .512x π=C .3x π=D .6x π=例15若π2x =是函数()ω(ω0)f x cos x =≠图象的对称轴,则()f x 的最小正周期的最大值是( ) A .πB .2πC .π2D .π4例16函数()π3f x sin x ⎛⎫=-⎪⎝⎭的单调递增区间为( )A .π5π2π2π66k k ⎡⎤-+⎢⎥⎣⎦,,Z k ∈ B .π5πππ66k k ⎡⎤-+⎢⎥⎣⎦,,Z k ∈ C .5π11π2π2π66k k ⎡⎤++⎢⎥⎣⎦,,Z k ∈ D .5π11πππ66k k ⎡⎤++⎢⎥⎣⎦,,Z k ∈ 例17已知()sin(2),,22f x x ππϕϕ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,且6f x π⎛-⎫ ⎪⎝⎭为偶函数,则φ=________.例18已知函数()π2ω3f x sin x ⎛⎫=+⎪⎝⎭(ω0>)的最小正周期为π. (1)求π6f ⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递减区间.例19已知函数()π226f x sin x ⎛⎫=-⎪⎝⎭,R x ∈.(1)若()0f x =0x 的值; (2)求()f x 的单调递增区间;(3)当π5π612x ⎡⎤∈⎢⎥⎣⎦,时,求()f x 的最大值和最小值. 举一反三1.函数()π3cos 26f x x ⎛⎫=--⎪⎝⎭的一条对称轴是( ) A .π6x =-B .π12x =C .π4x =D .π3x =2.下列直线中,函数()π76f x sin x ⎛⎫=-⎪⎝⎭的对称轴是( ) A .π3x =B .2π3x =C .π6x =D .π2x =3.已知函数()()π2ω10ω56f x sin x ⎛⎫=-+<< ⎪⎝⎭的图像经过点8π315⎛⎫ ⎪⎝⎭,,则()f x 的最小正周期为( )A .3π2B .4π5C .8π5D .5π44.函数π()(2φ)|φ|2f x sin x ⎛⎫=+<⎪⎝⎭在区间ππ126⎛⎤- ⎥⎝⎦,上单调且()f x ≤,则φ的范围是( ) A .π03⎡⎤-⎢⎥⎣⎦,B .ππ36⎡⎤-⎢⎥⎣⎦, C .π04⎡⎤-⎢⎥⎣⎦, D .π03⎡⎤⎢⎥⎣⎦, 5.已知函数()()πωω06f x sin x ⎛⎫=-> ⎪⎝⎭在4π03⎛⎫ ⎪⎝⎭,单调递增,在4π2π3⎛⎫⎪⎝⎭,单调递减,则ω=( ) A .12B .1C .43D .326.已知函数()()πωω03f x sin x ⎛⎫=+> ⎪⎝⎭在区间ππ62⎛⎫⎪⎝⎭,上单调递减,则ω的取值范围是( ) A .703⎛⎤ ⎥⎝⎦,B .713⎡⎤⎢⎥⎣⎦,C .[1,3]D .(]03,7.如果函数y=3cos (2x+φ)的图象关于点4π(0)3,对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π28.下列区间中,函数π()2()6f x sin x =-单调递减的是( )A .π(0)2,B .π(π)2,C .3π(π)2,D .3π(2π)2, 9.函数()ππ33364f x sin x ⎛⎫=--⎪⎝⎭的最小正周期为 .10.已知函数()()π2ωω06f x sin x ⎛⎫=+> ⎪⎝⎭的最小正周期为π,则()f x 在区间ππ33⎡⎤-⎢⎥⎣⎦,上的最小值为 .11.已知函数()π23f x cos x ⎛⎫=-⎪⎝⎭在()0m ,上的值域为112⎛⎤⎥⎝⎦,,则m 的取值范围是 . 12.已知函数()π323f x sin x ⎛⎫=- ⎪⎝⎭,R x ∈.(1)求()f x 的最小正周期及单调增区间;(2)求()f x 在区间ππ44⎡⎤-⎢⎥⎣⎦,的值域.13.已知函数 1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭ . (1)求y = f (x )的单调减区间;(2)当 63x ππ⎡⎤∈⎢⎥⎣⎦, 时,求f (x )的最大值和最小值.课后练习1.函数()()πωω02f x sin x ⎛⎫=-> ⎪⎝⎭在π05⎡⎤⎢⎥⎣⎦,上单调递增,则ω的最大值为( ) A .6B .5C .4D .12.函数()π4f x tan x ⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .()ππππ22k k k Z ⎛⎫-+∈ ⎪⎝⎭, B .()()πππk k k Z +∈,C .()3ππππ44k k k Z ⎛⎫-+∈ ⎪⎝⎭, D .()π3πππ44k k k Z ⎛⎫-+∈ ⎪⎝⎭, 3.下列区间中,函数 ()15sin 23f x x π⎛⎫=-+ ⎪⎝⎭ 单调递减的区间是( )A .2ππ⎡⎤--⎢⎥⎣⎦,B .2ππ⎡⎤⎢⎥⎣⎦, C .322ππ⎡⎤⎢⎥⎣⎦,D .522ππ⎡⎤⎢⎥⎣⎦, 故答案为:B4.(多选)已知函数()ωf x sin x =(ω0>)在ππ66⎛⎫- ⎪⎝⎭,上单调,则ω的可能值为( )A .2B .3C .4D .55.已知函数(φ)(0φπ)y sin x =+<<为偶函数,则φ=( )A .π4B .π3C .π2D .5π66.下列关于函数()π246f x sin x ⎛⎫=+⎪⎝⎭的图象,说法正确的是( )A .关于点π03⎛⎫ ⎪⎝⎭,对称 B .关于直线π24x =-对称 C .关于直线π12x =对称 D .关于点π02⎛⎫ ⎪⎝⎭,对称 7.如果函数()(2φ)f x sin x =+的图像关于点2π03⎛⎫-⎪⎝⎭,对称,则|φ|的最小值是( ) A .π6B .π3 C .5π6D .4π38.函数2sin 26y x π⎛⎫=+ ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域是___________.9.已知函数()2cos (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,在[]0,π内的值域为⎡-⎣,则ω的取值范围为___________. 10.已知函数()()πωω04f x sin x ⎛⎫=+> ⎪⎝⎭在π2π43⎡⎤⎢⎥⎣⎦,上单调递减,则ω的取值范围为 . 11.若函数()()πωω04f x tan x ⎛⎫=+> ⎪⎝⎭的最小正周期为π,则ω的值为 . 12.已知函数π()(ωφ)ω0|φ|2f x sin x ⎛⎫=+>< ⎪⎝⎭,的最小正周期是π,且()f x 的图象过点π112⎛⎫⎪⎝⎭,,则()f x 的图象的对称中心坐标为 .13.函数()π2φ0φ2y sin x ⎛⎫=+<<⎪⎝⎭图象的一条对称轴是π12x =,则φ的值是 .14.已知函数()π26f x x ⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的单调区间;(2)求函数()f x 在区间ππ42⎡⎤-⎢⎥⎣⎦,上的最小值和最大值.。
2014届高考人教A版数学(理)一轮复习讲义:4.3 三角函数的图象与性质
第3讲 三角函数的图象与性质【2014年高考会这样考】1.考查三角函数的单调性、奇偶性、周期性和对称性. 2.考查三角函数的图象在研究三角函数性质中的应用.对应学生56考点梳理正弦、余弦、正切函数的图象与性质 (下表中k ∈Z ). 函数 y =sin xy =cos xy =tan x图象定义域RR{x | x ∈R ,且x ≠⎭⎬⎫k π+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性奇函数偶函数奇函数 单调性2k π-π2,2k π+π2为增;2k π+π2,2k π+3π2为减[2k π,2k π+π]为减;[2k π-π,2k π]为增 k π-π2,k π+π2为增对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2x =k π无一点提醒求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解,否则将出现错误. 两种方法求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域;(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决.考点自测1.(2011·新课标全国)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增解析 先将f (x )化为单一函数形式: f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,∵f (x )的最小正周期为π,∴ω=2. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +φ+π4.由f (x )=f (-x )知f (x )是偶函数, 因此φ+π4=k π+π2(k ∈Z ).又|φ|<π2,∴φ=π4,∴f (x )=2cos 2x .由0<2x <π,得0<x <π2时,f (x )单调递减,故选A. 答案 A2.(2012·湖南)函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( ).A .[-2,2]B .[-3,3]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-32,32解析 因为f (x )=sin x -32cos x +12sin x = 3×⎝ ⎛⎭⎪⎫32sin x -12cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3]. 答案 B3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ). A .关于直线x =π3对称 B .关于点⎝ ⎛⎭⎪⎫π3,0对称C .关于直线x =-π6对称D .关于点⎝ ⎛⎭⎪⎫π6,0对称解析 由题意知T =2πω=π,则ω=2,所以f (x )= sin ⎝ ⎛⎭⎪⎫2x +π3,又f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫23π+π3=sin π=0. 答案 B4.(2013·郑州模拟)已知ω是正实数,且函数f (x )=2sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π4上是增函数,那么( ). A .0<ω≤32 B .0<ω≤2 C .0<ω≤247 D .ω≥2解析 由x ∈⎣⎢⎡⎦⎥⎤-π3,π4且ω>0,得ωx ∈⎣⎢⎡⎦⎥⎤-ωπ3,ωπ4.又y =sin x 是⎣⎢⎡⎦⎥⎤-π2,π2上的单调增函数,则⎩⎪⎨⎪⎧ωπ4≤π2,-ωπ3≥-π2,解得0<ω≤32.答案 A5.(2012·全国)当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.解析 y =sin x -3cos x =2⎝ ⎛⎭⎪⎫12sin x -32cos x =2sin ⎝ ⎛⎭⎪⎫x -π3的最大值为2,又0≤x <2π,故当x -π3=π2,即x =5π6时,y 取得最大值. 答案 5π6对应学生57考向一 与三角函数有关的定义域和值域问题【例1】►(1)函数y =sin x -cos x 的定义域为________.(2)函数f (x )=2cos x (sin x -cos x )+1在x ∈⎣⎢⎡⎦⎥⎤π8,3π4上的最大值为________,最小值为________.[审题视点] (1)求使sin x ≥cos x 的x 的集合即可;(2)先化成形如f (x )=A sin(ωx +φ)的形式,再由x 的范围求解. 解析 (1)sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π,k ∈Z ,解得2k π+π4≤x ≤2k π+5π4,k ∈Z .所以定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z. (2)f (x )=2cos x sin x -2cos 2x +1=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,∵x ∈⎣⎢⎡⎦⎥⎤π8,3π4,∴2x -π4∈⎣⎢⎡⎦⎥⎤0,5π4,∴sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故f (x )max =2,f (x )min =-1. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)2 -1(1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)首先把三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域),或用换元法(令t =sin x ,或t =sin x ±cos x )化为关于t 的二次函数求值域(最值).【训练1】 (1)函数y =1tan x -1的定义域为________;(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值为________,最大值为________. 解析(1)由题意知:tan x ≠1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π,k ∈Z, 又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z , 故函数的定义域为:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z . (2)y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2sin 2x -sin x +1=2⎝ ⎛⎭⎪⎫sin x -142+78.又x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1,∴当sin x =14时,y min =78; 当sin x =-12时,y max =2. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z (2)78 2考向二 三角函数的单调性【例2】►(2012·北京)已知函数f (x )=(sin x -cos x )sin 2xsin x .(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.[审题视点] 求原函数的定义域,只要使得原函数式有意义即可;先化简原函数为f (x )=A sin(ωx +φ)的形式,再求周期及单调区间. 解 (1)由sin x ≠0,得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }, 因为f (x )=(sin x -cos x )sin 2xsin x=2cos x (sin x -cos x )=sin 2x -cos 2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π4-1,所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ). 所以f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫k π-π8,k π和⎝ ⎛⎦⎥⎤k π,k π+3π8(k ∈Z ). 求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数. 【训练2】 求下列函数的单调递增区间: (1)y =cos ⎝ ⎛⎭⎪⎫2x +π6;(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2. 解 (1)将2x +π6看做一个整体,根据y =cos x 的单调递增区间列不等式求解.函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .故y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为k π-7π12,k π-π12(k ∈Z ).(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2=-3sin ⎝ ⎛⎭⎪⎫x 2-π3,∴由π2+2k π≤x 2-π3≤2k π+3π2,k ∈Z , 得4k π+5π3≤x ≤4k π+11π3,k ∈Z . 故y =3sin ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间为⎣⎢⎡⎦⎥⎤4k π+5π3,4k π+11π3(k ∈Z ). 考向三 三角函数的奇偶性、周期性及对称性【例3】►(1)若0<α<π2,g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α是偶函数,则α的值为________.(2)函数y =2sin(3x +φ)⎝ ⎛⎭⎪⎫||φ<π2的一条对称轴为x =π12,则φ=________.[审题视点] (1)只需令π4+α=π2+k π(k ∈Z ); (2)应满足3×π12+φ=k π+π2,k ∈Z .解析 (1)要使g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α为偶函数,则需π4+α=k π+π2,k ∈Z ,α=k π+π4,k ∈Z ,∵0<α<π2,∴α=π4.(2)由y =sin x 的对称轴为x =k π+π2(k ∈Z ), 即3×π12+φ=k π+π2(k ∈Z ),得φ=k π+π4(k ∈Z ), 又|φ|<π2,∴k =0,故φ=π4. 答案 (1)π4 (2)π4函数f (x )=A sin(ωx +φ)(ω≠0),(1)函数f (x )为奇函数的充要条件为φ=k π(k ∈Z );为偶函数的充要条件为φ=k π+π2(k ∈Z ).(2)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;如要求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.【训练3】 (2013·银川联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),下面结论错误的是( ). A .函数f (x )的最小正周期为π B .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称 D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数解析 f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确,故选C.答案 C对应学生58规范解答6——如何解决三角函数的值域(或最值)问题【命题研究】 通过近三年的高考试题分析,对三角函数的值域(或最值)的考查特别青睐,主要考查y =A sin(ωx +φ)形式的三角函数在R 上或给定的闭区间[a ,b ]上的值域(或最值),往往作为某一种答题的其中一问,题目难度不大. 【真题探究】► (本小题满分12分)(2012·湖北)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω、λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的取值范围.[教你审题] 一审 准确化成形如f (x )=A sin(ωx +φ)+h 的形式; 二审 充分利用对称轴x =π; 三审 确定λ的值.[规范解答] (1)f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ.(3分) 由直线x =π是y =f (x )图象的一条对称轴, 可得sin ⎝ ⎛⎭⎪⎫2ωx -π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ), 又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56.(5分)所以f (x )的最小正周期是6π5.(6分)(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6- 2.(9分)由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1,得-1-2≤2sin ⎝ ⎛⎭⎪⎫53x -π6-2≤2-2,(11分)故函数f (x )在⎣⎢⎡⎦⎥⎤0,3π5上的取值范围为[-1-2,2-2].(12分) [阅卷老师手记] (1)将所给函数变换到f (x )=A sin(ωx +φ)+h 的形式时由于变换公式和变换方法不熟造成失分.(2)有的考生混淆了对称轴与对称中心,导致失分.第一步:三角函数式的化简,一般化成形如y =A sin(ωx +φ)+h 的形式或y =A cos(ωx +φ)+k 的形式.第二步:根据题设条件求出y =A sin(ωx +φ)+h 中有关的参数.第三步:由x 的取值范围确定ωx +φ的取值范围,再确定sin(ωx +φ)的取值范围.第四步:求出所求函数的值域(或最值).【试一试】 (2011·北京)已知函数f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.解 (1)因为f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2; 当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.对应学生255A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·山东)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( ).A.23B.32C .2D .3解析 由题意知f (x )的一条对称轴为x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32. 答案 B2.已知函数f (x )=sin(x +θ)+3cos(x +θ)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为( ).A .0B.π6C.π4D.π3解析 据已知可得f (x )=2sin ⎝ ⎛⎭⎪⎫x +θ+π3,若函数为偶函数,则必有θ+π3=k π+π2(k ∈Z ),又由于θ∈⎣⎢⎡⎦⎥⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意. 答案 B3.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( ).A .2- 3B .0C .-1D .-1- 3解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2.∴函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为2- 3. 答案 A4.(2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ).A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析 由f (x )=sin(2x +φ),且f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,∴f ⎝ ⎛⎭⎪⎫π6=±1,即sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1. ∴π3+φ=k π+π2(k ∈Z ).∴φ=k π+π6(k ∈Z ). 又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ.∴sin φ<0.∴对于φ=k π+π6(k ∈Z ),k 为奇数.∴f (x )=sin(2x +φ)=sin ⎝ ⎛⎭⎪⎫2x +k π+π6=-sin ⎝ ⎛⎭⎪⎫2x +π6.∴由2m π+π2≤2x +π6≤2m π+3π2(m ∈Z ), 得m π+π6≤x ≤m π+2π3(m ∈Z ),∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤m π+π6,m π+2π3(m ∈Z ).答案 C二、填空题(每小题5分,共10分)5.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值为________.解析 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.答案 326.若f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值是2,则ω=________.解析 由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3, 所以ωπ3=π4,解得ω=34. 答案 34三、解答题(共25分) 7.(12分)设f (x )=1-2sin x . (1)求f (x )的定义域;(2)求f (x )的值域及取最大值时x 的值.解 (1)由1-2sin x ≥0,根据正弦函数图象知: 定义域为{x |2k π+56π≤x ≤2k π+13π6,k ∈Z }. (2)∵-1≤sin x ≤1,∴-1≤1-2sin x ≤3, ∵1-2sin x ≥0,∴0≤1-2sin x ≤3, ∴f (x )的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f (x )取得最大值.8.(13分)(2013·东营模拟)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4. (1)求函数f (x )的最小正周期和图象的对称轴; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域.解 (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4=12cos 2x +32sin 2x +(sin x -cos x )(sin x +cos x ) =12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.∴最小正周期T =2π2=π,由2x -π6=k π+π2(k ∈Z ), 得x =k π2+π3(k ∈Z ).∴函数图象的对称轴为x =k π2+π3(k ∈Z ). (2)∵x ∈⎣⎢⎡⎦⎥⎤-π12,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π3,5π6,∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.即函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域为⎣⎢⎡⎦⎥⎤-32,1.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·新课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π单调递减,则ω的取值范围是( ).A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆85k π+π5,85k π+π,k ∈Z ,排除B ,C.取ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D.答案 A2.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( ).A.π4B.π3C.π2 D.3π4解析 由题意可知函数f (x )的周期T =2×⎝ ⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f (x )=sin(x+φ),令x +φ=k π+π2(k ∈Z ),将x =π4代入可得φ=k π+π4(k ∈Z ),∵0<φ<π,∴φ=π4. 答案 A二、填空题(每小题5分,共10分)3.(2013·徐州模拟)已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析 f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎪⎨⎪⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象,可得函数的最小值为-1,最大值为22,故值域为⎣⎢⎡⎦⎥⎤-1,22.答案 ⎣⎢⎡⎦⎥⎤-1,224.(2012·西安模拟)下列命题中:①α=2k π+π3(k ∈Z )是tan α=3的充分不必要条件; ②函数f (x )=|2cos x -1|的最小正周期是π;③在△ABC 中,若cos A cos B >sin A sin B ,则△ABC 为钝角三角形; ④若a +b =0,则函数y =a sin x -b cos x 的图象的一条对称轴方程为x =π4. 其中是真命题的序号为________. 解析 ①∵α=2k π+π3(k ∈Z )⇒tan α=3, 而tan α=3⇒/ α=2k π+π3(k ∈Z ),∴①正确. ②∵f (x +π)=|2cos(x +π)-1|=|-2cos x -1|=|2cos x +1|≠f (x ),∴②错误. ③∵cos A cos B >sin A sin B ,∴cos A cos B -sin A sin B >0, 即cos(A +B )>0,∵0<A +B <π,∴0<A +B <π2, ∴C 为钝角,∴③正确.④∵a +b =0,∴b =-a ,y =a sin x -b cos x =a sin x +a cos x =2a sin ⎝ ⎛⎭⎪⎫x +π4,∴x =π4是它的一条对称轴,∴④正确. 答案 ①③④ 三、解答题(共25分)5.(12分)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 解 (1)∵f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3-3cos 2x 8=12cos 2x -14,∴f (x )的最小正周期为2π2=π. (2)由(1)知h (x )=f (x )-g (x )=12cos 2x -12sin 2x =22cos ⎝ ⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )取得最大值22.故h (x )取得最大值时,对应的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π8,k ∈Z. 6.(13分)已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,又∵a >0,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1, 因此a =2,b =-5.(2)由(1)得a =2,b =-5,∴f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 综上,g (x )的递增区间为⎝ ⎛⎦⎥⎤k π,k π+π6(k ∈Z );递减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3(k ∈Z ).。
2014届高考一轮复习数学4.3三角函数的图像及性质
5.函数 y=sin22x+sin2x 的值域是 【答案】 - ,2 【解析】 y= sin2������ ∴ ≤y≤2. 1 4 1 2 + 2 1 4
.
− ,∵ -1≤sin2x≤1,
1 4
目录
退出
目录
退出
T 题型一三 角函数的定义域、值域及最值
例 1(1)求函数 y=lgsin2x+ 9-������ 2 的定义域.
目录 退出
π 4 π 2 3π 4 3������ ,k∈Z,������∈R 4 ������ 4 ������ 4
3.函数 y=2sin A. - , C.
π 2π 3 3 π 7π , 6 6
π -x 3
的一个单调减区间是( B. D.
π 4π , 3 3 π 5π - , 6 6 π 3
)
目录
退出
3.正弦函数、余弦函数、正切函数的图象和性质
函数 y=sin x y=cos x y=tan x
图象
定义域 值域
R [-1,1]
R [-1,1]
������ ������ ≠ +kπ,k∈Z
R
π 2
目录
退出
-
������ ������ + 2k������, + 2 2
[(2k-1)π,2kπ](k∈Z) 上递增; [2kπ,(2k+1)π](k∈Z) 上递减
第 3 讲 三角函数的图象及性质
目录
退出
考纲展示
理 解 正弦 函 数、 余弦 函数 在 [ 2π]上的性质( 0, 如单调性、最大
考纲解读
三角函数的图象与性质主要考查三角函数的 概念、周期性、单调性、有界性等, 多以选择 有时也会出现以函数 值和最小值、图象与 x轴交点等) 题和填空题的形式出现, , ������ ������ 性质为主的结合图象的综合题,试题以容易 理解正切函数在 - , 内的单调 2 2 题、中档题为主. 性.
高三数学一轮复习讲义: 三角函数的图像与性质
三角函数的图象与性质基础梳理 1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0) ⎝⎛⎭⎫π2,1 (π,0) ⎝⎛⎭⎫32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1) 2.三角函数的图象和性质函数 性质 y =sin x y =cos x y =tan x 定义域RR{x |x ≠k π+π2,k ∈Z }图象值域[-1,1][-1,1]R对称性对称轴:__ x =k π+π2(k ∈Z )__ _; 对称中心: _ (k π,0)(k ∈Z )__ _对称轴:x =k π(k ∈Z )___; 对称中心:_(k π+π2,0) (k ∈Z )__对称中心:_⎝⎛⎭⎫k π2,0 (k ∈Z ) __ 周期2π_2ππ单调性单调增区间_[2k π-π2,2k π+π2](k ∈Z )___; 单调减区间[2k π+π2,2k π+3π2] (k ∈Z ) __单调增区间[2k π-π,2k π] (k ∈Z ) ____; 单调减区间[2k π,2k π+π](k ∈Z )______单调增区间_(k π-π2,k π+π2)(k ∈Z )___奇偶性 奇函数偶函数奇函数3.有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)对函数周期性概念的理解周期性是函数的整体性质,要求对于函数整个定义域范围的每一个x 值都满足f (x +T )=f (x ),其中T 是不为零的常数.如果只有个别的x 值满足f (x +T )=f (x ),或找到哪怕只有一个x 值不满足f (x +T )=f (x ),都不能说T 是函数f (x )的周期.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为 2π|ω|, y =tan(ωx +φ)的最小正周期为 π|ω|.4.求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性; 关于正、余弦函数的有界性由于正余弦函数的值域都是[-1,1],因此对于∀x ∈R ,恒有-1≤sin x ≤1,-1≤cos x ≤1,所以1叫做y =sin x ,y =cos x 的上确界,-1叫做y =sin x ,y =cos x 的下确界.(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题. 利用换元法求三角函数最值时注意三角函数有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ⎝⎛⎭⎫2x -π4;(2)y =sin ⎝⎛⎭⎫π4-2x . 热身练习:1.函数y =cos ⎝⎛⎭⎫x +π3,x ∈R ( ). A .是奇函数 B .既不是奇函数也不是偶函数C .是偶函数D .既是奇函数又是偶函数 2.函数y =tan ⎝⎛⎭⎫π4-x 的定义域为( ).A .⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π-π4,k ∈Z B .⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠2k π-π4,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠2k π+π4,k ∈Z 3.函数y =sin(2x +π3)的图象的对称轴方程可能是( )A .x =-π6B .x =-π12C .x =π6D .x =π12【解析】令2x +π3=k π+π2,则x =k π2+π12(k ∈Z )∴当k =0时,x =π12,选D.4.y =sin ⎝⎛⎭⎫x -π4的图象的一个对称中心是( ). A .(-π,0)B .⎝⎛⎭⎫-3π4,0 C.⎝⎛⎭⎫3π2,0D.⎝⎛⎭⎫π2,0解析 ∵y =sin x 的对称中心为(k π,0)(k ∈Z ),∴令x -π4=k π(k ∈Z ),x =k π+π4(k ∈Z ),由k =-1,x =-34π得y =sin ⎝⎛⎭⎫x -π4的一个对称中心是⎝⎛⎭⎫-3π4,0. 答案 B5.下列区间是函数y =2|cos x |的单调递减区间的是( )A.(0,π)B.⎝⎛⎭⎫-π2,0C.⎝⎛⎭⎫3π2,2π D .⎝⎛⎭⎫-π,-π2 6.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对任意x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )【解析】当x ∈R 时,f (x )≤|f (π6)|恒成立,∴f (π6)=sin(π3+φ)=±1可得φ=2k π+π6或φ=2k π-5π6,k ∈Z∵f (π2)=sin(π+φ)=-sin φ>f (π)=sin(2π+φ)=sin φ∴sin φ<0 ∴φ=2k π-5π6由-π2+2k π≤2x -5π6≤π2+2k π 得x ∈[k π+π6,k π+2π3](k ∈Z ),选C.7.函数f (x )=3cos ⎝⎛⎭⎫x 2-π4x ∈R 的最小正周期为___4π_____. 8..y =2-3cos ⎝⎛⎭⎫x +π4的最大值为___5_____,此时x =_____34π+2k π,k ∈Z _________. 9.函数y =(sin x -a )2+1,当sin x =1时,y 取最大值;当sin x =a 时,y 取最小值,则实数-1≤a ≤0.10.函数f (x )=sin 2x +3sin x cos x 在区间[π4,π2]上的最大值是 .【解析】∵f (x )=1-cos2x 2+32sin2x =32sin2x -12cos2x +12=sin(2x -π6)+12,又π4≤x ≤π2,∴π3≤2x -π6≤5π6. ∴当2x -π6=π2即x =π3时,f (x )取最大值32.题型一 与三角函数有关的函数定义域问题 例1 求下列函数的定义域:(1)y =lgsin(cos x ); (2)y =sin x -cos x .解 (1)要使函数有意义,必须使sin(cos x )>0. ∵-1≤cos x ≤1,∴0<cos x ≤1.利用单位圆中的余弦线OM ,依题意知0<OM ≤1, ∴OM 只能在x 轴的正半轴上,∴其定义域为 {x |-π2+2k π<x <π2+2k π,k ∈Z}.(2)要使函数有意义,必须使sin x -cos x ≥0.利用图象.在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示. 在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤5π4+2k π,k ∈Z .变式训练1 (1)求函数y lg(2sin 1)tan 1cos()28x x π-+--=+的定义域;解 (1)要使函数有意义,则⎩⎪⎨⎪⎧2sin x -1>0-tan x -1≥0cos ⎝⎛⎭⎫x 2+π8≠0⇒⎩⎨⎧sin x >12,tan x ≤-1,x 2+π8≠k π+π2.图①如图①利用单位圆得:⎩⎪⎨⎪⎧2k π+π6<x <2k π+5π6,k π+π2<x ≤k π+3π4,x ≠2k π+3π4(k ∈Z ).∴函数的定义域为{x |2k π+π2<x <2k π+3π4,k ∈Z }.(2)求函数y 122log tan x x =++的定义域.要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2,k ∈Z⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2 (k ∈Z ).利用数轴可得图②图②∴函数的定义域是{x |0<x <π2或π≤x ≤4}.题型二、三角函数的五点法作图及图象变换例2已知函数f (x )=4cos x sin(x +π6)-1.(1)用五点法作出f (x )在一个周期内的简图;(2)该函数图象可由y =sin x (x ∈R )的图象经过怎样的平移变换与伸缩变换得到?【解析】(1)y =f (x )=4cos x sin(x +π6)-1=4cos x (32sin x +12cos x )-1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin(2x +π6)2x +π60 π2 π 3π2 2π x-π122π12 5π12 8π12 11π12 y 02-2∴函数y =f (x )在[-π12,11π12]上的图象如图所示.【点评】“五点法作图”应抓住四条:①化为y =A sin(ωx +φ)(A >0,ω>0)或y =A cos(ωx +φ)(A >0,ω>0)的形式;②求出周期T =2πω;③求出振幅A ;④列出一个周期内的五个特殊点.当画出某指定区间上的图象时,应列出该区间的特殊点.题型三 三角函数图象与解析式的相互转化例3函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.【解析】(1)由图可知A =2,T 4=π3,则2πω=4×π3 ∴ω=32.又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0∴sin(φ-π4)=0∵0<φ<π2,∴-π4<φ-π4<π4∴φ-π4=0,即φ=π4∴f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8)∴g (x )=[f (x -π12)]2=4×1-cos 3x +π42=2-2cos(3x +π4)∵x ∈[-π6,π3] ∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.【点评】根据y =A sin(ωx +φ)+K 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②K 的确定:根据图象的最高点和最低点,即K =最高点+最低点2;③ω的确定:结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω;④φ的确定:由函数y =A sin(ωx +φ)+K 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.例4若方程3sin x +cos x =a 在[0,2π]上有两个不同的实数根x 1,x 2,求a 的取值范围,并求此时x 1+x 2的值.【解析】∵3sin x +cos x =2sin(x +π6),x ∈[0,2π],作出y =2sin(x +π6)在[0,2π]内的图象如图.由图象可知,当1<a <2或-2<a <1时,直线y =a 与y =2sin(x +π6)有两个交点,故a 的取值范围为a ∈(-2,1)∪(1,2).当1<a <2时,x 1+π6+x 2+π6=π.∴x 1+x 2=2π3.当-2<a <1时,x 1+π6+x 2+π6=3π,∴x 1+x 2=8π3.【点评】利用三角函数图象形象直观,可使有些问题得到顺利、简捷的解决,因此我们必须准确把握三角函数“形”的特征.例4已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M (2π3,-2).(1)求f (x )的解析式;(2)将函数f (x )的图象向右平移π12个单位后,再将所得图象上各点的横坐标缩小到原来的12,纵坐标不变,得到y =g (x )的图象,求函数y =g (x )的解析式,并求满足g (x )≥2且x ∈[0,π]的实数x 的取值范围.【解析】(1)由函数图象的最低点为M (2π3,-2),得A =2,由x 轴上相邻两个交点间的距离为π2,得T 2=π2,即T =π,∴ω=2ππ=2.又点M (2π3,-2)在图象上,得2sin(2×2π3+φ)=-2,即sin(4π3+φ)=-1,故4π3+φ=2k π-π2,k ∈Z ,∴φ=2k π-11π6, 又φ∈(0,π2),∴φ=π6.综上可得f (x )=2sin(2x +π6).(2)将f (x )=2sin(2x +π6)的图象向右平移π12个单位,得到f 1(x )=2sin[2(x -π12)+π6],即f 1(x )=2sin2x 的图象,然后将f 1(x )=2sin2x 的图象上各点的横坐标缩小到原来的12,纵坐标不变,得到g (x )=2sin(2·2x ),即g (x )=2sin4x .由⎩⎨⎧0≤x ≤πg x =2sin4x ≥2得⎩⎪⎨⎪⎧0≤x ≤πsin4x ≥22.则⎩⎪⎨⎪⎧0≤x ≤π2k π+π4≤4x ≤2k π+3π4k ∈Z 即⎩⎪⎨⎪⎧0≤x ≤πk π2+π16≤x ≤k π2+3π16k ∈Z .故π16≤x ≤3π16 或 9π16≤x ≤11π16. 题型四 、三角函数的奇偶性与周期性及应用 例1已知函数f (x )=sin(ωx +φ),其中ω>0,|φ|<π2.(1)若cos π4cos φ-sin 3π4sin φ=0,求φ的值;(2)在(1)的条件下,若函数f (x )的图象的相邻两条对称轴之间的距离等于π3,求函数f (x )的解析式;并求最小正实数m ,使得函数f (x )的图象向左平移m 个单位后所对应的函数是偶函数.【解析】(1)由cos π4cos φ-sin 3π4sin φ=0 得cos(π4+φ)=0.∵|φ|<π2,∴φ=π4.(2)由已知得T 2=π3,∴T =2π3,ω=3 ∴f (x )=sin(3x +π4).设函数f (x )的图象向左平移m 个单位后所对应的函数为g (x ),则g (x )=sin[3(x +m )+π4]=sin(3x +3m +π4)g (x )是偶函数当且仅当3m +π4=k π+π2(k ∈Z )即m =k π3+π12(k ∈Z ) ∴最小正实数m =π12.题型五 三角函数的单调性与周期性 例2 写出下列函数的单调区间及周期: (1)y =sin ⎝⎛⎭⎫-2x +π3;(2)y =|tan x |. 解 (1)y =-sin ⎝⎛⎭⎫2x -π3, 它的增区间是y =sin ⎝⎛⎭⎫2x -π3的减区间,它的减区间是y =sin ⎝⎛⎭⎫2x -π3的增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ; 增区间为⎣⎡⎦⎤k π+5π12,k π+11π12,k ∈Z .最小正周期T =2π2=π. (2)观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,减区间是⎝⎛⎦⎤k π-π2,k π,k ∈Z .最小正周期:T =π.探究提高 (1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ) (其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答.列不等式的原则是:①把“ωx +φ (ω>0)”视为一个“整体”;②A >0 (A <0)时,所列不等式的方向与y =sin x (x ∈R ),y =cos x (x ∈R )的单调区间对应的不等式方向相同(反). (2)对于y =A tan(ωx +φ) (A 、ω、φ为常数),其周期T =π|ω|,单调区间利用ωx +φ∈⎝⎛⎭⎫k π-π2,k π+π2,解出x 的取值范围,即为其单调区间. (3)求含有绝对值的三角函数的单调性及周期时,通常要画出图象,结合图象判定. 变式训练2 (1)求函数y =sin ⎝⎛⎭⎫π3+4x +cos ⎝⎛⎭⎫4x -π6的周期、单调区间及最大、最小值; (2)已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. ①求f (x )的最小正周期; ②求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解: y =sin ⎝⎛⎭⎫π3+4x +cos ⎝⎛⎭⎫4x -π631314sin 44sin 422x x x x =+++ sin 4342sin(4)3x x x π==+ (1)周期为T=π2 242,232k x k k Z πππππ-+≤+≤+∈函数的递增区间为⎣⎡⎦⎤-5π24+k π2,π24+k π2 (k ∈Z ); 3242,232k x k k Z πππππ+≤+≤+∈函数的递减区间为⎣⎡⎦⎤π24+k π2,7π24+k π2(k ∈Z ) y max =2; y min =-2 (2) f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1314cos (cos )12x x x =+-223cos 2cos 1x x x =+-2cos 22sin(26)x x x π=+=+x ∈⎣⎡⎦⎤-π6,π4,22[,]663x πππ+∈- 最大值为2;最小值为-1题型六、三角函数的对称性与单调性及应用例2已知向量m u r =(3sin2x -1,cos x ), n r =(1,2cos x ),设函数f (x )=m n ⋅u r r,x ∈R.(1)求函数f (x )图象的对称轴方程; (2)求函数f (x )的单调递增区间.【解析】(1)f (x )=m ·n =3sin2x -1+2cos 2x =3sin2x +cos2x =2sin(2x +π6)∴对称轴方程为:2x +π6=k π+π2,即x =k π2+π6(k ∈Z ).(2)由-π2+2k π≤2x +π6≤π2+2k π得-π3+k π≤x ≤k π+π6∴f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).【点评】对于f (x )=A sin(ωx +φ)(A >0,ω>0):①若求y =f (x )的对称轴,只需令ωx +φ=k π+π2(k ∈Z ),求出x ;若求y =f (x )的对称中心的横坐标,只零令ωx +φ=k π(k ∈Z ),求出x ;②若求y =f (x )的单调增区间,只需令2k π-π2≤ωx +φ≤2k π+π2,求出x ;若求y =f (x )的单调减区间,只需令2k π+π2≤ωx +φ≤2k π+3π2,求出x .题型七 三角函数的对称性与奇偶性例3 (1)已知f (x )=sin x +3cos x (x ∈R ),函数y =f (x +φ) ⎝⎛⎭⎫|φ|≤π2的图象关于直线x =0对称,则φ的值为________.(2)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A . π6B.π4C.π3D.π2(1)π6f (x )=2sin π()3x +, y =f (x +φ)=2sin ()3x πϕ++图象关于x =0对称,即f (x +φ)为偶函数.∴π3+φ=π2+k π,k ∈Z ,即φ=k π+π6,k ∈Z ,所以当k =0时,φ=π6.(2)A3cos 4(2)3πϕ⨯+=3cos 2π(2π)3ϕ++=3cos 2()0,3πϕ+=∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.故选探究提高 若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值.若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0. 如果求f (x )的对称轴,只需令ωx +φ=π2+k π (k ∈Z ),求x .如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π (k ∈Z )即可.变式训练3 (1)已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π3,则函数g (x )=a sinx +cos x 的最大值是 ( )A.223B.233C.43D.263由题意得f (0)=f 10()3π,∴a =-32-a2.∴a =-33, g (x )=-33sin x +cos x =233sin 2()3x π+, ∴g (x )max =233.(2)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是⎝⎛⎭⎫π8,0,则f (x )的最小正周期是________.(1)B (2)π由题设,有π()4f ω=±a 2+b 2,即22(a +b )=±a 2+b 2,由此得到a =b .又()08f π'=,所以a ω(cos sin )88πωπω-=0,从而tanωπ8=1,ωπ8=k π+π4,k ∈Z ,即ω=8k +2,k ∈Z ,而0<ω<5,所以ω=2, 于是f (x )=a (sin 2x +cos 2x )=2a sin (2)4x π+故f(x)的最小正周期是π.题型八 三角函数的值域与最值的求法及应用例3(1)求函数y =2sin x cos 2x1+sin x的值域;(2)求函数y =sin x cos x +sin x +cos x 的最值;(3)若函数f (x )=1cos 24sin()2x x π++-a sin x 2·cos(π-x2)的最大值为2,试确定常数a 的值.【解析】22sin (1sin )11sin x x x-+()y==2sin x (1-sin x )=2sin x -2sin 2x =-2(sin x -12)2+12.∵1+sin x ≠0,∴-1<sin x ≤1.∴-4<y ≤12.故函数y =2sin x cos 2x 1+sin x的值域为(-4,12].(2)令t =sin x +cos x ,则sin x cos x =t 2-12,且|t |≤ 2.∴y =12(t 2-1)+t =12(t +1)2-1,∴当t =-1时,y min =-1;当t =2时,y max =2+12.(3)f (x )=2cos 2x 4cos x +a sin x 2cos x 2=12cos x +a2sin x=14+a 24sin(x +φ),(其中tan φ=1a)由已知得14+a 24=2,解得a =±15.【点评】求三角函数的最值问题,主要有以下几种题型及对应解法. (1)y =a sin x +b cos x 型,可引用辅角化为y =a 2+b 2sin(x +φ)(其中tan φ=ba).(2)y =a sin 2x +b sin x cos x +c cos 2x 型,可通过降次整理化为y =A sin2x +B cos2x +C . (3)y =a sin 2x +b cos x +c 型,可换元转化为二次函数. (4)sin x cos x 与sin x ±cos x 同时存在型,可换元转化.(5)y =a sin x +b c sin x +d (或y =a cos x +b c cos x +d )型,可用分离常数法或由|sin x |≤1(或|cos x |≤1)来解决,也可化为真分式去求解.(6)y =a sin x +bc cos x +d型,可用斜率公式来解决. 例4已知函数f (x )=sin2x +a cos 2x (a ∈R ,a 为常数),且π4是函数y =f (x )的一个零点.(1)求a 的值,并求函数f (x )的最小正周期;(2)当x ∈[0,π2]时,求函数f (x )的最大值和最小值及相应的x 的值.【解析】(1)由π4是y =f (x )的零点得 f (π4)=sin π2+a cos 2π4=0,求解a =-2,则f (x )=sin2x -2cos 2x =sin2x -cos2x -1=2sin(2x -π4)-1,故f (x )的最小正周期为T =2π2=π.(2)由x ∈[0,π2]得2x -π4∈[-π4,3π4],则-22≤sin(2x -π4)≤1,因此-2≤2sin(2x -π4)-1≤2-1,故当x =0时,f (x )取最小值-2,当x =3π8时,f (x )取最大值2-1.设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2(π2-x )满足f (-π3)=f (0),求函数f (x )在[π4,11π24]上的最大值和最小值.【解析】f (x )=a sin x cos x -cos 2x +sin 2x =a2sin2x -cos2x由f (-π3)=f (0)得-32·a 2+12=-1,解得a =2 3.∴f (x )=3sin2x -cos2x =2sin(2x -π6)当x ∈[π4,π3]时,2x -π6∈[π3,π2],f (x )为增函数.当x ∈[π3,11π24]时,2x -π6∈[π2,3π4],f (x )为减函数.∴f (x )在[π4,11π24]上的最大值为f (π3)=2 又∵f (π4)=3,f (11π24)= 2∴f (x )在[π4,11π24]上的最小值为f (11π24)= 2.题型九 分类讨论及方程思想在三角函数中的应用例题:已知函数f (x )=-2a sin ⎝⎛⎭⎪⎫2x +π6+2a +b 的定义域为⎣⎡⎦⎤0,π2,函数的最大值为1,最小值为-5,(1)求a 和b 的值.(2)若 a >0,设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 点评 ①求出2x +π6的范围,求出sin(2x +π6)的值域.②系数a 的正、负影响着f (x )的值,因而要分a >0,a <0两类讨论.③根据a >0或a <0求f (x )的最值,列方程组求解. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6.∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ], 又∵-5≤f (x )≤1,∴b =-5,3a +b =1, 因此a =2,b =-5.(2)由(1)得a =2,b =-5,∴f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1, ∴sin ⎝⎛⎭⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z , 其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .三角函数的图象与性质练习一一、选择题1.对于函数f (x )=2sin x cos x ,下列选项正确的是( ) A .f (x )在(π4,π2)上是递增的 B .f (x )的图象关于原点对称C .f (x )的最小正周期为2πD .f (x )的最大值为2【解析】f (x )=sin2xf (x )在(π4,π2)上是递减的,A 错; f (x )的最小正周期为π,C 错;f (x )的最大值为1,D 错;选B.2.若α、β∈(-π2,π2),那么“α<β”是“tan α<tan β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【解析】α、β∈(-π2,π2),tan x 在此区间上单调递增.当α<β时,tan α<tan β;当tan α<tan β时,α<β.故选C.3.已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,将该函数的图象向左平移π6个单位后,得到的图象对应的函数为奇函数,则f (x )的图象( )A .关于点(π12,0)对称B .关于直线x =5π12对称C .关于点(5π12,0)对称D .关于直线x =π12对称【解析】由已知得ω=2,则f (x )=sin(2x +φ)设平移后的函数为g (x ),则g (x )=sin(2x +π3+φ)(|φ|<π2)且为奇函数∴φ=-π3,f (x )=sin(2x -π3)∴图象关于直线x =5π12对称,选B.4.已知f (x )=sin x ,x ∈R ,g (x )的图象与f (x )的图象关于点(π4,0)对称,则在区间[0,2π]上满足f (x )≤g (x )的x 的取值范围是( )A .[π4,3π4]B .[3π4,7π4]C .[π2,3π2]D .[3π4,3π2]【解析】设(x ,y )为g (x )的图象上任意一点,则其关于点(π4,0)对称的点为(π2-x ,-y ),由题意知该点必在f (x )的图象上.∴-y =sin(π2-x ),即g (x )=-sin(π2-x )=-cos x ,由已知得sin x ≤-cos x ⇒sin x +cos x=2sin(x +π4)≤0又x ∈[0,2π] ∴3π4≤x ≤7π4.5.已知函数f (x )=3sin(ωx +φ),g (x )=3cos(ωx +φ),若对任意x ∈R ,都有f (π3+x )=f (π3-x ),则g (π3)=____. 【解析】由f (π3+x )=f (π3-x ),知y =f (x )关于直线x =π3对称,∴sin(ω·π3+φ)=±1.∴g (π3)=3cos(ω·π3+φ)=31-sin 2ω·π3+φ=0.6.设函数f (x )=2sin(πx 2+π5),若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)恒成立,则|x 2-x 1|的最小值为____.【解析】由“f (x 1)≤f (x )≤f (x 2)恒成立”,可得f (x 1)、f (x 2)分别是f (x )的最小值、最大值.∴|x 2-x 1|的最小值为函数f (x )的半周期,又T =2ππ2=4.∴|x 2-x 1|min =2.7.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数. (1)求f ′(x )及函数y =f ′(x )的最小正周期;(2)当x ∈[0,π2]时,求函数F (x )=f (x )f ′(x )+f 2(x )的值域.【解析】(1)f ′(x )=cos x -sin x =-2sin(x -π4)∴y =f ′(x )的最小正周期为T =2π.(2)F (x )=cos 2x -sin 2x +1+2sin x cos x=1+sin2x +cos2x =1+2sin(2x +π4)∵x ∈[0,π2],∴2x +π4∈[π4,5π4] ∴sin(2x +π4)∈[-22,1],∴函数F (x )的值域为[0,1+2].8.设函数f (x )=2cos x (sin x +cos x )-1,将函数f (x )的图象向左平移α个单位,得到函数y =g (x )的图象.(1)求函数f (x )的最小正周期;(2)若0<α<π2,且g (x )是偶函数,求α的值.【解析】(1)∵f (x )=2sin x cos x +2cos 2x -1=sin2x +cos2x =2sin(2x +π4),∴f (x )的最小正周期T =2π2=π.(2)g (x )=f (x +α)=2sin[2(x +α)+π4]=2sin(2x +2α+π4),g (x )是偶函数,则g (0)=±2=2sin(2α+π4),∴2α+π4=k π+π2,k ∈Z .α=k π2+π8(k ∈Z ),∵ 0<α<π2,∴α=π8.三角函数的图象与性质练习二1.函数f (x )=sin ⎝⎛⎭⎫2x +π3图象的对称轴方程可以为 ( )A.x =5π12B.x =π3C.x =π6D .x =π12解析 令2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ),令k =0得该函数的一条对称轴为x =π12.本题也可用代入验证法来解.答案 D 2.y =sin ⎝⎛⎭⎫x -π4的图象的一个对称中心是( ) A.(-π,0)B.⎝⎛⎭⎫-3π4,0C.⎝⎛⎭⎫3π2,0D.⎝⎛⎭⎫π2,03.函数y =3cos(x +φ)+2的图象关于直线x =π4对称,则φ的可能取值是( )A.3π4B.-3π4C.π4D.π2二、填空题 4.函数y =lg(sin x )+cos x -12的定义域为____(2k ,2k ]3πππ+(k ∈Z )_________.5.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈[0,π2],则f (x )的取值范围是____32⎡⎤-⎢⎥⎣⎦,3___________. 4.函数f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π4上单调递增,且在这个区间上的最大值是3,那么ω等于________.解析 因为f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π4上单调递增,且在这个区间上的最大值是3,所以2sin π4ω=3,且0<π4ω<π2,因此ω=43. 答案 436.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍;②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称;④y =f (x )的图象关于直线x =-π6对称.其中正确命题的序号是___________.②③解析 函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期T =π,由相邻两个零点的横坐标间的距离是T 2=π2知①错.利用诱导公式得f (x )=4cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π3= 4cos ⎝ ⎛⎭⎪⎫π6-2x =4cos ⎝ ⎛⎭⎪⎫2x -π6,知②正确.由于曲线f (x )与x 轴的每个交点都是它的对称中心,将x =-π6代入得f (x )=4sin ⎣⎢⎡⎦⎥⎤2×⎝⎛⎭⎪⎫-π6+π3=4sin 0=0, 因此点⎝ ⎛⎭⎪⎫-π6,0是f (x )图象的一个对称中心,故命题③正确.曲线f (x )的对称轴必经过图象的最高点或最低点,且与y 轴平行,而x =-π6时y =0,点⎝ ⎛⎭⎪⎫-π6,0不是最高点也不是最低点,故直线x =-π6不是图象的对称轴,因此命题④不正确. 答案 ②③三、解答题7.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间. 解 (1)-3π4(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z .8.(1)求函数y =2sin ⎝⎛⎭⎫2x +π3 (-π6<x <π6)的值域; (2)求函数y =2cos 2x +5sin x -4的值域.解 (1)∵-π6<x <π6,∴0<2x +π3<2π3,∴0<sin ⎝⎛⎭⎫2x +π3≤1, ∴y =2sin ⎝⎛⎭⎫2x +π3的值域为(0,2]. (2)y =2cos 2x +5sin x -4=2(1-sin 2x )+5sin x -4=-2sin 2x +5sin x -2 =-2⎝⎛⎭⎫sin x -542+98. ∴当sin x =1时,y max =1,当sin x =-1时,y min =-9, ∴y =2cos 2x +5sin x -4的值域为[-9,1].三角函数的图象与性质练习三一、选择题1.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2 时,f (x )=sin x ,则 f ⎝⎛⎭⎫5π3的值为 ( ) A.-12B.12C.-32D.322.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B .32C.2D.3 3.函数f (x )=cos 2x +sin ⎝⎛⎭⎫5π2+x 是( )A.非奇非偶函数B.仅有最小值的奇函数C.仅有最大值的偶函数D.有最大值又有最小值的偶函数 二、填空题4.设定义在区间(0,π2)上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为____23_______.5.函数f (x )=2sin ωx (ω>0)在⎣⎡⎦⎤0,π4上单调递增,且在这个区间上的最大值是3,那么ω=____43_______.解析 因为f (x )=2sin ωx (ω>0)在⎣⎡⎦⎤0,π4上单调递增,且在这个区间上的最大值是3,所以2sin π4ω=3,且0<π4ω<π2,因此ω=43.答案 436.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β;④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为___________. 三、解答题7.若函数f (x )=sin 2ax -sin ax ·cos ax (a >0)的图象与直线y =m 相切,并且切点的横坐标依次成公差为π2的等差数列. (1)求m 的值;(2)若点A (x 0,y 0)是y =f (x )图象的对称中心,且x 0∈⎣⎡⎦⎤0,π2,求点A 的坐标. 7.解 (1)f (x )=12(1-cos 2ax )-12sin 2ax=-12(sin 2ax +cos 2ax )+12=-22sin ⎝⎛⎭⎫2ax +π4+12. ∵y =f (x )的图象与y =m 相切, ∴m 为f (x )的最大值或最小值, 即m =1+22或m =1-22.(2)∵切点的横坐标依次成公差为π2的等差数列,∴f (x )的最小正周期为π2.T =2π|2a |=π2,a >0,∴a =2,即f (x )=-22sin ⎝⎛⎭⎫4x +π4+12. 由题意知sin ⎝⎛⎭⎫4x 0+π4=0,则4x 0+π4=k π (k ∈Z ),∴x 0=k π4-π16 (k ∈Z ). 由0≤k π4-π16≤π2(k ∈Z )得k =1或2,因此点A 的坐标为⎝⎛⎭⎫316π,12,⎝⎛⎭⎫716π,12. 三角函数的图象与性质练习四一、选择题1.函数f (x )=2sin x cos x 是( ).A .最小正周期为2 π的奇函数B .最小正周期为2 π的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数 解析 f (x )=2sin x cos x =sin 2x .∴f (x )是最小正周期为π的奇函数. 答案 C2.函数y =sin 2x +sin x -1的值域为( ).A .[-1,1] B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 解析 (数形结合法)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎡⎦⎤-54,1. 答案 C3.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=( ). A.23 B.32C .2D .3 解析 由题意知f (x )的一条对称轴为x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32. 答案 B4.函数f (x )=(1+3tan x )cos x 的最小正周期为( ). A .2π B.3π2 C .π D.π2解析 依题意,得f (x )=cos x +3sin x =2sin ⎝⎛⎭⎫x +π6.故最小正周期为2π. 答案 A5.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( ).A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2 D .y =cos ⎝⎛⎭⎫x +π2 解析 (筛选法)∵函数的周期为π.∴排除C 、D ,∵函数在⎣⎢⎡⎦⎥⎤π4,π2上是减函数,∴排除B. 答案 A【点评】 本题采用了筛选法,体现了筛选法的方便、快捷、准确性,在解选择题时应注意应用.6.已知函数f (x )=sin ⎝⎛⎭⎫x -π2(x ∈R ),下面结论错误的是( ). A .函数f (x )的最小正周期为2π B .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数解析 ∵y =sin ⎝ ⎛⎭⎪⎫x -π2=-cos x ,∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数,图象关于y 轴对称,为偶函数. 答案 D二、 填空题 7.y =-|sin (x +4π)|的单调增区间为___[k π+π4,k π+3π4](k ∈Z )_____. 8.要得到⎪⎭⎫⎝⎛-=42cos 3πx y 的图象,可以将函数y = 3 sin2 x 的图象向左平移_8π__单位. 9.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为____. 10函数f(x)02x π≤≤) 的值域是_____[-1,0]___ __.11.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.14312、给出下面的3个命题:(1)函数|)32sin(|π+=x y 的最小正周期是2π;(2)函数)23sin(π-=x y 在区间)23,[ππ上单调递增;(3)45π=x 是函数)252sin(π+=x y 的图象的一条对称轴.其中正确命题的序号是 .13.若函数f (x )=cos ωx cos ⎝⎛⎭⎫π2-ωx (ω>0)的最小正周期为π,则ω的值为________.解析 f (x )=cos ωx cos ⎝ ⎛⎭⎪⎫π2-ωx =cos ωx sin ωx =12sin 2ωx ,∴T =2π2ω=π.∴ω=1. 答案 114.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是______. 解析 由2x +π4=k π,k ∈Z ,得:x =k π2-π8,k ∈Z , 故交点坐标为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 15.已知函数f (x )=sin(x +θ)+3cos(x +θ)⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为________. 解析 (回顾检验法)据已知可得f (x )=2sin ⎝ ⎛⎭⎪⎫x +θ+π3,若函数为偶函数,则必有θ+π3=k π+π2(k ∈Z ),又由于θ∈⎣⎢⎡⎦⎥⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意.答案 π6三、解答题16.已知f (x )=sin x +sin ⎝⎛⎭⎫π2-x . (1)若α∈[0,π],且sin 2α=13,求f (α)的值; (2)若x ∈[0,π],求f (x )的单调递增区间. 解 (1)由题设知f (α)=sin α+cos α.∵sin 2α=13=2sin α·cos α>0,α∈[0,π],∴α∈⎝⎛⎭⎫0,π2,sin α+cos α>0. 由(sin α+cos α)2=1+2sin α·cos α=43,得sin α+cos α=233,∴f (α)=23 3.(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π4,又0≤x ≤π,∴f (x )的单调递增区间为⎣⎡⎦⎤0,π4. 17.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间.解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则-54<k <-14,k ∈Z ,∴k =-1,则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 18、设函数2()sin()2cos 1468x xf x πππ=--+.(1)求()f x 的最小正周期. (2)若函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值.解:(Ⅰ)()f x =sincoscossincos46464x x x πππππ--3cos 424x x ππ- sin()43x ππ- 故()f x 的最小正周期为T =24ππ=8(Ⅱ)解法一:在()y g x =的图象上任取一点(,())x g x ,它关于1x =的对称点(2,())x g x - . 由题设条件,点(2,())x g x -在()y f x =的图象上,从而()(2)sin[(2)]43g x f x x ππ=-=--sin[]243x πππ--)43x ππ+ 当304x ≤≤时,23433x ππππ≤+≤,因此()y g x =在区间4[0,]3上的最大值为max 32g π==解法二:因区间4[0,]3关于x = 1的对称区间为2[,2]3,且()y g x =与()y f x =的图象关于 x = 1对称,故()y g x =在4[0,]3上的最大值为()y f x =在2[,2]3上的最大值 由(Ⅰ)知()f xsin()43x ππ-当223x ≤≤时,6436ππππ-≤-≤因此()y g x =在4[0,]3上的最大值为max 6g π==. 19、设函数()f x =·a b ,其中向量(cos2)m x =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,.(1)求实数m 的值; (2)求函数()f x 的最小值及此时x 值的集合. (3)求函数的单调区间; (4)函数图象沿向量平移得到x y 2sin 2=的图象,求向量。
高三数学一轮复习:三角函数的图像与性质(二)
第二课时 三角函数的图像与性质(二)(教案)【复习目标】1.掌握三角函数的周期性、对称性;2.会用“五点法”作sin()y A x ωϕ=+的图像,了解函数sin y x =和函数sin()y A x ωϕ=+的图像之间的关系;3.能运用三角函数的有关知识解决实际问题. 【知识梳理】1.“五点法”作sin(),0y A x ωϕω=+>的图像:先描出5个点1234532(,0),(,),(,0),(,),(,0)22P P A P P A P ϕϕπϕπϕπϕπωωωωωωωωω--+-+-+--+,再用光滑曲线作出一个周期的图像,最后拓展到x R ∈的范围.2.周期函数的定义:如果存在一个非零常数T,使得x 取定义域内的任意值时,都有()()f x T f x +=成立,那么函数()y f x =叫做周期函数.如果在函数的所有周期中存在一个最小的正数,那么称这个最小的正数为函数的最小正周期. 3.三角函数的对称性:4.函数sin y x =和函数sin()(0,0),y A x A x R ωϕω=+>>∈的图像之间的变换:【基础练习】 1.已知()sin(),()cos()22f x xg x x ππ=+=-,则()f x 的图象(D ) A .与()g x 的图象相同 B .与()g x 的图象关于y 轴对称C .向左平移2π个单位得到()g x 的图象 D .向右平移2π个单位得到()g x 的图象 2.2|sin(3)|3y x π=-的最小正周期为(D )A .2πB .πC .2πD .3π3.函数sin cos y x x =+的一个对称中心是(C )A .(,0)4πB.5,4π⎛⎝ C .,04π⎛⎫- ⎪⎝⎭ D .,12π⎛⎫⎪⎝⎭4.函数cos(3)3y x π=+的图象的一条对称轴方程是( D )A .3x π=-B .4x π=C .6x π=D .9x π=-5.将函数cos y x =的图象上各点的横坐标保持不变,在纵坐标缩短到原来的13后,又将所得到的图象上移1个单位长度,则对应图象的函数解析式是_________________.[答案]1cos 13y x =+ 6.)(0)y x ωϕω=+>的初相和频率分别是π-和32,则它的相位是______.[答案]3x ππ-7.如果函数sin 2cos 2y x a x =+的图象关于直线8x π=-对称,那么a =1- .8.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图, 则,ωϕ==.答案:4,4πϕπω==9.下面有五个命题:①函数44sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是|,2k k Z παα⎧⎫=∈⎨⎬⎩⎭. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数sin()2y x π=-在[]0,π上是减函数.其中真命题的序号是 ① ④ (写出所有真命题的编号) 【典型例题】【例1】已知函数()()()sin 0,0f x A x A ωϕω=+>>的最高点为(,由此最高点到相邻的最低点间图像与x 轴交于一点()6,0,求函数的解析式.解:44T=,16T ∴= 又 2T πω=,8πω∴=又A =,8y x πϕ⎛⎫∴=+ ⎪⎝⎭ 当2x =时,y 代入得4πϕ=,84y x ππ⎛⎫∴=+ ⎪⎝⎭ 【变式】已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图像与y 轴交于点30,2⎛⎫⎪⎝⎭,它在y 轴右侧的第一个最大值点和最小值点分别为()0,3x ,()02,3x π+-. 求函数的解析式.解:()3sin 26x f x π⎛⎫=+ ⎪⎝⎭. 【例2】将函数()sin f x x =的图像上的所有点向左平移3π个单位,再把所得图像上各点的纵坐标缩小为原来的12. 求所得图像的解析式.解:()1sin 23f x x π⎛⎫=+ ⎪⎝⎭【变式】函数()y f x =的横坐标伸长到原来的2倍,再向左平移2π个单位,得到的曲线是1sin 2y x =的图像,求()y f x =的解析式.解:1cos 22y x =-.【例3】已知函数.21)4(,23)0(,23cos sin cos 2)(2==-+=πf f x x b x a x f 且 (1)求)(x f 的最小正周期;(2)求)(x f 的单调递减区间;(3)函数)(x f 的图象经过怎样的平移能使所得图象对应的函数成为奇函数?解:由,23,32,23232,23)0(==∴=-=a a a f 则得 由,1,2123223,21)4(=∴=-+=b b f 得π).32sin(2sin 212cos 2323cos sin cos 3)(2π+=+=-+=∴x x x x x x x f ∴函数)(x f 的最小正周期T=.22ππ= (2)由,12712,2233222ππππππππππk x k k k x k +≤≤≤++≤+≤+得∴)(x f 的单调递减区间是]127,12[ππππk k ++)(Z k ∈.(3))6(2sin )(π+=x x f ,∴奇函数x y 2sin =的图象左移6π即得到)(x f 的图象,故函数)(x f 的图象右移6π个单位后对应的函数成为奇函数. 【例4】已知函数.3cos 33cos 3sin )(2x x x x f += (1)将()f x 写成sin()A x B ωφ++的形式,并求其图象对称中心的横坐标;(2)如果ABC ∆的三边,,a b c 且,,a b c 成等比数列,且边b 所对的角为x ,试求x 的范围及此时函数()f x 的值域. 解:(1)23)332sin(2332cos 2332sin 21)32cos 1(2332sin 21)(++=++=++=πx x x x x x f ,由2sin()033x π+=即231()()332x k k k z x k Z πππ-+=∈=∈得, 即对称中心的横坐标为31()2k k Z π-∈;(2)由已知,得2b ac =,2222221cos 2222a c b a c ac ac ac x ac ac ac +-+--==≥=,1cos 12x ∴≤<,即03x π<≤,∴253339x πππ<+≤,5||||3292ππππ->- ,2sin sin()1333x ππ∴<+≤,,2sin()13322xπ++≤+即)(xf的值域为]231,3(+,综上所述,]3,0(π∈x,)(xf值域为]231,3(+.【例5】已知函数2π()2sin24f x x x⎛⎫=+⎪⎝⎭,ππ42x⎡⎤∈⎢⎥⎣⎦,.(1)求()f x的最大值和最小值;(2)若不等式()2f x m-<在ππ42x⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m的取值范围.解:(1)π()1cos221sin222f x x x x x⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵π12sin23x⎛⎫=+-⎪⎝⎭.又ππ42x⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x-∴≤≤,即π212sin233x⎛⎫+-⎪⎝⎭≤≤,max min()3()2f x f x==,∴.(2)()2()2()2f x m f x m f x-<⇔-<<+∵,ππ42x⎡⎤∈⎢⎥⎣⎦,,max()2m f x>-∴且min()2m f x<+,14m<<∴,即m的取值范围是(14),.【例6】已知函数)0,0)(sin()(πϕωϕω≤≤>+=xxf是R上的偶函数,其图象关于点)0,43(πM对称,且在区间]2,0[π上是单调函数.求ωϕ和的值.解:由()f x是偶函数,得()()f x f x-=,即).sin()sin(ϕωϕω+=+-xx所以cos sin cos sinx xϕωϕω-=,对任意x都成立,且,0>ω所以得cos0ϕ=.依题设0πϕ≤≤,∴2πϕ=,由()f x 的图象关于点M 对称,得)43()43(x f x f +-=-ππ. 取0x =,得)43(πf 3()4f π=-,所以3()04f π=.33333()sin()cos .cos 0,0,,0,1,2.4424442f k k πωππωπωπωππωπ=+=∴=>=+= 又得 2(21),0,1,2,3k k ω∴=+= 220,,()sin()[0,];3322k f x x ππω===+当时在上是减函数1,2,()sin(2)[0,];22k f x x ππω===+当时在上是减函数102232,,,1035330,2102()sin()[0,].22k T Tf x x ππωπωππππω≥≥=≤=->=∴=+当时此时定义域的区间长度在上不是单调函数2, 2.3ωω==所以综合得或【巩固练习】1.设(,)a b函数1)y x =-的一个对称中心,则a 的可能取值是(C )A .2B .πC .1π-D .12π+ 2.先将函数2sin(2)3y x π=+的周期扩大到原来的3倍,再将其图象向右平移2π个单位,所得的函数解析式为(C ) A .2sin(6)6y x π=-B .22sin()36y x π=-C .22sin3y x = D .222sin()33y x π=+3.已知函数13sin(2)3y x π=-,24sin(2)3y x π=+,那么函数12y y y =+的振辐A 的值为(D )A .5B .7C .13D4.若|1)8sin(2|++=ϕx y 的图象关于直线16π=x 对称,那么=ϕ(C )A .0B .2π C .∈k k (πZ ) D .∈+k k (2ππZ )5.图中给出的是函数sin()y x ωϕ=+的部分图形,则这一函数的解析式是(D )A .sin(1)y x =+B .sin(1)y x =--C .sin(1)y x =-D .sin(1)y x =-6.若函数2sin 4y x x =+的最小值为1,则a = . 答案:5 7.关于函数()4sin(2)()3f x x x R π=+∈,有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍; ②()y f x =的表达式可改写为4cos(2)6y x π=-;③()y f x =的图象关于点(,0)6π-对称;④()y f x =的图象关于直线6x π=-对称.其中正确的命题的序号是 (注:把你认为正确的命题的序号都填上).答案:②③8.设函数()y f x =的图象与直线,x a x b ==及x 轴所围成图形的面积称为函数()y f x =在[],a b 上的面积,已知函数sin y nx =在0,n π⎡⎤⎢⎥⎣⎦上的面积为*2()n N n ∈,(i )sin 3y x =在20,3π⎡⎤⎢⎥⎣⎦上的面积为 ; (ii )sin(3)1y x π=-+在4,33ππ⎡⎤⎢⎥⎣⎦上的面积为 . 答案:34,32+π 9.如图,某地一天从6时至14时的温度变化曲线近似满足函数sin()y A x b ωϕ=++.则(1)这段时间的最大温差是 ;(2)写出这段曲线的函数解析式 . 答案:(1)20()C .(2)[]310sin()20,6,1484y x x ππ=++∈.10.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC的夹角为θ.(1)求θ的取值范围;(2)求函数2()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π的最大值与最小值.解:(1)设ABC △中角AB C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(2)2π()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)θθ=+πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=.。
高三数学第一轮复习三角函数的图象与性质知识精讲
高三数学第一轮复习:三角函数的图象与性质【本讲主要内容】三角函数的图象与性质正弦函数、余弦函数、正切函数的图像与性质、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的图像与性质【知识掌握】【知识点精析】1. 正弦函数、余弦函数、正切函数的图像2. 正弦函数、余弦函数、正切函数的性质:(1)x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,(2)对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+ x y tan =的对称中心为)0,2(πk (3)三角函数的周期性对周期函数的定义,要抓住两个要点:①周期性是函数的整体性质,因此f (x+T )=f (x )必须对定义域中任一个x 成立时,非零常数T 才是f (x )的周期。
②周期是使函数值重复出现的自变量x 的增加值。
因为sin (2k π+x )=sinx 对定义域中任一个x 成立,所以2k π(k ∈Z ,k ≠0)是y =sinx 的周期,最小正周期是2π。
同理2k π(k ∈Z ,k ≠0)是y =cosx 的周期,最小正周期是2π。
因为tan (k π+x )=tanx 对定义域中任一个x 成立,所以k π(k ∈Z ,k ≠0)是y =tanx 的周期,最小正周期是π。
同理k π(k ∈Z ,k ≠0)是y =cotx 的周期,最小正周期是π。
(4)三角函数的奇偶性①函数y = sin (x +φ)是奇函数πϕk =⇔()Z ∈k 。
2014高考数学(理)一轮复习学案课件 第3编 三角函数的性质
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 四 考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
返回
返回
返回
考点 一
考点突破
返回
返回
返回
返回
返回
返回
返回
考点 二
返回
返回返回返回回考点 三返回
返回
返回
返回
返回
考点 四
返回
返回
返回
返回
真题再现
返回
返回
返回
返回
误区警示
返回
规律探究
返回
即时巩固
返回
返回
返回
返回
返回
课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
高考数学一轮复习 第三章 第3讲 三角函数图像与性质资料(艺术班)
第三章 三角函数、解三角形 第3讲 三角函数图像与性质一、必记1个知识点正弦、余弦、正切函数的图像与性质 (下表中k ∈Z ).1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 三、必会2个方法1.三角函数单调区间的求法:先把函数式化成形如y =A sin(ωx +φ)(ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,考虑问题应在函数的定义域内考虑.注意区分下列两题的单调增区间的不同:(1)y =sin ⎝ ⎛⎭⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎫π4-2x .2.求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图像写出函数的值域; (2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3 C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.2.函数y =2cos 2x +5sin x -4的值域为________.解析:y =2cos 2x +5sin x -4=2(1-sin 2x )+5sin x -4=-2sin 2x +5sin x -2=-2(sin x -54)2+98.故当sin x =1时,y max =1,当sin x =-1时,y min =-9,故y =2cos 2x +5sin x -4的值域为[-9,1]. [类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.[典例] (1)y =2sin ⎝ ⎛⎭⎪⎫x -π4;(2)y =tan ⎝ ⎛⎭⎪⎫π3-2x .[解] (1)由2k π+π2≤x -π4≤2k π+3π2,k ∈Z ,得2k π+3π4≤x ≤2k π+7π4,k ∈Z .故函数y =2sin ⎝ ⎛⎭⎪⎫x -π4的单调减区间为⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+7π4(k ∈Z ). (2)把函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 变为y =-tan ⎝⎛⎭⎪⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 的单调减区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).[类题通法]三角函数的单调区间的求法(1)代换法:所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图像法:函数的单调性表现在图像上是:从左到右,图像上升趋势的区间为单调递增区间,图像下降趋势的区间为单调递减区间,画出三角函数的图像,结合图像易求它的单调区间.提醒:求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. [针对训练]1.(2013·安徽师大附中3月月考)设ω>0,若函数f (x )=sin ωx 2cos ωx 2在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则ω的取值范围是( )A.⎝ ⎛⎭⎪⎫0,23B.⎝ ⎛⎦⎥⎤0,32C.⎣⎢⎡⎭⎪⎫32,+∞ D .[1,+∞)解析:选B f (x )=sin ωx 2cos ωx 2=12sin ωx ,若函数在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则T 2=πω≥π3+π3=2π3,即ω∈⎝ ⎛⎦⎥⎤0,32,故选B.2.函数y =cos ⎝⎛⎭⎪⎫2x +π6的单调递增区间为________.解析:函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12(k ∈Z )角度一 1.(2014·揭阳一模)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝ ⎛⎭⎪⎫3π4-x ( )A .是奇函数且图像关于点⎝ ⎛⎭⎪⎫π2,0对称B .是偶函数且图像关于点(π,0)对称C .是奇函数且图像关于直线x =π2对称 D .是偶函数且图像关于直线x =π对称解析:选C ∵当x =π4时,函数f (x )取得最小值,∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=A sin ⎝ ⎛⎭⎪⎫x +2k π-3π4=A sin ⎝ ⎛⎭⎪⎫x -3π4.∴y =f ⎝ ⎛⎭⎪⎫3π4-x =A sin(-x )=-A sin x .∴y =f ⎝⎛⎭⎪⎫3π4-x 是奇函数,且图像关于直线x =π2对称.角度二 由三角函数的对称性求参数值2.(2014·辽宁六校联考)已知ω>0,函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π3的一条对称轴为x =π3,一个对称中心为点⎝ ⎛⎭⎪⎫π12,0,则ω有( )A .最小值2B .最大值2C .最小值1D .最大值1解析:选A 由题意知π3-π12≥T 4,T =2πω≤π,ω≥2,故选A.[类题通法]1.若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.2.对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.课后作业[试一试]1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是( D )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4,x ∈R B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π4,x ∈RC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π-3π4,k ∈Z ,x ∈R D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+3π4,k ∈Z ,x ∈R2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A.⎝ ⎛⎭⎪⎫-π4,0B.⎝ ⎛⎭⎪⎫0,π2C.⎝ ⎛⎭⎪⎫π2,3π4D.⎝ ⎛⎭⎪⎫3π4,π解析:选B 由f (x )=-cos 2x 知递增区间为⎣⎢⎡⎦⎥⎤k π,k π+π2,k ∈Z ,故只有B 满足.[练一练]1.函数y =|sin x |的一个单调增区间是( )A.⎝ ⎛⎭⎪⎫-π4,π4B.⎝ ⎛⎭⎪⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π解析:选C 作出函数y =|sin x |的图像观察可知,函数y =|sin x |在⎝ ⎛⎭⎪⎫π,3π2上递增.2.(2013·天津高考)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22 C.22D .0 解析:选B 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22.[做一做]1.下列函数中,最小正周期为π的奇函数是( )A .y =cos 2xB .y =sin 2xC .y =tan 2xD .y =sin ⎝ ⎛⎭⎪⎫2x -π2解析:选B 选项A 、D 中的函数均为偶函数,C 中函数的最小正周期为π2,故选B.2.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)的最小正周期为π,则f (x )的单调递增区间为( ) A.⎣⎢⎡⎦⎥⎤k π+π3,k π+5π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π3(k ∈Z )C.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ) 解析:选D 根据已知得2πω=π,得ω=2.由不等式2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).3.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k∈Z ).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 4.函数y =tan ⎝⎛⎭⎪⎫2x +π4的图像与x 轴交点的坐标是________.解析:由2x +π4=k π(k ∈Z )得,x =k π2-π8(k ∈Z ).∴函数y =tan ⎝⎛⎭⎪⎫2x +π4的图像与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0.答案:⎝⎛⎭⎪⎫k π2-π8,05.(2013·洛阳统考)如果函数y =3sin(2x +φ)的图像关于直线x =π6对称,则|φ|的最小值为( )A.π6 B.π4 C.π3 D.π2解析:选A 依题意得,sin ⎝ ⎛⎭⎪⎫π3+φ=±1,则π3+φ=k π+π2(k ∈Z ),即φ=k π+π6(k ∈Z ),因此|φ|的最小值是π6,选A.6.(2013·陕西高考)已知向量a =⎝ ⎛⎭⎪⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期.(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解:f (x )=⎝ ⎛⎭⎪⎫cos x ,-12·( 3 sin x ,cos 2x )=3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cosπ6sin 2x -sin π6cos 2x=sin ⎝⎛⎭⎪⎫2x -π6. (1)f (x )的最小正周期为T =2πω=2π2=π,即函数f (x )的最小正周期为π. (2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质,当2x -π6=π2,即x =π3时,f (x )取得最大值1.当2x -π6=-π6,即x =0时,f (x )取得最小值-12.因此,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值是1,最小值是-12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6课 三角函数的图像和性质(二)
【考点导读】
1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数
sin()y A x ωϕ=+的性质;
2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】
1.写出下列函数的定义域:
(1
)y =
的定义域是______________________________; (2)sin 2cos x y x
=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________.
3.函数 22sin sin 44
f x x x ππ=+--()()()的最小正周期是_______. 4. 函数y =sin(2x +3
π
)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2
π
)内是减函数,则ω的取值范围是______________.
【范例解析】
例1.求下列函数的定义域: (1
)sin tan x
y x =
+(2
)y =+ 解:(1),2tan 0,2sin 10.x k x x ππ⎧≠+⎪⎪≠⎨⎪+≥⎪⎩即,2,722.
66x k x k k x k πππππππ⎧≠+⎪⎪
≠⎨⎪⎪-≤≤+⎩
,
故函数的定义域为7{226
6
x k x k π
π
ππ-
≤≤+
且,x k π≠,}2x k k Z ππ≠+∈
(2)122log 0,tan 0.x x +≥⎧⎪⎨⎪≥⎩即04,.2
x k x k πππ<≤⎧⎪⎨≤<+⎪⎩
故函数的定义域为(0,
)[,4]2
π
π⋃.
{663,}x k x k k Z πππ≤≤+∈ {,}2x x k k Z ππ≠+∈ π π (3
π,0) 10ω-≤<
点评:由几个函数的和构成的函数,其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集.
例2.求下列函数的单调减区间: (1)sin(
2)3
y x π
=-; (2)2cos sin()
42
x
y x π=
-;
解:(1)因为2222
3
2
k x k π
π
π
ππ-
≤
-≤+
,故原函数的单调减区间为
5[,]()12
12
k k k Z π
π
ππ-
+
∈. (2)由sin(
)042x π
-≠,得{2,}2
x x k k Z π
π≠+∈, 又2cos 4sin()24sin()42
x x y x π
π=
=+-,
所以该函数递减区间为3222242x k k πππππ+<+<+,即5(4,4)()22
k k k Z ππ
ππ++∈.
点评:利用复合函数求单调区间应注意定义域的限制. 例3.求下列函数的最小正周期: (1)5tan(21)y x =+;(2)sin sin 32y x x ππ⎛
⎫
⎛
⎫=+
+ ⎪ ⎪⎝
⎭⎝⎭
. 解:(1)由函数5tan(21)y x =+的最小正周期为π2,得5tan(21)y x =+的周期2
T π
=. (2)sin()sin()(sin cos cos sin )cos 3233
y x x x x x π
πππ
=+
+=+
点评:求三角函数的周期一般有两种:(1)化为sin()A x ωϕ+的形式特征,利用公式求解;(2)利用函数图像特征求解.
【反馈演练】
1.函数x x y 2
4cos sin +=的最小正周期为 _____________. 2.设函数()sin ()3f x x x π⎛
⎫=+∈ ⎪⎝
⎭R ,则()f x 在[0,2]π上的单调递减区间
为___________________.
3
.函数()sin ([,0])f x x x x π=-∈-的单调递增区间是________________.
4.设函数()sin 3|sin 3|f x x x =+,则()f x 的最小正周期为_______________. 2
π
[,0]6
π
-
3
2π
[,]π
2[,]63ππ,75[,]63ππ
5.函数22
()cos 2cos 2
x
f x x =-在[0,]π上的单调递增区间是_______________. 6
.已知函数π124()πsin 2x f x x ⎛
⎫+- ⎪
⎝⎭=⎛⎫
+ ⎪
⎝
⎭. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3
cos 5
α=,求()f α. 解:(Ⅰ) 由πsin 02x ⎛⎫
+
≠ ⎪
⎝
⎭
得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z . 故()f x 的定义域为π|π2
x x k k ⎧⎫∈≠-∈⎨⎬⎩
⎭
R Z ,.
(Ⅱ)由已知条件得4sin 5α===.
从而π124()πsin 2f ααα⎛
⎫- ⎪
⎝⎭=⎛
⎫+ ⎪
⎝
⎭ 7. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线
8
π
=
x .
(Ⅰ)求ϕ;
(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像 解:(Ⅰ))(8
x f y x ==
是函数π
Θ的图像的对称轴,,1)8
2sin(±=+⨯
∴ϕπ
(Ⅱ)由(Ⅰ)知).4
32sin(,43ππϕ-=-
=x y 因此 由题意得.,2
243222Z k k x k ∈+≤-≤-π
ππππ
所以函数.],85,8[)432sin(Z k k k x y ∈++-=π
ππππ的单调增区间为
(Ⅲ)由知)4
32sin(π
-=x y
故函数上图像是在区间],0[)(πx f y =。